N

N

Factorization of Unfoldings for Distributed Tile Systems
Part 2: General Case
Eric Fabre

» To cite this version:

Eric Fabre. Factorization of Unfoldings for Distributed Tile Systems Part 2: General Case. [Research
Report] RR-5186, INRIA. 2004. inria-00071402

HAL 1d: inria-00071402
https://inria.hal.science/inria-00071402
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00071402
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5186--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Factorization of Unfoldings
for Distributed Tile Systems
Part 2: General Case

Eric Fabre

N°5186
May 2004

Systémes communicants

apport
derecherche

VAV 1 IN I 1 A

RENNES

Factorization of Unfoldings
for Distributed Tile Systems
Part 2: General Case

Eric Fabre

Systémes communicants
Projet DistribCom

Rapport de recherche n 5186 — May 2004 — 37 pages

Abstract: We consider large distributed discrete event systems, i.e. systems obtained by connecting
a possibly large number of elementary components. By “large” we mean that the size of the system
prevents its study at a global level. We propose instead a framework to analyse such systems by parts,
taking advantage of their modular definition. The key is twofold. We first represent their runs in a
true concurrency semantic, which already reduces the state explosion phenomenon: trajectories which
only differ by the ordering of concurrent events are not distinguished. The convenient data structures
to represent sets of trajectories in this semantic are called branching processes of the system, and their
maximal representative corresponds to the unfolding of the system. The second idea lies in the following
result : the unfolding of a modular system factorizes as the product of unfoldings of its components,
which gives an even more compact representation of runs of a distributed system. Therefore one
should rather perform all computations on this factorized form. We propose an algebraic setting to
do so: computations take place in the category of “augmented branching processes,” and rely on
two operations: projection and product. We illustrate this approach on a simple problem: find the
minimal factorization for the unfolding of the global system, which amounts to determining, for each
component, runs that remain possible once this component is inserted in the global system.

Key-words: discrete event system, distributed system, concurrency, unfolding, branching process,
factorization, turbo algorithm, graphical model of interactions

(Résumé : tsup)

This work was supported by RNRT projects MAGDA and MAGDA 2, funded by the French Ministry of Research.

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 7171

Factorisation des dépliages
pour des systémes de piéces
Partie 2: cas général

Résumé : On s’intéresse a de grands systémes & événéments discrets, construits en connectant un
nombre élevé de composants. Par “grand”, on signifie que ’analyse de ces systémes ne peut se faire a un
niveau global, a cause d’un phénoméne d’explosion combinatoire. On propose une alternative, consis-
tant & étudier ces systémes par morceaux, en profitant justement de leur nature modulaire. Cela repose
sur deux idées. En premier lieu, on suppose une sémantique de concurrence vraie sur les trajectoires
de ces systémes. Cela signifie que des trajectoires ne différant que par I'entrelacement d’événements
concurrents ne sont pas distinguées, ce qui permet déja de réduire l'explosion combinatoire. Dans
cette sémantique, les ensembles de trajectoires se décrivent par des processus de branchements, le plus
grand d’entre eux correspondant au dépliage du systéme. Le second résultat clef est le suivant: le
dépliage d’un systéme distribué se factorise en un produit de dépliages de ses composants. Cette forme
factorisée permet de réduire encore la description des trajectoires d’un systéme distribué. Nous pro-
posons justement de fonder I’analyse d’un systéme distribué sur cette forme factorisée de son dépliage.
Les objects manipulés sont des processus de branchements augmentés des composants du systéme, et
les opérations de base le produit et la projection. Nous donnons des algorithmes pour mener & bien
les calculs sur cette forme factorisée, algorithmes inspirés des méthodes “turbo” en communications
numériques. Cette technique d’analyse modulaire d’un systéme distribué est illustrée sur un systéme
simple: le calcul des facteurs minimaux du dépliage du systéme global. Cela revient & calculer, pour
chaque composant, les comportements qui demeurent possibles une fois que ce composant est inséré
dans le systéme global.

Mots-clé : systéme & événements discrets, systéme réparti, concurrence, dépliage, processus de
branchement, factorisation, algorithme turbo, graphe d’interaction

ractorization of Unjoldaings

Contents
1 Introduction
2 Augmented branching processes (ABP)
2.1 Tile systems, occurrence nets and branching processes
2.2 Augmentation of occurrence nets and of branching processes
3 Properties and basic operations on ABPs
3.1 Basicproperties
3.2 Intersection L e e e e e e
3.3 Union e
3.4 Trimming L e
4 Product of ABPs
4.1 Definition L e e e e e
4.2 Categorical product L
4.3 Relations to trimming
4.4 Other properties
5 Projection of ABPs
5.1 Standard projection of BP: its weaknesses
5.2 Projection of ABPs L e
6 ABP calculus on trees
6.1 A key property e
6.2 Modular computations on tree-shaped systems
7 Equivalence of ABPs and involutivity
7.1 Sub-involutivity of GABPs
7.2 Pre-order on GABPs
7.3 Equivalence of GABPs
7.4 Product, projection and equivalenceo L.
7.5 Involutivity of minimal ABPso
7.6 Minimal product covering of an ABP oo oo 0oL
8 Local computations on systems with cycles
8.1 Summary of results obtained on trees L o o Lo
8.2 Weak convergence for cyclic systems o o oo
9 Discussion and conclusion

RR n"5186

ot

10
10
12
13
14

15
16
17
18
19

20
20
21

22
22
25

27
27
27
28
29
31
31

32
32
33

34

4 FEric Fabre

1 Introduction

Distributed and concurrent systems have been studied for a long time in computer science, with empha-
sis on problems like election, consensus, mutual exclusion, protocol design and verification, etc. [18, 19].
Relying on this sound basis, the powerful concept of distributed computing has deeply penetrated the
field of computer science. Applications range from telecommunication and computer networks on one
end, to distributed databases, and more generally distributed programming on the other end. In
conjunction with object oriented programming (and remote object invocation routines), distributed
processing is now becoming a design paradigm, as in web-services for example. This approach offers
very appealing aspects, such as an easy access to distributed resources/information, the reusability of
software, some flexibility in the choice of components, and most importantly modularity, which allows
the design of large distributed systems from elementary components. As a counterpart of this powerful
trend, some actual systems have now reached a critical level in terms of size and heterogeneity, which
makes them hardly tractable by standard analysis methods operating at a global level. The purpose
of this paper, extending results of [1], is to propose a framework for analyzing/monitoring large dis-
tributed systems. Specifically, we propose to take advantage of the modular nature of a system to
design modular analysis/monitoring procedures.

What we call a distributed system in this paper is first of all a modular system, i.e. a system
made of several interconnected components. Each component is a dynamic system, interacting with
neighboring components, and having some degree of autonomy in its dynamics. In particular, there is
no global clock giving the pace to all components, which justifies the term “distributed” by contrast
with “modular.” To make this assumption more concrete, we adopt a true concurrency semantics
on runs (or trajectories) of a distributed system: runs are described as event structures, or partial
orders of events, rather than sequences of events. This encodes the fact that two components can
run concurrently (i.e. in parallel) as far as they have no interaction. In this semantic, a set of runs
of a system is represented under the form of a branching process, a compact data structure, and the
set of all possible runs corresponds to the maximal branching process, named the unfolding of that
system [5, 6, 7].

In the first part of this work, we proved that the unfolding of a distributed system can be expressed
as the product of unfoldings of its components, which gives an even more compact and modular (thus
scalable) representation of a possibly huge set of runs. (After developing this work, we came aware
of early results of Winskel deriving exactly this property, from simple standard arguments in category
theory, see [3], p.258.) More generally, any branching process of the global system can be embedded
into a minimal product of branching processes of its components. Each factor of this product covering
contains runs of a component that are part of at least one run of the global system. We believe
this product representation is the key to efficient modular processings for distributed systems. As
a typical example of such modular processings, we address the problem of computing the minimal
product covering of the unfolding of a distributed system. This amounts to determining local runs
of each component that remain possible once this component is inserted into the global system. It
turns out that this problem can be solved in an efficient manner by an appropriate combination of
local computations on branching processes, based on two operations: product and projection. While
the product of branching processes, or of event structures, is actually a quite standard operation [3,
14, 13, 15|, the projection we define seems less known: we use it to abstract the behaviors of a given
component on its interface with another component. The originality of our contribution probably
lies in the emphasis we put on algebraic relations between product and projection, that allow the
orchestration of modular computations. As a matter of fact, the computations we describe are based
on a message passing algorithm between “computation modules” associated to each component. Since
the exchange of messages is asynchronous, our modular computation schemes can actually be easily
distributed. An application of this framework to distributed failure diagnosis, with applications to
telecommunication networks, can be found in [24, 25, 26].

INRIA

ractorization of Unjoldaings B}

The product representation of the unfolding of a distributed system, and the orchestration of
local computations based on product and projection, were already presented in [1]. This previous
contribution required that all objects appearing in the course of computations were branching processes
of restrictions of the global system. So computations remained valid as long as projections in this
category were not misleading, ¢.e. did not unduely transform causality or conflict relations between
events into an apparent concurrency. In this paper, we remove this strong limitation by embedding
computations into the larger and new category of augmented branching processes (ABP). The latter
allow to define a projection operation that preserves all necessary causality and conflict relations. ABPs
are defined in section 2, while section 3 studies their properties and defines elementary operations on
them, like intersection and union and the new trimming operation. The product of ABPs is defined in
section 4, and extends the usual product of branching processes. Unfortunately, it is not stable in the
category of ABPs and requires the introduction of a larger category: generalized ABPs. Projection
is defined in section 5, and used jointly with the product (section 6) to define an “ABP calculus” for
distributed systems where component interactions have a tree structure. The extension of this ABP
calculus to systems with arbitrary interaction structure is done in section 8, and takes the form of an
iterative algorithm. This algorithm doesn’t yield the exact minimal product covering for the unfolding
of a distributed system, but only an approximation of it, that nevertheless has interesting properties.
The convergence of this iterative procedure relies on an involutivity property of ABPs, studied in
section 7.

2 Augmented branching processes (ABP)

2.1 Tile systems, occurrence nets and branching processes

This subsection essentially recalls notations and notions introduced in [1] (we refer the reader to that
paper for more details).

Tile systems. A tile system S is a tuple (V,T,v%, a, 3,) where V and T are finite sets of variables
and tiles respectively, and v° is the initial state of the system (a, (3,7 are defined below). Variables
are denoted by capital letters A, B, Vi, Va,..., and take values a, b,v1,v2,... in the finite domain D.
A state of S is a function v : V — D. Tiles are generically denoted by t,t’,t1,t2, etc. Function
v : T — 2Y associates to each tile the variable set on which it operates ; the variable set (t) impacted
by tile t is also denoted by Vy for short. In the same way, there exist partial functions o, 8: 7 xV — D
defining for each tile t and each variable V' € V; the value of V respectively before and after t fires.
t is enabled by state v, denoted by v[t), if VV € Vg, v(V) = «(t,V). t can thus fire, which yields
the new state v’ defined by VV € V4, v/(V) = 8(t,V), and VV € V\ W, v/(V) = v(V). We adopt the
standard notation v[t)v’.

A distributed tile system is defined as the composition of several components. Consider tile systems
Si = Wi, Ti, v¥, @i, Biyvi), 1 <4 < N. These systems are coherent iff, V1 <4, < N, i # j,

1. VV e ﬂVj, V?(V) :V_?(V)

2. Vte 7;07}, ’)/i(t) ﬂVj = ’)’j(t) ny;

3.Vt e TunNT;, YV € VNV, o4(t, V) = a;(t,V) and Gi(t, V) = B;(t,V) on pairs (t,V) where
these functions are defined.

Point 1 requires that initial states coincide on shared variables, so there exists a state v0 = /\iv?
defined on U;V; such that v? = v‘ovi. Point 2 expresses that two components must declare the same
shared variables for a common tile, and point 3 that on these shared variables, pre- and post-conditions
must also be the same. In other words, common tiles only differ by the variables they impact in the
components where they appear. So there exists a global v = U;y; such that V1 <4 < N, Vt €
RR n°5186

6 FEric Fabre

Ti, vi(t) = v(t) NV;. Similarly, there exist partial functions « and 8 on (U;V;) x (U; T;), the restrictions
of which define the o; and ;.

With this coherence property, and the associated definitions of «, 3, 7y, the composition of §1,Ss,... ,Sn
is simply defined by

Sil|Sall--- ISy & (Ui, UiTi, Aivy, @, B,) (1)

In the sequel, by abuse of notations, we may drop the index 7 in «;, 3; and «; when defining and using
coherent components’.

Given a tile system S = (V, T,v", @, 3,7) and a subset V' C V of variables, we define the restriction
of S to variables V' as

Sh;/ £ (VI, T’, V‘OV,, a|7~/><vf, ﬂ|Tl><V/, ’)’I)
where 7" ={t € T : Vo NT' # 0} and V¢t € T', 4'(t) = v(t) N V. In other words, S’ keeps the tiles
of S truncated to variables from V'. For simplicity, we write Sp» = (V/, T’,v‘ov,, a,8,7'). For a given
S with variable set V, let V; C V for 1 <7 < N and define S = SM, 1 <4 < N. Then the S are
coherent and Sfl|...[[S5 = Su,y;-

Nets. We define a net as a triple N' = (P, T, —), where P and T are distinct denumerable place and
transition sets, and —C (P x T) U (T x P) is the flow relation. An initial marking P® C P may be
added to this definition. A labeled net is a net augmented with a labeling map A : PUT — A, where
A is a finite set of labels. Elements of P UT are also called nodes. The transitive and reflexive closure
of the flow relation — on nodes is denoted by < (< for the irreflexive part). For a node z, its preset
and post-set in the net are respectively defined as *z = {y:y = z} and z* = {y : z — y}.

