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Conditions nécéssaires de stabilité asymptotique des
dynamiques systémes unilatéraux

Résumé : Cet article propose une méthode mathématique permettant de formuler des
conditions nécéssaires de stabilité asymptotique du point déquilibre isolé d’une classe de
systémes dynamiques unilatéraux. On considére des inéquations variationnelles dynamiques.
Des applications se trouvent dans les circuits électriques ou les systémes mécaniques.

Mots-clés : Inéquations variationnelles, inclusions différentielles, degré topologique, théo-
rie de la stabilité pour les systémes dynamiques unilatéraux.
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1 Introduction

The stability of stationary solutions of dynamical systems constitutes a very important
topic in Applied Mathematics and Engineering. It is well-known that in the case of a large
class of nonlinear differential equations, the spectrum of "linearized" operators determines
the Lyapunov stability or instability of an equilibrium. This is known as the Lyapunov’s
linearization method [27, 28, 34]. However, many important problems in engineering (see
[6, 10, 11, 13, 14, 17, 29, 33]) involve inequalities in their mathematical formulation and
consequently possess intrinsic nonsmoothness which cannot be removed by change of coor-
dinates, or by feedback. The models corresponding to such problems are called unilateral
dynamical systems or non-regular dynamical systems. A large class of unilateral dynamical
systems can be represented under the formalism of evolution variational inequalities, see
e.g. [3, 13, 14]. The question of stability of stationary solutions of evolution variational
inequalities is much more complicated to be investigated, as it is the case in general for
hybrid dynamical systems, see e.g. [20, 21].

The research efforts to develop general mathematical approaches to study stability of station-
ary solutions of evolution variational inequalities are relatively new. It seems that the first
contribution acting in this sense was made by Quittner [23, 24, 25] for a class of parabolic
variational inequalities in Hilbert spaces. More recently, Lyapunov approach and Krakovskii-
LaSalle invariance theory have been generalized to evolution variational inequalities and
corresponding unilateral dynamical systems (see [1, 12, 4, 7, 15, 22] and the references cited
therein). In [12] sufficient conditions for stability of linear evolution variational inequalities
have been derived, and we now propose to study necessary conditions.

Our aim in this paper is to state necessary conditions of asymptotic stability for a class
of unilateral dynamical systems. More precisely, we consider the problem: Let ¢ : R™ —
R U{+oc} be a proper, convex and lower semi-continuous function. Let F': R® — R" be
a nonlinear continuous operator. Let zo € R™ be given. We consider the problem P(z):
Find a unique continuous mapping ¢ — u(¢) such that

T e L0, +ooyB7; 0
u(t) € D(@p), ¥t > 0 @)
(0) 1 P(®), 0 —u0) +90) ~ p(0(0) 20, YW R, act>0,  (3)

and
u(0) = o. (4)

The variational inequality in (3) can also be formulated as the set-valued differential equa-

tion:
Z—?(t) + F(u(t)) € —0¢(u(t)), a.e. t > 0, (5)
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4 Bernard Brogliato

where d¢ denotes the subdifferential of ¢. It is assumed that F(0) € —9¢(0) i.e. the origin
0 of the system is a trivial stationary solution of (5).

If ¢ = 0 then (5) reduces to a standard system of differential equations and it is well known
(see e.g. [19]) in this case that if 0 is an isolated zero of F' and is asymptotically stable, then
there exists pg > 0 such that

deg(Fa B,O;O) = 17vp € (OaPO]a

where deg(F, B,,0) denotes the Brouwer degree of F' with respect to the open ball B, :=
{z € R" : ||z|]| < p} and 0.

Our goal in this paper is to generalize this famous result to the model in (4)-(5). More
precisely, let us define the mapping A as

A(z) :=x — P,(z — F(x))

where P, := (idr» + 0p)~! and idr» denotes the identity mapping on R". We will prove
that if 0 is an isolated zero of A and is asymptotically stable, then there exists pg > 0 such
that

deg(A, B,,0) = 1,Yp € (0, po].

This result constitutes the main result of the paper and is given in Theorem 5.

In Section 2, we recall the fundamental properties of the Brouwer degree we will use in this
paper. In Section 3, we discuss the main properties of the operator P,. In Section 4, we
present a concise review of some recent results in stability theory of unilateral dynamical
systems. In Section 5, we introduce the Poincaré operator associated to problem (5). In
Section 6, we prove our main result.

In this paper, we develop also several approaches to compute the number deg(A, B,,0). If
A can be easily evaluated then a first approach consist to use some practical results of degree
theory to compute deg(A, B,,0) (see Section 6). The approach is of particular interest if
¢ ="¥Rn, with YRn denoting the indicator function of R, since in this case:

Ai(z) = min{z;, F;(z)}.

This case is of particular interest for the study of complementarity dynamical systems [16].

More generally, if ¢ = Ui where K denotes a closed convex set, then we develop a second
approach (see Section 7) that uses a result of Quittner [25] which reduces the computation
of deg(A, B,,0) to the one of deg(Ar, B,,0) where Ay, is defined by

AL(IE) = — PKO('T - JF(O)m)a

where K| is the closed convex cone defined by Ko = UysoaK and Jr(0) denotes the Jacobian
matrix of F" at 0.

If ¢ is a convex and continuous function then we develop a third approach (see Section
8) by showing that deg(A, B,,0) can be computed by using some appropriate "Lyapunov
function".

INRIA
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The case of linear complementarity problems is discussed in Section 9. Finally, in Section
10, using our main result together with recent invariant results (see [1]), we prove some
instability theorems.

Several examples and applications are given so as to illustrate the theoretical results.
Notations: In the sequel the scalar product on R" is denoted by (:,-) (with the associated
norm || - ||). For r > 0, we set B, := {z € R" : ||z|| < r}. Then B, = {z € R" : ||z|| < r}
and 0B, = {z € R" : ||z|| = r}.

The identity mapping on R" is denoted by idgr~. Let K be a nonempty closed convex subset
of R™. The dual set of K is defined by K* := {w € R" : (w,z) > 0,Vz € K}. The recession
cone of K is defined by K, := U A>0%(K — x9) where zg is any element of K. We denote
by ¥k the indicator function of K, i.e. Yx(z) =0ifz € K and ¢x(z) = +o if 2 ¢ K.

For a function V € C1(R";R) we denote by V’(x) the gradient of V at x € R".

We denote by d(s, M) the distance from a point s € R™ to a set M C R", that is d(s, M) :=
inf e ||s —m||-

2 Preliminaries on Topological Degree Theory

Let D C R"™ be an open and bounded set. Let f € C'(D;R"™) N C°(D;R™) be given.
Set A¢(D) := {z € D : f(x) = 0} and By(D) := { € D : det Js(z) = 0} where Js(z)
denotes the Jacobian Matrix of f at x defined by (Jy)i; := ngj(a:), i,j € {1,..,n}. If
As(D)NBf(D) =0 and 0 ¢ f(OD) then Af(D) is a finite set and the Brouwer topological
degree of f with respect to D and 0 is well-defined by the formula

deg(f,D,0)= > sgn(det Js(z)),
z€A;(D)

where sgn(t) = 1 for ¢ > 0 and sgn(t) = —1 for ¢ < 0. More generally, if f : D — R" is
continuous and 0 ¢ f(0D) then the Brouwer topological degree of f with respect to D and
0 is well-defined (see e.g. [18]) and denoted by deg(f, D, 0).

Let us now recall some properties of the topological degree we will use later in this paper.
1. If 0 ¢ f(0D) and deg(f, D,0) # 0 then there exists z € D such that f(z) =0.

2. Let ¢ : [0,1] x B, — R"™;(\,z) = ¢()\,z), be continuous such that, for each A € [0, 1],
one has 0 ¢ ¢(A,0D). Then the map A — deg(¢(},.), D,0) is constant on [0, 1].

3. We have
deg(idr~,D,0) = 1.

4. If0 ¢ f(OD) and a > 0 then

deg(af,D,0) = deg(f,D,0)

RR n° 5171



6 Bernard Brogliato

and
deg(_afa D7 0) = (_1)ndeg(f7 Da 0)
5. Let D' C D be an open set such that A¢(D) C D'. Then

deg(f,D,0) = deg(f,D’,0).

6. Let A € R™™" be a nonsingular matrix. Then deg(A., D,0) = sgn(det A).

7. Let f : [-7,+r] = R be a continuous function. Suppose that f(—r) # 0 and f(+r) # 0.
Then

deg(f)] - +T[, 0) =0 if f(—T’)f(+7‘) > 0;
deg(f,] - 1, +7[,0) = +1 if f(~r) <0 and f(+) >0,
deg(f,] —r,+r[,0) = =1 if f(—r) >0 and f(+r) <O0.

3 Generalized Projection Operator and its Inverse

Let ¢ : R™ — R U{oo} be a proper, convex and lower semi-continuous mapping. We denote
by dom{y} the domain of ¢, i.e.

dom{yp} :={z € R" : p(z) < +o0}.
We denote by dp the convex subdifferential of ¢. Recall that
Op(z) = {w e R": p(v) —p(z) > (w,v — z),Vv € R"}.
We denote by D(d¢) the domain of dp and by R(d¢) the range of dy, i.e.
D(9yp) :={x € R" : 0p(z) # 0}, R(0p) :=Uzer~0p(z).

Recall that

D(8¢) C dom{p} C D(0yp). (6)

Let y € R"™ be given. We consider the variational inequality problem: Find 2z € R™ such
that
<.T—y,’l)—.7]>+(p(’l))—(p(.7])ZO,V’UE]R,”. (7)

Problem (7) has a unique solution (see e.g. [13, 30]) that we denote by P,(y). The operator

P,:R" - R";y — P,(y)

INRIA



Comments on “Dynamical properties of hybrid automata” 7

is thus well-defined. It is clear that
P,(R™) C D(0yp) (8)
and

P,(y) = (idwr~ + 0p) ' (y).

