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Abstract: We introduce a max-plus analogue of the Petrov-Galerkin finite element method
to solve finite horizon deterministic optimal control problems. The method relies on a max-
plus variational formulation. We show that the error in the sup norm can be bounded from
the difference between the value function and its projections on max-plus and min-plus semi-
modules, when the max-plus analogue of the stiffness matrix is exactly known. In general,
the stiffness matrix must be approximated: this requires approximating the operation of the
Lax-Oleinik semigroup on finite elements. We consider two approximations relying on the
Hamiltonian. We derive a convergence result, in arbitrary dimension, showing that for a
class of problems, the error estimate is of order § + Axz(8)~" or V4§ + Axz(5)~', depending
on the choice of the approximation, where § and Ax are respectively the time and space
discretization steps. We compare our method with another max-plus based discretization
method previously introduced by Fleming and McEneaney. We give numerical examples in
dimension 1 and 2.
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Méthode des éléments finis max-plus pour la résolution
de problémes de commande optimale déterministe :
propriétés générales et analyse de convergence

Résumé : Nous introduisons un analogue max-plus de la méthode des éléments finis de
Petrov-Galerkin pour résoudre des problémes de controle optimal déterministe en horizon
fini. La méthode repose sur une formulation variationnelle max-plus. Nous montrons que
I’erreur en norme sup peut étre bornée a partir de la différence entre la fonction valeur et ses
projections sur des semi-modules max-plus et min-plus, lorsque I’analogue max-plus de la
matrice de rigidité est connu exactement. Dans le cas général, la matrice de rigidité doit étre
approchée : ceci nécessite "approximation de 'opération du semi-groupe de Lax-Oleinik sur
les éléments finis. Nous considérons deux approximations reposant sur I’Hamiltonien. Nous
prouvons un résultat de convergence, en dimension quelconque, montrant que l’erreur totale,
pour une classe particuliére de problémes, est de ’ordre de § + Az(5)~! ou V& + Axz(8) 1,
selon l'approximation choisie, oit § et Ax sont respectivement les pas de discrétisation en
temps et en espace. Nous comparons notre méthode avec une autre méthode de discré-
tisation exploitant également ’algébre max-plus, introduite précédemment par Fleming et
McEneaney. Nous donnons des exemples numériques en dimension 1 et 2.

Mots-clés :  Algébre max-plus, semi-anneau tropical, équation d’Hamilton-Jacobi, for-
mulation faible, résiduation, projection, semi-modules idempotents, méthode des éléments
finis
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1 Introduction

We consider the optimal control problem:

T
maximize /0 L(x(s),u(s))ds + ¢(x(T)) (1a)

over the set of trajectories (x(-), u(+)) satisfying
x(s) = f(x(s),u(s)), x(s)eX, u(s)elU, (1b)
forall 0 < s <T and

x(0) =z . (1c)
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4 Akian, Gaubert € Lakhoua

Here, the state space X is a subset of R", the set of control values U is a subset of R™,
the horizon T > 0 and the initial condition © € X are given, we assume that the map u()
is measurable, and that the map x(-) is absolutely continuous. We also assume that the
instantaneous reward or Lagrangian { : X x U — R, and the dynamics f : X x U — R", are
sufficiently regular maps, and that the terminal reward ¢ is a map X — RU {—oc}.

We are interested in the numerical computation of the value function v which associates
to any (z,t) € X x [0, T] the supremum v(z, t) of fg 0(x(s),u(s)) ds+¢(x(t)), under the con-
straints (D), for 0 < s <t and ([[d). Tt is known that, under certain regularity assumptions,
v is solution of the Hamilton-Jacobi equation

_@JFH(%%):Q (2,0) € X x (0,T] , (2a)

with initial condition:
v(z,0) =¢(z), ze€X , (2b)

where H(z,p) = sup,ey Uz, u) + p - f(z,u) is the Hamiltonian of the problem (see for
instance [Lio82 [FS93l [Bar94]).

Several techniques have been proposed in the litterature to solve this problem. We men-
tion for example finite difference schemes and the method of the vanishing viscosity [CL84,
the anti-diffusive schemes for advection [BZ05], the finite elements approach [GR&5] (in the
case of the stopping time problem), the so-called discrete dynamic programming method or
semi-lagrangian method [CDR3|, [CDIR4], [Fal®7|, [EF94], [FGA9], [CEEN4], the Markov
chain approximations [BD99]. Other schemes have been obtained by integration from
the essentially nonoscillatory (ENO) schemes for the hyperbolic conservation laws (see
for instance [OS91]). Recently, max-plus methods have been proposed to solve first-order
Hamilton-Jacobi equations [MH9S], [MH99], [FM0], [McE02], [McEO3], [CM04], [McE04].

Recall that the maz-plus semiring, Ryax, is the set RU{—o0}, equipped with the addition
a ® b = max(a,b) and the multiplication @ ® b = a + b. In the sequel, let S denote the
evolution semigroup of ), or Lax-Oleinik semigroup, which associates to any map ¢ the
function v* := v(-,t), where v is the value function of the optimal control problem ().
Maslov [Mas73| observed that the semigroup S* is maz-plus linear, meaning that for all
maps f, g from X to Ry, and for all A € Ry,.,, we have

S'(feg)=5faSy,
SYAf) =AS'f

where f @ g denotes the map x — f(z)Dg(x), and Af denotes the map z — A® f(x). Linear
operators over max-plus type semirings have been widely studied, see for instance [CG79,
MS92, [BCOQ92, KM97, [GMOT], see also [Fafl6].

In [EM00], Fleming and McEneaney introduced a max-plus based discretization method
to solve a subclass of Hamilton-Jacobi equations (with a Lagrangian £ quadratic with respect

INRIA



The maz-plus finite element method 5

to u, and a dynamics f affine with respect to u). They use the max-plus linearity of the
semigroup S to approximate the value function v* by a function v}, of the form:

vl = sup I+ w} (3)
1<i<p

where {w; }1<i<, is a given family of functions (a max-plus “basis”) and {\!}1<;<, is a family
of scalars (the “coefficients” of v} on the max-plus “basis”), which must be determined. They
proposed a discretization scheme in which \! is computed inductively by applying a max-
plus linear operator to A\!~?, where ¢ is the time discretization step. Thus, their scheme can
be interpreted as the dynamic programming equation of a discrete control problem.

In this paper, we introduce a max-plus analogue of the finite element method, the
“MFEM”, to solve the deterministic optimal control problem (). We still look for an approx-
imation v}, of the form (). However, to determine the “coefficients” \!, we use a max-plus
analogue of the notion of variational formulation, which originates from the notion of gen-
eralized solution of Hamilton-Jacobi equations of Maslov and Kolokoltsov [KMS88], [KM97,
Section 3.2]. We choose a family {z;}1<;j<, of test functions and define inductively v}, to be
the maximal function of the form (@) satisfying

(vh, | ;) < (S%0i70 | 25)  V1<j<gq, (4)

where (- | -) denotes the max-plus scalar product (see Section Bl for details). We show that
the corresponding vector of coefficients A* can be obtained by applying to A’ % a nonlinear
operator, which can be interpreted as the dynamic programming operator of a deterministic
zero-sum two players game, with finite action and state spaces. The state space of the game
corresponds to the set of finite elements. To each test function corresponds one possible
action of the first player, and to each finite element corresponds one possible action of the
second player, see Remark Bl

One interest of the MFEM is to provide, as in the case of the classical finite element
method, a systematic way to compute error estimates, which can be interpreted geometrically
as “projection” errors. In the classical finite element method, orthogonal projectors with
respect to the energy norm must be used. In the max-plus case, projectors on semimodules
must be used (note that these projectors minimize an additive analogue of Hilbert projective
metric [CGQ04]).