A net homomorphism from N to N' is a map ¢ : PUT — P'UT' such that 1/ ¢(P) C P’ (with
$(PY) C PO'), ¢(T) CT', and 2/ for every transition t of N, ¢ restricted to *t defines a bijection onto
$(t), and ¢ restricted to t defines a bijection onto ¢(t)®. If N and N are labeled nets, ¢ is also
required to preserve the labeling.

In a net, two nodes z,z’ are said to be in conflict, denoted by z#zx’', iff there exist two transitions
t,t' € T such that t <z, t' <z’ and *t N °t’ # 0.

A tile system S = (V,T,v% a, 3,7) can be associated to an equivalent net by taking P =V x D,
PY = {(V,v(V)),V € V}, T = T, and defining — by Vt € T, °t = {(V,a(t,V)),V € V;} and
t* = {(V,B(t,V)),V € V4 }. This allows the use of notations *t and t* for tiles. Equivalence trivially
extends to runs of the two models. The equivalent net of S is safe by construction. Conversely, one
easily checks that a safe net can be turned into an equivalent tile system.

Occurrence nets. A net O = (C, E,—) is said to be an occurrence net iff it satisfies the following
properties

1. Vx € CUE,~(z < z) : < is a partial order (or — defines a directed acyclic graph (DAG) on
nodes),

2.Vze CUE, |[{y:y < z}| < oo : partial order < is well founded,
3. VeceC, |°c| <1 : each place has at most one input transition,
4. Ve€ E, |%¢| > 1 : each transition has at least one input place,

5. Vz € CUE,~(z#z) : no node is in self-conflict.

1t will be only maintained in 7; in cases where confusions must be avoided, i.e. when components share tiles.

INRIA

ractorization of Unjoldaings "

In an occurrence net, places (C) are called conditions, and transitions (E) are called events. Observe
that minimal nodes of O are conditions: min(Q®) C C. The partial order < defines the causality
relation. Nodes z,z’ are said to be concurrent, denoted by zlz', iff z # z' and neither z#z’ nor
z < x' nor ' < z holds. A co-set X C C is a set of pairwise concurrent conditions. Maximal co-sets
(w.r.t. inclusion) are called cuts.

O' = (C',E',—') is a prefiz of O, denoted by O' C O, iff O’ is a subnet of O, that is the restriction
of O to C'UE', where C' and E' are left causally closed subsets of C' and E in O, and satisfy min O C ('
and Ve € E,[e € E' = e* € C']. A configuration k is a conflict-free prefix? of 0. An estremal node of
k is a maximal element for < (necessarily a condition). Extremal nodes of a configuration form a cut,
and conversely the causal closure of a cut is a configuration.

Branching processes. Occurrence nets are useful to represent runs of a tile system under so-called
true concurrency semantics. The labeled occurrence net O = (C, E, —, A) is a branching process of the
tile system S = (V, T,v%, o, B,7) iff

1. Ais a net homomorphism between (C, E, —) and the equivalent net of §; in particular, conditions
are labeled by pairs (variable,value of that variable), and events are labeled by tiles,

2.) defines a bijection between min(Q) and {(V,v%(V)),V € V},
3. Ve, € E, *e ="¢ and A(e) = A(e') together imply e = ¢'.

With this definition, a branching process of tile system S is nothing more than a branching process of
its safe net version.

A configuration s of a branching process of S encodes a run of S in the following way. Let
e1,€e,... be any linear extension of partial order < reduced to events of kK. Then the sequence of tiles
X(e1), Me2), ... is firable at the initial state v¥ of S. Moreover, whatever the sequence chosen, the final
state of S is the same. Therefore, configurations of a branching process encode equivalence classes of
sequences of events. It is precisely this use of concurrency which reduces the set of possible runs of a
system, and makes partial order techniques attractive for systems with limited interactions.

Two branching processes O and O3 have a maximal common prefix O; N3, defined up to a unique
isomorphism. This common prefix, and the corresponding labeled net isomorphisms between 07 N O,
and the O;, can be defined recursively, starting at min(Q;) and min(©s), and checking the presence of
equally labeled successor events for every pair of isomorphic co-sets of conditions. A similar procedure
allows to prove that two branching processes 01,02 of § are isomorphic iff each configuration of O; is
isomorphic to a configuration of Og, and conversely (lemma 1 in [1]). Finally, the union of branching
processes 1 and (9 is defined as the minimal occurrence net having O; and Q9 as prefixes; it can
again be defined recursively. There exists a unique branching process having all branching processes
as prefixes; it is called the unfolding of the tile system S, denoted by Us (see theorem 23 in [5]).

2.2 Augmentation of occurrence nets and of branching processes

We now propose the notions of augmented occurrence nets and augmented branching processes, in
order to describe runs of a system carrying extra causality relations, and to keep track of extra conflict
relations as well. These structures are obtained by merging the standard definition of occurrence nets
(resp. branching processes) with the definition of prime event structures [2].

*We choose to define configurations as sub-nets, for a matter of homogeneity. This contrasts with the standard
definition which rather considers subsets of events.

RR n"5186

8 FEric Fabre

Augmented occurrence nets. An augmented occurrence net (AON) @ = (C, E,—, <, #) is ob-
tained by adjoining a causality and a conflict relation to the occurrence net O = (C, E,—), in such a
way that

1. < is a partial order relation on E extending the partial order < of (C, E,—):
Ve,el € E, e<e = e<e

2. < is well-founded: Vee E, |[{¢': ¢ <e}| < o0

3. # is a symmetric and anti-reflexive relation on E, extending # of (C, E, —): Ve, € E, e#e =

e#e
4. # is inherited via causality < : Ve,e,e” €E, e#¢e ande' <€’ = e#e”

The augmentation of (C, E, =) into (C, E, —, <, #) amounts to replacing some concurrency relations
between events either by a causality or by a conflict. If < and # coincide with < and #, we will not
distinguish @ from @. By abuse of terminology, pairs of events related by # \ # (resp. <\ <) are
called extra conflict relations (resp. extra causality relations).

Relations < and # are defined on E but naturally propagate to all nodes of O, i.e. to CUE. This
propagation is done by transitivity for <, and by inheritance for # . As for ordinary occurrence nets,
minimal nodes of @ are necessarily conditions. Moreover, one has min O = min O. As for standard
occurrence nets, events e; and ey are said to be concurrent, denoted by elj_62, iff =(e; <e3), ~(e2 <e1)
and —(e1 # ey). Co-sets and cuts are defined from L in the usual way.

The notion of preﬁx differs slightly from the one defined for standard occurrence nets. The AON
O' = (C',E',—', X', #') is a prefix of O = (C, E,—, <, #), still denoted by @' E O, iff

e min®OCC' CC, E'CE,

e C' and E' are left causally closed in O for <,

e Vec E,[e€ E' = e* € (],

e —' and <’ are the restrictions of — and < to nodes of @', and finally

e #' contains the restriction of # to E'.

In other words, O is a causally closed sub-net of @, for <, where the conflict relation is possibly
reinforced. It is therefore sufficient to reinforce the conflict relation # of @ to obtain a strict prefix of
¢, (notice that this reinforcement must however yield a valid augmented occurrence net). This somehow
unusual requirement on conflict relations appears to ensure that O'COiff every configuration of o'
is (isomorphic to) a configuration of @, as we will see below.

An augmented configuration & of O (or simply configuration, for short) is a conflict-free (for #)
prefix of @. The augmented configuration x is thus also a configuration of @ enriched with extra
causality relations on its events. But the converse doesn’t hold: a configuration of O, may not be
transformable into a configuration of O, even if causality relations are added, because # is stronger
than #. We denote by &, the smallest configuration containing event e; k. is formed by all events in
the (left) causal closure of e, plus pre- and post-conditions of these events, and min 0.

A homomorphism of occurrence nets from O to @' is a net homomorphism ¢ from (C, E,—) to
(C', E',—') that partially maps relations < and # to <’ and #’ (some of them may be erased, but
none can be created), i.e

Vei,e2 € B, Pler) <'¢le2) = e1<ez

and P(er) #'dle2) = e1# e
Notice that causality and conflict relations due to — are preserved, only extra relations of <\ < and
i \ # can be erased and transformed into concurrency. If O and @' are isomorphic, then there exists

a one to one mapping ¢ between them which exactly maps < to <’ and # to # !
INRIA

ractorization of Unjoldaings J

Canonical representation. To reduce the inhomogeneity of representations for relations < and
with respect to < and #, it is convenient to represent extra relations on £ by means of dummy
conditions incorporated to O, as in figure 1. This allows to represent O as a standard occurrence net
(CuU C,E, —). A canonical representation of O can be obtained by the following procedure :

1. for every pair of events (e, e’) such that e < e’ and =(e < ¢'), create a new condition ¢ in C such
that e = ¢ — €,

2. for every pair of events (e, e’) such that e# e’ and —(e#e’), create a new condition ¢ in C such
that ¢ — e and ¢ — €,

3. remove from C every condition c representing a causality link that can be obtained by transitivity
(of — on the net),

4. remove from C every condition ¢ representing an inherited conflict.

One easily checks that, whatever the ordering in which useless conditions of C are removed, the same
final net is obtained, which proves the canonicity of this representation.

(A0) (B,0) (A0) (B,0)
b el AL - t, t
(AL) (B,1) (A (8,1
A0 , (B0 (A0) (8.0)
S D — ty t
(A1) (B.3) (A) (B.1)

Figure 1: Representation of extra causality and conflict relations by means of extra conditions, relating
pairs of events.

Augmented branching processes. Let O = (C,E,—, X, <, #) be a labeled augmented occur-
rence net. O is an augmented branching process (ABP) of the tile system S = (V,T,v°, a, 3,7) iff

1. Xis a net homomorphism between (C, E, —) and the equivalent net of S ; in particular, conditions
are labeled by pairs (variable,value of that variable), and events are labeled by tiles,

2. X defines a bijection between min(Q) and {(V,v°(V)),V € V},
3. let &, k' be two isomorphic finite configurations of @, then k = &/

Point 3 assumes the isomorphism between k and k' preserves the labeling, so this condition generalizes
point 3 in the definition of ordinary branching processes of S, and is equivalent to it when < =< and
= #. Nevertheless, observe that condition 3 in the definition of standard branching processes is no
longer valid for an augmented branching process. There may exist two events e and e’ with identical
labels and connected to the same co-set X if, for example, e and e’ are not related to other events of
O in the same manner for <. Fig. 2 gives an example of such a situation, where e, e’ are connected
to the same configuration k, but assume different relations to other events of k. As a consequence of
this remark, keeping the (C, E,—,) part in an augmented branching process O of S doesn’t yield
a standard branching process of §. However, every configuration x of (C, E,—,\) is isomorphic to

RR n"5186

10 FEric Fabre

a configuration ' of Us, which means that (C,E,—,\) can be trimmed into a branching process O
of §. Specifically, there exists a unique branching process O of § such that there exists a surjective
homomorphism ¢ : (C,E,—,\) — O.

As for ordinary branching processes, in the sequel we do not distinguish isomorphic ABPs.

(A,0) (B,0)
191
A BY (€O A0 00
t T t t
(82 (C1) (C1) (Do) (A1) (D,3) (0.1
t t
(C2)(D,1)

(C2)(D,1)

Figure 2: The ordinary branching process (left) is restricted to events impacting variables A and D.
This yields the augmented branching process on the right, where two events labeled to appear after
condition labeled (D,0), one concurrent with t1, the other causally related to t1 (dashed arrow).

Remarks.

1. Given an augmented branching process 0= (C,E,—,\ <, #), its restriction (E, <, # ,A) is
an ordinary (labeled) prime event structure. Moreover, this correspondence is bijective, i.e. given
the event structure for a system S and a labeling of events, one can reconstruct conditions C
and the flow relation —. Nevertheless, for practical purposes rather than theoretical ones, we
prefer to preserve a reference to conditions and to the flow relation. In the sequel, conditions
are central in the definition of interactions between components. And the flow relation allows
a direct distinction between structural relations (causality and conflict) in a component, and
relations due to neighboring components. Finally, this way of presenting results allows a direct
link with part 1 of this work.

2. In the sequel, we will describe operations on ABPs using the form @ = (C,E,—, X\, <, #)
In practice, most of these operations should be translated in terms of canonical representations
(C, C ,E,—,). However, this paper focuses on formal aspects of computations and technicalities
due to canonical forms will be left aside.

3 Properties and basic operations on ABPs

3.1 Basic properties

We first prove that if there are several identically labeled events connected to some co-set X, this can
only be due to the fact that these events have different sets of predecessors for <, that we call their
“pasts.” In other words, it cannot be due to the fact that these events participate in different extra
conflict relations.

Let O be an augmented branching process of S and ej, es be two events of O such that te1 =X =
*ey and A(e;) = A(ez). Let ke, be the smallest configuration containing event e;, and define &/, the
strict past of e;, as the smallest configuration containing {e € E : e<e;}. For obvious reasons, we
can write s, = ke, \ ¢;. If e; and ey have identical pasts, i.e. s}, and s, coincide everywhere, it is

INRIA

ractorization of Unjoldaings

straightforward to check that ke, and k., are isomorphic. By point 3 in the definition of an ABP, they
are thus identical which proves e; = es.

To help intuition, one could then summarize things in the following manner: extra causality rela-
tions allow to augment the structure of an ordinary branching process by connecting several occurrences
of the same tile after some co-set of conditions, provided these events assume different pasts. And,
by contrast, extra conflict relations prevent reading out unwanted configurations on this augmented
structure.