If ¢ = g where K is a nonempty closed convex set and i denotes the indicator function
of K, then
P<P = P¢K = PK

where Pk denotes the projection operator onto K which is defined by the formula:

— Pgz|| = min ||z — w]|-
Iz — Prall = min [z — w]

Let & : R® — IR" be a continuous mapping and consider the inequality problem: Find
Z € R" such that
(8(7),0 - ) +9(v) — (7) > 0,Yv € R". (9)

It is clear that problem (9) is equivalent to the nonlinear equation: Find Z € R™ such that

T — P,(Zz — ®(z)) =0. (10)

Proposition 1 The operator P, is nonexpansive, i.e.
IPpv = Ppyl| < [lv —yl|, Yo,y € R".

Proof: Let v,y € R" be given. We set « := P,(v) and z* := P,(y). We have

(x —v,w —z) + p(w) — p(z) > 0,Vw € R" (11)

and
(2" —y,w —2") + p(w) — p(z*) > 0,Yw € R". (12)
Setting w := z* in (11) and w := z in (12), we obtain the relations (z — v,z — z*) —

o(z*) + o(z) < 0 and —{(z* —y,x — 2*) — p(z) + p(z*) < 0, from wich we deduce that
|z — 2*||? < ||z — z*||||[v — y||. Tt follows that

1P (v) = Po ()l < llv—yll.

RR n° 5171



8 Bernard Brogliato

Let us now denote by A, : R" — 2B" the set-valued operator defined by
Ap(z) ={f € R": (z — f,v — z) + ¢(v) — p(z) 2 0,Vv € R"}. (13)
We see that

It is also easy to see that

(tA,) " (tf) = Po(f), Ve > 0. (15)
Note that )
Aot = o(E 4 o)) a), ve e B,

so that A, is maximal monotone. It results that for any ¢ > 0, the operator (idg» +tA,) !
is a well defined single-valued operator.

4 Unilateral Dynamical Systems

Let us first recall a general existence and uniqueness of solutions result (see e.g. [15]).

Theorem 1 . Let ¢ : R" - RU{+o0} be a proper, convex and lower semi-continuous
function. Let F : R™ — IR"™ be a continuous operator such that for some @ € R, F + &I is
monotone. Let o € R"™ be given. There exists a unique u € C°([0,+00); R™) such that

¢ Lz, (0,400 R (16)
dt
u is right-differentiable on [0, 4+00); (17)
u(t) € D(9p), Vit > 0; (18)
(%(t) + P(u()),0 — u(®) + () — p(u(t)) > 0, Vo €R™, ace.t >0;  (19)

u(0) = xo. (20)

INRIA



Comments on “Dynamical properties of hybrid automata” 9

Remark 1 Suppose that F : R™ — R" can be written as
F(z) = Az + ®'(z) + Fi(z), Vz € R",

where A € R™*" is a real matriz, ® € C*(R™;R) is convex and F, is Lipschitz continuous,
i.€e.

|Fi(z) — Fi(y)|| < kllz — y||,Vz,y € R",
for some constant k > 0. Then F is continuous and F + Wl is monotone provided that

@ > sup (—Az,x) + k.
llzll=1

The variational inequality in (19) can also be written as the differential inclusion

W)+ Fu(t) € ~0p(u(t), ae.t € 0,T), (21)

Suppose that the assumptions of Theorem 1 are satisfied and denote by u(.; zo) the unique
solution of Problem P(zq) (see (1)-(4)). Let us here also denote by S(F,p) the set of
stationary solutions of (19), i.e.

S(F,¢) ={z € R" : (F(Z),w — T) + p(w) — (%) > 0,Yw € R"}.

Note that
S(F,p)={z€R":2=P,(T - F()}.

For zg € D(0¢), we denote by y(xo) the orbit

¥(zo) := {u(r;20); 7 > 0}.

Let us now assume without loss of generality that the trivial solution 0 is a stationary
solution of (19), i.e.
F(0) € —0p(0). (22)

Then
u(.;0) = 0.

We may now define as in [15] the stability of the trivial solution. The stationary solution
0 is called stable if small perturbations of the initial condition u(ty) = 0 lead to solutions
which remain in the neighborhood of 0 for all ¢t > 0, precisely:

Definition 1 The equilibrium point x = 0 is said to be stable in the sense of Lyapunov if
for every € > 0 there exists n = n(e) > 0 such that for any xo € D(Op) with ||zo|| < n the
solution u(-;zo) of problem P(xqo) satisfies ||u(t;zo)|| < e, Vt > 0.

RR n° 5171



10 Bernard Brogliato

If in addition the trajectories of the perturbed solutions are attracted by 0 then we say that
the stationary solution is asymptotically stable, precisely:

Definition 2 The equilibrium point x = 0 is asymptotically stable if (1) it is stable and
(2) there exists 6 > 0 such that for any xo € D(0p) with ||zg|| < § the solution u(-;xo) of
problem P(xo) fulfills

Jim_[lu(t 20) = 0.

Definition 3 The equilibrium point © = 0 is unstable if it is not stable.

The following result generalizes to unilateral systems the Lyapunov’s direct method. The
approach makes an essential use of some auxiliary function V € C*(R"; R).

Theorem 2 ([15]) Suppose that the assumptions of Theorem 1 together with condition (22)
hold. Suppose that there exists o > 0 and V € C1(R";R) such that

(1) V(0) =0;

(2) V(z)>0,Vz € Do) NB,,x # 0;
(3) (F(2),V'(2)) + ¢(z) — ¢(z = V'(z)) > 0, Yz € D(9p) N B,.
Then the trivial solution of (16)-(19) is stable. [ |

Remark 2 i) Assumptions (1) and (2) in Theorem 2 ensure the existence of a mapping
a : [0,0] = R satisfying a(0) = 0 and a(t) > 0,Vt € (0,0] and such that V(z) > a(]||z]|),Vz €

D(8¢)NB,. The mapping a(.) defined by a(r) = inf{V(x) : r < ||z|| < o} (r > 0) is suitable.

it) Assumption (3) in Theorem 2 implies that (F(z),V'(z))+(w,V'(z)) > 0,Yw € dp(x),Vz €
D(0p) N B,-.

iii) If K denotes a nonempty closed convex set and ¢ = Yk then assumption (3) in Theorem
2 implies that (F(x),V'(z)) > 0,V € KN B, and x — V'(x) € K,Yo € KN B,. This last
expression ensures that —V'(z) € Tk (z),Yx € 0K N B, which characterizes the level sets of
V' with respect to the boundary of K.

iv) A more general version of Theorem 2 is given in [15].

INRIA



Comments on “Dynamical properties of hybrid automata” 11

Let V € C1(R™;R) be given. We set

E(F,¢,V) = {z € D(9y) : (F(z),V'(2)) + p(x) — p(x — V'(z)) = 0}. (23)

Recall here that a set D C D(dy) is invariant provided that
2o € D = v(xo) C D.

We recall a recent result that generalizes to unilateral systems the famous Krakovskii-LaSalle
invariance principle.

Theorem 3 (Invariance Theorem [1]) Suppose that the assumptions of Theorem 1 hold.
Let ¥ C R" be a compact set and V € C*(R";R) a function such that

1) () — (- =V'() is lower semicontinuous on D(Op) NT;
(2 (F(x),V'(2)) + ¢(x) —o(z - V'(z)) 20, Vo € D(9p) N ¥;
(3) D(9y) is closed.

We denote by M(F,¢,V, V) the largest invariant subset of E(F,, V)N V. Then for each
o € D(0y) such that v(xg) C ¥, we have

lim d(u(r;zg), M(F,p,V,¥)) =0.

T—+00

5 The Poincaré Operator

Let T' > 0 be given. Theorem 1 enables us to define the one parameter family {S(¢) : 0 <
t < T} of operators from D(9yp) into R™, as follows:

Vy € D(9yp), S(t)y = =z(t;y), (24)
z(.;y) being the unique solution on [0,T] of the evolution problem P(y). Note that
Yy € D(0p), S(0)y =y.

According to (24), the unique solution of the problem (16 )-(19) satisfies, in addition, the
periodicity condition

RR n° 5171



12 Bernard Brogliato

if and only if y is a fixed point of S(T'), that is

STy =y.

Thus the problem of the existence of a periodic solution for the evolution problem (16)-(19)
is reduced to that of the existence of a fixed point for S(T"). The operator S(T') is called
"Poincaré Operator".

Lemma 1 (see e.g. [30]) Let 0 < t; < ty < +00 be given and let a,b € L (t1,t2;R) with
b(t) > 0 a.e. t € [t1,t2]. Let the absolutely continuous function w : [t1,t2] = Ry satisfy

(1- a)il—qf(t) < a(t)w(t) + b(t)w(t), a.e. t € [t1,t2],

where 0 < a < 1. Then

t t t
w'™%(t) < wl_a(tl)eftl a(s)ds +/ eds ADdap(s)ds Vi € [ty ts].
t1

Theorem 4 Suppose that the assumptions of Theorem 1 hold. Then for 0 < t; < ty < 400,
y,z € D(0p), we have

1S(t2)y — S(t2)z|| < Ve2et2=t[|S(t1)y — S(t1)z||-
Proof: Let 0 <t <ty < 400, y,2 € D(0yp) be given. We know that

(4 50y + F(S@Ow), v~ S+
+o(v) —p(S(t)y) >0, Vv e R", ae.t >0 (25)
and p
(ES(t)z + F(S(t)2),h— S(t)z)+
+o(h) —(S(t)z) Vh e R, a.e. t > 0. (26)
Setting v = S(t)z in (25) and h = S(t)y in (26), we obtain the relations:

_<%S(t)y +F(S(t)y), S(t)z — S(t)y) — p(S(t)2) + ¢(S(t)y) <0, ae. t >0

INRIA
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and

(%S(t)z + F(S(t)z),S{t)z — S{t)y) — p(S(#t)y) + p(S(t)z) <0, a.e.t > 0.