We shall see that when the value function is nonsmooth, the space of test functions must
be different from the space in which the solution is represented, so that our discretization
is indeed a max-plus analogue of the Petrov-Galerkin finite element method. A convenient
choice of finite elements and test functions include quadratic functions (also considered by
Fleming and McEneaney [EM00]) and norm-like functions, see Section Bl

In the MFEM, we need to compute the value of the max-plus scalar product (z | S°w)
for each finite element w and each test function z. In some special cases, (z | S°w) can be
computed analytically. In general, we need to approximate this scalar product. Here we
consider the approximation S°w(z) = w(z) 4+ §H(x, Vw(z)), for 2 € X, which is also used
in [MH99]. Our main result, Theorem 22 provides for the resulting discretization of the

RR n° 5874



6 Akian, Gaubert € Lakhoua

value function an error estimate of order § + Ax(§) ™!, where Az is the “space discretization
step”, under classical assumptions on the control problem and the additionnal assumption
that the value function v’ is semiconvex for all ¢ € [0,7]. This is comparable with the
order obtained in the simplest dicrete dynamic programming method, see [[CDIR4], [Fal87],
[CDERY]. To avoid solving a difficult (nonconvex) optimization problem, we propose a
further approximation of the max-plus scalar product (z | S°w), for which we obtain an
error estimate of order v/d + Az(§)~!, which is yet comparable to the order of the existing
discretization methods [CDIR4], [Fal&7], [CDERY|, [CLR4].

Note that the discretization grid need not be regular: in Theorem B2, Az is defined for
an arbitrary grid in term of Voronoi tesselations.

The paper is organised as follows. In Section B, we recall some basic tools and notions:
residuation, semimodules and projection. In Section Bl we present the formulation of the
max-plus finite element method. In Section Bl we compare our method with the method
proposed by Fleming and McEneaney in [EM00]. In Section [, we state an error estimate
and we give the main convergence theorem. Finally, in Section [l we illustrate the method
by numerical examples in dimension 1 and 2. Preliminary results of this paper appeared
in [AGLO4].

Acknowledgment: We thank Henda El Fekih for advices and suggestions all along the
development of the present work.

2 Preliminaries on residuation and projections over semi-
modules

In this section we recall some classical residuation results (see for example [DJLC53], [Bir67],
[BI72], BCOQ92]), and their application to linear maps on idempotent semimodules (see [LMS01],
CGQO04]). We also review some results of [CGQ96, [CGQO04] concerning projectors over semi-
modules. Other results on projectors over semimodules appeared in [Gon96, [GMOT].

2.1 Residuation, semimodules, and linear maps

If (S, <) and (T, <) are (partially) ordered sets, we say that a map f : S — T is monotone
if s <s' = f(s) < f(s'). We say that f is residuated if there exists a map f*: 7T — S
such that

fls) <t <= s< (1) (5)

The map f is residuated if, and only if, for all ¢t € T, {s € S | f(s) < t} has a maximum
element in S. Then,

i) =max{s € S| f(s) <t}, VteT .
Moreover, in that case, we have

foffof=fand ffofofi=ft. (6)

INRIA



The maz-plus finite element method 7

In the sequel, we shall consider situations where S (or T') is equipped with an idempotent
monoid law @ (idempotent means that a & a = a). Then the natural order on S is defined
by a <b <= a@®b=b. The supremum law for the natural order, which is denoted by V,
coincides with @ and the infimum law for the natural order, when it exists, will be denoted
by /\. We say that S is complete as a naturally ordered set if any subset of S has a least
upper bound for the natural order.

If I is an idempotent semiring, i.e. a semiring whose addition is idempotent, we say
that the semiring K is complete if it is complete as a naturally ordered set, and if the left
and right multiplications: £ — K, x — az and = — za, are residuated. Here and in the
sequel, semiring multiplication is denoted by concatenation.

The max-plus semiring, Ry,.x, is an idempotent semiring. It is not complete, but it
can be embedded in the complete idempotent semiring R,,., obtained by adjoining +oco to
Rynax, with the convention that —oo is absorbing for the multiplication. The map x — —z
from R to itself yields an isomorphism from R,,.. to the complete idempotent semiring
Ruin, obtained by replacing max by min and by exchanging the roles of +00 and —oo in the
definition of Ryax.

Semimodules over semirings are defined like modules over rings, mutatis mutandis,
see [LMSOT, [CGQO04]. When K is a complete idempotent semiring, we say that a (right)
K-semimodule X is complete if it is complete as an idempotent monoid, and if, for all u € X
and A\ € K, the right and left multiplications, Ry : X — X, v+ vX and Ly : K — X,
w — up, are residuated (for the natural order). In a complete semimodule X, we define, for
all u,v € X,

u\v def (LYY (v) = max{\ € K | uX < v} .

We shall use semimodules of functions: when X is a set and K is a complete idempo-
tent semiring, the set of functions KX is a complete K-semimodule for the componentwise
addition (u,v) — u @ v (defined by (u & v)(z) = u(x) & v(x)), and the componentwise
multiplication (A, u) — uX (defined by (u))(x) = u(z)A).

If K is an idempotent semiring, and if X and ) are K-semimodules, we say that a map
A: X — Y is linear, or is a linear operator, if for all u,v € X and A\, u € K, A(ul B vpu) =
A(u)A® A(v)p. Then, as in classical algebra, we use the notation Au instead of A(u). When
A is residuated and v € ), we use the notation A\v or A*v instead of A%(v). We denote by
L(X,Y) the set of linear operators from X to ). If K is a complete idempotent semiring, if
X, Y, Z are complete -semimodules, and if A € L(X,)) is residuated, then L(X,)) and
L(X, Z) are complete K-semimodules and the map L4 : L(X,)) — L(X,Z), B+— Ao B,
is residuated and we set A\C := (L 4)*(C), for all C € L(X, Z).

If X and Y are two sets, K is a complete idempotent semiring, and a € KX*Y, we
construct the linear operator A from KY to KX which associates to any u € KXY the function
Au € KX such that Au(z) = V ey a(z,y)u(y).We say that A is the kernel operator with
kernel or matriz a. We shall often use the same notation A for the operator and the kernel.
As is well known (see for instance [BCOQ92]), the kernel operator A is residuated, and

(A0)(y) = A Alw)\o(a) -

RR n° 5874



8 Akian, Gaubert € Lakhoua

In particular, when K = Ry,.x, we have

(A\W)(y) = Inf (~Ale,9) +0(2)) = [-A"(~0)w) ™)
where A* denotes the transposed operator KX — Y, which is associated to the kernel
A*(y,x) = A(x,y). (In (@), we use the convention that +oo is absorbing for addition.)

2.2 Projectors on semimodules

Let K be a complete idempotent semiring and )V denote a complete subsemimodule of a
complete semimodule X, i.e. a subset of X that is stable by arbitrary sups and by the action
of scalars. We call canonical projector on V the map

Py: X - X, u— Pp(u)=max{veV|v<u}. (8)

Let W denote a generating family of a complete subsemimodule V, which means that any
element v € ) can be written as v = V{w)\,, | w € W}, for some \,, € K. It is known that

Py(u) = wé/ww(w\u)

(see for instance [CGQO4]). If B : U — X is a residuated linear operator, then when U and
X are complete semimodules over /C, the image im B of B is a complete subsemimodule of
X, and

Pmp=BoB" . 9)

The max-plus finite element methods relies on the notion of projection on an image, parallel
to a kernel, which was introduced by Cohen, the second author, and Quadrat, in [CGQ96].
The following theorem, of which Proposition Blbelow is an immediate corollary, is a variation
on the results of [CGQI6, Section 6].

Theorem 1 (Projection on an image parallel to a kernel). Let U, X and ) be
complete semimodules over K. Let B : U — X and C : X — Y be two residuated linear
operators over K. Let 11§ = Bo (C o B)f o C. We have 1§ = 15 o1, where I = B o B
and TI° = C* o C. Moreover, 11§ is a projector, meaning that (114)? = 1%, and for all
reX:

% (z) = max{y € im B | Cy < Cx} .

