
HAL Id: inria-00071382
https://hal.inria.fr/inria-00071382

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GoDIET: a deployment tool for distributed middleware
on Grid’5000

Eddy Caron, Pushpinder Kaur Chouhan, Holly Dail

To cite this version:
Eddy Caron, Pushpinder Kaur Chouhan, Holly Dail. GoDIET: a deployment tool for distributed
middleware on Grid’5000. [Research Report] RR-5886, INRIA. 2006. �inria-00071382�

https://hal.inria.fr/inria-00071382
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
58

86
--

F
R

+
E

N
G

appor t
de r ech er ch e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

GoDIET: a deployment tool for distributed
middleware on Grid’5000

Eddy Caron — Pushpinder Kaur Chouhan — Holly Dail

N° 5886

April 2006

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

GoDIET: a deployment tool for distributed middleware

on Grid’5000

Eddy Caron , Pushpinder Kaur Chouhan , Holly Dail

Thème NUM — Systèmes numériques
Projet GRAAL

Rapport de recherche n
�

5886 — April 2006 — 20 pages

Abstract: In this article we present GoDIET, a tool for the configuration, launch, and
management of the Distributed Interactive Engineering Toolbox (DIET) on computational
grids. DIET is an Application Service Provider (ASP) platform providing remote execution
of computational problems on distributed resources. GoDIET automatically generates and
stages all necessary configuration files, launches agents and servers in appropriate hierarchical
order, reports feedback on the status of running components, and allows shutdown of all
launched software.

GoDIET requires an XML file describing available compute and storage resources and
the desired overlay of DIET agents and servers onto available resources. For homogeneous
clusters, the XML file can be generated according to a deployment planning model, which has
shown that an optimal DIET deployment on homogeneous clusters is a Complete Spanning d-
ary (CSD) tree, where d is the number of children directly attached to an agent, regardless
of whether the children are servers or agents. We present experiments, that permit the
evaluation of the performance of GoDIET for several launch and management approaches,
that verify the correctness of the deployed platform, and that test the performance of CSD
tree deployments optimized for uniform workloads under mixed workload scenarios.

Key-words: Deployment, ASP, Grid computing

This text is also available as a research report of the Laboratoire de l’Informatique du Parallélisme

http://www.ens-lyon.fr/LIP.

GoDIET : un outil de déploiement pour intergiciels

distribués sur Grid’5000

Résumé : Dans cet article, nous exposons les travaux menés autour de la configuration, du
lancement et de la gestion de Distributed Interactive Engineering Toolbox (DIET), un inter-
giciel de type Application Service Provider (ASP) pour la grille. La difficulté de cette tâche
repose sur l’architecture de DIET qui est distribuée et hiérarchique. Le besoin de disposer de
ce type d’outil est renforcé par la diversité et le nombre des éléments de cet intergiciel. Dans
cet article, nous présenterons GoDIET, un nouvel outil adapté aux contraintes de DIET,
cependant les concepts mis en œuvre restent valides pour tout environnement distribué et
hiérarchique. Le principe de fonctionnement de GoDIET sera détaillé au travers de son
utilisation pour la gestion de DIET et du LogService, un service externe pour la gestion
de traces d’éléments distribués. Enfin, nous présentons une série d’expérimentations qui
permettent d’évaluer la performance et l’efficacité de GoDIET. Enfin, nous avons expéri-
menté le déploiements d’arbre CSD, optimisés pour des charges de travail uniformes, dans
un contexte de charges de travail non-uniformes.

Mots-clés : Déploiement, ASP, Calcul sur la grille

GoDIET 3

1 Introduction

The Distributed Interactive Engineering Toolbox (DIET) is an Application Service Provider
(ASP) which is designed to simplify access to remote computational resources and software
services for users. DIET is based on a hierarchy of distributed agents that collaborate to
perform scheduling decisions, on computational server daemons that provide computational
services, and on user-level clients that manage negotiation with the system for users.

In this paper we are interested in automated approaches for launching and managing
hierarchies of DIET agents and servers across computational grids. The launch of DIET on
computational grids presents a number of problems shared with many other grid solutions:
how to quickly and reliably launch a large number of components, how to interface with a
variety of resource environments (ranging from direct execution with ssh to launching via a
batch system), how to regain control of launched processes to shut them down, and how to
identify and react to failures in the launch process. The launch of DIET is further compli-
cated by the fact that agents and servers must coordinate with the rest of the deployment;
specifically, the chosen hierarchy is encapsulated in agent and server configuration files and
the launcher must ensure that parent agents are fully functional before launching agents
and servers that are further down in the hierarchy. We will use the word deployment

to encapsulate all of the above general and DIET-specific launch and management issues;
although deployment is an overloaded term, and thus not a desirable choice, there are scant
alternatives for encapsulating these issues in one word.

Traditionally, users of DIET have either launched agents and servers by hand, or written
scripts to manage the launch. These approaches place serious limitations on the diversity,
scale, and number of experiments that can be feasibly performed. Since DIET itself is
currently stable and provides good performance at scales up to 500 nodes and more, support
for larger scale experiments is vital for further testing.