It results that d

{5
< @IStz = SMII* = ([F + @I|(S(t)2) - [F + &I)(S(t)y), S(t)z — S(t)y) ae. t > 0.

S(t)z = S(t)y), S(H)z — S(t)y) <

Our hypothesis ensure that F' + @l is monotone. It results that
d
150z = S@l” < 2[1S(t)z = S@)yl, ae. t > 0. (27)

Using Lemma 1 with w(.) := [|S(.)z — S()y|?, a(.) := 2@, b(.) = 0, @ = 0, we get
1S(t2)z = S(t2)yll* < [IS(t1)z — S(t1)y|Pe* 271,

The conclusion follows. ]
A consequence of Theorem 4 is that

”S(t)y - S(t)z” <v ezwt”y - z||:V3/,z € D(acp):t € [OaT]
The Poincaré operator S(T') : R" — R";y — S(T')y is thus Lipschitz continuous on D(9y),

i.e.
I1S(T)y — S(T)z|| < Ve**T|ly — z||,Vy, 2 € D(0p). (28)

Remark 3 i) Note that if F' is continuous and monotone then (28) holds with @ = 0. In
this case, the Poincaré operator S(T') is nonexpansive on D(0yp).

it) If F is continuous and strongly monotone, i.e. there exists a > 0 such that
(F(z) - F(y),z —y) > allz - y|]*,Ve,y € R"

then (28) holds with @ = —a < 0 and the Poincaré operator S(T) is a contraction on D(dyp).

RR n° 5171



14 Bernard Brogliato

6 Necessary Conditions of Asymptotic Stability

We suppose that:

(h1) ¢ : R" - RU{+o00} is convex and lower semi-continuous;

) ¥
(ha) D(0y) is closed;
(h3) 0 € D(9¢p);
(h4) There exists a neighborhood A of 0 and a constant C; > 0 such that

| p(@1) — p(z2) |< Ctl|lz1 — 22|, Vo1, 22 € N Ndom{p};

Condition (ha) together with (6) ensure that D(0¢) = dom{p}. Thus D(9y) is also convex.
The projection operator Pp(s,) onto D(dy) is well-defined. Recall that

P} sg) = Pp(oy)s
I1Ppag)x — Ppagyyll < llz —yll, Y,y € R,

and
(Pp(ap)* — x,w — Pp(s,)x) > 0,Yw € D(dp).

We suppose also that
(hs) F : R™ — R" is a continuous operator such that for some @ € R, F' + @I is monotone;

(hg) F is locally Lipschitz at 0.

Finally, we suppose that
(h7) 0 is an isolated stationary solution of (19), i.e.

0 = P,(F(0)) (29)
and there is a neighborhood V of 0 such that
z # Py(x — F(z)),Vz € V\{0}. (30)
Note that the relation in (29) can also be written as
(F(0),w) + p(w) — ¢(0) > 0,YVw € R™.
Let us now define the continuous mapping A : R™ — R"™ by

A(z) :=2z — P,(z — F(z)). (31)

INRIA
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If (hy) is satisfied then for r > 0 small enough, deg(A(.), B, 0) is well defined and constant.
We set
¢(A,0) :=deg(A(.), B,0) for r > 0 small enough. (32)

Remark 4 If n = 1 then ((A,0) can be computed by using property 7 (see Section 2) of
degree. More precisely,

¢(A,0) =0 if A(—r)A(+r) > 0, for r > 0 small enough,

C(A,0) = +1 if A(—r) <0 and A(+r) > 0, for r > 0 small enough,
¢(A,0) = -1 if A(—r) >0 and A(+r) <0, for r > 0 small enough.

Example 1 i) Let F' and ¢ be defined by F(x) = 2z and p(x) = ¥R, . Here
A(z) = z — max{0, —z}.

For r > 0, we have A(—r) = —2r < 0 and A(r) =r > 0 and thus {(A,0) = +1.
i) Let F' and ¢ be defined by F(x) = —2x and p(z) = ¥r,. Here

A(z) = ¢ — max{0, 3z}.
Forr >0, we have A(—r) = —r < 0 and A(r) = —2r < 0 and thus ((A,0) = 0.
More generally, let us define for € > 0 the sets
Pi(—¢) :={z € [—e,+€]|" 1 2; = —€},i € {1,...,n}

and
Pi(+¢) :={z € [-¢,+€]" : x; = +e},i € {1,...,n}.

Note that
iz1 (P;(—€) U Pi(+¢)) = 0(] — &, +¢[").

Proposition 2 Suppose that there exists eg > 0 such that
Ai(z)Ai(y) < 0,Vz € Pi(—¢),y € Pi(+¢),e € (0,e0], (i € {1,...,n}). (33)
Then .
¢(A,0) =[] o,
i=1

where o; := sgn(A;(z')) with ¢ denoting any element of P;(+€) and € any real in (0, +&o).
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Proof: Let 0 < € < g9 be given. Assumption (33) together with the continuity of A; ensure
that sgn (A;(.)) is constant on P;(+¢). Let zi be any element of P;(+€), we get (see Theorem
(c) in [19]):

deg(A(),] —e&,+¢[",0) = H sgn(Ai(z7)).

Moreover condition (33) implies that A(z) # 0, Vz €] —eq, +e0[™,  # 0 and property 5 (see
Section 2) of degree ensures that ¢ — deg(A(.),] — &, +¢[™, 0) is constant on (0, +£¢].

Let ro > 0 be such that B, C] — g, +¢o[. Then 0 ¢ A(0B,) and ((A,0) = deg(A(.), B,,0)
for all 0 < r < rg. Let » € (0,7¢] be given, there exists ¢ = £(r) € (0,r) such that
] —&,+¢[*C B,. Tt is also clear from (33) that Ax(B,) = {0} C] — ¢, +¢[". Then using
property 5 (see Section 2) of degree, we obtain

n

C(Aa 0) = deg(A()a] —& +5[n7 O) = deg(A()7] -, +é[n> 0) = H ;-

i=1

Proposition 3 Suppose that there exists eg > 0 such that
Ai(z)Ai(y) > 0,Vz € Pi(—¢),y € Pi(+¢),e € (0,e0], (i € {1, ...,n}). (34)

Then
¢(A,0)=0.

Proof: Let 79 > 0 such that B, C] — eg,+&o[- As in the proof of Proposition 2 we see
that ((A,0) = deg(A(.),B,,0) for all 0 < r < rg. Let r € (0,79) be given. There exists
e =¢(r) € (0,r) such that

deg(A(.), By, 0) = deg(A(.),] — &, +¢[", 0).
Let us now consider the continuous homotopy H : [0,1] x [—e, +€]™ — IR™ defined by

x; +€

Hi(A, x) = A(Aj(—ee;) + %

(Ai(eeq) — Ai(—eey))) + (1= NA(),

where e; denotes the i-th unit vector of R". We claim that if z € (] —¢, +¢[™) and X € [0,1]
then H(\, z) # 0. Indeed, if z € 9(] — €, +¢[™) then either there exists k € {1,...,n} such
that © € P,(—e) or there exists | € {1,...,n} such that z € P,(+¢). If z € P,(—¢) then
2, = —€ and Hi(\,2) = Mg(—eer) + (1 — A)Ag(z). Here z and —ee,, € Py (—¢) and the
continuity of A together with (34) ensure that Ap(—eer) and Ag(x) are nonzero and have
the same sign. Thus Hy(\,z) # 0 and therefore H(\,z) # 0. If x € P;(+¢) then z; = +¢
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and H;(\,z) = AMy(ee;) + (1 — AN)Aj(z). Here z and ge; € P(—¢) and the continuity of A
together with (34) ensure that A;(ee;) and Ay(z) are nonzero and have the same sign. It
results that H;(\, z) # 0 and consequently H (A, z) # 0. Thus from property 2 in Section 2,
we obtain

C(Aa 0) = deg(A()a] —& +5[n7 0) =
= deg(H(Oa )7] —-& +5[na 0) = deg(H(la )7] —-& +5[n7 0)
It is now clear that H(1,.) #0 on | — ¢, +¢[". Indeed,

Hi(1,7) = Ay(—zes) + ”“”"2—?;5(1\,.(5@@-) _ Ay(—cer)) =
Tr; +¢€ T; +€
=(1- 5 YAi(—ee;) + 2—£A,(56,),

and e € (0,1) for z €] — ¢, +¢[*. Thus H;(1,z) # 0 since condition (34) entails that
A;(—ee;) and A;(ge;) are nonzero and have same sign. It results from property 1 in Section
2, that deg(H(1,.),] — &, +€[™,0) = 0. The conclusion follows. [

Example 2 i) Let F' and ¢ be defined by F(x1,22) = (271,322) and ¢(z) = ¥R, xR, -

Here

A(z) = (z1 — max{0, —z1 }, 22 — max{0, —2z2}).

For e > 0, we see that A1(z) = —2e < 0 if z € Pi(—¢), AMi(z) =€ > 0 if z € Pi(4e),

Ao(z) = =3e <0 ifx € Pa(—¢) and A2(x) =€ > 0 if x € Pa(+€). Applying Proposition 2,

we get ((A,0) =1.

i) Let F and ¢ be defined by F(x1,22) = (—=2x1 + T2, —2) and ¢(x) = YR, xR, - Here
A(z) = (z1 — max{0,3z1 — x2},z2 — max{0,2z2}).

For e > 0, we see that A1(z) = —e < 0 if z € Pi(—¢€), Ai(z) = 22— 26 < —e < 0 if

z € Pi(+¢), Aa(z) = —e < 0 if z € Pa(—¢) and Az(z) = —e < 0 if z € Pa(+¢). Applying

Proposition 8, we obtain ((A,0) = 0.