Proof. The first assertion follows from (C o B)* = Bf o C*. For the second assertion, we have

(I5)? = (Bo(CoB)foC)o(Bo(CoB)oC)
= Bo(CoB)oC (using (@)
= 1§ .

INRIA



The maz-plus finite element method 9

To prove the last assertion, we use that IIg = P, g and (), we deduce:
MG(x) = PupoCtol(a)

max{y € imB | y < C¥o C(z)}

= max{y€imB| Cy < Cz} .

O

The results of [CGQY6] characterize the existence and uniqueness, for all x € X, of
y € im B such that Cy = Cz. In that case, y = 11§ ().

When K = Ryax, and C : Eiax — Riax is a kernel operator, II = C¥ o C has an
interpretation similar to (@):

I°(v) = C* 0 C(v) = =P - (—v) = P77 (v) |

— . =X .
Where_ —im C* is thought of as a Ry,in-subsemimodule of R ;, and PV denotes the projector
on a Ry,i,-semimodule V, so that,

P7mC () = min{w € —imC* | w > v} ,
=X =U =X .
where < denotes here the usual order on R©. When B : R, — R_ . is also a kernel
operator, we have .
HC _ PimB OP*lmC )
This factorization will be instrumental in the geometrical interpretation of the finite element
algorithm.

Example 2. We take U = {1,---,p}, X =R and Y = {1,---,¢}. Consider the linear

=X =X =Y
—Rxand C:R_ . — R .. such that

=U
operators B : R, <

X

BA(z) = sup {—g(x &)+ N}, forall \eR.

max
1<i<p

and X
(Cf)l :Sup{_a|‘r—gi| +f($)}7 for all f EIRmax .
zER

The image of B, im B, is the semimodule generated in the max-plus sense by the functions

x— —5(x—a;)% fori=1,--- ,p. We have

CPu(z) = inf {alz — 95 + pi}, for all € @iax ,
1<i<q

and the image of C*, which coincides with —im C*, is the semimodule generated in the
min-plus sense by the functions z — alx — ¢;|, for i =1,--- q.

In figure we represent a function v and its projection P~™C¢" (v) (in bold). In fig-
ure we represent (in bold) the projection Py, g(P~™C (v)) = I (v).

RR n° 5874



10 Akian, Gaubert € Lakhoua

Figure 1: Example illustrating max-plus and min-plus projectors

3 The max-plus finite element method

3.1 Max-plus variational formulation

We now describe the max-plus finite element method to solve Problem (). Let V be a
complete semimodule of functions from X to Rpyax. Let S?:V — V and v? be defined as in
the introduction. Using the semigroup property S*** = St o S, for ¢,¢' > 0, we get:

vt = 8%t t=0,0,---,T—9¢ (10)

with v© = ¢ and § = %, for some positive integer N. Let YW C V be a complete Ray-
semimodule of functions from X to R,,.x such that for all ¢ > 0, v € W. We choose a
“dual” semimodule Z of “test functions” from X to R,.x. Recall that the max-plus scalar
product is defined by
(u | v) = sup u() +v(x)
rzeX

for all functions u, v : X — Ryayx. We replace () by:
(z | V!0 = (2] 8%, VzeZ, (11)

for t =0,6,...,T — 6, with v°,...,v7 € W. Equation ([T} can be seen as the analogue
of a wariational or weak formulation. Kolokoltsov and Maslov used this formulation in
[KMS88| and [KM97, Section 3.2] to define a notion of generalized solution of Hamilton-
Jacobi equations.

INRIA



The maz-plus finite element method 11

3.2 Ideal max-plus finite element method

We consider a semimodule W;, C W generated by the family {w;}i<i<p. We call finite
elements the functions w;. We approximate v’ by v! € Wj, that is:
vt~ v}i = V w\

V)

where A\! € R, We also consider a semimodule Z;, C Z with generating family {zj}i<j<q-

The functions z1, - - - , z, will act as test functions. We replace () by
(z] UZ+5> = (2| 8%t), VzeZ,, (12)
fort =0,0,...,T — 4, with va, e ,v}f € Wy. The function v2 is a given approximation of
¢. Since Zj, is generated by z1, ..., z4, ([2) is equivalent to
(25 | 070) = (2| S%0}), V1<j<q, (13)

for t =0,0,---,T — 9, with v}, € Wy, t =0,0,---,T.
Since Equation (I3)) need not have a solution, we look for its maximal subsolution, i.e.
the maximal solution v:*° € W, of

(z [viT°) < (2| S°}) V1<j<q. (14a)

We also take for the approximate value function v} at time 0 the maximal solution v € W),
of

o) <o . (14b)

. P . .
Let us denote by W), the max-plus linear operator from R, to W with matrix W), =

col(w;)i<i<p, and by Z; the max-plus linear operator from W to R? .. whose transposed

matrix is Zh = COl(Zj)lSqu. This means that Wh)\ = \/199 wi)\i for all A = ()\i)i:17...,p €

R’ .., and (Z;v); = (z; | v) forallv € Wand j = 1,...,q. Applying Theorem[Mto B = W,

and C' = Z; and noting that W, = im W}, we get:

Corollary 3. The mazimal solution vi.™° € W), of ([[A) is given by v = Sy (v}), where
S = Hg[}*lh 0S8° .

Note that Hﬁ}z = Py, o P~2n. The following proposition provides a recursive equation
verified by the vector of coordinates of v},.

Proposition 4. Let v!, € W, be the mazimal solution of ), fort =0,4,...,T. Then, for
everyt =0,6,...,T, there exists a mazimal \' € RE,_ such that v = Wp\', t =0,6,---,T,
which can be determined recursively from

A0 = (ZW)\(ZESPWRAY) (15a)
fort=0,---,T —§ with the initial condition:
N =W\o . (15b)

RR n° 5874



12 Akian, Gaubert € Lakhoua

Proof. Since v}, € W, v\, = Wj,\* for some \' € RY_ and the maximal \! satisfying this

condition is A = W/ (v},), for all t = 0,4,...,T. Since v is the maximal solution of ([ZH),
then by ®) and (@), v) = Py, (¢) = Wy o W/(¢), hence \* = Wi o W, o Wi (¢) = Wi ().
Lett = 6,...,T. Using Proposition B, Theorem[Il (6) and the property that (fog)? = g#o f!
for all residuated maps f and g, we get
A = W o TIn o SO (Wi

= WioWyoWfo(Z;) o Z; o S (WA

= W}o(Z) o Z oSS (W)

= (Z; W) (Z;SWiAY) .
which yields (I5al). O

For 1 <i<pand1l<j<gq, we define:

(Mp)ji = (25 | wi) (16)
(Kn)ji = (z | S°w;) (17)
= (52 | wi) , (18)

where S* is the transposed semigroup of S, which is the evolution semigroup associated to
the optimal control problem () in which the sign of the dynamics is changed. The matri-
ces My, and K, represent respectively the max-plus linear operators Z;W;, and Z;S‘SWh.
Equation ([Ra) may be written explicitly, for 1 < i < p, as

)\§+6 = min (— (Mp)ji + 1max ((Kh)jk + /\2)) .

1<j<q <k<p

Remark 5. This recursion may be interpreted as the dynamic programming equation of
a deterministic zero-sum two players game, with finite action and state spaces. Here the

state space of the game is the finite set {1,--- ,p} (to each finite element corresponds a state
of the game). To each test function corresponds one possible action j € {1,---, ¢} of the
first player, and to each finite element corresponds one possible action k € {1,--- ,p} of the

second player. Given these actions at the state ¢ € {1,---,p}, the cost of the first player,
which is the reward of the second player, is —(M4) ;i + (K») k.