By contrast with ordinary branching processes, however, there may be an infinite number of iden-
tically labeled events e, es,... connected to some co-set X, each associated to a different past. Let
us define the height of an augmented configuration as the maximal size over subsets {e1,es,... ,e,} of
its events satisfying e; <es < ... <e,. Similarly, define the height of an event as the height of its past
(including itself). The height of an augmented configuration is thus the maximal height of its events.

Lemma 1 Any augmented branching process o of a tile system S has finite width : for all n > 0, the
restriction of O to nodes belonging to a configuration of height lower than n yields a finite augmented
branching process.

Proof. The fact that O restricted to events of height lower than n is an augmented branching process
is obvious, so we only consider the finiteness.

The lemma obviously holds for n = 0, so assume the result holds for height n. Consider an event
e of height n + 1, k. \ e is necessarily a configuration of height n. There is a finite number of such
configurations, a finite number of tiles one can connect to each configuration, and a finite number
of possible extra causality relations between the new event and this configuration, since the latter is
finite. (Recall that extra conflict relations do not allow to connect more events.) So there exists a
finite number of events of height n + 1. O

This result allows to consider an augmented branching process as the supremum of an increasing
sequence of finite prefixes, which legitimates some recursive proofs for ABPs, as in lemma 2 below.

One can add a conflict relation between e; and ey, in some augmented branching process (’), and
still get another ABP provided: 1/ e1 ey in @, 2/ e1 and eg have no common successors, i.e.
{e€ E : e;<e, ea<e} =0, and 3/ the new conflict relation is propagated to successors of e; and es.
The converse operation is more interesting.

Lemma 2 Let O = (C,E, =,)\ <, #) be an augmented branching process of S, then O = (C,E,—
A, <,7), obtained by removing all extra conflict relations of # \ # in O, is still an augmented
branching process of S. We call it the structure of O.

Proof. We first show that the result holds if a single extra conflict relation is removed. Assume e; # ey
is a primary extra conflict relation, i.e. ej#te doesn’t hold, and e; # ez is not inherited. So removing
only relation e; # ey yields O which is still an augmented occurrence net. We want to prove that @’
remains an augmented branching process, i.e. that point 3 in the definition still holds. Let &, k' be
two isomorphic finite configurations on @, and assume % was not a configuration of O. So k contains
events e; and es. We have to prove k = &’. Since e; and ey don’t have common successors in (’) K
decomposes as k1 U ko, where k; contains e; and is a configuration of @, 1 =1,2. Let ng be the image
of k; under the isomorphism relating % and . Then s’ = &) U}, and the &/ are configurations of O.
Using the fact that O is an augmented branching process, one has k; = K, 1 = 1,2, so k = K'.

By recursion, one can remove all extra conflict relations in any finite prefix of @, and still get an
ABP. This allows to build an increasing sequence of finite ABPs (for the prefix relation), the supremum
of which is @' = (C, E,—, X\, <, #). So O’ is an ABP. O

Remark. This type of argument, to go from finite to infinite ABPs, will be used implicitly in the
sequel : most proofs will assume finite ABPs, even if results are stated for possibly infinite ABPs.

RR n"5186

12 FEric Fabre

Lemma 3 Let @1 and Oy be two augmented branching processes of S. If there exists a covering set
of configurations of O, such that each configuration in this set is isomorphic to a configuration of O,
then there exists a prefiv of Oy which is structurally isomorphic to 0. If the converse property also
holds, (91 and (92 are structurally isomorphic.

Proof. We prove the lemma for finite ABPs (then concluding as in lemma 2).

As for standard branching processes, the proof consists in gluing the different isomorphisms ¢
relating pairs (k1,k2) of configurations of @1 X @2, where k1 is taken in a covering set of @1. Let
¢ : k1 — kg and ¢ : K| = K} be two such isomorphisms. ¢ and ¢’ necessarily coincide on min @; (point
2 in the definition of an ABP), and, by recursion on events, they also coincide on k1 Nk} (otherwise O,
violates point 3 in the definition of an ABP), so they can be merged into a mapping between x1 U &}
and k2 U k. Let ® be the global mapping obtained by gluing all such isomorphisms. ® is injective,
and its image in O, is causally closed. So ® defines a bijection between O; and some prefix of @s,
preserves the labeling, transforms —1 into —9 and thus #; into #2, and transforms also <; into <o
since it maps configurations.

If the criterion of the lemma holds in both directions, then there exists a ®' from O, to some prefix
of @1, with the same properties. This is more than enough to prove that O1 and O, have isomorphic
structures: ® and ®' are inverses of one another. |

Lemma 4 Let O1 and Oy be two augmented branching processes of 8. If each configuration of O, is
isomorphic to a configuration of Oy, then Oy is isomorphic to a prefiz of Oy. If the converse property
also holds, then (91 and (92 are isomorphic.

Proof. By lemma 3, we already know that the structure of @, is mapped to the structure of some
prefix of O,. To prove that the @ defined in the previous proof is a homomorphism, we only have to
check that every conflict relation #2 in <I>((’)1) corresponds to a conflict in 1. Assume this is not
the case: ®(e;) #2 (€})) in O,, but =(eq #1 e}) in 0. Since e; <1 €| and €| <; e; are both impossible
(recall that ® preserves causality), one necessarily has e; JLle1 So there exists a configuration of O
containing both e; and e}. Its image thus contains @(el) and ®(e}), and is a configuration, whence
a contradiction. In summary, ® : 01— Oy preserves <1 but may lose relations #1 By reinforcing
#2 in CIJ((’)l) we can thus make ® an isomorphism between O, and its image.

When the criterion of the lemma holds in both directions, ® is a bijection and preserves the
structureS (lemma 3), but also #1 is exactly mapped to #2 , 80 @ is an isomorphism between O1 and

O,. O

3.2 Intersection

Intersection and union of ordinary BPs are the key to develop the notion of unfolding. For augmented
BPs, these operations are less easy to define in general, essentially because of the extra conflict relations.
However, the structures of ABPs behave like standard BPs.

Lemma 5 Let O; and Oy be two augmented branching processes of S, there exists a unique augmented
branching process O of S satisfying :

1. if K1, K2 are isomorphic configurations of (’)1, @2, there exists a configuration k of o isomorphic
to both of them,

2. and, conversely, each configuration K of O is isomorphic to a configuration of each 0.

O is called the intersection of O1 and (’)2, and denoted by 01N O,.

INRIA

ractorization of Unjoldaings

Proof. Assume O = O; N O, and consider the associated structures @', @} and ©). We first prove
that O' = O} N O,

Observe that (O satisfies the two conditions of the lemma with respect to O} and O}, for configu-
rations formed by the causal closure of some event (such configurations are common to an ABP and
to its structure). Since this family of configurations forms a covering set for @', lemma 3 implies that
O is isomorphic to a prefix of (9 1 = 1,2, which proves point 2. For point 1, let k1, k2 be two iso-
morphic configurations of &}, Ob. Slnce each k; is covered by the causal closure of its events, with the
isomorphism extension argument used to prove lemma 3, one easily checks that both x; are isomorphic
to the same configuration & of @'. This proves point 1, so one has @' = O} N).

To define O, we thus start by building @ and the isomorphisms ¢; between a prefix of @} and
O'. We proceed by recursion, starting with min)’ isomorphic to min (bg, and connect one event at
a time (and its successive conditions) until all pairs of isomorphic configurations of @] x @} have
been considered. Specifically, let (k1,k2) and (K], k%) be pairs of isomorphic configurations, satisfying
K, = K; \ e; for some event e;. Assume there exists already a configuration k' = ¢1(k}) = ¢o(k}) in
o' , but ¢; is not defined on e;, i = 1,2. Then connect an extra event e (and successive conditions)
to co-set ¢1(®e1) = ¢o(®e2) of K/, set ¢’ <e for every event € in £’ such that ' = ¢;(€}) and €} < e;,
and finally extend ¢; to e; and e®;, in such a way that k; is isomorphic to K = ' U {e} U e® through
¢;. When the process stops, @' satisfies the conditions of the lemma, by construction. This proves
existence and uniqueness of .

The occurrence net @' obtained in that way is obviously an ABP of S. Any pair (K1,K2) of
isomorphic configurations of O1 x @2 has a representative kK on @'. To ensure the converse property,
one must prevent reading out from o conﬁguratlons which have no counterpart on one of the @;. We

thus define O from O’ by setting e # € iff ¢71(e) #1 o7 (e') or do(e) ™" #2 ¢y (¢)). O
(A0) (BO) (A0) & (B,0) (A.0) i :%0:
(AL (B,1) (AL (B,1) (AL (B,1)
(A2 (B,2)

Figure 3: Two ABPs (left and right) and their intersection (center). Only primary extra conflict
relations are represented for clarity ; so the inherited extra conflict relation t1 # t4 is not represented.

The intersection defined above is associative. Notice also that it selects configurations with identical
structures. If @1 contains t;lty and @2 contains t; — to, then the intersection reduces to t; and
not to t; — t9, even if @1 allows to fire t; then to. This will contrast with the product of augmented
branching processes, that we define in section 4 (see fig. 6 for a comparison). Finally, observe that
@1 N @2 C @i, as usually ; @1 N @2 can actually be defined as the maximal common prefix of the (’),
(see below).

3.3 Union

Lemma 6 Let O; and Oy be two augmented branching processes of S, there exists a unigue ABP
O 2 01 U0, of S satisfying

1. every configuration k; of O; is isomorphic to a configuration k of @, 1=1,2,

2. for every configuration k of O there ezists i € {1,2} such that k is isomorphic to a configuration
Kj Of Oz
RR n°5186

14 FEric Fabre

Proof. The proof is constructive, as for the definition of intersection. Assuming such a O exists, let
us consider its structure @'. Similarly, let (9’ denote the structure of @;, i = 1,2. @' is characterized
by its set of configurations k. for e ranging over all its events (lemma 3). A conﬁguratlon ke of O
is also a configuration of O, and thus is isomorphic to a configuration k., of O;, fori=1ori=2
(point 2 of the lemma), which is also a configuration of the structure Of. Conversely, every ke, of
(9; must have an isomorphic counterpart in o' , by the first condition of the lemma. We thus have a
complete description of all configurations k that must appear in @'. We now show that there exists
a O satisfying these conditions, by constructing one. (Again, by lemma 3, if it exists, it is unique.)
The construction follows the same lines as the recursive construction of O} N (’)2 After all pairs
(K1, k2) of isomorphic configurations have been considered, “private events” e; of (’); are explored, i.e.
events such that x.; has no isomorphic configuration in the other structure (9; A new event e is then

connected to @ (with extension of ¢;) to ensure that ke, is isomorphic to ke = ¢;(ke,), until all private
events have been considered. Observe that with this construction, the ¢; are defined on the whole (’);
instead of a prefix, and ¢; (D)) N ¢o(Dh) yields O} N O

To complete the proof, we must show that there exists a unique way to define extra conflict relations
over events of @' such that the two conditions of the lemma are satisfied. We first have to prevent
reading out from o configurations using private events of O1 and of O,. So necessarily e # e/ for pairs
of events (e, e') in [¢1 (D)) \ ¢2((92)] [f2(Oh) \ $1(O})]. Observe that such palrs (e, e) necessarily
correspond to concurrent events in O'. Secondly, let us set e # e’ as soon as b (e) #, p7 (€' for all 4
(at least one of these mappings is defined), since e and e’ can never appear in the same configuration.
With this definition of # , every configuration x of @ lies in (at least) one of the images ¢;(0;), and
is isomorphic to (at least) one of the ¢;'(k), so point 2 is satisfied. Moreover, the ¢; are structure
preserving morphisms (only extra conflict relations can vanish), so point 1 is satisfied. This proves
the existence of @. It is easily checked that any stronger conflict relations on @' would violate the
conditions of the lemma, since it would yield a strict prefix of @. This proves the uniqueness of 0.0

This proof deserves several comments. First, by construction of morphisms ¢;, we have structure
preserving mappings, so the O; are isomorphic to a prefix of 0.0 is actually the smallest ABP of S
(w.r.t. C) satisfying this property3. Secondly, we have obtained O = 01 U O, by defining first a union
of structures (’){ and (9’2, and then taking a prefix by introducing extra conflict relations. This reveals
that a notion of unfolding could be defined for ABPs of S, that we could denote as Z]g. US can be
defined as the union of all structures of ABPs of S. Since by definition every ABP is a prefix of its
structure, one thus has that Us is also the supremum of all ABPs of S. Us is a huge object, containing
for example all linear extensions of a given configuration. Therefore its existence only has a theoretical
interest.

Proposition 1 Every augmented branching process is isomorphic to the union of its configurations.

Proof. This is an obvious application of lemma 4 to the definition of union given in lemma 6. O

Important remark. As a consequence of this result, an ABP can be equivalently described as a set
of configurations, closed for the prefix relation: [k € O,s' C k] = &' € @. So the intersection of two
ABPs is the standard intersection of sets of configurations. The union of two ABPs is the standard
union of sets of configurations. And the prefix of an ABP corresponds to a subset of configurations,
closed for the prefix relation on configurations.