The use of Propositions 2 and 3 is of particular interest if ¢ = ‘I’JR1 since in this case A; can
be easily evaluated by the formula

Ai(z) = z; — max{0,z; — F;(z)} = min{z;, F;(x)}. (35)

Let us now prove our main result by following a methodology that has been originated
by Quittner [25] in the framework of parabolic variational inequalities involving unilateral
constraints defined by a closed and convex set.
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Theorem 5 Suppose that assumptions (h1) — (h7) are satisfied. If the trivial stationary
solution of (19) is asymptotically stable then

C(A,0) = 1.

Proof: The mapping F(.) is locally Lipschitz at 0 and thus there exists do > 0 and Cy > 0
such that
I1F(z) = F(y)ll < Collz —yll,Vz,y € Bs, - (36)

>From assumption (h4), we see that there exists §; > 0 and C; > 0 such that

| (@) = ¢(y) [< Cillz —yll, Yo,y € dom{p} N Bs,. (37)

The trivial stationary solution is isolated and thus, there exists d > 0 such that
x # P,(x — F(x)),Vz € Bs,\{0}. (38)

The trivial stationary solution is stable and thus, there exists d3 > 0 such that

| S(t).fl)'o |S min{l,(SO, 2

ﬁ}, Vo € By, N D(0). (30)

The trivial stationary solution is attractive and thus, there exists 44 > 0 such that

lim S(t)zo = 0,Yzo € Bs, N D(9yp). (40)

t—+o0

Set

&
To = mln{;, m,62,53,64}.

Let 0 < r < rg be given. From (38), we get the existence of n := n(r) > 0 such that

lz = Po(z — F(z))l| 2 n, < <llll <7 (41)

ool =3

We set

G:= id]Rn — F, (42)
so that A = idr~ — P,(G).
To prove our result, we will use the following claims. The proofs of these claims are given
in the appendix.

CLAIM 1.
deg(idr~ — S(t)PD(atp)'7 B,,0) =1,V >0,
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where S(.) is defined in Section 5.

CLAIM 2.
deg(id]R" - P(PG(PD(BLP) -)a Br; 0) =

= deg(idr~ — (idr~ +tA,) ' (idr~ + tG)Pp(sy)-, Br,0),Vt > 0.

CLAIM 3.

deg(idr~» — P,G(Pp(sy)-), Br,0) = deg(idr~ — P,G(.), B;,0).

CLAIM /. Let x € B,(r <r9) be given. We set
u(t) := S(t) Pp(a,)®, t > 0,

e v(t) 1= (idg~ + tAy) "' (idr» + tG) Pp(sy) T, t > 0.
The following estimations hold:

(@) IPp(ag)xll < ro;

(b) |1P,G(Pp(ag)yz)|| < o1

(©) llu(®)]] < min{1, B, 5y }, Ve > 0

(d) |Ju

d) [lu(t) — Pp(ag)zll < 8v1,Vt > 0, with

0 := \/2(rog + 1)(C1 + w(ro + 1) + Coro + [F(0)[);

(e) [|1P,G(u(t))|| < 01,Vt > 05
(f) Let t* € (
(g) v(t) € D(dp) and

U(t) — PD([-)(‘,).’L'
t

( ;w=v(t) + (v(t) — G(Pp(ay) @), w — v(t))+

+o(w) — p(v(t)) > 0,Yw € R"™,Vt > 0;

() [[o(t) ~ Pogoyzll < BVE Ve > 0, with

_ Cora)2
5=/ p ) + Cire.
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Set ) . o, 5, )
T" = mm{(%) a(m) }H
Then

@) [lo(®)]| < min{do, T2}, Vt € (0,T7);

() [P (Gu(®)] < 61, V¢ € (0,T7].

CLAIM 5. Let 0 < r < rg be given and set

C:= max{§9(1 + Co)(IF (0] + Co + C1),8(1 + Co)(IF ()| + 1 + (1 + Co)do + C1)}

and . . .
= . « N n n
T:= —1In(4),T", —
mln{2a) n( )5 9 202) 202(]/* + 1)2) 202(1}1_* + 1)2}7

with v* = %(Jojr)’ Vi =

S(Eir), @ in Theorems 1 and 4, T* in Claim 4 (h) and 7 in (41).
For any t € (0,7, we have

deg(idp» — (idp~ +tA,) " (idr» + tG)Pp(sy)-, Br,0) =
= deg(zd n — S(t)PD(B(p)-; BT, 0)

We are now able to use Claims 1-5 in order to conclude the proof of our result. Let 0 <r <o
be given and compute T' = T'(r) as in Claim 5. We have

¢(A,0) = deg(A, By, 0) = deg(idr~ — P,G(.), By,0). (43)
>From Claim 3 and (43), we see that
¢(A,0) = deg(idr» — P,G(Pp(sy)-), Br,0). (44)
Let us now choose t € (0,T]. From Claim 2 and (44), we obtain
C(A,0) = deg(idr» — (idr~ + tA,) " (idr» + tG)Pp(ay)-, By, 0). (45)
Claim 5 and (45) ensure that
C(A,0) = deg(idr~ — S(t)Pp(sy)-, Br,0). (46)
Finally, Claim 1 and (46) yield
¢(A,0) =1. (47)
|

The following result is an equivalent formulation of Theorem 5.
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Corollary 1 Suppose that assumptions (h1) — (h7) are satisfied. If ((A,0) # 1 then the
trivial stationary solution of (19) is not asymptotically stable.

Example 3 i) The necessary condition of asymptotic stability ((A,0) = 1 is satisfied with
the data given in Example 1 (i) and Example 2 (i).

i) The trivial stationary solution of (19) with the data given in Example 1 (ii) or Ezample
2 (ii) is not asymptotically stable.

7 The case ¢ = g whith K closed and convex

It is known that if K is a polyhedron, then the system in (19) is equivalent to a comple-
mentarity system [12], whose study has a significant interest for control applications. Let
us first state a result of Quittner [25].

Lemma 2 (Quittner) Let K C R" be a closed and convez set such that 0 € K. Set
Ko = Ug>0aK. (48)
Suppose that G : R™ — R" satisfies
(1) G is continuous;
(2) G(0) =0;
(3)  Jg(0) exists;
(4) deg(idr~ — Pk,(Jc(0).), By,0) ezists for r > 0 small enough.
Then, for all r > 0 sufficiently small, 0 ¢ (idr» — Px(G(.)))(0B,) and

deg(id]Rn - PK(G()), Br, 0) = deg(z'an - PKO (Jg(O).), Br, 0).

Note that the original result of Quittner has been stated in a more general framework for
compact continuous mapping G defined on Hilbert spaces.

Let us now remark that Lemma 2 can be used together with Corollary 1 and Propositions
2 and 3.
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Example 4 Let F and K be defined by F(x1,12) = (—2sin(z1) + x2, —sin(z2)) and K =
{(z1,22) € R?:0<z, < x1}. Then

K0=R+XR+

-2 1
JF(O)—( 0 —1 )
Using the results of Example 2(ii) and Lemma 2, we get ((A,0) = 0. It results that the
trivial stationary solution of (19) is not asymptotically stable.

and

Let us here remark that if K € R" is a closed convex set with 0 € K then ¢ := ¢k satisfies
conditions (h1) — (hy4) of Section 6. We see also that if the assumptions of Lemma 2 are
satisfied for G := idr~ — F then condition (h7) is also satisfied.

Theorem 6 Let K C IR" be a closed and convex set such that 0 € K and Ko\{0} # 0 with
Ko in (48). Suppose that conditions (hs) — (hg) are satisfied. Suppose also that F(0) = 0
and Jr(0) exists.

If there exists p < 0 and U, € Ko\{0} such that

(1) (U, h) > 0,Vh € Ko\{0};

2 Jr(0)TU, = pU,.

Then the trivial stationary solution of (19) is not asymptotically stable.

Proof: Set A :=I — Jr(0) and define h: [0,1] x R™ — R" by h(\,z) = Az — Pk, (AAz +
(1-XNU,). We claim that if z € 0B,, r > 0 and X € [0, 1] then h(\, z) # 0. Indeed, suppose
on the contrary that

Az = Pg,(AMx + (1= NU,).

Then X # 0 since otherwise get 0 = Pg,(U,) = U, and a contradiction. Thus A # 0 and

since Ky is a cone, we get

1-X
A

1
z = < Pr,(AMz + (1 — NUy) = Pk, (Az +

: U,).

Thus z € Ky and

1-=X
A

Setting v:=x + U, € K¢+ Ky C Ky, we obtain

(z — Az — Uy,v—z) > 0,Vv € K.

S

<JF(0)$7UN) Z B\

1U.l1* > 0.
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Thus
('Z'a JF(O)TUN> = u<x7 UN) > 0.

Here since z € 0B,,r > 0, then z € Ky\{0} and thus from assumption (1), we obtain that
(z,U,) > 0 so that p > 0 and a contradiction.

Then
deg(ian - PKO (id]Rn - JF(O).), BT, 0) = deg(h(l, .), BT, 0) =

= deg(h(0,.), B;,0) = deg(—Pk,(Uy,), Br,0) = deg(—U,, B;,0) = 0.

Using Lemma 2, we see that ((A,0) = 0 and the conclusion follows from Corollary 1. m

Example 5 Let F and K be defined by F(x1,x2) = (—2sin(z1) — 10z2, cos(z1 ) —sin(z2) — 1)
and K = {(z1,22) € R2:0<m < z1}. Then

K0:R+XR+

wo-( 75 ).

Theorem 6 can be applied to ensure that the trivial stationary solution of (19) is not asymp-
totically stable. It is indeed easy to see that p = —2 is an eigenvalue of Jr(0)T and that the
corresponding eigenvector U, = (1,10)T satisfies conditions (1) and (2) of Theorem 6.

and

Theorem 7 Let K C R" be a closed and convez set such that 0 € K and K§NKy\{0} # 0.
Suppose that conditions (hs) — (he) are satisfied. Suppose also that F(0) = 0, Jr(0) exists
and

1) (Jr(0)z,z) < 0,Vz € Ko,z # 0,
then the trivial stationary solution of (19) is not asymptotically stable.