The ideal max-plus finite element method can be summarized as follows:

Remark 6. Since v/, € W), V¥t =0,--- ,T, the dynamics of v} can be written as a function
of the matrices M), and Kj:

vE = Wiy 0 M} o Iy o WE(E) (19)

INRIA



The maz-plus finite element method 13

Algorithm 1 Ideal max-plus finite element method

1: Choose the finite elements (w;)1<i<p and (z;j)1<;j<q. Choose the time discretization step
§=1L
N
: Compute the matrix M}, by () and the matrix K, by ([0 or by (X)),
: Compute \° = Wy \¢ and v) = W, \°.
4: For t = 4,26,...,T, compute \' = M \(K»\'~°%) and v} = WAL

w N

3.3 Effective max-plus finite element method

In order to implement the max-plus finite element method, we must specify how to compute
the entries of the matrices M}, and K}, in ([I8) and (@) or [IX).

Computing M}, from ([[8) is an optimization problem, whose objective function is concave for
natural choices of finite elements and test functions (see SectionBlbelow). This problem may
be solved by standard optimization algorithms. Evaluating every scalar product (z | S%w)
leads to a new optimal control problem since

5
(z | S%w) = max z(x(0)) —|—/ (x(s),u(s))ds + w(x(9)) ,
0

where the maximum is taken over the set of trajectories (x(-),u(-)) satisfying ({H). This
problem is simpler to approximate than Problem (), because the horizon § is small, and
the functions z and w have a regularizing effect.

We first discuss the approximation of S%w for every finite element w. The Hamilton-Jacobi
equation (Za) suggests to approximate S°w by the function [S°w]y such that

[S°w]g () = w(x) + 0H (z, Vw(z)), forallze X . (20)

P
max

Let [55 Wh)u denote the max-plus linear operator from R to W with matrix [55 Whlm =

col([S‘swi]H)lgigp, which means that

[SOWhluA= V [SOwilghi
1<i<p

for all A = (\;)1<i<p € R2__. The above approximation of S°w yields an approximation of
the matrix K by the matrix Ky = Z; [85Wh] 1, whose entries are given, for 1 < i < p

and 1 <j <g, by:

(Kup)ji = Elelg(zj(a:) + w;(x) + 6H (z, Vw; (x))) . (21)

Thus, computing Ky requires to solve an optimization problem, which is nothing but a
perturbation of the optimization problem associated to the computation of M. We may
exploit this observation by replacing Ky, by the matrix Ky with entries

(Kpn)ji = {2z |w)+6 sup H(z, Vw;(z)) , (22)

z€arg max{z;+w;}
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14 Akian, Gaubert € Lakhoua

for 1 <i < pand 1 < j < q. Here, argmax{z; + w;} denotes the set of = such that
zj(x) + wi(z) = (z; | w;). When this set has only one element, [Z2) yields a convenient
approximation of Kj.

Of course, w; must be differentiable for the approximation 20) to make sense. When w;
is non-differentiable, but z; is differentiable, the dual formula (I[8) suggests to approximate
(Kn)ji by

jgg(zj(x) +0H (xz,—Vzj(x)) +wi(z)) .

We may also use the dual formula of [22), where Vw;(z) is replaced by —Vz;(x).

4 Comparison with the method of Fleming and McE-
neaney

Fleming and McEneaney proposed a max-plus based method [EM00], which also uses a space
W, generated by finite elements, w1, . . ., wp, together with the linear formulation ([I0J). Their
method approaches the value function at time ¢, v*, by Wjut, where W), = col(w;)1<i<p as
above, and ! is defined inductively by

10 = Wi\ (23a)
P = (Wi\(S°Wh)) it (23b)
for t = 0,6,...,7 — . This can be compared with the limit case of our finite element

method, in which the space of test functions Zj is the set of all functions. This limit case
corresponds to replacing Z; by the identity operator in (I3al), so that

A = W\ (SN (24)

Proposition 7. Let (ut) be the sequence of vectors defined by the algorithm of Fleming and
McEneaney, @3); let (\') be the sequence of vectors defined by the maz-plus finite element
method, in the limit case @4); and let v' denote the value function at time t. Then,

Wip! < WAt <ot | fort=0,6,...,T . (25)

Proof. We first prove that W\t < v for t = 0,6,...,7T. This can be proved by induction.
For t = 0 we have W, \? < " by ([[4H). We assume that W, \! < v'. Using (Z4)), we have

WAt = W, WES (W, A
= My, (S°(WAY) .
Using the monotonicity of the semigroup S?, we obtain
WA < Ty, (S%0")
< Syt
— it
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The second inequality is also proved by induction. For ¢ = 0, we have u° = \° = W,,\®.
Suppose that p! < A'. By definition of W}, \ (S°W},), we have

Wi (Wi \S°W3) < S°W,

hence
Whut+6 _ Wh (Wh\SSWh)Mt
< (SWh)pt
< SOWRLAE .
Since
)\t+5 _ Wh\(StSWh)\t)

= max{\eR., | Wik < SOW\*} |
we get that pt% < A9, Then ut < X for t = 0,4,...,7. Since W), is monotone, we
deduce (Z5). O

An approximation of (23D) using formulae of the same type as (20) is also discussed
in [MH99].

5 Error analysis

5.1 General error estimates

In the sequel we denote by [|v||cc = sup;c; [v(7)] € RU {400} the sup-norm of any function
v: I — R. We also use the same notation ||v|lcc = sup,c; |v;| for a vector v = (v;)icr.
For any two sets I and .J, a map ® : R’ — R’ is said monotone and homogeneous if it is
monotone for the natural order and if for all u € R! and A € R, ®(u + ) = ®(u) + A with
(u+ A)(i2) = u(i) + \. Monotone homogeneous maps are nonexpansive for the sup-norm:
|1P(w) =P (V)]0 < ||u—v]co, see [CIRO]. In particular, max-plus or min-plus linear operators
are non-expansive for the sup-norm. This property will be frequently used in the sequel. In
order to simplify notations, we denote 75 = {0,6,--- , T}, ;- = 75\{0} and 75 = 7\{T'} .

Remark 8. To establish the main result of the paper (Theorem B2 below), we shall need
only to take the norm of finite valued functions. However, we wish to emphasize that all
the computations that follow are valid for functions with values in R if one replaces every
occurence of a term of the form ||u — v||co by doo(u,v) =inf{A >0 | =A+v <u<A+0v}.
Observe that do(u,v) is a semidistance and that deo(u,v) = ||u — v]/co, if u — v takes
finite values. Observe also that if a map @ : R’ — R’ is monotone and homogeneous,

oo (®(1), B(v)) < doo (u, v), for all u,v € K.
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16 Akian, Gaubert € Lakhoua

The following lemma shows that the error of the ideal max-plus finite element method

is controlled by the projection errors ||H5V’*‘h (v') — v'||so- This lemma may be thought of
as an analogue of Cea’s lemma in the classical analysis of the errors of the finite element
method. Projectors over semimodules in the MFEM correspond to orthogonal projectors in
the classical finite element method.

Lemma 9. For t € 75, let v' be the value function at time t, and v}, be its approzimation
given by the ideal maz-plus finite element method. We have

-
o, =" lloo < M, (v°) = 0 lloe + D I, (") = 0 lsc (26)

tu’ET;r
Proof. For all t € 75, we have

it = vl < [0 = SR oo + 1SR (07) = v+

s ) Zy, ) )
< ISR(vh) = Sp(09)lloo + Tk 0 S°(v") = v F|oc
Since S,f is a non-expansive operator, we deduce
.
[07° = 0 oo < [lvh, = 0" [loo + [T, (0F) = 0"l
The result is obtained by induction on ¢, using the fact that v, = Py, (v°) =1IIy, (v°). O

To obtain an error estimate, we need to bound ||H5V’§h (v) — v||o for all t € ;7. Since

z; .
Iy = My, o I17:, we have

z; *
Ty, (") = 0"l My, o IZ (v") = v'[lo
< My, o 70 (v") = Iy, ()]s + [Ty, (0°) = 0"l

and since Ily;, is a non-expansive operator, we get

z; -
TGy, (v°) = vl < TZ0 (0°) = 0" loo + [y, (0°) = v*]loc - (27)
Using this inequality together with Lemma [ we deduce the following corollary.