GoDIET is written in Java and users write an XML file describing their available compute
and storage resources and the desired overlay of agents and servers onto those resources.
GoDIET automatically generates and stages all necessary configuration files, launches agents
and servers in appropriate hierarchical order, reports feedback on the status of running
components, and manages shutdown of all launched software.

To facilitate users in generating an appropriate XML file, we are developing automated
deployment planning models and approaches. We have demonstrated that a complete span-
ning d-ary tree (CSD tree) is an optimal deployment theoretically for DIET in large homoge-
neous cluster environments [6]. In the same paper we showed that we could correctly predict
a good degree d and that the selected CSD tree provided a good deployment in practice on
large Grid’5000 clusters. Once the deployment planning module predicts a good d for a
particular environment and workload, we use another program to automatically generate
an XML file for GoDIET which describes the exact mapping of the chosen CSD tree onto
real resources. In this article we use this deployment model to test mixed jobs in DIET
platforms.

The rest of this article is organized as follows. Section 2 presents related tools. In
Section 3 we provide an overview of DIET and explain the DIET platform launch steps,

RR n
�

5886

4 E. Caron , P.K.Chouhan , H. Dail

Section 4 presents the deployment planning model for homogeneous clusters, and Section 5
describes in detail the deployment approach used by GoDIET. Then, in Section 6 we present
experiments that show the performance of GoDIET. Finally, Section 7 concludes the paper
and describes future work.

2 Related work

A variety of toolkits are freely available that can be used for launching programs on com-
putational grids; we briefly discuss some of these toolkits below. We wanted GoDIET to
satisfy some very specific DIET needs such as respecting a DIET hierarchy in the launch
order, using LogService [4] feedback to manage the launch, and automatically generating
configuration files that encapsulate each elements’ role in the hierarchy. We did not find
any currently existing toolkits that manage these tasks in a generalized way. Thus, rather
than make very heavy modifications of an existing toolkit, we decided to purpose-build a
deployment tool; however, we based on our approach on existing tools wherever possible.

JXTA Distributed Framework (JDF) [1] is designed to facilitate controlled testing of
JXTA-based peer-to-peer systems under a variety of scenarios including emulated failures.
JDF also uses an XML file for descriptions of the resources and jobs to be run, and de-
ployment is based on a regular Java Virtual Machine, a Bourne shell, and ssh or rsh.
JDF is focused on launching Java-based programs and relies on several Java features dur-
ing the launch, thus it is not directly applicable to launching DIET. However, DIET has
been adapted to use JuxMem [10], a JXTA-based distributed memory project. To enable
this joint usage, GoDIET has been adapted to use existing JDF interfaces to coordinate
the launch of JuxMem components in conjunction with the launch of DIET components.
JDF also includes a notion of profiles that could be used to simplify the GoDIET XML by
describing groups of agents or servers as a collection.

APST (AppLeS Parameter Sweep Template) [5] provides large-scale deployment of appli-
cations based on the parameter sweep model. Resources, jobs, and parameters are described
in an XML file and APST manages the staging of files, scheduling of jobs, and retrieval of
results. APST is a very general solution that can be used for a wide variety of purposes;
APST is not however designed for middleware deployments structured with automatically-
generated configuration files. Elagi [9] is a library that provides compiled programs with
easy access to grid services; essentially, Elagi packages those parts of the APST code-base
that can be easily re-used by other projects. We plan to rewrite those portions of GoDIET
that use ssh and scp to instead use Elagi’s generic process spawning and batch submission
interfaces; this will provide GoDIET the ability to deploy DIET via ssh, globusrun, or a
large number of batch schedulers including LSF, PBS, and Condor.

Automatic Deployment of Applications in a Grid Environment (ADAGE) [11] is a proto-
type middleware. It currently deploys only static applications on the resources of a computa-
tional grid. Deployed applications can be distributed applications (like CORBA component
assembly), parallel applications (like MPICH-G2) or a combination of the two applications.

INRIA

GoDIET 5

ADAGE is a promising approach. We plan to follow the development of this deployment
approach to see where future integration and collaboration may be possible.

3 DIET overview

DIET [4] is a toolkit for building applications based on remote computational servers. The
goal of DIET is to provide a sufficiently simple interface to mask the distributed infrastruc-
ture while providing users an access to greater computational power.

3.1 DIET architecture

DIET can use a hierarchy of agents to provide greater scalability for scheduling client requests
on available servers. The collection of agents uses a broadcast / gather operation to find
and select amongst available servers while taking into account locations of any existing data
(which could be pre-staged due to previous executions), the load on available servers, and
application-specific performance predictions.