Proof: Let U € K§ N Ko\{0} be fixed. Set A := I — Jp(0) and define h: [0,1] x R" -+ R"
by h(\, ) = Ax — P, (AAz + (1 — A\)U). We claim that if x € 0B,, r > 0 and A € [0,1] then
h(A,z) # 0. Indeed, suppose on the contrary that Az = Pk, (AAz + (1 — A)U). It is clear
that A # 0. Indeed, suppose that A = 0. Then 0 = Px,U = U and a contradiction. Thus
A #0 and

(1=

x = Pg,(Az + U).

Thus 2 € Ky and
)
A

(x — Az — U,v—z) > 0,Yv € K.
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Setting v := 2z, we obtain since U € K

(1=X

(Tr(O).) > =5

U,z) > 0. (49)
Here z € K¢\{0} and from assumption (1), we obtain (Jr(0)z,z) < 0 which is a contradic-
tion to (49).

Then
deg(id]Rn - PKO (id]pm - JF(O).), BT, 0) = deg(h(l, .), BT, 0) =

= deg(h(0,.), B;,0) = deg(— Pk, (U), B;,0) = deg(-U, B,,0) = 0.

Using Lemma 2, we see that ((A,0) = 0 and the conclusion follows from Corollary 1. m

Remark 5 It is clear that if the matriz Jp(0) is negative definite, then assumption (1) in
Theorem 7 is satisfied.

Example 6 Let F and K be defined as in Example 4. Theorem 7 can also be applied to
ensure that the trivial stationary solution of (19) is not asymptotically stable. Indeed, here
KonNKH)\{0} =Ry xR \{(0,0)} and the matriz Jr(0) is negative definite.

8 The case ¢ convex and dom{y} = R"

Let us here suppose that ¢ : R" — R is convex with dom{y} = R". Then ¢ is continuous
and D(9y) = R"™ (see Theorem 10.1 in [26]). Moreover ¢ is Lipschitzian, relative to every
bounded set (see Theorem 10.4 in [26]). It results that ¢ satisfies conditions (h1) — (ha) of
Section 6.

Proposition 4 Let L > 0 be given and assume that G : [0, L] x R" — R"; (A, y) = G(\,y)
is a continuous function on [0, L] X R"™. Then the application

()‘7 y) = P)\cp (G()\, y))
is continuous on [0,L] x R".

Proof: Let {y,} C R™ and {\,} C [0,L] be given sequences such that y, — y* and
An = A* as n — +oo. We claim that Py, ,(G(An,yn)) = Pro(G(A*,y*)) as n — +oo.
Indeed, setting x,, := P, ,(G(An,yn)) and z* := Py, (G(X*, y*)), we have

(Tn — G(An,Yn),v — Tn) + An(v) — Anp(z,) > 0,Yv € R" (50)
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and
(" — G\, y%),v —z*) + Xp(v) — X*p(z*) > 0,Vv € R"™. (51)

Let us first check that the sequence {z,} is bounded. Indeed, suppose on the contrary that
||zn|| = +00 as n = +00. Setting v := 0 in (50), we obtain

—(zn — G(An,Yn); Tn) + An[p(0) — (z4)] > 0.
and thus

lzall* < NG, ya)lllznll + Xa[(0) = @(24)]-
It results that

“G(HA: 7|1|/n)|| " ||acA " 10(0) = plan)]

For n large enough, ”zl—"” € (0,1] and using the convexity of ¢, we get

1<

Ty 1 1
p(—) < p(xn) + (1 = —)¢(0).
lzall” = llzall ™" [[n]|
and thus 0) (@)
plU) — Ty Tn
7 < 9(0) — ().
(EA [[n]]
We obtain 0) (r2a)
G, ) PO~ P aaT
1< + A . (52)
feal T Tl
Here .
Penn) _
notoo  |[|zn||
since the sequence 22 remains in a compact set and ¢ is continuous. Taking now the limit

Mzl
asn — +oo in (52), we obtain the contradiction 1 < 0. The sequence {z,} is thus bounded.

Setting v := z* in (50) and v := z,, in (51), we obtain the relations
(n — Gy Un), Tn — %) — App(z™*) + Anp(zy,) <0 (53)

and
—(z" = G(\",y"), mn — %) — XN p(zn) + A p(z") < 0. (54)
Thus
lzn — 21 < IG(An,yn) — GO, y*)lllzn — 2|

+(An = A7) + (A" = An)p(zn)- (55)

The sequence {z,} is bounded and thus the sequence {p(z,)} is bounded too since ¢ is
continuous. Moreover ||G(An,yn) — GOA*,v*)|]| = 0 and (A, — A\*) = 0 as n — +00. Then
(55) yields z, — z* as n — +oo. [ |
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Proposition 5 Suppose that F : R® — R" is continuous. Suppose also that there exists
o > 0 and a continuous mapping H : R™ — R" such that

(1) A(x) #0,Vz € B,,x # 0;
(2) H(x) #0,Vz € By,x # 0;
(3)  (F(z), H(z)) + p(z) — p(z — H(z)) > 0,Yz € B,.

Then
¢(A,0) = deg(H, B,,0), ¥r € (0,0].

Proof: Let r € (0,0] be given. Let h: [0,1] x B, = R";(\,y) = h(\,y) :=y — Pro(y —
AF(y) — (1 — A\)H(y)). Proposition 4 ensures that h is continuous. Let us now check
that h(\,z) # 0,Yz € 0B, A € [0,1]. Indeed, suppose on the contrary that there exists
z € R",||z|| = r and X € [0,1] such that h(A,z) = 0, that is

z = Py,(x — AF(z) — (1 — \)H(x)).

We first remark that A # 0. Indeed, suppose that A = 0. Then z = Py(x—H (z)) = z—H(z).
This yields H(z) = 0 which is a contradiction to assumption (2) since here 2 # 0. We remark
now that A # 1. Indeed, suppose that A = 1. Then z = P,(z — F(z)) and thus A(z) =0
which is a contradiction to assumption (1) since here z # 0.

Thus 0 < A < 1 and
(AF(z) + (1 — N H(z),v — ) + Ap(v) — Ap(z) > 0,Vv € R".
Setting v := & — H(x), we obtain
M(F(x), H(2)) + ¢(z) — p(z — H(z))] < =(1 = V)| H(2)|* <0,

which is a contradiction to assumption (3).

Thus
deg(ldR" - P(p(Zd]R" - F)aBMO) = deg(h(17 ')7B7'70) =

= deg(h(07 ')7B7‘70) = deg(id]R" - PO(id]R" - H)JBT7O) =
= deg(H, B,,0).
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Proposition 6 Suppose that F : R" — R" is continuous. Suppose also that there exists
o > 0 and a continuous mapping H : R™ — R" such that

(F(x),H(z)) + ¢(z) — p(x — H(x)) > 0,Vz € B,,z # 0. (56)

Then
C(A,0) = deg(H, B,,0), ¥r € (0,0].

Proof: The result is a consequence of Proposition 5. It is clear that if (56) holds then
conditions (2) and (3) of Proposition 5 are satisfied. We claim that condition (1) of Propo-
sition 5 holds too. Indeed, suppose on the contrary that there exists z € B,\{0} such that
A(z) =0. Then

(F(z),v —z)+ p(v) —p(x) > 0,Yv e R™.

Setting v = ¢ — H(z), we get
(F(z), H(z)) + ¢(z) — p(z — H(z)) <0.

which is a contradiction to (56). |

9 The case of linear complementarity problems

In view of applications like stabilization, we examine in this section the case when the
vector field is linear invariant with matrix A € R™*", and ¢(-) = ¥k (-) with K =R’}. The
following holds:

Proposition 7 Let F : R" — R" be defined by F(z) = Az with A € R™™" and ¢(-) =
Vg (-) with K = RY. If A satisfies the conditions (i) Ai; > 0,1 <14 <n, and (ii) ‘ﬁj <i

forall1<i<n,1<j<mn,i#j, then ((A,0)=1.

Proof: The proof uses Proposition 2. As we have seen in (35), we have A;(z) = min{z;,e] Az},
with e; the i-th unit vector of R". Let us now calculate A;(xz) and A;(y) for the vectors z
and y as in (33). Taking into account the definitions of the sets P;(—¢) and P;(+¢), € > 0,
we obtain

AZ(.’E) = min{—a, €zTA.Z' + A,’i(—E - Z‘,)}

with z € [—¢, +¢€]™, and
Ai(y) = min{e, ef Ay + Aii(e —vi)}

with y € [—¢,+€]™ (in both these expressions we do not consider the variables z and y
in the sets P;(—e) and P;(+¢) respectively, but as free vectors of R" satisfying ||z||oo(:=
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maxi<i<n{| ;i |}) < € and ||y|lc < €). The condition A;(x)A;(y) < 0 can then be written
* max{e, —e] Ax + Ayx; + Aye} x min{e, el Ay — Ayy; + Aye} > 0. (57)
The inequality in (57) is equivalent to

(a) max{e, —e;?rA:c + Az + Aye} >0 and (b) min{e, eg’Ay — Ay +Aue}r >0
or

(c) max{e, —e;frA:U + Az, + Aje} <0 and (d) min{e, e;frAy —Auyi+Aue} <0

for all ||z]|c < € and |Jyl]jc < &. The inequality in (c¢) is impossible to fulfill and the
inequality in (a) is always satisfied, since € > 0. We are therefore left with the inequality
(b) only, which is satisfied if and only if el Ay — A;;y; > —Aye for ally € R™ with [|y||e < &.
Using assumption (i), we see that this condition can be rewritten as