Corollary 10. Fort € 75, let v* be the value function at time t, and v}, be its approzimation
giwen by the ideal max-plus finite element method. We have

T «
IoF = v lloo < (14 ) (Sup (I (o) = o + 1y, (v) = ']1)) -
Ts

The following general lemma shows that the error of the effective finite element method
is controlled by the projection errors and the errors resulting from the approximation of the
matrix Kj by a matrix K.
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The maz-plus finite element method 17

Lemma 11. Fort € 75, let v' be the value function at time t, and v}, be its approzimation
given by the effective mazx-plus finite element method, where K, is approzimated by K. We
have

T .
o, =0Tl < (14 §>(f§p(llﬂzh (0") = v'[loo + [Ty, () = [lo0)
Ts
+1En — Killso) -
Proof. Since v}, is computed with the approximation Kj, of K, we have v} = Wj,\!, t € 75,

with R ~
A0 — ME o (Kp\t) = Who (Z5) o (Kp\)

We have
okt = 0"l < b = Shoh oo + 1550%, = Sfet oo + 150" = "+ o
< [y, © (Zi)*o (Kn') — Iy, o (Z)F 0 Z; 0 SWi A oo
vk = vl + [T (01+0) — 00 o
< IR = KnX'floo + [[oh = 0'lloe + [T, (017) = vl
s jpex |(Bn)ji = (Kn)jil + 0h = vl + [T (0140) — 00 o
1<i<p

We deduce that

. i
o = 7 o < T, (0°) = oo + 3 (T () = oflloe + 1B = Kill)

1567';r

and so
T T T Zy (04t t t t
Iof ="l < (14 ) (SUp(ITIZ () = 0o + Ty, () = o)
75
R = Kile) -

O

Corollary 12. Fort € 75, let v* be the value function at time t, and v}, be its approzimation
given by the effective max-plus finite element method, implemented with the approximation
Ky of Ky, given by Il). We have

T .
lviy = v loo < (14 E)(feup(ﬂﬂzh (") = v'[loo + [Ty, (v") = v'[loc)
Ts

+ max [[S°wil i — Swillac )
1<i<p
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18 Akian, Gaubert € Lakhoua

Proof. Using the same technique as in the precedent lemma and using that Ky, = Z; XA
and K, = Z; S°W), we have

1K — Knlloo < S°Walr — S*Walls

_ N I <L
= fg?é‘p”[s wz]H S°Willoo (28)

which ends the proof. O

Corollary 13. Fort € 75, let v' be the value function at time t, and v}, be its approzimation
given by the effective maz-plus finite element method, implemented with the approzimation
Ky of Kp, given by @2). We have

T .
lvh — v lloe < (1+ E)(fSP(HHZW = 0 loo + [y, v" = v'[loc)
Ts

+ max [|[SPwili — Swilloe + | Kitn = Kalloo) -
1<i<p

Proof. We use Lemma [T, together with Equation ([28) and

IKmn — Knlloo < 1Kun — Kiplloo + 1 Kmn — Knllso -

5.2 Projection errors

In this section, we estimate the projection errors resulting from different choices of finite
elements. Recall that a function f is c-semiconvez if f(z)+ 5| z||3, where ||-||2 is the standard
euclidean norm of R, is convex. A function f is c-semiconcave if — f is c-semiconvex. Spaces
of semiconvex functions were intensively used in the max-plus based approximation method
of Fleming and McEneaney [EMQ0], see also [MH98|, [MH99|, [McE02|, [McEO03|, [McE04],
[FalR7], [CDIR4], [CDFRY].

We shall use the following finite elements.

Definition 14 (P, finite elements). We call P, finite element or Lipschitz finite element
centered at point & € X, with constant a > 0, the function w(z) = —allz — £||; where
llzllx = >, |@;| is the I'-norm of R™.

The family of Lipschitz finite element of constant a generates, in the max-plus sense,
the semimodule of Lipschitz continuous functions from X to R of Lipschitz constant a with
respect to || - ||1-

Definition 15 (P, finite elements). We call P, finite element or quadratic finite element
centered at point & € X, with Hessian ¢ > 0, the function w(z) = —£|lz — 2||3.
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The maz-plus finite element method 19

When X = R”, the family of quadratic finite elements with Hessian ¢ generates, in
the max-plus sense, the semi-module of lower-semicontinuous c-semiconvex functions with
values in R.
Notations. Let Y be a subset of R™ and f be a function from Y to R. We will denote by
ConvY the convex hull of Y, riY the relative interior of Y, domf the effective domain of f
and Jf(z) the subdifferential of f at € domf.
When C' is a nonempty convex subset of R™ and ¢ > 0, a fonction is said to be c-strongly
convez on C'if and only if f — Zc| - |3 is convex on C. A function f is c-strongly concave on
C if —f is c-strongly convex on C.

Let P be a finite subset of R™. The Voronoi cell of a point p € P is defined by

V(p) ={z e R" | [lz —pll2 < |z — qll2,Vq € P}.

The family {V(p)},ecp constitutes a subdivison of R™, which is called a Voronoi tesselation
(see [SUNN| for an introduction to Voronoi tesselations). We define the restriction of V(p)
to X to be:

Vx(p) =Vp) N X.

We define px (P) to be the mazimal radius of the restriction to X of the Voronoi cells of the
points of P:

px(P):=sup sup |z —p|s.
pEP ze€Vx(p)

Observe that
P) := sup inf ||z — .
px(P) gpeppePH pll2

The previous definitions are illustrated in Figure I The set X is in light gray, P =
{p1, - ,p10}, Vx(Po) is in dark gray and px(P) is indicated by a bidirectional arrow.

Figure 2: Voronoi tesselation
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20 Akian, Gaubert € Lakhoua

The next two lemmas bound the projection error in term of the radius of Voronoi cells.

Lemma 16 (Primal projection error). Let X be a compact convex subset of R™. Let
v: X — R be c-semiconvexr and Lipschitz continuous function with Lipschitz constant L,
with respect to the euclidean norm. Let v.(z) = v(z) + §[|z|3. Let X = X 4 By(0, Loy let

C

X, be a finite subset of R™ and let W), denote the complete subsemimodule of RX . generated
by the family (wz,);, %, where ws,(x) = —5llz — 2n|13- Then

lv = Pw, vlloo < cdiamXpX(Xh)
Proof. Let VW denote the complete subsemimodule of R, generated by the family (w; ) sex

We will first prove that for all z € X, Pyv(x) = v(x). It is obvious that Vx € X, v(z) >
Pywov(z). Using that Pyy = W o WF, with W = col(wz) ;¢ ¢, We obtain

c 2 c 12
Pwe(e) = su (= Gla a1+ fnf (Gl — 215 + ) )
c . .
= sup ( - §||;v||§ +cd -z — sup (cd -y — vc(y)))
2eX yeX
= —E||a:||§ + sup (ci N vZ(ci‘)) ,
2 zeX
where v} denotes the Fenchel transform of v.. Since v, is L.s.c., convex and proper, we have
forallz € X
ve(z) = v*(z) = sup (0-z—v}(0)) . (29)
0€Rn
Using Theorem 23.4 of [RocT0)], for all € ri(domuv,), the subdifferential of v, at x, dv.(z) =
{0 e R" | v.(y) —ve(x) >0 (y—x),Vy € X}, is non-empty. Then 6 € dv.(x) if and only if
v5(0) = 0 - — v.(x) and consequently, the supremum of ([£9) is attained for all elements 6
of dv.(x).
Set g(z) = £||z||3. Using the fact that ¢(y) — ¢(z) = ¢'(2) - (y — x) + O(||ly — z||3) and that
v is Lipschitz continuous with Lipschitz constant L,, we obtain dv.(x) C Ba(cx, L,) for all
x € riX. Therefore, for all x € riX,

ve(x) = sup (ci -z —vi(cd)) . (30)
#eX

By continuity in the members of Equation (B), we have the equality for all x € X, and so

c . o
Ppou(z) = —§||x||§+sup (c& -z —v}(ck))
#eX
Cin2
= L3+ vee)
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for all z € X. .
Now, fix x € X. For & € X, we set p(Z) = ci - & — vi(ck). Since Py, v < Pyv < v, we have
forallz € X