Client

MA

MA

MA

MA

LA
LA

LA
LALA

LA

MA

MA

�����
�����
�����

���
���
���

�����
�����
�����
�����

����������

�����
�����
�����

���
���
���

	�	�	
	�	�	

�

�

��������

��
��
��

�����
�����
�����

�����
�����
���
���

��������

�����
�����
�����

�����
�����
�����

�����
�����
���
���

��������

���
���
���
���

����������
������

���
���
 �
 �

!�!�!"�"
#�#�#$�$

%
%
%
%
%
%
%
%
%

&
&
&
&
&
&
&
&
&

'
'
'
'
'
'
'
'
'

(
(
(
(
(

)
)
)
)
)

*
*
*
*
*

Figure 1: General view of DIET architecture.

An overview of the DIET architecture is shown in Figure 1. The Master Agent (MA)
must be launched before all other agents and servers. The MA serves as the main portal
to the DIET hierarchy; all agents and servers are thereafter attached to the MA via a tree
at launch-time, though the type of tree is not constrained. All other agents are called
Local Agents (LA) and can be included in the hierarchy for scalability or to provide a
better mapping to the underlying network architecture. Servers (SeDs) are attached to

RR n
�

5886

6 E. Caron , P.K.Chouhan , H. Dail

each computational resource and either perform the actual computation directly or launch
another binary to perform the computation (e.g. in the case of a server on a front-end node
of a batch system). Servers also aid in the scheduling process by providing performance
predictions to agents during the server selection process. While the top of the tree must
be an MA, any number of LAs can be connected in an arbitrary tree and servers can be
attached to the MA or to any of the LAs.

The client is the application interface by which users can submit problems to DIET.
Many clients can connect to DIET at once and each can request the same or different types
of services by specifying the problem to be solved. Clients can use either the synchronous
interface where the client must wait for the response, or the asynchronous interface where
the client can continue with other work and be notified when the problem has been solved.

Problem solution proceeds in two phases. In the scheduling phase the DIET client sub-
mits the problem to the MA. Agents maintain a simple list of subtrees containing a particular
service; thus the MA broadcasts the request on all subtrees containing that service. Other
agents in the hierarchy perform the same operation, forwarding the request on all eligible
subtrees. When the request reaches the server-level, each server calls their local FAST [8]
service to predict the execution time of the request on this server. These predictions are then
passed back up the tree where each level in the hierarchy sorts the responses to minimize
execution time and passes a subset of responses to the next higher level. Finally the MA
returns one or several proposed servers to the client. In the service phase the client submits
the problem directly to the chosen server. The server executes the job and sends the result
back to the client.

This description of the agent/server architecture focuses on the common-case usage of
DIET. An extension of this architecture is also available that uses JXTA peer-to-peer tech-
nology to allow the forwarding of client requests between MAs, and thus the sharing of work
between otherwise independent DIET hierarchies. We are investigating the possible bene-
fits of this peer-to-peer extension of DIET for scalability, fault-tolerance, and collaborations
between administrative domains that desire greater independence.

3.2 DIET deployment

The DIET platform is constructed following the hierarchy of agents and SeDs; Figure 2
provides an overview of steps of the DIET startup process. The first element to be launched
during deployment is the naming service; all other launched elements can easily find each
other using only the hostname and port at which the naming service can be found and a
string-based name for the element of interest. As a benefit of this approach, multiple DIET
deployments can be launched on the same group of machines without conflict as long as
the naming service for each deployment uses a different port and/or a different machine.
After the naming service, the MA is launched; the MA is the root of the DIET hierarchy
and thus does not register with any other elements. After the MA, all other DIET elements
understand their place in the hierarchy from their configuration file which contains the name
of the element’s parent. Users of GoDIET specify the desired hierarchy in a more intuitive
way via the naturally hierarchical XML input file to GoDIET (see Section 5).

INRIA

GoDIET 7

MA MA MA MA MA

Client

LA LA LA

LA

LA

LA

(1) (2) (3) (4) (5)
SeD SeD

SeD

SeD SeD

SeD SeD

Figure 2: Launch of a DIET platform.

4 Deployment planning model

Deployment planning is the process of defining a good mapping of software components to
available resources. For DIET, we consider that a good deployment is one that maximizes the
steady-state throughput of the system, i.e. the number of requests that can be scheduled,
launched, and completed by the servers in a given time unit. In DIET important issues for
deployment planning include how many resources to allocate to agents (e.g. scheduling) ver-
sus to servers (e.g. computation) and what hierarchical arrangement of agents and servers
to use. In [3] we presented a heuristic approach to improving an existing hierarchical deploy-
ment on heterogeneous resources. The approach is iterative; in each iteration, mathematical
models are used to analyze the existing deployment, identify the primary bottleneck, and
remove the bottleneck by adding resources in the appropriate area of the system. In [6]
we presented an approach for determining an optimal hierarchical middleware deployment
for a homogeneous resource platform of a given size. We showed that an optimal deploy-
ment for hierarchical middleware systems on clusters is provided by a Complete Spanning
d-ary (CSD) tree. The approach automatically determines an appropriate degree d and the
number of nodes that should be used so as to maximize the steady-state throughput.

We have validated this theoretical work for homogeneous requests on homogeneous clus-
ters in [6]. In this article we test the performance of CSD trees optimized for homogeneous
workloads under mixed workload conditions.