3.4 Trimming

Generalized ABP. Let O be a labeled augmented occurrence net (of finite width) satisfying points 1
and 2 in the definition of an augmented branching process of S, but failing at point 3. That is, O

3The verification is left ot the reader. Hint: check first that O has the minimal structure, then the maximal conflict.
INRIA

ractorization of Unjoldaings

describes augmented configurations corresponding to runs of tile system &, but may contain several
isomorphic copies of some configurations. Slightly abusing terminology, we will say that Oisa gener-
alized ABP (GABP) of §. The ¢rimming consists in eliminating the redundant copies of isomorphic
configurations, in order to get a true ABP: Tm'm(@) is defined as the union of all configurations of O.
This definition entails the existence of a canonical homomorphism from O to Tmm((’))

We briefly describe below a trimming procedure for a generalized ABP 0= (C,E,—, <, #)
of §. Its first task consists in building a correct ABP structure, by recursively merging identically
labeled events connected on top of the same configuration (this is very similar to a classical procedure
on standard labelled occurrence nets, to obtain a branching process). The second task updates the set

of extra conflict relations, when two events are merged.

Procedure 1

e recursion (while the following condition is satisfied) :
if there exists a pair (e1, e2) of events such that A(e1) = A(ez2), *e1 = *e2 = X and ke, \ €1 = ke, \€2

— merge e; and eg into a single event e, with A(e) = A(e;), *e = X (merge also conditions of
e} and e having the same label),

— for all events €' € ke, \ €, set €/ <e,
— for all events €’ € E, if e; <€’ or ey <€’ then set e < ¢/,

— for all events ¢ € E, if ¢’ # e, and ¢ # ey then set ¢’ #e.

Ke; \ €; denotes the configuration containing all events of ke, but e;. Procedure 1 converges for finite
AONSs, doesn’t depend on the ordering of operations, and yields the desired ABP (proof left to the

reader). Moreover, T'rim(Q) is isomorphic to a prefix of O.

4 Product of ABPs

Let S = (V,T,v% a, 3,7) be a tile system, and consider restrictions Sy with V' C V. We define the
product in the category of generalized ABPs of restrictions of S (as we will see, the product is not
stable in the sub-category of ABPs). The morphisms of this category are given as follows. Let 01,0,
be GABPs of Sy, and S}y, respectively, with Vo C V;. A morphism ¢ : O1 — Oy is defined as a
partial map ; it operates on conditions ¢ satisfying A(c) € Vo X D and events e satisfying Vy N Vy # 0
for t = A(e). ¢ is required to be a standard homomorphism of labeled AONs over its domain of
definition. As a consequence, the restriction? ¢ : min(Q;) — min(0y) is bijective.

Let us make two remarks about this category. First, given O, one can determine the variable set
V' such that O is a GABP of Sy by observing labels of min O. Secondly, observe that there may exist

non trivial automorphisms over a GABP @, but if O is an ABP, its only automorphism is the identity.

In the first part of this work [1], a product A was defined in the sub-category of branching processes
of restrictions of §S. Let V; C V for 1 < ¢ < N, the following factorization property was proved for
unfoldings

u5|v1u...qu Uslvl A...A uSIVN (2)

We now extend this definition of A, and prove that it is a categorical product.

“When mentioning the restriction of a partial function 1; to a set S, we consider only its domain of definition in that
set, i.e. SNATY(Vy x D) in this example.

RR n"5186

16 FEric Fabre

4.1 Definition

Let O; = (Ciy Eiy =iy Niy <i s #2) be a generalized augmented branching process of & = S, =
Vi, T, v a, B,7i)- The product O1 A ... NOy, is defined as the labeled augmented occurrence net
O = (C,E,—,\, <, #) satisfying

1. events are labeled by tiles of U;7;¢, and conditions by pairs of (U;V;) x D,
2. Vi € {1,...,N}, there exists a morphism v¢; : @ — O;

3. Vk a configuration of O and VX an extremal co-set® of ,
Ve UiTfand I ={i: 1 <i < N,t €T*},
if Vi € I, de; € E; such that)\Z(ez) =t, ’gbz(X) = ‘e,
1i(k) is a configuration and k., \ e; C 9;(k),
then there exists a unique event e in F satisfying

(a) AMe) =t and *e =X,
(

)
b) Vi € I,1i(e) = e; and the restriction 1; : e®* — e} is bijective,
(c) Ve e kNE, [Fiel: () <ii(e)] & € <e,

(d) Ve' € B, [Fie T : () #ii(e)] < ¢ #e.

This definition contrasts with the product of standard branching processes of [1] on two main aspects.
First, not only the local flow relations —; but also the extra causality and conflict relations of factors
O; are mapped to the product structure 0. Secondly, an event e is connected both to a co-set X and
to a configuration x (instead of a co-set only). The connection to a co-set captures the causality due
to the product flow structure, and the configuration s ensures that extra causality relations in each
factor are also satisfied.

As for standard branching processes, this definition leads to a constructive procedure of any finite
prefix of the product. The latter is then obtained as the supremum of all finite prefixes given by
procedure 2. Naturally, this assumes that the factors O; are finite width GABPs, property which is
preserved by A.

Procedure 2
e initialization:

— E=0(—, < and # are empty as well)

— create | U; V| initial conditions in C, with labels satisfying A(C) = U;A; (min(®;))

— for 1 < i < N, define the partial maps v¥; : C — min(©;) so that they are surjective and
preserve A

® recursion:
for x a configuration of O and X an extremal co-set of ,
fort € (Ui Tf), I={i: 1<i< N,te€T*},
for {e; :1 € I,e; € E;} a set of events labeled by tile t, satisfying
Vi € I, ;(X) = *e; and ;(k) is a configuration containing ke, \ €;,

— create e in E such that *e = X and A(e) =t (if there isn’t such an event in E already), and
define 9;(e) = e; fori € I,

— then create | U; 7;(t)| new conditions ¢ in C, with ®c = e, and assign labels to have A(e®) =
UierAi(e}) ; extend partial maps 4;, ¢ € I, so that ; : €* — e is A-preserving and surjective,

5By extremal co-set we refer to a co-set of extremal conditions of k.

INRIA

ractorization of Unjoldaings

— Ve e kNE, set e <e if Fi €I:h(e)=;vi(e),
— Ve € E, set €' #e if FieI:i(e)#iile).

O1A...ANOy isa generalized ABP of S)y,u..uyy ; the proof is straightforward by recursion in proce-
dure 2. Similarly, when applied to standard branching processes, this product coincides with the one
defined in [1] and yields a standard BP.

Notation. At point 3 in the definition, when I contains a unique index ¢, we say that event e; is
local to ©;. Otherwise, we say that events {e;,i € I} synchronize into event e.

Remark. Given configurations k1,... ,kx in Oy,...,On resp., there exists a unique maximal
configuration s of O1 A...AOyp such that Yi(k) C k. We write kK = k1 A ... AKN.

4.2 Categorical product

Proposition 2 The operator A defined in the category of GABPs of restrictions of S is a product in
this category.

Proof. Without loss of generality, we consider the product of two GABPs Oy, Oy of Sy, and Sy,
respectively. Let O =0, A @2, with associated morphisms 1; : O — (91, and denote Vo =V UVs,
Ts = TP UTy. Assume there exists another @ in the category, with morphisms P O = O We
have to prove the existence of a unique morphism ¢ : O — O such that ¥} = ;0 ¢ (universal property
of a categorical product).

As a GABP of a restriction of S, conditions of @' are labeled by Vs, and events are labeled by
T, the tile set of SIV@/' The existence of ¢ implies that V; C V., s0 V5 C V. Similarly, T C Tp,-
Since ¢ has to be defined on conditions and events of @' labeled by Vs and T respectively, let us
consider the restriction of @’ to these nodes. One easily checks that this restriction is a GABP of S\V@'
So, without loss of generality, we can assume that Vs = Vs, and Ty = T

We build ¢ recursively, following the scheme of procedure 2. Consider conditions of min @’ : they
are in bijective correspondence with min @, which defines ¢ on min@’. The universal property (UP)
is obviously satisfied by ¢ on min @' : if ¢ in min @' is labeled by variable V' of V;, then there exists a
unique condition in min @; labeled by V, and similarly for min ©. We thus have ¢}(c') = 1;($(c')).

Assume ¢ has been defined on some prefix (’)O of O , and satisfies the UP on this prefix. Let €’ be
an event of O’ such that X’ = *¢’ is an extremal co-set of O}y, and ke \ € is a configuration of 0.
We want to extend ¢ to €. Assume € is labeled by a tile of 77 N T for example (the two other cases
are examined in a similar manner). Let e; = 9}(¢’), i = 1,2, and consider k = ¢(ke \ €'), X = $(X').
Since ¢ satisfies the UP on @6, e1,es, X and k satisfy conditions of point 3 in the definition of O1 A @2,
so there exists a unique event e of O with 1;(e) = e;, *e = X, (k. \ €) C k. Let us set ¢(e’) = e, and
extend also ¢ from €’® to e®. This extends the UP of ¢ to €’ and €’*

By construction, the flow relation is preserved by ¢ around event €’. The last thing to prove is that
¢ remains a homomorphism, i.e. doesn’t create extra conflict relations, nor extra causality relations.
But such relations in ¢(0) are directly derived from the 1}(Q’), by definition of the product. And the
¥} can only erase, not create, extra causality/conflict relations of o' O

Corollary 1 As a categorical product, N is naturally associative.

Since A is stable in the sub-category of standard branching processes, and coincides with the product
defined in [1], this corollary gives another proof of the associativity of A on BPs.

At this point, it is worth relating the product in the category of GABPs to existing product
definitions on event structures. Although GABPs carry events, conditions, labels, a flow and extra
relations, they are definitely labeled prime event structures. Actually, given a labeled prime event
structure (C, E, <, #,) and knowing that it corresponds to Sy, it is possible to recursively recover

RR n"5186

18 FEric Fabre

all the underlying GABP structure. Morphisms between labeled prime event structures are defined as
(label preserving) partial functions that map configurations to configurations (and thus that can only
“forget” conflict or causality), which corresponds to our definition. So GABPs can be considered as a
sub-category of labeled prime event structures.

As underlined in [14], labels have a minor role in the definition of the product of event structures:
a label algebra [3] can be incorporated afterwards. If labels are put aside, there exist two ways of
defining the product of prime event structures. One is recursive (or inductive), as in [13], while the
other one directly defines legal configurations [14, 4, 15]. We are definitely on the side of the recursive
definition, which has the advantage to suggest its implementation, although we have abandoned the
heavy naming of events by backward pointers (used in [13] and also in [7]).

4.3 Relations to trimming

One could suspect that applying the product to ABPs (instead of GABPs) yields a trimmed structure.
This is false in general: the result of the product is generally not trimmed®, as illustrated by the
example of fig. 4. The phenomenon appears on events labeled by t; and to on this figure, but we have
added extra events in their futures to illustrate the non trivial trimming operation on the product.

(A,0) (A0) (B,0)
A (€O (DO Ay e

®h(c1 (D1CY

O A

(A2 (C2 (D,2) (A2) (B,3)
(A0) (B0 (A0) (B,0)
i +
(A1) (B,1) (C0) (D0 (AL (B,1) (C0 (D,0)
(B2(C,1) (D) (B2)(D,1) (€D (C1) (8,2 (DY)
t3 t4 - = t4
(A2 (C2 (B,3)(D.2) (A2) (C2 (B3 (D)2

Figure 4: Two ABPs Oy (top left) and Oy (top right) of components S7 and S5 sharing only variable A.
Observe that t1 operates on A,B and to on B,C,D. @1 allows t1 Lty and t1 — to (these two
possibilities have different futures), whereas @2 imposes t1 — to. The product @1 A @2 s given by
the bottom left graph, with its trimmed version on the right : the two occurrences of to must be merged,
and their conflict relation is pushed forward to t3 and t4.

Despite this drawback, the product of GABPs of S is insensitive to trimming in the following sense :

6This is the main motivation for introducing the category of generalized ABPs.

INRIA

ractorization of Unjoldaings

Proposition 3 Let O; be a GABP of S =8y, ViCV,1<i<N, then
Trim(O1 A ...AOy) = Trim[Trim(O1) A ... A Trim(Oy)] (3)

Proof. Let s be a configuration of O; A...AOy, then £ is isomorphic to k1 A...Aky with r; = 1;(k).
And conversely, taking any k; € @;, 1 < 1 < N, the product x1 A ... A ky yields a configuration of
O1A...ANOy. Relying on proposition 1, one can thus write

TT’im(@lA...A@N) = K,l/\.../\l-’{,N (4)

Uh‘,l E@l,... KN E@N

where the union merges isomorphic configurations. In k = k1 A ... A Ky, let us replace each k; by
an isomorphic configuration s} of O;, 1 < i < N. One obtains " which is obviously isomorphic to &,

whence the result. O
g On 0 .
(<_':-> ‘ b O1A05A ... AOn
£ !
E y . .
3 > Tr(O1)ATHO)A..ATHON)
E |
= o ABP axis
Tr(O1) Tr(Oy) o TrON) TrO1A05A ... AON] =

T THO)ATHO)A ..ATHOWN) |

Figure 5: The category of GABPS is represented as a plane, and the sub-category of ABPs as a line.
The figure illustrates that the trimmed product can be defined on classes of trim-equivalent GABPs.