0 < v(@) = Pwv(@) = Pwola)— Pu,o(x)

= sup (&) — sup @(Zn)
2eX EneXy,
= sup inf @(Z)—@(Zp) .
zeX The€Xn
We have 0(—¢)(&) = —cx + cOvi(ct). Since dv: C X, we have 9(—¢)(2) C ¢(X —z) C
B2 (0, cdiam X'). Hence, ¢ is Lipschitz continuous with Lipschitz constant L, = cdiam X.
Then for all x € X

v(z) — Pw,v(x)

IN

sup inf L,||Z — &pll2
2eX Th€Xn

= cdiam Xp¢(Xp) .
O

Lemma 17 (Dual projection error). Let X be a bounded subset of R™ and X a finite
subset of R". Let v : X — R be a given Lipschitz continuous function with Lipschitz
constant L, with respect to the euclidean norm. Let Z ¢ denote the complete semimodule of
R .. generated by the P, finite elements (2;) sex centered at the points of X with constant
a>L,. Then

lv = P~F%)v]|oe < nla+ Lo)px (X).
Proof. Tt is clear that P~(¥x)y > v and using that P~(¥x) = (Z*)! o Z*, with Z =

col(2z);c ¢, We obtain

P*(Zx)v(x) —v(z) = inf (a||x — &||1 + sup ( —ally — 2|1 + v(y) — v(x))) ,
zeX yeX

for all x € X. Since v is L,-Lipschitz continuous, we have

P~ E)u(a) —v@) < ol (a =i+ sup (—ally =@l + Lolly — 2]2) )
zeX yeX
< inf (alla =@l + sup (—ally = alls + Lolly — 2]1) )
zeX yeX
< inf (allz =@l + sup (—ally = alls + Lolly — &l
zeX €X

Y

+Lafl — ll1))

= inf ((a+ Lo)llz — &1 + sup(Lo — a)ly — 1) -
zeX yeX
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Since a > L,,, we deduce

P~Ey(z) —v(z) < (a+ Ly) sup inf |z — 2|1 < nla+ L,)px (X) .
zEX 2€X

5.3 The approximation errors

To state an error estimate, we make the following standard assumptions (see [Bar94| for
instance):

- (H1) f : X xU — R" is bounded and Lipschitz continuous with respect to z, meaning
that there exist L; > 0 and My > 0 such that

If(z,u) = f(y,uw)ll2 < Lgllz —yll2 Va,ye X,ueU,
| f(z,u)||2 < My, Vee X,ueU .

- (H2) ¢£: X xU — R is bounded and Lipschitz continuous with respect to x, meaning
that there exist L, > 0 and M, > 0 such that

[0(z,u) — L(y,u)| < Le|lz — yll2 Ve,y € X,ueU,
£z, u)| < My, Vze X,ueU .
5.3.1 Approximation of S%w

Lemma 18. Let X be a convex subset of R™. We make assumptions (H1) and (H2). Let
w: x — R be such that w is C' on a neighborhood of X, Lipschitz continuous with Lipschitz
constant L., with respect to the euclidean norm, ci-semiconvex and co-semiconcave. Then
there exists K1 > 0 such that ||[S°w]g — S°w| s < K162, for 6 > 0, where [S°w]y is given
by E0).
Proof. We first show that there exists K7 > 0 such that

[SOw] g (x) — S°w(x) > —K16%, VzeX .

For all z € X and u € U, define x, . to be the trajectory such that x, ,(s) = f(xy,z(s),u)
and x, ,(0) = z. In other words, we apply a constant control u. We have

5
(SSw)(x) > sup{/ 0(Xy,0(8), u)ds + w(xy e (8)) | ue U} . .
0

Since ¢ is Lipschitz continuous and f is bounded, we have

‘/Oé[é(xu,x(s),u)—E(m,u)]ds‘ < Lg/06|xu7z(s)—x||gds

IN

b
Lg/ Mysds
0
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then 5
| /0 (% (5), ) — £, w)]ds| < %LngcS? . (31)

Therefore
1
(S°w)(z) > —iLng(Sz + sup{dl(z,u) + w(Xy () | e U} .
Since w is Lipschitz continuous and f is bounded and Lipschitz continuous, we have

W(ua (6)) — w(@+6f (@, 0)| £ Lulxua(d) = 2 = 0f(z,u)ll:

)
< Lo [ 100ua(e)0) — £ w)]ads
0
)
< Lw/ Lil%un (s) — al|ads
0
5
< Lwa/ Mysds
0
and so 1
W, (9)) = wle + 8f (2.0)| < SLuLrMso? . (32)
Moreover, since w is ¢i-semiconvex, we have
w(z + 6f(z, 1)) > w(z) + 6Vw(x) - f(z,u) — %Mﬁﬁ . (33)

We deduce from (B1), 82) and B3)

52
(S%w)(x) > —(L¢My + Ly Ly My + clMﬁ)? + w(x)

+igg {60(z,u) + 6Vw(z) - fz,u)}

§
> —(L¢My+ Ly Ly My + c1 M7) 5+ w(z) + 0H (z, Vw(z)) .

This ends the first part of the proof.

We now prove an opposite inequality. For all x € X and for all measurable functions
u : [0,0] — U, define xy,, to be the trajectory such that Xy ,(s) = f(Xuz(s),u(s)) and
Xu,z(0) = z. Since {(z,u) < H(z,p) —p- f(z,u), for all p e R", x € X and u € U, we
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deduce that

)
Sw)(x) < su Xu.2(8), Vw(z))ds + w(Xu.e
(§70)w) < sup { [ Hoa(5) Fua))ds + s (9)
4
~ Vu(z) /O [t e (s), u(s))ds | [0,5] - U}

= sup { /0(S H(Xu,2(s), Vw(x))ds

+w(x(8)) — V() - (Xu.(8) — ) | u:[0,6] — U} .

Using the fact that ¢ and f are Lipschitz continuous with respect to z, we have for all
z,7' € X,peR"

|H(e,p) = H@'\p)| < (Le+ Lellplla) o = 2/l

therefore
5
(SPw)(e) < sup{(Le+LsLy) /O xu.s(s) — llads + SH (2, Vuo(x))
(X2 (0)) — V(@) - (xux(0) — ) [u:[0,6] — U}
< (L@ + LfLw)Mfg + 5H(5C7 Vw(:r))

+sup {w(xy,0(6)) = Voo() - (xu.0(6) = 2) [w[0,0] = U} .
Since w is co-semiconcave, we have
W(Xu,e () < w(z) + Vu(z) - (xuz(6) — ) + %QM?(SQ .
We obtain

52
(S%w)(z) < (Le+ LMp., + CQMf)Mf? +w(x) + 0H (z, Vw(x)) .
To end the proof, we take Ky = 3 (L¢My + Ly Mp, My + max(cq, cz)MJ?). O

5.3.2 Approximation of the matrix K, by the matrix Ky

Lemma 19. Let X be a compact subset of R™. We consider an upper semicontinuous
function ¢ : X — R and a Lipschitz continuous function ¢ : X — R with Lipschitz constant

L, with respect to a norm || - ||. For € > 0, we define:
Fo={zreX| p()> sup o) — =}, (34a)
r'eX
g(e) = sup d(z, Fy) , (34b)
zeF,
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where d(x, Fy) = infycp, |y — z||. We have:
[ sup () +d9(x) — [ sup p(z) + 5z€a§gurgaw¢(x)} |< Lydg(6M) |
where M = sup,c y ¥ () — infrex ¥(x).
Proof. Since ¢ is u.s.c. and X is compact, Fy = arg max ¢ and
sup () +00(x)) > sup p(x) + 3 sup d(z) . (35)

reX

For £ > 0 we have:

x€Fy

sup (p(2) + 0¢(x)) = max [ sup (p(z) +0¢(2)), sup (p(2)+0v(x))] .

rzeX xzEF,

zeX\F.