In order to apply the deployment planning model [6] to DIET, we have to define models
for the scheduling phase and the service phase of DIET. Here we consider only the single
port serial model wherein a computing resource has no capability for parallelism: it can
either send a message, receive a message, or compute. Messages must be sent serially and
received serially. The throughput of the scheduling phase in requests per second is given by
the minimum of the throughput provided by the servers for prediction and by the agents
for scheduling the request. As only servers take part in the service phase, the throughput of
the service phase in requests per second is given by the throughput provided by the servers
for service provision, which can be affected by the servers’ participation in the prediction
phase.

RR n
�

5886

8 E. Caron , P.K.Chouhan , H. Dail

5 GoDIET

GoDIET is designed to automate the deployment of DIET platforms and associated services
for diverse grid environments. Key goals of GoDIET included portability, the ability to
integrate GoDIET in a graphically-based user tool for DIET management, and the ability
to communicate in CORBA with LogService [4]; we have chosen Java for the GoDIET
implementation as it satisfies all of these requirements and provides for rapid prototyping.
Figure 3 shows how GoDIET works in conjunction with services for logging and visualization
to provide convenient administration and monitoring for a running DIET deployment.

Figure 3: Interaction of GoDIET, LogService, and VizDIET to assist users in controlling
and understanding DIET platforms.

GoDIET automatically generates configuration files for each DIET component taking
into account user configuration preferences and the hierarchy defined by the user, launches
complimentary services (such as a name service and logging services), provides an ordered
launch of components based on dependencies defined by the hierarchy, and provides remote
cleanup of launched processes when the deployed platform is to be destroyed.

INRIA

GoDIET 9

An important aspect of such a platform administration tool is the ability to identify
and react to errors in the deployment process. When GoDIET identifies an error in the
launch of a particular element, it analyzes the elements of the hierarchy that have not yet
been launched and only launches those elements that do not depend on the failed element.
For example, if the naming service launch fails, GoDIET will not launch any other elements
because all other elements depend on this service. This reactivity saves the user time because
time is not wasted trying to launch elements that will fail anyway.

GoDIET can identify errors in the launch process in two ways. First, if errors are reported
on standard error during the launch of an element, GoDIET reports these errors to the user
and marks the launch of the element as confused because GoDIET can not be sure of the
status of the element; unlaunched elements are marked with a launch status of none and
correctly launched elements have a status of running. Second, if the user has requested
that LogService be launched, GoDIET registers with LogService for traces concerning all
running elements. Thus, after the launch of each element GoDIET waits for feedback from
LogService concerning the health of the launched element. If LogService does not report
that an element has launched successfully, GoDIET marks the log state of that element
as confused. The verification of launch state is a useful tool for monitoring the health of
the deployment because it is always available regardless of whether the user chooses to
deploy LogService or not. However, the availability of LogService provides a much stronger
verification on launch state because many more types of errors can be caught using this log
feedback.

As input GoDIET requires an XML file, in which users describe their available compute
and storage resources and the desired overlay of agents and servers onto those resources.
In short, the GoDIET XML file contains the description of DIET agents and servers and
their hierarchy, the description of desired complementary services like LogService, the phys-
ical machines to be used, the disk space available on these machines, and the configuration
of paths for the location of needed binaries and dynamically loadable libraries. The file
format provides a strict separation of the resource description and the deployment configu-
ration description; the resource description portion must be written once for each new grid
environment, but can then be re-used for a variety of deployment configurations.

Detailed and well commented XML examples are presented in the GoDIET documenta-
tion. We use a Document Type Definition file (DTD) to provide automated enforcement of
allowed XML file semantics; an input XML file is verified against the GoDIET DTD using
a validating parser. An example XML file is given in the Appendix A.

From the Appendix A it can be seen that diet_configuration markups surround all of
the other sections. diet_configuration can optionally contain a “goDiet” section to allow
configuration of GoDIET behavior. diet_configuration must contain three subsections:
the resources section, the diet_services section and the diet_hierarchy section.

The resources section defines what machines to use for computation and storage, how
to access those resources, and where to find binaries and libraries on each machine. It
must include at least one “scratch” section, one “storage” section, and one “compute” or one
“cluster” section. The diet_services section must contain one “omni names” section and

RR n
�

5886

10 E. Caron , P.K.Chouhan , H. Dail

can optionally include one “log central” and one “log tool” section. The diet_hierarchy

section defines the deployment hierarchy and must include at least one“master agent”section
and one “SeD” section.

The basic user interface is a non-graphical console mode and can be used on any machine
where Java is available and where the machine has ssh access to the target resources used
in the deployment. An alternative interface is a graphical console that can be loaded by
VizDIET [2] to provide an integrated management and visualization tool. Both the graphical
and non-graphical console modes can report a variety of information on the deployment
including the run status and, if running, the PID of each component, as well as whether log
feedback has been obtained for each component.