Proposition 3 suggests to define the operator A in the sub-category of ABPs by including a trim-
ming in the definition of A:

01/\/\0]\[é TT’im(Ol/\.../\ON) (5)

However, by projecting O1A...ANOy to the sub-category of ABPs, one loses morphisms ; relating
the product to its factors. In other words, A is not a categorical product in the sub-category of ABPs.
Therefore, in the sequel, we use the untrimmed version A for proofs, and extend results to A. In
practice (section 6), all computations must be performed with A, in order to reduce the size of the
nets. However, let us keep in mind the following useful result :

Corollary 2 Define = by O=0' iff Trim(0O) = Trim(O'). Let O;, 0} be GABPs of Sf = Syy,,
1 <1< N, then

<i<N, 0;=0!] = OA...NON=O,A...NOY
Vi1<i<N, O0;=0! O O 0] o) 6

4.4 Other properties

We have already mentioned that the product A defined for GABPs generalizes the product of standard
branching processes proposed in [1]. But some properties are lost. For example, if (’)1,(’)2 are two
ABPs of the same tile system S, one has O; N Oy T Trim(Oy A @), instead of the equality that takes
place in the case of standard branching processes. Figure 6 gives a counter-example where intersection
and product differ. Other obvious properties of the product defined on BPs remain valid for ABPs
or GABPs. We briefly mention them without proof. Let O and (9' be GABPs of the &7, 1 <¢ < N,
then

RR n°5186

20 FEric Fabre

O, 0,
(A0) (B0 (A0) (B0
hele Sat, t
(A (B,1) (A (B,1)
O]_AOZ Oln(jz O]_UOZ
(A0) (B0 (A0) (B0 (A,0) (B,0)
i1 T tp i1 i1 tp tp

(A (B,1) (A1) (A2 (B,1) (B,

Figure 6: Top : two ABPs. Bottom, from left to right : their product, their intersection and their union.

1. V1 <i <N, O; [Oz] = /\102 C /\ZOZ

2. O = /\ZOZ and O; = T,DZ(O) = O = /\ZO;

3. 0=N0O;and O'C O = 9;(0) C4;(0) C O
Finally, let us mention the following important result :

Lemma 7 Let V1,V CV be two subsets of variables, and let @1 be a GABP of SM, then
@1 /\Z’{Swlnvg = Ol (7)

Proof. Consider morphisms 11, from the product @1 /\Z/{swlm,2 to factors @1 and uslvl v, Tespec-
tively. 41 is a morphism between two GABPs of)y, and one readily has (O, AUs,, m}2) C O; by
definition of the product. We show that 11 is actually an isomorphism. Let x be a configuration of the
product, then kz = 12(x) is obtained by restricting to events and conditions labeled by Sjy,y, and
removing all extra causality relations (only structural relations due to tiles of S)y,ny, are preserved).
Since V1 NVy C V4, ko can also be obtained by applying the same procedure to 1. So let &, &’ be two
configurations of the product such that 11(k) = 1¥1(k’) = k1, then also (k) = 12(k’) = ko, which
proves K = k1 A kg = k'. So 1)1 is injective. To check that 1, is also surjective, select any s of @1,
and build configuration xo of Z/{SWIW2 by the above procedure. Then it is easily checked (by recursion
in procedure 2) that 11 (k1 A k2) = k1. So morphism ; is a bijective mapping. To prove that it is
actually an isomorphism, it remains to check that no extra conflict or causality relation is lost by)1,
which is obvious since in @1 A Z’{Slvl vy all such relations come from @1. O

As a consequence of this lemma, we define I as the unfolding of the trivial system Sg. [is a trivial
GABP, with no condition and no event, and satisfies

VW CV, VOaGABPof Sy, OAI=0 (8)

5 Projection of ABPs

5.1 Standard projection of BP : its weaknesses

Let S be given by Si|...||Sn, where component S; operates of variables V;, and define the extended
components Sf = Sjy;- By equation (2), one has Us = Us: A ... AUsg,. When dealing with large
distributed systems, building Us may be of little practical interest: Us can be a huge object (even
if restricted to a complete finite prefix, which we do not consider here), and one is not necessarily

INRIA

ractorization of Unjoldaings

interested in global behaviors of §. On the contrary, a relevant question is “How does the behavior of,
say, component S; changes once S; is inserted into § 7”7 We have shown in [1] that the question amounts
to determining Iy, (Us), the projection of Us on behaviors of SF. IIy, (Us) is obtained by restricting
Us to conditions and events labeled by elements of S7, and trimming the result to merge isomorphic
configurations. Iy, (Us) is a prefix of Use, i.e. represents the restriction of Use to configurations that
synchronize with configurations of the other components. Moreover, the collection Iy, (Us), 1 <7 < N,
defines a minimal product covering of Usg, i.e. Us = Iy, (Us) A ... ALy, Us).

The central result of [1] is that minimal factors IIy, (Us) of Us can be obtained without computing
Us itself, by means of modular computations. In the simple case of two components, these modular
computations reduce to:

Iy, Us) = Use Ny, (Usg) (9)

(and symmetrically for IIy, (Us)), where only “small” BPs appear on the RHS of (9), compared to Us.
This kind of relation holds on branching processes provided projections are not “misleading”, i.e. if
every configuration of Iy, (Usg) is the restriction of a configuration of Usg, and if causality relations
between selected events are not lost (an example of a misleading projection is given in fig. 7). There
exists a small family of distributed systems for which such a property is guaranteed, namely those
interacting through a single variable only. The projection we define below for GABPs releases this
limitation.

(Af) (Cf) (EQ)
A0 (BO) 4 t ty
A) B (€O (O (EO

B 0 (A,0) ,,\(C’O) ’#\(E,O)
held LAt
(B,2 (C1) (b1 (D)1 (El)

(A1) (C1) (E)1)

Figure 7: A branching process O (left) and its standard projection 4 ¢ g (O) (top, right). This
projection is misleading : to and t3 appear as concurrent, but there is no configuration of O containing
both of them. Similarly, the causality t1 — to is lost. In the category of ABPs, these features can be
preserved (bottom, right).

5.2 Projection of ABPs

Let @1 be a GABP of SM, and let Vo C V. We define @1% as the restriction of @1 to conditions
labeled by (V1 N'Vy) x D and to events labeled by T N7y = {t € T : VeNVi NVy # B}. Observe
that, although some conditions vanish, all conflict and causality relations on the remaining events are
preserved. So every configuration of @1% is the restriction of a configuration of @;. It is easily checked

that @1|V2 is a GABP of Sjy,ny,, but (;)1|V2 is not trimmed in general, even if O, is an ABP. We define
the projection of @y on variables Vs as

Iy, (01) £ Trim(Oy,) (10)

Observe that we make a distinction between Ilyr, a family of projectors in the category of BP (defined
in [1]), and IIy», a family of projectors in the category of ABPs.

RR n"5186

22 FEric Fabre

There exists a canonical morphism between O, and its restriction @1%, and between a GABP
and its trimmed version. Their composition defines the canonical morphism 7y, : o1 — fIVZ(@l)
associated to this projection.

One could suspect the existence of a universal property defining ﬂy2 (@1), looking like : for all ABP
O, of Spyiny, and morphism 1 : O, — O,, there exists a unique morphism ¢ : Iy, (O1) = O, such
that 1 = ¢ o my,. This property doesn’t hold however, essentially because of the trimming.

(A0) (B, (C,0) (D,0)

(A1) (A1) (D.1) (D,1)

(A1) (B)1) (C1YH (b))

Figure 8: A branching process O (left) and its projection ﬂ{A,D}(O) (right). The standard projection
I{4,0}(O) defined in [1] would give a single occurrence of t1 and of t2, these two events appearing as
concurrent : Ty 4 py(O) would be misleading.

Lemma 8 Let Vi,V2 CV, then operators ﬂvi defined above satisfy
ﬂVl © ﬂV2 = ﬂV1ﬂV2 (11)

Proof. The result is obvious if one only considers restrictions: (@\V1)|V2 = (;)|va2- Taking the
trimming into account, one has

Trim(Opyav,) = Trim[(Oy,)y,] = Trim{[Trim(Oy,)]y,}

The last equality uses the relation ITy,(Q') = Iy, [Trim(O")] for a GABP @', which can be obtained
with proposition 1 for example. O

6 ABP calculus on trees

This section studies the algebraic relations between the two operations defined on ABPs: product
and projection. For a compound system S, we show that these relations can be combined to compute
projections of Us on components of S by means of small size operations.

6.1 A key property

All results presented so far didn’t make any assumption on the components of S. From now, we
consider systems built from components satisfying the

Structural assumption (SA): LetS,...,Sy be coherent components, with S; = (Vi, T, vY, a4, Biy i) -
Foralli,jin {1,... ,N}, i #j, ift € T;NTj then Ve NV;NV; # O where Vi denotes variables impacted
byt in Si|...|Sn.

In words, if two components share some tile t, then this tile has some impact on their shared
variables, or, conversely, the variables shared by two components make all their shared tiles “visible.”
INRIA

ractorization of Unjoldaings

Observe that the SA is obviously satisfied when components S; have no common tile, which means
that, in &, all tiles have a limited span (each Vg is necessarily contained in some Vj;), and interactions
betwen components are only due to shared variables. This corresponds to the assumption made in [1].
But the SA is weaker that this particular case, and allows tiles covering several components. Notice
also that the SA is preserved by extended components Sf = Syy,, with § = S1|...[|Sn-

Proposition 4 Let S7,55 be restrictions of S to V1,Va resp., and assume these components satisfy
the structural assumption. Let O1,O2 be GABPs of 85,85 respectively, then

YV3 2 Vi NV, (01 A 02)|v3 = 01|v3 A O2|v3 (12)

Proof. We first show that there exists an injective morphism from ¢ : (O1 A (’.)2)‘];3 — (;)1|V3 A (’)2|v3.
Consider the diagram in fig. 9. Morphisms v; : O1 A O3 — O; come from the definition of the product
A, and similarly for the ¢; : (’.)1‘1;3 A (’.)2“;3 — Oi|V3- The pair (11,19) : O1ANOy = O x Oy is
injective, by definition of the product. This property remains true between restrictions (O1 A Oz)y,
and Oy, x Oqy,- Since there exists morphisms 1; from (O1 A Oz)y, to the Oj)y,, there exists also a
unique morphism ¢ : (O1 A O2)y, — Oyjy, A Og)y, which makes the diagram commutative (universal
property of the categorical product). ¢ is necessarily injective, otherwise the pair (11,2) couldn’t be
injective on (O1 A O2)y,-

O-1A‘O.2
P U2
v
01 (012 02vs G,
v

O.1|V:-s ¢ O.2|V3

o e

O1)y3AO2jy,

Figure 9: A commutative diagram of morphisms. Dashed arrows indicate restrictions of GABPs to
events and conditions involving variables of V3.

We now show that ¢ is also surjective. To do so, we prove that for any configuration x = K1 A Ko
of (’.)1‘];3 A (’.)2“;3 (with x; = ¢i(k)), one can find a configuration &' = &} A k) of O; A Oy, such that
(]5(/'%‘,])3) — k. Let us select any configuration «} of O; such that mgws = k; (there always exist such
configurations, because the restriction doesn’t lose conflict relations), and consider &' = k| A k4 in
O1 A Oy. One has qﬁ(ﬁfw) C k. The point is thus to prove that equality holds.

In a construction of kK = k1 A k9 based on procedure 2, let < be the total order in which events are
created. Let <; be the image of < under ¢; ; <; defines a total order on events of x; which is a linear
extension of <; (the causality relation on ;). Notice that the pair (<1, <s) can be used as a guide to
build k from k7 and k9 in procedure 2:

a) Start with k = v A v§ and go over events of k1, ks with indexes 41,1y obeying <1, <y (resp.).

b) As long as e;, is a local event of k1 (i.e. doesn’t correspond to a shared tile), build its image in
x and increase % by 1.

¢) Then do the same for xs.

RR n"5186

24 FEric Fabre

d) Events e;,,e;, of k1 and kg are now shared events, associated to the same tile; so build the
corresponding product event e of k, and increase both indexes by 1. Then go back to b).

Let us now consider configurations k,. There exists a total ordering <! of events of s which
coincides with <; on k; (because the restriction doesn’t lose transitive causality relations). Let us
build &' = &} A Kb, with (<), <%) as a guide. The structural assumption indicates that every event
of K} \ k; is necessarily a local event. So all event synchronizations in the construction of ' are due
to events shared by k; and kg. Therefore the construction cannot block before all events of s/ and
k% have found a corresponding event in «'. Since 1;(k’) = &f, one has z/)i(n"vg) = K;, which proves

gi)(nfve’) = K.

We have proved that morphism ¢ is a bijective mapping. To prove that ¢ is actually an isomor-
phism, it remains to prove that it preserves all extra conflict and extra causality relations, which is
straightforward by definition of the product (left to the reader). O

Isolating the first part of the proof, which doesn’t make use of the structural assumption, one gets

Corollary 3 Let 01,0y be GABPs of Sy S|y, resp., and let V3 CV be any variable set, then
(O1AO2)y; T Oppyy A Oy, (13)

Observe also that, given a pair 01, O, of GABPs, conditions to get equality can be weakened : equality
holds as far as V5 captures all events of (91 and (92 that must synchronize, i.e. for a V3 satisfying

Vt € 7-18 m7-2€, [361 S @1,)\1(61) =t or dey € @2,)\2(62) = t] = ViNVs 75@

Theorem 1 Let S7,Ss5 be restrictions of S to V1,V, resp., and assume these components satisfy the
structural assumption. Let (91,(92 be GABPs of 87,85 resp., then

YV3 D Vi N Vs, f[vg(él A 02) = f[v3 (01) A f[yg (02) (14)

Proof. Notice first that (14) uses A. The same equality with A instead of A doesn’t hold in general,
since the LHS term is necessarily trimmed whereas the RHS term may not be trimmed.
The proof relies on proposition 4. By trimming both sides of (12), one gets

Trim[(O1 A O2)py,] = Trim(Oypy, A Oqp,)
= Trim[Tsz((91|y3) A Trzm((92|y3)]
= Trim[Hy3(01) A Hv3(02)]
= Iy, (O1) ATIy, (02) (15)
where the second equality uses proposition 3. In the proof of lemma 8, we have already shown that

Trzm(OWa) Trzm[Trzm(O)‘ve’] for any GABP O. Applying this property to the LHS term above
yields

Trim[(O1 A Oz)y,] = Trim[Trim(O1 A Oa))y,]
= Trim[(O1 A O2)]
= Iy, (O AOy)
which proves the theorem. O

Corollary 4 Under the conditions of corollary 3, i.e. without any assumption on S nor on Vs, one
has

Iy, (O1AQ2) T Iy, (O1) Ally, (O2) (16)
INRIA

ractorization of Unjoldaings

6.2 Modular computations on tree-shaped systems

Let us come back to the problem outlined in the introduction of section 5. Given § = S| ... ||Sy, one
has (theorem 1 in [1]) Us = Us: A. .. AUsg, = Iy, (Us)A... Allyy (Us), where Iy, (Us) C Use represents
runs of S that remain possible once this component is connected to all others. More generally, for O
a BP of S defined as O = O; A...AOn, where O; is a BP of S, one has O =1Iy, (O) A... Ay, (O).
And ITy, (O) C O; represents runs of the specification O, that are compatible with runs specified by
the other components. Therefore, it is of great practical interest to determine these minimal factors
I1y,(O) directly from the O;, without computing O itself, which can be a huge object. We have
shown in [1] that this was possible under two conditions: the first one concerns the structure of S,
and the second one requires that projectors II be not misleading. In this section, we drop the quite
restrictive condition on projectors, by moving to the larger category of ABPs. But before, let us
establish connections between II,, and Hyl

Lemma 9 Let O be a standard branching process of S, and define O; = ﬂvi(o) = (C,E, =, <, #),
then O; = Trim(C, E, =, X\, <, #) =11, (O).