Let ¢ = §(sup,ec x ¥(x) —infrex ¥(x)) = M§ (which is finite since ¢ is continuous and X is

compact). We have:

sup  (p(z) + 0 ())

reX\F.

Therefore

sup (¢(x) + 09 (@)

zeX

We deduce from @H) and (B6):

0 < sup (p(x) 4 6¢(x)) — [ sup p(z)
rzeX rxeX

Since ¢ is Lipschitz continuous, we have

sup ¢ (z) — sup ¥(z)

zeF, xe€Fy

RR n° 5874

< —e+sup @(x) + d sup ¥(x)
reX zeX
= sw pla) + 0 inf J(z)
< sup [p(z) +0y(a)] .
zeF,
= sup (p(x) + 6¢(x))
xEF,
< sup p(x) + 0 sup ¢(z) . (36)
rxeX zeF,
+ 0 sup 1/)(3:)] < 5[ sup ¥(x) — sup 1/)(3:)] .
z€Fy zE€F, xrcFy
—  sup inf _
sup inf (v(z) = ¥(y))
< s inf L —
< sup inf wllz =yl
= Ly sup d(z, Fp)
zeF,
= Lyg(e) .
O
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Corollary 20. Let X be a compact convex subset of R". We consider an u.s.c. and strongly
concave function ¢ : X — R with modulus ¢ > 0 and a Lipschitz continuous function
¥ : X — R with Lipschitz constant L, with respect to the euclidean norm. Then the
mazimum of ¢ on X is attained at a unique point xy € X i.e. argmaxy ¢ = {z} and

20M

[ sup (o(a) + 30(x)) — (plao) + i(ao))| < Lydy/ = .

where M = sup,c y ¥(z) — infrex ¥(x).

Proof. Define ®(z) = ¢(z¢) — p(z) for z € X and ®(x) = 400 elsewhere. We have &(x) > 0
for all x € R™ and ®(xp) = 0. Since @ is l.s.c. and convex on R", then 0 € 9P (z(). Moreover
® is strongly convex with modulus c¢. Then, using Theorem 6.1.2 of [HUL93, Chapter VI]
we have for all z,2’ € X

O(x) > <I>(x')+(s|x—x'>+g||x—x'|\§ Vs € 0P (') .

Taking ' = x9 and s = 0 we obtain for all z € X
¢ 2
o) > Sl — ol

which implies
c
o(w) < plwo) = Sz —moll} VreX .

Using the notations of the previous Lemma, we get easily (see also Proposition 4.32 of [BS00])
for all z € F., d(z, Fy) < /2, where £ = §(sup,cy ¥(z) — infyex U(x)). O

Remark 21. To have an error estimate of the approximation of the matrix K j by the
matrix Ky p, we apply Lemma Plin the case where

o(x) = wi(r) + zj(x) and Y(zr) = H(z, Vw;(z)) ,

for a suitable choice of the finite elements w; and test functions z;. Using Assumptions
(H:1) and (Hs), we have that, for all z € X, |[¢(x)| < M¢||Vw||oc + My, where ||[Vw| o =
HIVw]|2|lee and Vw = (Vw;)1<i<p. We deduce

suptp — inf ¥ < 2(My||Vw||oo + M) -

Moreover H (-, p) and H(z,-) are Lipschitz continuous with Lipschitz constants L¢||p||2 + L
and My respectively. Hence, v is Lipschitz continuous with Lipschitz constant

Ly = Ly| V| s + Lo + My || D*w;i| 0o -
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5.4 Final estimation of the error of the MFEM

We now state our main convergence result, which holds for quadratic finite elements and
Lipschitz test functions.

Theorem 22. Let X be a compact convex subset of R™ with non-empty interior and X =
X + By(0, %), where L > 0, ¢ > 0. Choose any finite sets of discretization points T C R”"
and T C R™. Let .
Az = max(px (T), pg (T)).

We make assumptions (H1) and (H2), and assume that the value function at time t, v¢, is
c-semiconver and Lipschitz continuous with constant L with respect to the euclidean norm,
for all t > 0. Let us choose quadratic finite elements w; of Hessian c, centered at the points
& of T. Let us choose, as test functions, the Lipschitz finite elements zg with constant a > L,
centered at the points § of T. Fort =0,4,...,T, let v} be the approzimation of v' given by
the maz-plus finite element method implemented with the approzimation Kg j of K given

by @I). Then, there exists a constant Cy1 > 0 such that

A
o = o" e < C1(3+ =)

When the approximation K, is replaced by K i.h, given by @A), this inequality becomes:

A
of =" lle < Co(VE+ =)

for some constant Cy > 0.

Proof. Let Wy, and Z;, denote the complete semimodules of @iax generated by the families
(wz);c7 and (2g)geT respectively. We index the elements of 7 and 7 by #,---,2, and
U1, -+, Jq respectively. Using Corollary [[2 we have

T _
loy, = vl < (1+g)(§élp(|\P 2 (0") = V' loo + ([P, (v') = ')
Ts

+ max [|[S%wiln — Swilo) -
1<i<p

To estimate the projection error || Py, (v) — v*||o0, we apply Lemma @8 for X, = 7. We
obtain, for t € 75, |Pw, (v') — v*||c < cdiam XAz. Applying Lemma [[7 we obtain, for
t €75, || P72 (v!) — v|loo < n(a+ L)Ax. Finally, using Lemma [[8 we get

Ax
v —v"]loe < C1(6 + T) ;

where

1 L
Oy > (T + 1) max (cdiamX +n(a+ L), 5 (LeMy + LyMy(diam X + =) + CMJ%)).
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To prove the second inequality, we use Lemma together with Remark Il Using the
notation of Corollary 2l and the fact that ¢ = w; + z; is c-strongly convex, we have sup ¢ —
inf ¢ < 2(My+ Mye(diam X + £)) and Ly = Ly +cMy + Lyc(diam X + £). We deduce that

. L M L
|(KH7h)ji — (KH,h)ji| < Q(Lg + CMf =+ Lfc(diamX =+ Z)) \/Tp =+ Mf(diamX + 2)5\/5 R
fori=1,---,pand j=1,---,q. Hence, there exists C2 > 0 such that

A
lof =07 loe < Co(VE+ =)

when ¢ is small enough. (]
A variant of this theorem, with a stronger assumption, was proved in [Lak03].

Remark 23. When 7 is a rectangular grid of step h > 0, meaning that 7 is the intersection
of (Zh)™ with a cartesian product of bounded intervals, we have

px(T) < Vnh.

Hence, when 7 and 7 are both rectangular grids of step &, we have Az < \/nh = O(h) in
Theorem

6 Numerical results

This section presents the results of numerical experiments with the MFEM described in
Section Bl We consider optimal control problems in dimension 1 and 2 whose value functions
are known or can be computed by solving the Riccati equation (in the case of linear quadratic
problems).

6.1 Implementation

We implemented the MFEM using the max-plus toolbox of Scilab [PIu98] (in dimension 1)
and specific programs written in C (in dimension 2). We used the approximation K u,n of the
matrix K. The matrix Mj, can always be computed analytically. In all the examples below,
the Hamiltonian H, and so the stiffness matrix K H.h, have been computed analytically. We
avoided storing the (full) matrices M} and K H.», Wwhen the number of discretization points
is large.

6.2 Examples in dimensionl

The next two examples are inspired by those proposed by M. Falcone in [BCD97].
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Example 24. We consider the case where T =1,¢ =0, X =[-1,1], U = [0, 1], ¢(z,u) = x
and f(z,u) = —xu. Assumptions (H1) and (H2) are satisfyied. The optimal choice is to
take u* = 0 whenever z > 0 and to move on the right with maximum speed (u* = 1)
whenever x < 0. For all ¢ € [0,T], the value function is:

o, t) = xt ifx>0
" lz(1—et)  otherwise.