We use scp and ssh to provide secure file transfer and task execution. ssh is a tool
for remote machine access that has become almost universally available on grid resources in
recent years. With a carefully configured ssh command, GoDIET can configure environment
variables, specify the binary to launch with appropriate command line parameters, and
specify different files for the stdout and stderr of the launched process. Additionally, for a
successful launch GoDIET can retrieve the PID of the launched process; this PID can then
be used later for shutting down the DIET deployment. In the case of a failure to launch the
process, GoDIET can retrieve these messages and provide them to the user. To illustrate
the approach used, an example of the type of command used by GoDIET follows.

/bin/sh -c (/bin/echo ✂

"export PATH=/home/user/local/bin/:$PATH ; ✂

export LD_LIBRARY_PATH=/home/user/local/lib ; ✂

export OMNIORB_CONFIG=/home/user/godiet_s/run_exp01/omniORB4.cfg; ✂

cd /home/user/godiet_s/run_exp01; ✂

nohup dietAgent ./MA_0.cfg < /dev/null > MA_0.out 2> MA_0.err &" ; ✂

/bin/echo ’/bin/echo ${!}’) ✂

| /usr/bin/ssh -q user@grid5000.ens-lyon.fr /bin/sh -

It is important that each ssh connection can be closed once the launch is complete
while leaving the remote process running. If this can not be achieved, the machine on which
GoDIET is running may eventually run out of resources (typically sockets) and refuse to open
additional connections. In order to enable a scalable launch process, the above command
ensures that the ssh connection can be closed after the process is launched. Specifically,
in order for this connection to be closeable: (1) the UNIX command nohup is necessary to
ensure that when the connection is closed the launched process is not killed as well, (2) the
process must be put in the background after launch, and (3) the redirection of all inputs
and outputs for the process is required.

DIET provides the features and flexibility to allow a wide variety of deployment con-
figurations, even in difficult network and firewall environments. For example, for platforms
without DNS-based name resolution or for machines with both private and public network
interfaces, elements can be manually assigned an endpoint hostname or IP in their configu-
ration files; when the element registers with the naming service, it specifically requests this

INRIA

GoDIET 11

endpoint be given as the contact address during name lookups. Similarly, an endpoint port
can be defined to provide for situations with limited open ports in firewalls. These spe-
cialized options are provided to DIET elements at launch time via their configuration files;
GoDIET supports these configuration options via more user-intuitive options in the input
XML file and then automatically incorporates the appropriate options while generating each
element’s configuration file. For large deployments, it is key to have a tool like GoDIET to
make practical use of these features.

Figure 4: Grid’5000 DIET Deployment with 1 MA, 8 LA, 574 SeD

6 Experiments

We present experiments designed to evaluate the performance and efficacy of GoDIET for
the deployment of DIET and associated services at a large scale, the accuracy of GoDIET
in identifying errors in the deployment, and the performance of deployments optimized for
homogeneous workloads under mixed workload scenarios.

We did experiments on different sites of Grid’5000, a set of distributed computational
resources in France. Table 1 provides details of the Grid’5000 sites that we used for our
experiments. An abstract example of an XML file used for experiments is shown in Appendix

RR n
�

5886

12 E. Caron , P.K.Chouhan , H. Dail

A. All tests were performed using the dgemm application, a simple matrix multiplication
provided as part of the Basic Linear Algebra Subprograms (BLAS) package [7].

6.1 Evaluation of launch performance

For this experiment we want to test the time required by GoDIET to launch DIET deploy-
ments of different sizes. A key activity for GoDIET during launch is to determine when an
element has finished launching and registering itself with the naming service; only once these
processes are done can GoDIET launch dependent elements. There are two approaches used
to define timing of dependent element launch.

Fixed wait: This is the simplest approach, and involves simply sleeping for a fixed
period before launching dependent components. Our experiments are performed with a wait
of 3 seconds after omniNames and LogCentral, 2 seconds after each agent, and 1 second
after each server.

Feedback: This approach uses real-time feedback from LogService to guide the launch
process. GoDIET waits for verification that a component has registered with the logging
service before launching other components.

For these experiments, the type of DIET hierarchy is fixed and we vary the number of
sites (and therefore servers) to be deployed. We obtained access to a subset of the machines
at each cluster listed in Table 1: 30 nodes at Lyon, 40 nodes at Bordeaux, 40 nodes at Lille,
50 nodes on the Rennes Paraci cluster, 50 nodes at Toulouse, 90 nodes at Sophia, and 140
nodes at Orsay; thus we had 440 nodes in total. We defined our hierarchy to be composed
of an MA on the cluster Lyon and an LA on each of the other sites in the deployment;
all remaining nodes were allocated as SeDs attached to the LA at their site. To test the
performance of GoDIET for different deployment sizes, we first test a deployment using only
the smallest site (1 MA, 1 LA, and 28 SeDs total), then a deployment using the three smallest
sites (1 MA, 3 LAs, and 102 SeDs total), and so on until we have tested a deployment using
all 7 of the sites (1 MA, 7 LAs, and 426 SeDs total). We test the time required for GoDIET

Site Nodes Memory Processor Type
Cluster

Bordeaux 48 2 GB dual AMD Opteron 248 2.2GHz
Lille 53 4 GB dual AMD Opteron 248 2.2GHz
Lyon 56 2 GB dual AMD Opteron 2.0
Orsay 216 2 GB dual AMD Opteron 246 2.0GHz
Rennes 64 2 GB dual Intel Xeon 2.4 GHz
Paraci
Sophia 138 2 GB dual AMD Opteron 246 2.0GHz
Toulouse 57 2 GB dual AMD Opteron 248 2.2GHz

Table 1: Description of the Grid’5000 clusters used in our experiments.