A
el ———el |y+e>0 (58)
Aii
for all ||y|l < e. Equivalently
A
ef——el Jy+1>0 (59)
Aj;
for all ||yl|leo < 1. It is clear that inequality (59) is satisfied if and only if
A
(5 e Yol <L vy e Ryl < 1. (60)
2T

Assumption (ii) ensures that
A Ajj
€; — €illoo = max | B

”A_ii 1<j<n Ay
where d;; is the Kronecker symbol. If ||y||cc < 1 then

A A A
(e =l <l = il Iyl < e = el < L

so that (60) is satisfied. Finally, Proposition 2 ensures that ((A,0) = 1. [ |
Remark 6 i) From Proposition 3 in [12], it follows that if A is diagonal with positive
entries, then the equilibrium x = 0 s asymptotically stable. Incidentally one sees that
Aij =0, ¢ # j, implies that ‘i—;‘ =0< % so that the necessary conditions for asymptotic
stability are satisfied.

it) The conditions (i) and (ii) are not necessary conditions for asymptotic stability. Indeed
matrices A which satisfy (i) and A;; >0 for all1 <i < mn, 1< j <n are strictly copositive
on K and guarantee asymptotic stability (see Proposition 3 in [12]).

iii) Condition (i) implies that A is diagonally dominant.
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Example 7 Let us consider a planar case with A € R**?. The above conditions read A1 >
0, Azz > 0, % < 3 and % < 3. We see that A is a P-matriz [9] since both principal

minors are positive, as A;; > 0 (i = 1,2) and det(A) = A1 Ass (1 — %) > 0. Notice

that there exist P-matrices which are not positive definite, like for instance A = ( 1 -3 )

0 1
[9, p.147]. Also P-matrices may have complex eigenvalues with negative real parts, for
. 1 - . . ,
instance A = 1 _‘; s A =3 +J§, Ay =—-1-— J‘/Tg. However it can be shown that

the above conditions guarantee that the eigenvalues of A have positive real parts. Let 1 and
Yo be the two eigenvalues of A. Then Aj1 Asg — A12A21 = 11ve and Aze + A1 = 71 + 7.
Since A is a P-matrix, its real eigenvalues are positive. Thus if the eigenvalues have negative
real parts, they must be complex conjugate and in such a case Azp Ay — A12As1 =172 > 0
and Azs + A1 = 71 + 72 < 0 so that Ass < —Ay1. This is a contradiction since Ass > 0
and A1y > 0. We conclude that in the planar case, the necessary conditions of Proposition
7 imply that A is a P-matriz with (positive) real eigenvalues.

We now make use of Proposition 3 to derive conditions for under which the stationary
solution is not asymptotically stable.

Proposition 8 Let F' : R" — R" be defined by F(z) = Az with A € R™" and o(-)
Uk (-) with K =R". If A satisfies the conditions (i) Ay; < 0,1 <i <n, and (ii) ‘%‘ <

foralll <i<n,1<j<n,i#j, then {(\,0) =0 and the stationary solution of (19) i
not asymptotically stable.

3=

V)

Proof: The proof uses Proposition 3. The calculations are similar to those in the proof of
Proposition 7. The conditions in (a), (b), (c), (d) now are

(a') max{e,—e! Az + Ayz; + Aye} >0 and (b') min{e, el Ay — Ayy; + Aiue} <0
or
(") max{e, —eiTAac + Ajizi + Ajie} <0 and (d') min{e, eiTAy — Auyi+ Auet >0

for all ||z]|ec < € and ||y||co < €. Inequality (c’) cannot be satisfied since € > 0. Inequality
(a’) is always satisfied. Inequality (b’) is equivalent to having el Ay — A;;y; + Asie < 0 for
all ||y||eo < €. Using assumption (i), this can be rewritten as

A
(4 - )u+ 1> oM e Rl < 1. (61)

As in the proof of Proposition 7, we see that Assumption (ii) ensures that (61) holds. We
conclude that both (i) and (ii) assure that A;(z)A;(y) > 0 for all z € P;(—¢) and y € P;(+¢)
and all 1 < i < m, so that ((A,0) = 0 and the stationary solution of (19) cannot be
asymptotically stable. ]
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Application 1 Asymptotic stabilization

Let us here consider a controlled system with transition matriz A € R™", input matriz
B € R™ ', and a feedback controller u(.) = Uxz(.) with U € R™™™. The corresponding
mathematical model is of the form given in (19) with F(z) = (A + BU)z. Assume that
the pair (A, B) has the so-called controller form [31], i.e. A;;+1 = 1 and A;; = 0 for all
j#i+landalll <i<n-—1, Ay = a; where the o;’s are the coefficient of the charac-
teristic polynomial of A, and B = e,. One can show that the closed-loop system does not
satisfy the conditions of Proposition 2. Or, that it does satisfy the conditions of Proposition
3. Consequently, a controlled evolution variational inequality as in (19) with A and B in
a controller form cannot be asymptotically stabilized by constant feedback. This is a major
discrepancy with unconstrained systems. This shows that having (A, B) a controllable pair
(for the unconstrained system) is not at oll sufficient to guarantee the asymptotic stabiliza-
tion of a controlled variational inequality. This is in accordance with the results in [8] on
controllability of planar variational inequalities.

Conditions (i) and (i) of Proposition 7 now read as conditions for asymptotic stabilization:
given a pair (A, B), find o matriz U € R'™™ such that

Ai; +B;U; >0, 1<i<n (a)
(62)
|[Aij + BiUj| < L(Ayi + BiU;), Vi#j,1<i<n,1<j<n (b)

so that there exists a constant feedback control. We can now set some conditions to be
satisfied by (A, B) so that the feedback guarantees ((A,0) = 1:

e 1) A#0 (from (60) (a) and combining with (62) (b)) .

2) If Ay; =0 for some i, then necessarily B; # 0 (from (62)(a)).

3) If B; = 0 for some i, then necessarily Ay; # 0 (from (62)(a)).

4) Controllability of (A, B) (the Kalman matriz is of rank n) is not sufficient.

5) Controllability of (A, B) (the Kalman matriz is of rank n) is not necessary: there
exist pairs (A, B) such that the Kalman matriz has rank < n, and which satisfy the
conditions in (62) or the sufficient condition of Proposition 7.

Item 5) can be proved by choosing a planar example with A;1 > 0, A12 =0, Asy # 0, Ass # 0,
and By =0, By # 0. We have rank(B AB) =1, even if 0 < |Ay + ByUp| < %(Azz + BsUs).
Let us choose Us :sgn(Bg)aﬁB‘:fZ, a >0, and Uy :sgn(Bz)ﬁljB‘zrl, B >0,8< 5. Then
the sufficient condition of Remark 6 i) is satisfied if 8 = 0, and conditions (i) are (ii) of
Proposition 7 are satisfied if 3 < 5.
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10 Instability Results

Inasmuch as stability is usually a desired property, it is important to dispose of some math-
ematical results which can be used to recognize instability. Here we use Theorem 5 together
with Theorem 3 in order to state conditions ensuring instability.

Theorem 8 Suppose that assumptions (hy) — (h7) are satisfied. Suppose in addition that
there ezists o > 0 and V € C1(R";R) such that

(1) () — (. = V() is lower semicontinuous on D(dy) N B, ;
(2)  (F(2),V'()) +¢(z) — p(z = V'(z)) > 0,Yz € D(3p) N By;
(3) M(F7<P7V7FG') = {0}’

where (see Section 4) M(F,,V, B,) denotes the largest invariant subset of E(F, ¢, V)N
B, ={z € D(0p) N B, : (F(z),V'(z)) + ¢(z) — p(z - V'(z)) =0}
If C(A,0) # 1 then the trivial stationary solution of (19) is unstable.

Proof: Suppose on the contrary that the trivial stationary solution of (19) is stable. Then
we may find § > 0 such that if 29 € B then y(zg) C B,. We may apply theorem 3 (with
U := B,) to get lim_, 4 d(S(t)zo, M(F,¢,V,B,)) = 0. Here M(F,¢,V,B,) = {0} and
thus the trivial stationary solution of (19) is attractive. It results that the trivial stationary
solution of (19) is asymptotically stable and we obtain a contradiction to ((A,0) #1. =

Corollary 2 Suppose that assumptions (h1) — (hy) are satisfied. Suppose in addition that
there exists o > 0 and V € C1(R";R) such that

(1) () —@(. = V() is lower semicontinuous on D(dp) N B,;
(2) (F(2),V'(2)) + ¢(z) —p(z - V'(z)) >0, € D(0p) N By, z #0.
If ¢(A,0) # 1 then the trivial stationary solution of (19) is unstable.

Proof: The results is a direct consequence of Theorem 8 since condition (2) ensures that
M(F,¢,V,B,) = {0} u
The following result is a direct consequence of the previous one.

Corollary 3 Let K C IR" be a closed conver set such that 0 € K. Suppose that assumptions
(hs) — (hy) are satisfied. Suppose in addition that there exists o > 0 and V € C*(R™;R)
such that

(1) V'(z) € —Ky,z € KN By;
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(2) (F(z),V'(z))>0,z€ KNB,,z #0;

If ¢(A,0) # 1 then the trivial stationary solution of (19) is unstable.

Example 8 The trivial stationary solution of (19) with the data given in Example 2 (ii) is
unstable. Indeed, we know that here ((A,0) = 0 and it is easy to see that the conditions of
Corollary 3 hold with V() := —3||.||*.

Theorem 9 Suppose that ¢ : R" — R is convex and dom{p} = R"™. Suppose that assump-
tions (hs)—(h7) are satisfied. Suppose in addition that there exists o > 0 and V € C*(R™;R)
such that

1) V'(z) #0,Vz € B,,x #0;

(2) (F(2),V'()) +¢(2) —p(z = V'(z)) >0, z € By;
(3) M(F,¢,V,B,) ={0};

(2) deg(V',B,,0) # 1 for r > 0 small enough.