Proof. By definition of ﬁvi, O; is obtained by restricting @ to nodes labeled by S7, and trimming
the result. In the restriction, the flow relation — of O is reduced to relations coming from tiles of
S;, but all causality and conflict relations that were present in O are preserved, under the form of
“extra” relations. By contrast, I}, does the same restriction, but only preserves causality and conflict
relations due to tiles of Sf. So IIy, (O) is obtained as the union of configurations of (C, E, —, A, <, #).
As a consequence, Iy, (O) and Trim(C, E,—, X, <,#) have the same configurations. Since the latter
has no extra conflict relation, nor extra causality relation, Trim(C, E, —, A, <, #) is an ordinary BP,
and is thus isomorphic to IIy, (O). |

As a consequence of this lemma, the minimal factors Iy, (Us) (resp. IIy, (O)) proposed in [1] can be
derived from the IIy, (Us) (resp. ITy.(O)). The latter contain a richer information, since they preserve
causality and conflict relations due to the other components of S, so we concentrate on them. Notice
however that the factorization result on Us is lost when replacing II by I1:

Us T Ty, Us)A ... Ally, Us) (17)

This can be proved by checking that every configuration of Us can be reconstructed in the product,
and concluding with lemma 4. But equality doesn’t hold in general: there may remain extra causality
relations in the RHS term, for example (see section 7.1).

Let us now gather properties of IT and A .

Proposition 5 Let S be a tile system, with V as variable set, and denote by O an augmented branching
process of some restriction of S.

VO, 3V CV, 0O=I(0) (18)
VYV, V' CV, Ty oIy = Tyyn (19)
VO, OAI=0 and I=Tiy) (20)

More importantly, let @',C’)" be ABPs of Sy and Sjyn respectively, and assume these two systems
satisfy the structural assumption, then

YWwovnv, w0 AO") =Ty (O) Al (O") (21)

Proof. (18) expresses that O is an ABP of Sy for some V': the minimal V' is determined by labels of

min(®). (19) comes from lemma 8. (20) expresses the definition of I and property (8). (21) rephrases
theorem 1. O

RR n"5186

26 FEric Fabre

These four properties form the core of an axiomatic framework that allows the development of
modular algorithms to determine the ITy, (Us). This framework was studied in [20] and applied to our
problem in [1], section 5.3, under the assumption of non-misleading projections. We briefly recall the
main features of this procedure.

As a first step, we associate a connection graph to a system S = Sf||...||S%, where components
Sf = 8|y, satisfy the structural assumption. This graph G** has {1,2,... , N} as vertices, and (3, j)
is an edge iff V; N'V; # 0, that is if components Sf,SJ‘? share variables, or interact (recall that there
is no interaction outside shared variables, by the SA). A communication graph G¢ is derived from
G by recursively removing redundant edges, where edge (7,7) is redundant iff there exists a path
i,k1,... ,kr, 7 such that V; N V; CVy, for 1 <1 < L, i.e. if the interaction between S; and 8;? is also
captured by another path. There generally exist several communication graphs for a given system, but
if one of them is a tree, then all of them are trees. We say that S is a tree-shaped system, or that S
lives on a tree.

For a tree-shaped system, projections f[yi (Us) can be determined by a message passing algorithm
(MPA) based on a communication graph G¢ of S. Each edge (7,7) of G¢ carries a message /\-/li,j from
component S to component S7, and a message ./\./lj,z- in the reverse direction. Messages are recursively
updated until convergence:

Procedure 3

1. Initialization
M,; = 1, V(i,j) €G° (22)
2. Until stability of messages, select an edge (7, 7) and apply the update rule
Mij = yay,[Use A (A genip Mi)] (23)
3. Termination

O; = Use A(/\keN(i) Mk,i)7 1<i:<N (24)

In (23, 24), N (i) denotes neighbors of 7 in G¢. The message Mi,j is progressively refined until it
has collected all information from systems lying in the subtree located beyond ¢ from the standpoint
of j. Procedure 3 is “chaotic,” in the sense that the exact ordering of updates is left unspecified.
Nevertheless, it has been proved in [20] that this procedure converges in a finite number of useful
updates (i.e. updates that effectively change the message), and that the (9; obtained at convergence
correspond to the desired ﬂv,— (Us). The same algorithms can be used to compute the HVZ(O), where

O is a product GABP of §: O =01 A... AOp. In that case, terms Use must be replaced by O;.

Remark. Procedure 3 operates on ABPs: a trimming is performed at each step, in projections II
and in products A. This offers the advantage to minimize the size of objects, at the expense of a
heavier computation load due to numerous trimmings. Relying on corollary 2, the trade-off between
memory size and computation time can be positioned differently : trimmings need not be performed
at each operation, or need not be complete. They can actually be delayed and placed at any step of
the procedure.

INRIA

ractorization of Unjoldaings

7 Equivalence of ABPs and involutivity

Let Oy be a standard branching process of some restriction of S, say S}y, and let V, C V, the following
involutivity property holds with the projection defined in [1]:

01 AT, (0)) = O (25)

which means that composing an BP with “part of itself” doesn’t change this BP. This strong property
has an important role in the convergence of modular algorithms, for systems not living on a tree [20].
Unfortunately, it is only partly preserved in the case of ABPs.

7.1 Sub-involutivity of GABPs
Proposition 6 Let Oy be a GABP of Sy, and let V; C V, then

O, ALy, (O)) 3 O (26)

The term “sub-involutivity” refers to the prefix relation replacing equality in (26).

Proof. We first show that () is isomorphic to a prefix of @; A (91|V2 Let 11,19 be the morphisms
relating Oy A 01|V2 to factors 07 and (’)1‘1;2 resp. Consider events e of @7 A OIW2 such that ¥ (e) = e;
and 1y (e) = €1y, where ey, is the image of event e; in the restriction (91%, if this image exists. The
restriction of O A 01% to such events e (and the related pre- and post-conditions) forms a prefix o
of O1 A C’)l% and ¥ : O — O, is an isomorphism.

Now, let us consider Oy A Ily,(O;), with the associated morphisms ¢1, ¢ to factors O, Iy, (O1)
resp. There exists a canonical morphism), : (91|V2 — IIy,(01), so the GABP O A 01|V is related
to O; and ﬂyz(él) by the pair of morphisms (1)1, o 12). Hence, by the universal property of the
product, there exists ¢ : O; A @1\1)2 - O1 A ﬂvz(C)l) that makes the diagram commutative, i.e.
11 = ¢1 o ¢ and P} 0 1he = P2 0 . As a consequence, ¢(O) is isomorphic to @; through ¢;. m|

Notice that Oy is generally a strict prefix of 01 A HV2 ((’)1) or even of @1 A @;. And this is not
a matter of trimming, as illustrated in fig. 10: an ABP O (top, left) and its projection H{A B}((91)
(top right) are represented. In order to avoid confusions, the figure gives names to events, assuming
that names with the same index are labeled by the same tile (e.g. events es, €}, €2 both represent the
firing of t9). The product O1 A ﬁ{ A, B}(@l) is represented below, where events are identified by their
image in each factor. The product is not trimmed, but even after trimming, it contains a configuration
which has no isomorphic counterpart in Oy, namely the firing of t; followed by t, followed by t3 (thick
ArTows).

7.2 Pre-order on GABPs
Let O1, 05 be GABPs of Sy S)y, Tesp., we define relation € by
@1 @@2 = 01;@1/\02 (27)

which implies V1 = V1 U Vs, i.e. Vo C Vy. This relation expresses that @2 doesn’t constrain behaviors
of (;)1, in the sense that all configurations of the latter are preserved. However, there may exist in
@1 A @2 configurations that were not present in @1 : we show below that they are “reinforced” copies
of configurations of @1, where some concurrency has been turned into an extra causality relation.

Proposition 7 € is a pre-order on GABPs of S. Moreover,

VO, Oel (28)
V@l, @2, @3, (;)1 c @2 = @1 A (;)3 c @2 A @3 (29)
VO1,05, W CV 0O €Oy = IIy(0;) € Iy (D) (30)

RR n 5186

28 FEric Fabre

(C,0) (A0)

(A1) (B,1) (B,1) (Cy (A1) (B,1) (B,1)

A0 -
=1 @le

(A1) (B,1) (B.1) (B,1) (B,1) (Cy (Cy

Figure 10: An ABP O, (top, left) and its projection ILI{A’B}((")l) (top right). Oy is a strict prefiz of
the product O1 A ﬂ{A,B}(@l) (bottom), even after trimming.

Proof. O; € Oy € O; doesn’t imply O1 = O, as indicated by the counter-example of fig. 11, s0 &
can’t be a partlal order. But transitivity holds. Assume @y € O € (’)3, we want to show (’)1 € O;.
From Oy C (’)2/\(93, one has (91 /\(92 C o /\(’)2/\(93 (property 1 section 4.4). Taking 0, C O /\(92 into
account, one gets (’)1 C (91 /\(92/\(93 Let O be the prefix of (’)1 /\(92/\(93 which is isomorphic to (91, and
denote by 1/)1 : @1 /\@2/\@3 — @1 the morphism relating the product to factor @1. Then the restriction
Py s (= (91 is an isomorphism. By the ass0(:1at1v1ty of A, there exists 11 3 : @1 A @2 A @3 — @1 A @3
Denote by 1] the morphism relating product O1 A O3 to its factor O;. Using the universal property
of the product, one has 1, (0) = 4} (11,3(0)) = O,. Since Y1 o — (’)1 is an isomorphism, one gets
that ¢ 3(0) C O A Os is isomorphic to O, through 1, so O, C O A (’)3, i.e. O € O;.

(28) is obvious, by definition of I.

For (29), observe that Oy C Oy A0y and O3 T O3 A O (proposition 4) imply O ANOs C
(O1 A O3) A (Oy A O3) (property 1, section 4. 4).

(30) requires more efforts. From O, T O1 A Oy, one derives Ol\v' C (O A Og)wz C (91|v/
@2|V’ where the last relation comes from corollary 3. Trimming extremal terms of this relation yields

Iy (O1) € Trim(Oyw A Oqyr) and, by proposition 3, Iy (O1) T Trim[Ihy(O1) A Iy (Os)]. We

conclude by TT"Lm[Hvl(Ol) A ﬂyl(@g)] E f.[vl(@l) A ﬂyl(@g). a
o)) 0, 01,0,
(A0) (8,0) (A0) (B,0) (A0) (8,0)
o ey nbn etaas
A1) (B,1) (B,1) (A1) (B,2) (A1) (B,1) (B,1)

Figure 11: Two ABPs and their product : one has O,e0, e @1, but O, # Os.

7.3 Equivalence of GABPs

Relying on proposition 7, one can define an equivalence relation on GABPs
01 02 = @1 c @2 c @1 (31)

Proposition 8 Classes of equivalent GABPs are stable under product A. Equivalence is preserved by
trimming. Classes of equivalent ABPs are stable under product A , under intersection and under union,
and thus have a minimal and a mazimal element for the prefiz relation.

INRIA

ractorization of Unjoldaings

Proof. Assume GABPs O and @, are equivalent (so they are necessarily GABPs of the same system,
i.e. operate on the same Varlables) From O C O A (92, one gets (91 ANO; C (91 A (’)1 A (’)2, and since
O, C (’)1 A (’)1, one derives (91 C O A ((’)1 A (92) ie. O € O; AOy. From O; C O; A (92, one also
gets (91 A (92 C ((91 A (92) A (92, i.e. (91 A Oy € Oy Gathering relations, O0,cOLNOy @ (92, and
since Oy € O, we conclude @y = O A O,.

Remark: We can say more on these equivalence classes. When O = @2, as GABPs of the same
system, @1 and @2 don’t have local events. So, in the product @1 A @2, every event of @1 has to
synchronize with an event of @2. As a consequence, let k1 be a configuration of (91 Since ki is
isomorphic to some configuration & of (91 A (’)2, there exists a configuration kg = 13(k) in (92 which is
identical to k1, up to some extra causality relations that are turned into concurrency. We say that xo
is a weakened version of k1, and conversely that 1 is a rez'nforced version of K.