INRIA

GoDIET 13

to launch each of these deployments using the fixed wait approach and using the feedback
approach. Figure 5 presents the time required to launch these different platforms.

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

La
un

ch
 ti

m
e

(s
ec

on
ds

)

Number of servers

Fixed wait
Feedback

Figure 5: The time for platform launch as a function of the number of servers desired.

The time for launch is strongly dependent on the number of servers included in the
deployment. The cost of the fixed wait approach is clearly high relative to the cost of the
feedback approach in this environment. Grid’5000 benefits from top-level machines and
networks and relatively little competition for resources among users; in this environment
our selection of fixed wait times of several seconds between elements is likely overgenerous
and the feedback approach receives notifications very quickly. However, in more difficult
network environments these times may be too short. The feedback approach is clearly
preferable because it automatically controls dependent element launch based on feedback
from previous launches and so does not require user intervention to guess the correct amount
of wait time.

6.2 Launch problem identification

Once a platform has been launched by GoDIET, we want to verify that the platform was
indeed correctly launched. We are also interested in how accurately GoDIET identifies
problems in the platform based on launch-time errors and/or LogService feedback. We the
following platform verifications on all deployments from Section 6.1.

For these experiments we take advantage of one of the DIET scheduling modes that
provides round-robin allocation of tasks to SeDs. To test the performance of a deployment
with S servers, we run S clients against that deployment. If we have S valid scheduler
responses from the agent hierarchy, then we consider that the agent hierarchy is running
well. We then verify that each of the S requests was assigned a unique server (as required
by our choice of round-robin). If so, and if the servicing phase of all S requests completed
successfully, we consider all S servers to be functioning correctly. If less than S unique

RR n
�

5886

14 E. Caron , P.K.Chouhan , H. Dail

servers were used to service the S requests, we know some servers or their parent agents
were not functioning correctly.

Note that DIET provides best-effort round-robin scheduling and under cases of high
rates of arrival of competing client requests, sometimes DIET is not able to provide strict
round-robin behavior. Thus, to ensure strict round-robin behavior our testing script only
launches a single client at a time; under these conditions, round-robin behavior is strictly
enforced by DIET.

For each deployment we also identified how many errors GoDIET reported to the user,
for comparison against the number of errors seen via the above verification test. In the fixed
wait approach a server is marked as failed if its launch seemed to have failed, while in the
feedback approach a server is marked as failed if either its launch failed or log feedback was
received for it.

Table 2 provides a summary of our analysis of problematic SeDs in the deployments from
the previous section. The majority of deployments had no errors at all: all agents and SeDs
were functioning correctly; this result is promising in terms of the stability and usability of
Grid’5000 since such large resource sets typically have some number of unexpected run-time
problems. However, when there are problematic SeDs, GoDIET does not effectively estimate
the scale of the problem. In fact, when there are problems they are often large with as many
as 129 problematic SeDs. In all cases, these large numbers of problems correspond to the
size of one of the individual sites in our deployment, so we believe that these errors are
site-level errors corresponding to a failed local agent at that site or a transitory problem
with the site itself (such as a temporary network partition). In any case, we plan to improve
GoDIET to better identify these problems so that DIET administrators and users can be
better informed about the platform status.

6.3 Large scale experiment

From the results of different GoDIET launch approaches, we have selected the feedback
approach to deploy DIET on a hierarchy of 585 nodes. This experiment was done on 7

Approach Sites Rep. 1 Rep. 2 Rep. 3
Fixed wait 1 0/0 0/0 0/0

3 0/0 0/0 1/40
5 1/50 0/49 0/39
7 2/91 1/129 -

Feedback 1 0/0 0/0 0/0
3 1/1 0/0 0/0
5 0/0 0/0 0/0
7 2/30 1/29 -

Table 2: Problem SeDs as identified by GoDIET / by clients.

INRIA

GoDIET 15

Cluster SeDs Launch time (secs)
Bordeaux 44 70
Lille 44 118
Lyon 49 52
Orsay 176 88
Paraci 59 82
Parasol 59 81
Sophia 89 68
Toulouse 54 33

Table 3: Time taken to launch 574 SeDs is 592 secs.

sites/8 clusters (Bordeaux, Lille, Lyon, Orsay, Rennes, Sophia, Toulouse) of Grid’5000.
OmniNames and log central were launched at Orsay. The hierarchy is composed of an MA
on the cluster Orsay and an LA on each of the 8 clusters. All other reserved nodes were
added as servers to the LA on that cluster. GoDIET was located on a machine in the Lyon
cluster. The time taken to launch this deployment is 7minutes 25secs. The time taken to
launch SeDs on each cluster is shown in Table 3.