We choose quadratic finite elements w; of Hessian ¢ centered at the points of the regular
grid (ZAz) N [—2,2] and Lipschitz finite elements z; with constant a > 1 centered at the
points of the regular grid (ZAz) N X. We represent in Figure B the solution given by our
algorithm in the case where § = 0.01, Az = 0.005, @ = 1.5 and ¢ = 1. We obtain a L-error
of order 1072

-02

-0.4

-0.6

-0.8

Figure 3: Max-plus approximation (Example 24))

Example 25. We consider the case where T = 1, ® = 0, X = [-1,1], U = [-1,1],
Lz, u) = =3(1 — |z|) and f(z,u) = u(l — |z|). It is clear that ¢ and f are bounded and
Lipschitz continuous functions. The optimal choice is to take u* = —1 whenever > 0 and

u* = 1 whenever z < 0. Therefore, all the trajectories lie in X. For all ¢ € [0, 7], the value
function is:
v(z,t) = =3(1 —[z[)(1 —e™")

We choose quadratic finite elements w; of Hessian ¢ and Lipschitz finite elements z; with
constant a. We represent in Figure B the solution given by our algorithm in the case where
§=0.02, Az = 0.01, a = 2 and ¢ = 8. We obtain a L..-error of order 7.66 - 10~3.
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-0.0

-0.2

-0.4

-0.6

-0.8

Figure 4: Max-plus approximation (Example ZH)

Example 26 (Linear Quadratic Problem). We consider the case where U = R, X = R,
1
Lxz,u) = —§(x2 +4?), f(z,u)=u, and ¢ =0 .

The Hamiltonian is H(x,p) = —w—; + %. This problem can be solved analytically. For
x € X, the value function at time ¢ is

1
v(x,t) = —§tanh(t)x2.

The domain X is unbounded and ¢ and f are unbounded and locally Lipschitz continuous.
We will restrict X to the set [—5;5] so that £ and f satisfy Assumptions (H1) and (H2).
We choose quadratic finite elements w; and z; of Hessian ¢ = 1, centered at the points of the
regular grid (ZAz) N [—6,6]. We represent in Figure Bl the solution given by our algorithm
in the interval [—1;1] in the case where T' =5, 6 = 0.5, Az = 0.05 and L = 1. We obtain a
Loo-error of 4.54 - 107°.

Example 27 (Distance problem). We consider the case where T =1, ¢ =0, X = [-1,1],
U=[-1,1],

O, u) = -1 Tf x € (—1,1), and  f(z,u) = u ?f x € (-1,1),
0 if ze{-1,1}, 0 if ze{-1,1}.

Putting £ = 0 and f = 0 on 0X keeps the trajectories in the domain X but we loose the
Lipschitz continuity of ¢ and f. For x € X, the value function at time ¢ of this problem is

v(x,t) = max(—t, |z] — 1).
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Figure 5: Max-plus approximation of a linear quadratic control problem (Example Z6)

Consider first quadratic finite elements w; and z; of Hessian c, centered at the points of
the regular grid (ZAz) N (X +Bx(0,£)). In Figure B we represent the solution given by
our algorithm in the case where § = 0.02, Az = 0.01, ¢ = 2 and L = 1. Since II%» is a
projector on a subsemimodule of the Rumin-semimodule of c-semiconcave functions, and since
the solution is not c-semiconcave for any ¢, the error of projection |11 (vt) — v*||o does
not converge to zero when Az goes to zero, which explains the magnitude of the error.

—— Approximated solution
—— Exact solution

Figure 6: A bad choice of test functions for the distance problem (Example E1)
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To solve this problem, it suffices to replace the test functions z; by the Lipschitz finite
elements with constant a > 1, centered at the points of the regular grid (ZAz) N [-1,1].
This is illustrated in Figure [din the case where § = 0.02, Ax = 0.01, c=2 and a = 1.1. We
obtain a Lo.-error of 1.05-1072.

-0.0

-01

-0.2

-0.3

-0.4

-05

-06

-0.7

-0.8

-0.9

Figure 7: A good choice of test functions for the distance problem (Example 27)

6.3 Examples in dimension 2

Example 28 (Linear Quadratic Problem in dimension 2). We consider the case where
U=R?* X =R? ¢ =0,

_m%—;—m% _u%—;—u% and  f(xz,u) =u .

Lx,u) =
For x € X, the value functions at time ¢ is
1 2 2
vz, t) = —§tanh(t)(x1 + x5).
As in Example Bl the domain X is unbounded therefore £ and f do not satisfy Assumptions

(H1) and (H2). We will restrict the domain to the set [—5; 5]2.
We choose quadratic finite elements w; and z; of Hessian c centered at the points of the

regular grid ((ZAz)N[-6, 6])2. We represent in Figure Blthe solution given by our algorithm
in the case where T'=5, § = 0.5, Az = 0.1, ¢ = 1. The L-error is 9-107°.
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-0.0
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Figure 8: Max-plus approximation of a linear quadratic control problem (Example ZX)

Example 29 (Distance problem in dimension 2). We consider the case where T =1,
=0, X = [—171}2, U=[-1, 1]2,

0z, ) —1 if =z €intX,
T,u) = )
0 if xedX,

u if =z €intX,
f(x’“)_{o if edX.

For x € X, the value function at time ¢t is
v(z,t) = max ( — ¢, max(|z1],|z2]) — 1).

We choose quadratic finite elements w; of Hessian ¢ centered at the points of the regular grid
(zAz) N [-3, 3])2 and Lipschitz finite elements z; with constant a centered at the points

of the regular grid ((ZAz) N [-1, 1])2. We represent in Figure [@ the solution given by our
algorithm in the case where T'=1, § = 0.05, Az = 0.025, a = 3 and ¢ = 1. The L-error
is of order 0.05.

Example 30 (Rotating problem). We consider here the Mayer problem where T = 1,
X =By(0,1),U = {0}, ¢(z) = — 32 — 323, {(z,u) = 0 and f(z,u) = (—z2,21). Forz € X,
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Figure 9: Max-plus approximation of the distance problem (Example 29)

the value function at time ¢ is
1 3
v(x,t) = —5(—a:2sin(t) + zycos(t))? — i(xgcos(t) + z1sin(t))?.

We choose quadratic finite elements w; and z; of Hessians ¢,, and c, respectively, centered

at the points of the regular grid ((ZAz) N [-2, 2])2. We represent in Figure [ the solution
given by our algorithm in the case where § = Az = 0.05, ¢, = 4 and ¢, = 3. The L.-error
is 0.046.

Example 31. We consider the case where U = R, X = R?, ¢(z) = —2} — 223,

U,2

l(z,u) = —23 — 5 and  f(z,u) = (x2,u)”

We choose quadratic finite elements w; and z; of Hessian ¢,, and c, respectively centered
at the points of the grids ((ZAz) N [—272})2 and ((ZAz) N [-11, 11])2 respectively. We
represent in Figure[ITl the solution given by our algorithm in the case where ' =1, § = 0.05,
Az = 0.025, ¢, = 10 and ¢, = 1. The Ly-error is 0.11. (We compared the max-plus
approximation with the solution of the problem given by the Riccati equation).
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Figure 10: Max-plus approximation of the rotating problem (Example B0)

. _0g -10
0.4 ~_ _— 02 -04 06 08

Figure 11: Max-plus approximation of the solution of the control problem of Example BTl
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6.4 Conclusion

We have tested our method on examples that fullfill the assumptions of Theorem (see
Examples 24l 25 Bl) but also on problems that do not fullfill these assumptions. The method
is efficient even in the second case. The only difficulty comes from the full character of the
matrices M} and K}, which limits the number of discretization points. To treat higher
dimensional examples, we need higher order approximations (when the value function is
regular enough). This is the object of a subsequent work.
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