Let O be a GABP, and define the ABP O’ =T rzm((’)) Let £ be a configuration of O, there exists
a configuration ' in @' which is isomorphic to . So OCONO, ie. O & @. The same arguments
holds in the opposite direction, so O=0" equivalence is preserved by trimming.

Consider now the ABPs of an equivalence class. Combining the stability by product and by
trimming, one gets that this sub-class is stable under product A.

From here, it is easier to consider ABPs as configuration sets, as evidenced by proposition 1 and
the subsequent remark. We first prove stability by intersection. Let (91, O, be finite equivalent ABPs.
Since 01 N Oy C (’)1 for example, one readily has O; N Oy C ((’)1 N (’)2) A @;. Conversely, let k1 be
a configuration of O;. From the above remark, there exists kg in Oy which is a weakened version
of k1, so configuration k1 A Ko in @1 /\(’)2 is isomorphic to k1 (we can write k1 A K2 = K1 since
isomorphic ABPs are not distinguished). Similarly, there exists k3 € O, which is a weakened version
of K2, so kK1 A k3 = k1. The recursion finally builds a chain k1, k2,... ,kn,... of weaker and weaker
configurations. Since (91 and (’)2 are finite, this chain stabilizes to a conﬁguratlon K E (’)1 N (92 that
still satisfies k1 A k = k1. This proves O, C ((91 N (92) A (’)1, and so O; = (91 N Os.

For the stability of a class by union, we use an auxiliary result. Let O be an ABP, we build the
configuration set K by selecting some configurations of O, and reinforcing them. Let K’ be obtained
as the closure of K for the prefix relation, and let @’ = QU K'. As a configuration set closed under
prefix relation, @' defines a valid ABP, and O C @'. So one has O T OAO C O A@'. In addition,
every conﬁguration k' of K' is isomorphic to a conﬁguratlon of OAQ': there exists & € O which is
weaker than &/, so k' = & A &'. This proves O' T O A O', whence O = O': by incorporating reinforced
configurations 1nto an ABP, one stays in the same class. Now, let (91, O, be finite equivalent ABPs,
and take O = (91 N (92 Since O = (’),, every configuration x; of (9 \ O is a reinforced version of some
configuration x of 0. So (’)1 U Oy can be obtained by incorporating reinforced configurations to 0,
which proves 01 U 02 = O (91 02

To extend these stability results to infinite ABPs, observe first that, inside a class, all ABPs have
the same height. And by truncating ABPs of a given class to their prefix of height n, one gets another
equivalence class, which is finite. We conclude by letting n go to infinity. O

Notice that the maximal element of a finite equivalence class can either be obtained as the union
or as the product of all elements of this class. Also, the proof of the proposition reveals that the ABPs
of a class only differ by the way they reinforce some configurations of the minimal element of that
class. Therefore, if Oy = Oy, with O; = (Ci, Ei, =i, Mi, <, #4), i = 1,2, define O; = Trim(C;, E;, =i
) Aiy =iy #,), where all extra causality relations are removed. Then the O; form ordinary branching
processes, and O = Os.

7.4 Product, projection and equivalence

Proposition 9 Let O, = O} and Oy = O be four ABPs, then O1 A Oy = O AOY and Ty, (0,) =
Iy, (O}), i.e. equivalence is preserved by product A and by projection.

RR n 5186

30 FEric Fabre

Proof. It is enough to prove O1NOy = O’ A (’)2, since equivalence is preserved under trimming.
Let &' = K} A kb be a configuration of @} A ©). There exists x; € O; which is a weakened version
of ki, 1 =1,2. So k=K1 Akg € (91 A (92 is a weakened version of ', whence ¥’ A k = /. This
proves ((9’ A (92) C(O1AO) A (O, ANOY), ie. OFNOYy € O AOs. By symmetry, one has also
O1NO, € (’)1 A (’)2, whence the equivalence. The proof of the second relation of the lemma, is similar.
O

Given an ABP O, let us denote by O the maximal element of its class, and by @ the minimal
element. @ is a huge object formed by all possible reinforcements of configurations of O. Given two
ABPs 01,0, one has Q1 AOy = O1 AOy and HV2(@1) = ﬂyz (@1), but these properties have little
interest. Properties of minimal elements are potentially much more useful.

0, 0110,

(A0 (B,0) (A,0)

& & & &

(A B1) (BI (A) (B.1) (A B1) (BI
&
(B.2)

Figure 12: &,@ are minimal ABPs, but their product is not minimal.

By proposition 9, one has O1AO, = @ A @ , but unfortunately the minimality is not stable under
product: Q1 A Oy = Oy Ay doesn’t hold in general, as illustrated by figure 12. In the same way, one
has IIy,(0;) = Iy, (g) by proposition 9, but unfortunately again the minimality is not stable under
projection: Figure 13 gives a counter-example where Iy, (O1) # Iy, (O1).

(A0 (B0 (C0) (A0 (B0)
t, e » t, t, t, » t, ty
(AL) (CH®EYECY®BY (A1) (B1) (BI)
-
(C2

Figure 13: A minimal ABP O on the left-hand side, and its projection ILI{A,B}(Q') on the right-hand
side. The latter is not minimal.

Despite these drawbacks, the parsimony of minimal ABPs is a desirable feature. Indeed, the latter
offer the advantage to discard extra causality relations as soon as they do not lead to different futures.
Therefore, it is tempting to consider that a minimization operation should also be incorporated to A
and f[, just like the trimming. This presents no theoretical difficulty ; however, we draw the reader’s
attention to the fact that, by contrast with the trimming operation, computing a minimal representative
O from O cannot be done recursively. To decide whether some given extra causality link e <e' can
be removed, one must ensure that every configuration s containing this link is isomorphic to another
k' which doesn’t contain this link (isomorphism is meant “up to the relation e <e'” and its proper
consequences, which vanish). And this test requires information arbitrarily far away in the future of
events e and e’. This is suggested by figure 14.

INRIA

ractorization of Unjoldaings

(A,0) (B,0) (A0 (B,0) (A0 (B,0)
ty O ty tp t tp 4] s ty t,
(A (B,)) (B, = (A1) (B,1) % (AL (B,)) (B,

L, L, L,
T T T

(B.2) (B,2) (B,2)

Figure 14: The first two ABPs are equivalent, but are not equivalent to the last one. This shows that
the position of t3 is relevant to decide whether the extra relation t1 <ty can be removed or not in the
computation of the minimal ABP of a class. This computation may thus need events arbitrarily far
away in the future.

7.5 Involutivity of minimal ABPs
Proposition 10 Let Oy be a GABP of Spy,, and let Vo C V), then

O, ATy, (01) = O (32)

Proof. We already know O, C O, /\1;[1;2 ((’)1) from (26), whence O, C O /\(’)1 COA [(’)1 /\HV2 ((’)1)]
so 01 € O1 A Hy2(01) For the converse part, one has O, CO; A (91, so O1 A Hvz((’)l) C O A [(91 A
Hy2 ((91)] i.€. (91 A 1ly, (01) S 01 O

If O; is an ABP, this relation becomes O, Aﬂv2(@1) = ;. This proposition expresses that
involutivity of ABPs is recovered if equality is replaced by equivalence, to which we refer as weak
involutivity in the sequel. Further, since

O = O ATin () 2 O Ally,(O) (33)

the involutivity in the “strict sense” is recovered, provided computations are projected to the sub-
category of minimal ABPs.

7.6 Minimal product covering of an ABP

For a branching process O of S, and without any assumption but V =V; U... U Vy, one has
O C Iy, (O)A...A Iy, (0) (34)

The RHS term corresponds to the minimal product covering of O by branching processes of the §)y, :
every other product covering of that kind for O, say O T O; A ... A Oy, satisfies Iy, (O) C O;.
Moreover, if O is already a product BP of S, O = O1 A... A Oy with O; a BP of S)y,, then equality
holds: O =1Iy, (O) A... Ally, (O).

Unfortunately, thls mlmmahty property is lost for augmented branching processes. Let O be an
ABP of S, then O C IIy, (O) A ... Ally, (O) still holds (by proposition 1). However, by taking a strict
prefix of some of these factors, one may preserve this relation”. Moreover, even if no prefix can be
taken in any factor without breaking the covering property, unicity of the factors is still not granted.

Nevertheless, a weaker notion of minimality can be defined on product coverings of an ABP.

Lemma 10 Let O be an ABP of §, and assume V = V1 U ...U Vy. Projections f[y (O) define a

product covering of @ which is minimal for € : if O C /\Z(’) is another product covering of @, then
"In this section, we let the reader build his own examples and counter-examples, taking inspiration from figures 10

or 11 for ex.

RR n°5186

32 FEric Fabre

Proof. Let OC Oy A ... A (’)N and O C OY A ... A O?V be two product coverings of 0. AsO T OA O,
one has O C (O1 AO)) A ... A(On AOY), which gives another product covering of O. Notice that
each new factor lives in an 1nfer10r equivalence class of = since ((’) /\(9) C @Z,(’)’ Therefore, by
taking a product of appropriately chosen product coverings® of O, one gets another product covering
of O where factors @; lie in minimal equivalence classes, for the partial order & . If one considers
the product of all product coverings of (9, these factors O; result in the maximal elements of these
minimal classes (O; = O;).

Let us denote by O1 A ... AOy a minimal product covering of @ in the sense of equivalence
classes: if O C O} A /\(’) , then O; € O). How does it relate to O C Hyl((’)) o ATy, (0) ?
By definition, O; e HV (0). Conversely, from OC O1A... A\Opy one has ITy,(0) C O; AO! with
O =TIy, (A j£0;) (see cor. 4). So

ITy,(0) E Iy, (0) Ally,(O) C IIy.(0)AO; AO!

from which one gets Ty, (0) € O; AOY. And since O; AOY € O; AT = O; (prop. 7), we derive
ITy,(0) € O;. So finally ITy.(O) = O; and factors ITy.(O) define another product covering of O
which is minimal in the sense of equivalence classes. (Notice however that the covering property is
generally lost if some factor is replaced by another member of its class.) O

Product covering of ABPs apparently have weaker properties than product coverings of standard
branching processes. But, as a consequence of the previous lemma, they recover a classical behavior
when expressed on equivalence classes of ABPS, i.e. when the prefix relation C is weakened into € .

Lemma 11 Let O be an ABP of §, and assume V = V1U...UVy. Projections Hyl() define the unique
minimal product covering of (the class of) O in the sense of equivalence classes : O € ATy, (0), and
if Oe A (9z is another product covering, then Hy ((9) € 0. Moreover, if O belongs to a product
class, i.e. O = A;O;, then O = A, Hyz((’))

Proof. Since O C @' implies @ € @, the proof of lemma 10 applies, with & replacing C. For the
last part of the lemma, assume O is a product class O = A; ®;. From the minimal product covering
property of projections, one has O € A; HV (O) € AO;=0,50 0= A Hyl(O) O

This result applies of course to a product ABP O = A;O;. Specializing this lemma to minimal
ABPs, one has O & Hyl(O) A ... Ally,(O) in general, and

O = Ty, (0O)A ... ATy, (O) (35)

when O belongs to a product class. .) .) _
Notice however that the stronger relation O C IIy, (O) A ... Ally, (O) is tempting, but doesn’t

hold in general, essentially because oc o # oc Ql (or in other words because € is a strictly
weaker relation than C).

8 Local computations on systems with cycles

8.1 Summary of results obtained on trees

At this point, it is worth gathering results that are accessible by ABP calculus. Let § = Si|...||Sn
be a compound system satisfying the structural assumption and living on a tree.

The unfolding Us satisfies Us = Use A ... A us;;,- Procedure 3 initialized with ordinary BPs
O; = Use yields the ABPs (’); = flvi (Us), from which standard projections O} = IIy, (Us) C Use can

8By the usual argument, this is easy to do on finite height ABPs, and we extend it to infinite ABPs by letting the
height go to infinity.

INRIA

ractorization of Unjoldaings

be derived (lemma 9). The O} correspond to the minimal product covering of Us by BPs of the S¢:
Us T OTAN...ANO). And since O1 A ... ANO CUs, one has Us = O] A ... AN OY.

More generally, consider a product branching process of §: O = O; A ... A Oy where O; is a
BP of S¢ for all 4. Initialized with the @;, procedure 3 yields the ABPs O} = Iy, (O), whence the
0! =TIy,(0) by lemma 9. And O C O] A... A Oy is the minimal product covering of O by BPs of
the S¢. But since O C O; and C is preserved by A, onehas OC O] A...AOy CO1A...ANOn = O,
whence again O = O] A... A O). Being able to compute efficiently this minimal factorization of an
ordinary BP of § was one of the objectives of the present paper.

Finally, in the most general case, let O=01A...AOy be a product ABP of S, where O; is an
ABP of S for all 7. Procedure 3 initialized with the O; yields the 0! = 1y, (0), and one readily has
O C O A... AO%. But equality is not granted: O! C ©; may not hold. However, we can replace
relations E and = by their weaker versions € and =. One has (’) c (’),, s0 OC A; (’) € AO; =0
from which one gets 0= A (9' and O = A, (9’ This last result of course applies to the previous

cases: if O is actually a BP O, one has O = A; (9;.

8.2 'Weak convergence for cyclic systems

In general, a given compound system S = Si|| ... ||Sy does not live on a tree. But this does not mean
that modular computations should rashly be removed from the tool box. To obtain minimal factors of
Us (or more generally projections of O=01N...A ON) at a reasonable cost, a first strategy consists
in aggregating some components S; in order to obtain a tree-shaped system with larger components
(the structural assumption is preserved by aggregation). However, this doesn’t save all situations.