6.4 Platform selection by deployment planning model

In this section we test whether it is better to deploy one DIET hierarchy on all available
nodes and submit all (heterogenous) requests to the hierarchy, or whether it is better to
divide the available nodes in different partitions with one partition per problem size. For
example, if we have 100 nodes and four different problems, should we deploy one CSD tree
using all 100 nodes to solve the four types of problems, or should we deploy four CSD trees
of 25 nodes each and submit only uniform problems to each CSD tree.

For this experiment we use a total of 75 nodes at the Orsay site and dgemm problem
sizes 10, 100, and 1000. First, we divided the available nodes in three sets of 25 nodes each.
Then we used our optimal deployment planning algorithm to predict the best value of d

to construct a CSD tree with 25 nodes for each problem size. Next, we used the planning
algorithm to predict the best value of d for a CSD tree using 75 nodes and each problem
size.

For a deployment of size 25 nodes, for sizes 10 and 100 our algorithm predicts a best
degree of 2, while for size 1000 the best degree is predicted to be 24. For a deployment of
size 75 nodes, degree 2 is again predicted to be optimal for sizes 10 and 100 while degree
74 is predicted to be optimal for size 1000. Next, we tested the makespan of each set of
tasks on the three separate deployments, sending only the appropriate problem size to each
deployment. Then we tested the makespan of the combined set of tasks including all three
problem sizes on the 75 node deployments. The results are shown in Figure 6.

RR n
�

5886

16 E. Caron , P.K.Chouhan , H. Dail

0 100 200 300 400 500 600 700 800

25 nodes

25 nodes

25 nodes

75 nodes

75 nodes

Degree 2, Problem size 10

Degree 2, Problem size 100

Degree 24, Problem size 1000

Degree 2, Problem sizes 10,100,1000

Degree 74, Problem sizes 10,100,1000

Makespan (seconds)

Figure 6: Makespan for a group of tasks partitioned to three deployments or sent to a single
joint deployment.

Figure 6 shows that if we deploy three small CSD tree in parallel it take 560.36 seconds
to execute 3000 requests but if we deploy one big CSD tree but with degree 74, we can save
time, as it took only 466 seconds to execute 3000 requests.

7 Conclusion

In this article we have presented GoDIET, a tool for the hierarchical deployment of dis-
tributed DIET agents and servers. We described DIET and discussed in detail the launch
process for DIET, explained some important features of GoDIET, and briefly described our
deployment planning algorithms for homogeneous clusters. We then used experiments to
show that GoDIET can effectively manage deployments of hundreds of nodes and that using
feedback to guide the launch is an effective strategy. We also tested the launched deploy-
ments to verify that they were correctly launched and responsive to client requests. We
identified some problems in failed SeDs in large-scale deployments. Finally we tested mixed
workloads on CSD tree deployments optimized for homogeneous tasks; we found that, in
our test, partitioning machines into deployments that are specific to a particular kind of
workload may not be an effective approach.

INRIA

GoDIET 17

There are several areas we plan to pursue in future work. First, we plan to build a visual
tool that will allow users to build a graphical model of their desired deployment and export
this model to GoDIET for launch. We also envision enabling interactive deployment and
reconfiguration whereby users can dynamically reconfigure portions of the DIET deployment.
Second, we plan to integrate this tool with the output obtained from the deployment planning
model, which is based on resource and application characteristics. We also plan to extend
and adapt our deployment planning approaches to usage in real-world deployment scenarios.

References

[1] G. Antoniu, L. Bougé, and M. Jan. Juxmem: An adaptive supportive platform for data
sharing on the grid. In IEEE/ACM Workshop on Adaptive Grid Middleware, held in
conjunction with 12th Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT 2003), New Orleans, September 2003.

[2] R. Bolze, E. Caron, and F. Desprez. A monitoring and visualization tool and its appli-
cation for a network enabled server platform. In LNCS, editor, Parallel and Distributed
Computing Workshop of ICCSA 2006, Glasgow, UK., 8-11 May 2006.

[3] E. Caron, P. K. Chouhan, and A. Legrand. Automatic Deployment for Hierarchical
Network Enabled Server. In The 13th Heterogeneous Computing Workshop (HCW
2004), Santa Fe. New Mexico, April 2004.

[4] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Network Enabled Servers
on the Grid. International Journal of High Performance Computing Applications, 2006.
To appear.

[5] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS Parameter Sweep
Template: User-level middleware for the Grid. In Proceedings of Supercomputing,
November 2000.

[6] P.K. Chouhan, H. Dail, E. Caron, and F. Vivien. Automatic middleware deployment
planning on clusters. International Journal of High Performance Computing Applica-
tions, 2007. To appear.

[7] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. Van de Geijn. Parallel
implementation of BLAS: General techniques for level 3 BLAS. Technical Report CS-
TR-95-40, University of Texas, Austin, Oct. 1995.