Then the trivial stationary solution of (19) is unstable.

Proof: The result is a consequence of Theorem 8 and Proposition 5 with H := V", ]

Corollary 4 Suppose that ¢ : R™ — R is convez and dom{p} = R". Suppose that assump-
tions (hs) — (h7) are satisfied. Suppose in addition that there exists o > 0 and a nonsingular
and symmetric matriv A € R™™ such that

(F(x), Az) + ¢o(z) — p(x — Az) >0, € B,.

If M(F,¢,1(A.,.),B,) = {0} and det A < 0 then the trivial stationary solution of (19) is
unstable.

Proof: The result is a consequence of Theorem 9 with V(.) = 1(A.,.). Here deg(V’, B,,0) =
deg(A., B;,0) = sgn(det A) = —1,Vr > 0. [

The following result is a direct consequence of Corollary 4.

Corollary 5 Suppose that ¢ : R™ — R is convezr and dom{p} = R". Suppose that assump-
tions (hs) — (h7) are satisfied. Suppose in addition that there exists o > 0 and a nonsingular
and symmetric matriz A € R™ " such that

(F(z), Az) + ¢(z) — p(x — Az) > 0, = € B,\{0}.
If det A < 0 then the trivial stationary solution of (19) is unstable.
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Example 9 Let F' and ¢ be defined by
[ a c 1
ro=(%3) (%)

‘P(:E) :d|$2 |7
witha <0,b>0,c€ R and d > 0. Setting

-1 0
=)
we see that (F(z), Az)+o(x)—p(z—Az) = —az?+bax3+d | z2 |> 0, Y(z1,22) € R*\{(0,0)}.
Here det A = —1 and thus the trivial stationary solution of (19) is unstable.

and

Application 2 Second Order Dynamical Systems in Mechanics

Let us here deal with the following class of second order dynamical systems:

Let ® : R™ — R be a convex function with dom(®) = R™. Let M,C,K € R™*™ be
given matrices. We consider the problem: Find a function t — q(t) (t > 0) with q €
C1([0, +00); R™), and such that:

R m
g2 € Lioe(0, +oos R™), (63)
dg . . . .
7 right-differentiable on [0, +00), (64)
d? d d
Mﬁg(t) + Cd—(i(t) + Kq(t) € —Bé(d—(i(t)), a.e.t>0. (65)

The model in (65) can be used in Mechanics to describe the motion of various systems having
frictional contact. For such problems, m is the number of degrees of freedom of the system,
M is the mass matriz of the system, C is the viscous damping matriz of the system and
K is the stiffness matriz. The term 0%(.) is used to model the unilaterality of the contact
induced by friction forces.

Let us first assume that:

(H1) M is symmetric and positive definite;

(H2) K is symmetric and nonsingular;
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(H3) 7 Cx + ®(x) — ®(0) > 0,Vz € R™,z # 0;
(H,) 0 € 8%(0).
Let
oc(M,K):={ e C: det(AM + K) =0} = {1, ..., A}

Using assumptions (H1) and (H2), we may assert that (see e.g. [2]):
o(M,K) CR,
and there exists a nonsingular matriz R € R™*™ such that
RTMR=T1 and RTKR = K,

where I denotes the m xm identity matriz and K is the diagonal matriz defined by (Ko)i; =
Ai, (1 € {1, ,m}

Setting
q = Rz,
we may rewrite (65) as follows:
d*z Ty G2 dz
— - K, ~RT0®(R— .e.t>0.
D t+R CRdt (t) + Koz(t) e —R" 0 (Rdt t), ae.t>0 (66)

Let us here define the convex function x : R™ — R by the formula
x(w) = (® o R)(w),Vw € R™.

Then (see Theorem 23.9 in [26]),
dx(w) = RT9®(Rw),Yw € R™ .

Let us now set

dz . dz X dz
T1:=2, Tp:= e z = (z1 :1:2)T, T, = d_tl’ Ty = d_tQ (67)

It is clear that (66) is equivalent to the following first order system :

{ii'l—.’L'QZO

@9 + RTCRxzy + Koz, € —0x(z2). (68)

It results that our problem can be written as in (19) with n = 2m and where F' and ¢ are

defined by
_ 0 —I Iy

o(z) = x(z2).

and
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Let V' be defined by
1
V(@) = 5(Az,2)

where
(Ko 0
4= ( 0 I ) ’
We see that
V'(z) = Az #0,Vz € R™,z # 0, (69)
deg(V', B;,0) = sgn(det A) = sgn(det Ky),Vr > 0, (70)
and
(F(z),V'(z)) + o(z) — (& — V'(z)) = 25 R CRzs+
+x(z2) — x(0) > 0,Vz € R". (71)
Here
S(F,¢) = {(21,0) : Koz1 € —0x(0)}
and

E(F,,V)={x € R": 2T RTCRz5 + x(22) — x(0) = 0} =
= {(z1,0);2z1 € R™}.

Moreover, it can be proved that the largest invariant subset M(F,,V) of E(F, @, V) coin-
cides with the set of stationary solutions of (19) (see the proof of Theorem 9 in [1]), that
18:

M(F,0,V) = S(F, ).

Our theory can be applied provided that the trivial stationary solution of (68) is isolated in
S(F,¢). Let us so now assume in place of (Hy) that:

(Ha)" 9%(0) = {0}

Then S(F, ) = {0}. So, if assumptions (Hy) — (Hs), (H4)' are satisfied, then properties
(69)-(71) hold, M(F,p,V) = {0} and we may apply Theorem 9 to conclude that if

det Ko <0

then the trivial stationary solution of (68) is unstable.
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11 Appendix

PROOF OF CLAIM 1.
We first prove that there exists 7* > 0 such that

* T —
IS(T*) Ppagyzll < 5,\%:1: € B,.

Indeed, the stability of 0 as a solution of (19) ensures the existence of & > 0 such that if
IS(#)Pp(sy)zl| < a for some & > 0 then ||S(t)Ppsy)z|| < 5,Vt > £ Let X € B, be given.
The attractivity of 0 as a solution of (19) ensures the existence of T' := T'(X) > 0 such that
IS(T)Ppay Xl < §. Setting o := §vVe=2T we see that, for v € B(X,0) := {z € R" :
|z — X|| < o}, we have (see (28))

IS(T) Ppagyvll < IS(T)Pp(agyv — S(T)Ppap)X|| + [1S(T) Ppay) X || <

< VT || Pp(agy0 = Pooy Xl + 5 < VT — X[ + 5 < a.

We see that o
B.c |J Bx,0)
X€B,

and since B, is compact, we find X;, X5, ..., Xx ( and corresponding T}, o;) such that

N
FT C U B(X,,O‘z)

i=1

Setting T* := max{T},Ts,...,Tn}, we see that if z € B, then z € B(X;,0;) for some
i € {1,...,N}. Then ||S(T;)Pp(s,)xll < a and thus [|S(t) Ppagyz|| < §,Vt > T*(> Tj).
Let us now check that

deg(idmn - S(T*)PD(QW).,BT,O) =1.

Let us define the continuous homotopy A : [0,1] x R™ — R" by
h()\, .73) = — )\S(T*)PD(B@;E

We claim that h(\, z) # 0,VA € [0,1],2 € 8B,. Indeed, suppose on the contrary that there
exists ¢ € 0B, and X € [0,1] such that

T = )\S(T*)PD(aw)CL'

Here 2 = AS(T*)Pp(syyz + (1 — A)0 and thus z € D(0¢) since S(T*)Pps,)x € D(0yp),
0 € D(9¢p) (by assumption (hs3)), A € [0,1] and D(dy) is convex. It results that z = AS(T*)z
and thus

[lz — AS(T*)z|| = 0.
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However,
e = AS(T*)all > llol] = NIS(T*)al) > Jsll = IS(T)z > >0,
which is a contradiction. Thus from properties 2 and 3 (Section 2) we get
deg(idr~ — S(T*)Pp(ay)-, Br,0) = deg(h(1,.)., B;,0) =

= deg(h(0,.), B;,0) = deg(idr~, Br,0) = 1.

We end the proof of CLAIM 1 by remarking that
deg(idr~ — S(t)Pp(sy)-, Br,0) = deg(idr» — S(T™)Pp(sy)-, Br,0),Yt > 0.
Indeed, let ¢ > 0 be given and define the continuous homotopy g : [0,1] x R™ — R" by
g\ ) =2 — S(At+ (1 = \)T*)Pp(sy) 2.

We see that g(A,z) # 0,V € [0,1],z € 0B,. Indeed, suppose on the contrary that there
exists * € B, and A € [0,1] such that 2 = S(At + (1 — A\)T*)Pp(ay)®. Then x € D(9y)
and thus

z=SA\t+ (1 =XNT")z.

That means that the application 7 — S(7)z is periodic with period At + (1 — A\)T™* (see
Section 5) and non-trivial since ||S(0)z|| = ||z|| = r > 0. This is a contradiction to (40).
Thus from property 2 in Section 2

deg(Zd]R" - S(t)PD(BLp)'J BT7 0) = deg(g(la ')7 BT’: 0) =

= deg(g(07 ')7 BT7 0) = deg(ld]R" - S(T*)PD(('?(;)’ BT: O)

PROOF OF CLAIM 2.
Let ¢ > 0 be given and define the homotopy H : [0,1] x R™ — R" by

H(\z) := 2 — (Xidp~ + tA,) ' (Nidr» + tG) Pp(s,)2,

where G is defined in (42). We first remark that H is continuous. Indeed, let z,, — = and
An = X and set fp := (Apidr» + tG)Pp(sy)Tn and vy = (Apidrn + tA,) ™! fr. It is clear
that

fn — f = (Aid]Rn + tG)PD(aw).’L'.