Another track consists in applying procedure 3 to a communication graph G° of S, despite the
presence of cycles. This idea was explored with great success for the approximate decoding of some
error correcting codes, under the name of “turbo® decoding.” Natural questions are: 1/ Does it
converge? 2/ What are the properties of the limit? 3/ How does it relate to the desired minimal
factors 7 There exist useful answers to these three questions.

Proposition 11 For a system S satisfying the structural assumption but not living on a tree, proce-
dure 8 run on a communication graph G°¢ of S converges in the sense of equivalence classes. Limit
classes do not depend on the ordering of updates in procedure 3. They do not depend on the choice of
the communication graph either.

Moreover, the ABPs (’)’ computed at each step of procedure 3 form a decreasing sequence for €
which is lower bounded by projections TIy,(0), i.e. Iy, (O) € OF. And relation O = A; O} is preserved
at each step.

Proof. First of all, the properties of relation € mentioned in proposition 7 ensure that messages Mz,]
are decreasing for € in a run of procedure 3 (lemma 7 in [20]): ./\/I’H'1 S Mk ... E MO =1,

where Mf, j denotes message Mi,j at its k-th update. If procedure 3 is 1n1t1ahzed with ABPs OZ- of
height lower than h, the height of all messages remains lower than h. There is a finite number of
such ABPs, for every restriction of S, so the sequence of messages Mf’ ; cannot be infinitely strictly
decreasing, and thus stabilizes in a equivalence class of = after a finite number of updates'®. Moreover,
this equivalence class is the same, for all runs of procedure 3 (theorem 3 in [20]). It is not known
however whether the procedure stabilizes inside these equivalence classes, or if there exist limit cycles.
We conjecture that convergence takes place, although different elements of the same class may be

9The adjective “turbo” stresses the fact that when a MPA is run on a graph with loops, the information sent by some
system will eventually come back to it.

10 Again, the result extends to infinite ABPs by proving convergence for higher and higher prefixes. This reveals also
that procedure 3 converges progressively : stability of classes for the prefix of height h is reached before stability for the
prefix of height h + 1.

RR n"5186

34 FEric Fabre

reached for different runs of procedure 3. The invariance of the limit by graph changes relies on the
weak involutivity property, and is proved in lemma 11 of [20].

Since messages are decreasing for € , the ABPs @ computed by (24) at each step (instead of at
the end only) also form a decreasing sequence, for all . To prove that 0= A; @ is preserved at each
step, notice that this relation is true at initialization since (’) O;. And it is easﬂy checked that the
update equation preserves this relation (see also theorem 8 in [20]). Finally, ITy,(O) = IIy,(A; O’ i) =

Observe that the equivalence classes of ﬂvi ((9) may not be reached by procedure 3, which generally
stops before this lower bound, i.e. into strictly less constrained classes, or larger classes w.r.t. € .
Nevertheless, proposition 11 reveals that procedure 3 removes from the O; events that certainly do not
participate in (9 and at the same time does not remove too many events, since O = A (9’ In the
particular case where O is a standard branching process O, the limit classes have a certain practical
interest : since O = A; (9;, the behaviors they forbid are also forbidden by (. This is made clearer in
the following lemma.

Lemma 12 Let the Mi_,j be messages obtained at convergence of procedure 3 (in the sense of equiva-
lence classes) : one has O} = Trim[O;A(Agepriy Mr,i)]- Define the ABPs O; o = i Oi N Apenr(iy Mi,i)]-
These prefizes @z’,o of the O; do not depend on the convergence point of procedure 3, and satisfy
0= A0

Proof. Let the M” and M;’ ; be messages obtained at two convergence points of procedure 3 : one has
M, ;=M j» 50 M2 Aken (i) My, = Aken(i) M;c,z 2 M'’. We thus have to prove that 1;(O; A M) is
isomorphic to w;((’)z/\M') when M = M’. Let k; Ak be a configuration of O; AM, with Yi(KiNK) = K;.
There exists £’ in M’ which is a weaker version of &, so k; A &' in O; A M/ satisfies Pi(ki NE') = K.
So 1i(O; A M) and ¥(O; A M') have isomorphic configurations, and we conclude by proposition 1.
For the last relation, observe that A; (;)i,O C A (’)Z = O. For the converse prefix relation, let
K = A;k; be a configuration of O. One easily checks by recursion in procedure 3 that x;y,qy, is always
present in message ./\'/lj,i after its first update. So k; is also present in Oz’,O; and we conclude again by
proposition 1. O

In the case of systems not living on a tree, procedure 3 appears as an approximate reduction
strategy: it removes from the initial factors O; of O events that make no contribution to @. There
exist several other interesting properties of limit classes, which prove that procedure 3 doesn’t perform
a trivial task and heavily prunes the initial factors O;. In particular, every configuration of a O; can be

extended into a larger configuration of Ajc; @;, where the index set J defines a spanning tree around

S; on graph G¢. All these properties rely on the fact that procedure 3 is actually an iterative constraint
solving algorithm. The reader is referred to [20] for more details.

9 Discussion and conclusion

We have proposed a framework to perform modular computations on event structures related to a
possibly large distributed system S. This calculus operates on a factorized representation of runs of
system S, and is based on two operations: product and projection. Our target objects are typically
branching processes of components of S, but computations must be performed with richer structures.
We have introduced four nested categories of event structures (fig. 15). Augmented branching processes
(ABPs) were introduced to keep track of causality and conflict relations in the projection operation.
This category is not stable under product, whence the introduction of generalized augmented branching
processes, and of the trimming operation, projecting the result back to the category of ABPs. The
computations we have presented consider projections and product as elementary operations, which

INRIA

ractorization of Unjoldaings

may look abusive since they potentially operate on infinite objects. However, this presents no practical
difficulty since product, projection and trimming can be further decomposed into recursive procedures.

A A

[

—/ R
ABP .GABP
Trim
min
~Ll J

|
| @
I involutivity

: weak invol utivity

Figure 15: The four nested categories we have introduced, with the effects of product A, of trimming
and of minimization (inside an equivalence class). The validity domain of the involutivity property is
also depicted.

The extra category of minimal ABPs introduced in the last sections appears as the most interesting
one in many aspects. First of all, it captures extra causality or conflict relations in the most compact
manner: a reinforced configuration is preserved, with respect to a more permissive version, only if
it leads to a different “future.” Secondly, minimal ABPs bring back the involutivity property: this
property is a desirable feature as it expresses that composing an event structure with part of itself
doesn’t increase the amount of information carried by this structure. Involutivity is also crucial to
get the convergence of iterative message passing procedures, and provides several other properties on
the limit that we have not detailed here. Observe however that the involutivity of minimal ABPs
takes the form of an involutivity in the sense of equivalence classes in the category of ABPs, with
(€,=) replacing (C,=). Finally, minimal product coverings in the category of minimal ABPs have
the same and intuitive properties than minimal product coverings of standard branching processes.
These features suggest that minimal ABPs are in fact the correct generalization of ordinary branching
processes, in order to perform modular computations. Their main drawback comes from the difficulty
to compute the minimal element of an equivalence class of ABPs, which cannot be done in a recursive
manner, by contrast with trimming. This appears in particular in the fact that a prefix of a minimal
ABP is not a minimal ABP : the “correct” prefix relation for minimal ABPs is & rather than C. In
summary, whereas the relevant event structures are certainly minimal ABPs, computations must be
done in the larger category of ABPs, and performed “up to equivalence.”

The event structures we have used all along this paper are closely related to branching processes
associated to tile systems. They clearly separate “structural” causality and conflict relations, due to
tiles operating on a given component, from “inherited” relations, coming from the other components
(specifically after projection). This distinction is not crucial however, and product, trimming and
projection could probably be rephrased in terms of labeled prime event structures. By contrast, it
is less easy to get rid of the notion of variable. Their first important role appears in the definition
of the composition of systems, since components interact both by sharing variables and tile names
(corresponding to a synchronization). However, a careful look at the definition of extended compo-
nents reveals that the essential function of this transform is to gather all interactions under the form
of a standard synchronous product (variables can then be considered as “private” to each extended
component). This is the key to the factorization result on unfoldings of a compound system, as shown
by Winskel in [3]. The second and most important role of variables appears in theorem 1, that forms
the basis of modular computations. Specifically, we require that variables shared by two components

RR n 5186

36 FEric Fabre

make visible all interactions between these components. This way of displaying interaction events is
probably stronger than necessary, and we suspect the same function can be ensured in a lighter manner.
For example, when the product of event structures is defined by a label algebra, by isolating subsets
of labels where interaction does occur between components. All in all, the context of our results can
probably be reshaped. But we believe that, in one form or another, the factorized representation of
unfoldings together with modular computation techniques provide a key to deal with large systems.

Finally, let us come back to the case of systems not living on a tree. As we have seen, modular
computations do not give the exact projections of a product branching process of the global system.
Nevertheless, they yield goods approximations, where discarded configurations in one component are
certainly not possible in the global system, while however some of the remaining local configurations
may also be impossible to observe. This suggests that low cost approximate analysis strategies for
distributed systems may already be interesting.

INRIA

ractorization of Unjoldaings

References

1]
2]
(3]
[4]

[5]
[6]

[7]
(8]
[9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]

[26]

E. Fabre, Factorization of Unfoldings for Distributed Tile Systems, Part 1: Limited Interaction Case, Inria research
report no. 4829, April 2003, submitted for publication.

M. Nielsen, G. Plotkin, G. Winskel, Petri nets, event structures and domains, Theoretical Computer Science 13(1),
1981, pp. 85-108.

G. Winskel, Categories of models for concurrency, Seminar on Concurrency, Carnegie-Mellon Univ. (July 1984),
LNCS 197, pp. 246-267, 1985.

G. Winskel, Event structure semantics of CCS and related languages , LNCS 140, 1982, also as report PB-159,
Aarhus Univ., Denmark, April 1983.

J. Engelfriet, Branching Processes of Petri Nets, Acta Informatica 28, 1991, pp. 575-591.

K.L. McMillan, Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits,
in Proc. 4th Workshop of Computer Aided Verification, Montreal, 1992, pp. 164-174.

J. Esparza, S. Romer, An unfolding algorithm for synchronous products of transition systems, in Proc. of CON-
CUR’99, LNCS 1664, Springer Verlag, 1999.

J. Esparza, S. Romer, W. Vogler, An improvement of McMillan’s unfolding algorithm, in Proc. of TACAS’96,
LNCS 1055, pp. 87-106.

J. Esparza, S. Romer, W. Vogler, An Improvement of McMillan’s Unfolding Algorithm, Formal Methods in System
Design 20(3), pp. 285-310, May 2002. Extended version of [8].

J. Esparza, Model checking using net unfoldings, Science of Computer Programming 23, pp. 151-195, 1994.

J. Esparza, C. Schroter, Reachability Analysis Using Net Unfoldings, Workshop of Concurrency, Specification and
Programming, volume II of Informatik-Bericht 140, pp. 255-270, Humboldt-Universitét zu Berlin, 2000.

S. Melzer, S. Romer, Deadlock checking using net unfoldings, CAV’97, LNCS 1254, pp. 352-363.

P. Degano, R. De Nicola, U. Montanari, On the Consistency of “Truly Concurrent” Operational and Denotational
Semantics, in proc. Symposium on Logic in Computer Science (LICS) 1988, pp. 133-141.

F. W. Vaandrager, A simple definition for parallel composition of prime events structures, Report CS-R8903, CWI,
Amsterdam, March 1989.

I. Castellani, G.-Q. Zhang, Parallel product of event structures, Theoretical Computer Science, no. 179, pp. 203-215,
1997.

J.-M. Couvreur, S. Grivet, D. Poitrenaud, Unfolding of Products of Symmetrical Petri Nets, 22nd International
Conference on Applications and Theory of Petri Nets (ICATPN 2001), Newcastle upon Tyne, UK, June 2001,
LNCS 2075, pp. 121-143.

A. Arnold, Finite Transition Systems, Prentice Hall, 1992.

L. Lamport, N. Lynch, Distributed Computing: Models and Methods, in Handbook of Theoretical Computer
Science, vol. B: Formal Models and Semantics, Jan van Leeuwen ed., Elsevier (1990), pp. 1157-1199.

M. Raynal, Distributed algorithms and protocols, Wiley & Sons, 1988.

E. Fabre, Convergence of the turbo algorithm for systems defined by local constraints, Irisa research report
no. PI 1510, May 2003.

A. Benveniste, E. Fabre, S. Haar, C. Jard, Diagnosis of asynchronous discrete event systems, a net unfolding
approach, IEEE Trans. on Automatic Control, vol. 48, no. 5, pp. 714-727, May 2003.

E. Fabre, Compositional Models of Distributed and Asynchronous Dynamical Systems, 41st Conf. on Decision and
Control, Las Vegas, Dec. 2002, pp. 1-6.

E. Fabre, V. Pigourier, Monitoring distributed systems with distributed algorithms, 41st Conf. on Decision and
Control, Las Vegas, Dec. 2002, pp. 411-416.

A. Benveniste, S. Haar, E. Fabre, C. Jard, Distributed and Asynchronous Discrete Event Systems Diagnosis, in
Proc. 42nd Conf. on Decision and Control, Hawai, Dec. 2003.

A. Benveniste, S. Haar, E. Fabre, C. Jard, Distributed monitoring of concurrent and asynchronous systems (plenary
address), in Proc. of CONCUR’2003, Marseille, LNCS no. 2761, Pages 1-26, 2003.

E. Fabre, Distributed Diagnosis for Large Discrete Event Dynamic Systems, in preparation.

RR n 5186

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