[8] F. Desprez, M. Quinson, and F. Suter. Dynamic performance forecasting for network en-
abled servers in a metacomputing environment. In Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Applications (PDPTA
2001), 2001.

[9] Elagi project description. http://grail.sdsc.edu/projects/elagi/.

RR n
�

5886

http://grail.sdsc.edu/projects/elagi/

18 E. Caron , P.K.Chouhan , H. Dail

[10] JuxMem project description. http://www.jxta.org/universities/-juxmem.html.

[11] S. Lacour, C. Pérez, and T. Priol. A software architecture for automatic deployment
of corba components using grid technologies. In Proceedings of the 1st Francophone
Conference On Software Deployment and (Re)Configuration (DECOR 2004), Grenoble,
France, October 2004.

INRIA

GoDIET 19

A Example GoDIET XML file

<?xml ve r s i on=”1 .0 ” standa lone=”no”?>

< !DOCTYPE d i e t c o n f i g u r a t i o n SYSTEM ”deve l /GoDIET−2 .0 .0/GoDIET. dtd ”
>

<d i e t c o n f i g u r a t i o n>

<goDiet debug=”1” saveStdOut=”no” saveStdErr=”no” useUniqueDirs=”
no”/>

<r e s our ce s>

<s c ra t ch d i r=”/homePath/ user / s c r a t c h g od i e t ”/>

<s to rage l a b e l=”g5kBordeauxDisk ”>
<s c ra t ch d i r=”/homePath/ user / sc ra tch runt ime ”/>

<scp se rve r=” f r o n t a l e . bordeaux . gr id5000 . f r ” l o g i n=”pkchouhan”
/>

</ s to rage>

.

.
<s to rage l a b e l=”g5kOrsayDisk ”>

<s c ra t ch d i r=”/homePath/ user / sc ra tch runt ime ”/>

<scp se rve r=” f r o n t a l e . orsay . gr id5000 . f r ” l o g i n=”pkchouhan”/>

</ s to rage>

<c l u s t e r l a b e l=”g5kBordo ” d i sk=”g5kBordeauxDisk ” l o g i n=”
pkchouhan”>

<env path=”/homePath/ user /demo/bin ” LD LIBRARY PATH=”/
homePath/ user /demo/ l i b ”/>

<node l a b e l=”node −1. bordeaux . gr id5000 . f r ”>
<ssh se rve r=”node −1. bordeaux . gr id5000 . f r ”/>

</node>

.

.
<node l a b e l=”node −47. bordeaux . gr id5000 . f r ”>

<ssh se rve r=”node −47. bordeaux . gr id5000 . f r ”/>

</node>

</ c l u s t e r>

.

.
<c l u s t e r l a b e l=”g5kOrsay ” . .>

.

.
</ c l u s t e r>

</ r e sour ce s>

<d i e t s e r v i c e s>

<omni names contact=”gdx0005 . orsay . gr id5000 . f r ” port=”2809 ”>
<c on f i g s e rve r=”gdx0005 . orsay . gr id5000 . f r ” remote binary=”

omniNames”/>

</omni names>
< l o g c e n t r a l>

<c on f i g s e rve r=”gdx0007 . orsay . gr id5000 . f r ” remote binary=”
LogCentral ”/>

</ l o g c e n t r a l>
< l o g t o o l>

<c on f i g s e rve r=”gdx0007 . orsay . gr id5000 . f r ” remote binary=”
DIETLogTool”/>

RR n
�

5886

20 E. Caron , P.K.Chouhan , H. Dail

</ l o g t o o l>
</ d i e t s e r v i c e s>

<d i e t h i e r a r c hy>

<master agent l a b e l=”MA1”>
<c on f i g s e rve r=”node −5. tou louse . gr id5000 . f r ” remote binary=”

dietAgent ”/>

< l o c a l a g e n t l a b e l=”LA1”>
<c on f i g s e rve r=”node −75. sophia . gr id5000 . f r ” remote binary=”

dietAgent ”/>

<SeD l a b e l=”SeD1”>
<c on f i g s e rve r=”node −65. sophia . gr id5000 . f r ”

remote binary=”BLASserver ”/>

</SeD>

.

.
<SeD l a b e l=”SeD89”>

<c on f i g s e rve r=”node −34. sophia . gr id5000 . f r ”
remote binary=”BLASserver ”/>

</SeD>

</ l o c a l a g e n t>

.

.
< l o c a l a g e n t l a b e l=”LA8”>

<c on f i g s e rve r=”node −30. lyon . gr id5000 . f r ”
.
.

</ l o c a l a g e n t>

</master agent>
</ d i e t h i e r a r c hy>

</ d i e t c o n f i g u r a t i o n>

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Related work
	3 DIET overview
	3.1 DIET architecture
	3.2 DIET deployment

	4 Deployment planning model
	5 GoDIET
	6 Experiments
	6.1 Evaluation of launch performance
	6.2 Launch problem identification
	6.3 Large scale experiment
	6.4 Platform selection by deployment planning model

	7 Conclusion
	A Example GoDIET XML file