We claim that
vp = v = (Nidgn +tA,) 7 f.
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Indeed, we have

fn_)‘

v 1= (Apidrr +tAy) o RN ; € Ay,vn, &

fn = Anvn

& {vn —( 1

)7w - UTL) + QO(U)) - SO(UTL) Z O,V’LU € R™.
Setting w = 0 in (72), we get

fn - /\nvn

(vn — ( P

);vn) < 9(0) — p(vn)
and then using (29), we obtain
(t+ A)lloall* < (| fallllonll + t{(=F(0), vn) + ¢ (0) = @(vn)] + t{F(0), v,)

< [[fnlllloall + I EO)[[[on]]-
It results that the sequence {v,} is bounded.
Setting w = v in (72), we get

<tvn + )\nvn - fn; v — UTL> + t((p('l)) - (p(v")) Z 0.
We remark also that v = (Midg~ + tA,) "1 f if and only if

f— v

w- (=

)aw - U) + (,D(U)) - (p(’l)) > 0,\7’w € ]Rna

and thus
{tv + Av — f,vn —v) + t(p(vn) — ¢(v)) > 0.

So, from (73)
(tvn + AnUn, Un — U) < t(‘p(v) - @(Un)) + <fn: Un — U)

and from (74)
—(tv + Av, v — v} <H(p(vn) — (V) = (f,0n = v).

Thus
(t(vn — v) + Apn — AV, vp — V) < {(fn — f,0n — V).

We obtain
(t+ Mllvn =0l < X=Xl loall [lvn = ol + [1fn = fIl lvn = o]l.

The sequence {v,} is bounded and thus {v,} C Bk for some constant K > 0. It
that
llon —oll < KX = An| + I fn = £l

(73)

(74)

results
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and thus v, = v as n = oo.

We check now that H(\, z) # 0,YA € [0,1],z € 0B,. Suppose on the contrary that there
exists z € 0B, and X € [0, 1] such that

z = (Mdgrr + tALp)_l()\’l'd]Rn + tG)PD(Bcp)-T-
Then

)\(PD(a‘p)x —)+ tG(PD(;-)(p)SU)
t

€ Ay(z).
Recalling that A;' = P,, we get

)\(PD(a(p).Z' — .'E) + tG(PD(a(p)m)
t

=Py ). (75)

Thus from (8) x € D(9¢) and (75) reduces to
z = Py(G(z)),

which is a contradiction to (38).
Then

deg(idg» — (idpn + tA,) "' (idr» +tG)Pp(ag)-, Br,0) = deg(H(1,.), B;,0) =

= deg(H(07 ')7 BT‘: 0) = deg(ld]R" - (tAW)_l(tG(PD(BLp) ))7 B’r‘7 0) =
= deg(id]Rn - quG(PD(&p)-)a BT, 0)

PROOF OF CLAIM 3.
Let us consider the continuous homotopy G : [0,1] x R" — R" by

G\, z) :=z — P,(G(Az 4 (1 — X) Pp(syp)T)-

We claim that G(A,z) # 0,V € [0,1],2 € 0B,. Suppose on the contrary that there exists
x € 0B, and X € [0,1] such that

z = P,G(\z + (1 — X) Pp(sy) ).

Then z € D(0p) and thus
z = P,G(x),

which is a contradiction to (38). Thus
deg(ld]R" - PS@G(PD(Bcp) ')a BTa 0) = deg(g(oa ')a B’r‘a 0) =
= deg(g(17 0)7 B,, 0) = deg(id]R" - PWG(')J B, 0)
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PROOF OF CLAIM 4.
(a) Recalling that Pp(s,)0 = 0, we obtain

|1Pp(ag)zll = [|Pp(ag)™ — Pp(ag)0ll < l|z]] < 7 < ro.

(b) Recalling that P,G(0) = 0 (see (29) and (42)), we get

1PoG(Ppapym)ll = [|PoG(Pp(ogp)x) — PG(0)l| < [|G(Ppagyr) — GO)]| <

é
< 1Ppag)zll + |F (Ppagy®) — F(O)[| < ro(1+ Co) < 51 <1

(c) This follows from (a) and (39).
(d) We know that

and

Setting w = Pp(se)e in (77), we obtain

(S (Poapy — u(s), Pooe — u(s)) <

< (F(u(s)), Pp(ag)™ — u(s)) + ¢(Pp(ay)r) — ¢(u(s)), a.e. s > 0.
Using (a), (c) and (37), we obtain
@(Pp(ag)z) — p(u(s)) < CillPpag)r — u(s)|| < Ci(ro +1).

We have also
(F(u(s)), Pp(ag)™ — u(s)) =
= (F(u(s

~—

< @||Ppagyz — u(s)|I” + |IF(Ppag) @) |l Ppagy — u(s)l <
< @(ro +1)* + (ro + 1)([|F(Pp(agyx) — F0)|| + |[F(0)]]) <
< w(ro +1)? + (ro + 1)(Coro + [|F(0)]]).

) — F(Pp(ay)®), Ppag)® — u(8)) + (F(Pp(sy)2), Pp(ag)® — u(s)) <
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Thus

1d
§£||PD(3¢,)$ —u(s)||? < (ro + 1)(Cy + @(ro + 1) + Coro + ||F(0)]]), a.e. s > 0.

Consequently, for ¢ > 0, we have

/Ot %||PD(3¢)x — u(s)||?ds < 2(ro + 1)(C1 + &(ro + 1) + Coro + [|F(0)))¢.
Using now (76), we obtain
I1Poagye —u(®)|| < 6vt.
(€) Using (c) and recalling that P,G(0) = 0, we get
1P, G(u(®)l = IP,G(u(t)) — P,G(O)]| <
<IGu(®) = GO < lu@®)ll + [1F(u()) — FO)|| <

1)
< [lu@)||(1+ Co) < 31 < 6.

(f) Let t € (0,t*] be given. Using Theorem 4, we obtain

IS(t*)Pp(ag)z — S(£7)0]| < Ve (=D S(t) Pp(ap)z — S(t)O|I-

Thus
lu()l] = VeRVe 5 ju(t)| > Ve T > 2.
(g) From the definition of v(t), we see that
Ppap)x — v(t) + tG(Ppsy)x)
(89) . 09)%) Ay (v(t)).

Thus () - P
v(t) — T
(EEZROT 4y (t)) + (u(t) = G(Po(a o) w — v(H)
+p(w) — p(v(t)) > 0,Yw € R".

It results also that

v(t) — P, T

MO P007 1 1) — G(Po(ay) € ~0p(0(1)
and thus v(t) € D(9yp).
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(h) Applying the result in (g) with w := Pp(g,)®, we obtain

1
;(U(t) — Pp(ay)T, Ppag) — v(t)) + (v(t) — G(Pp(ay)x), Ppagyx — v(t))+

+¢0(Pp(ag)r) — ¢(v(t)) > 0.
Thus 1
;HU(t) — Pp(agyll” + [[v(t) — Pp(agll” <
< A{Ppap)r — G(Pp(ag) ), Ppag) T — v(t)) + ¢(Ppag)r) — ¢(v(t)) =
= (F(Pp(ay)%), Pp(ay)x — v(t)) + ¢(Pp(ag)) — (v(t)) =
= (F(Pp(ay)x) — F(0), Pp(ay)x — v(t)) + (F(0), Pp(ay)x) — (F(0),v(t))+
+¢(0) — ¢(v(t)) + ¢(Pp(ay)x) — ¢(0) <
< |IF(Pp(ag)z) = FO)l[|Pp(agyz — v()ll + [[F(O) | Pp(ag)zll + [¢(Pp(ag) ) — ¢(0)] <
< Corol|Pp(agyr — v(t)|| + ||F(0)||ro + Ciro <

(Coro)? _ Poogyz —v(®)IP
2 + 2

< + [1F(0)[|ro + C1ro.

Thus 9
(Coro)

1
Sllo(t) = Poagall? < 22

+ ||F(0)||T0 + Cirop.

Therefore B
lo(t) — Pogagyall < BVE.

(i) Let t € (0,T*] be given. From (a) and (h), we deduce that

lo(@®)[| < BV +ro.

Thus 5
lo(®ll < 2+ 7o < 6y
and 5 5
1 1
< — < .
WO < 5t e +70 < Tycy

(j) Let t € (0,T*] be given. Using (i), we get
1P (Go(t)l = |1 (G(v(t) = Pp (G(O))| < [|G(v(t)) —GO)|| < [lo(@)[[+]|F(v(t)) = F(0)[] <

< (14 Co)llv(@®)]| < 61
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PROOF OF CLAIM 5.
Let us define the homotopy W : [0,1] x R™ — IR" by
W(A, m) =T — )\(’Ld]Rn + t.A<p)_1 (Zd]R" + tG)PD((-)w).’L’ — (1 — A)S(t)PD(aw).’E

Note that W (A, z) = z — AH(1,z) — (1 — X\)S(t)Pp(s,)x where H is defined in Claim 2.
The continuity of W follows from the the continuity of the Poincaré operator S(t). and the
continuity of H (see Claim 2). We claim that W(\,z) # 0,V\ € [0,1],z € dB,. Indeed,
suppose on the contrary that there exists € 0B, and X € [0,1] such that

& = A(idgr + tAy) ! (idr» +tG)Pp(ag)x + (1 — A)S(t) Pp(sy) -

Setting
U(t) = S(t)PD(aw)ZIJ

and
v(t) := (idgr~ + tAy) " (idr» + tG)Pp(oy) 2,

we may write
z = Av(t) + (1 — Nu(t).

The following calculations will show that this equality is impossible to satisfy on the time
interval (0,7]. Here u(t) € D(0yp) and v(t) € D(0p) (see Claim 4 (g)). Thus z € D(dp)
since D(0¢) is convex. It results that

PD(BLP)'T =2x.
Moreover, from Claim 1 and Claim 2, we deduce that A € (0,1). We know that

(Z—Z(S),w —u(s)) + (F(u(s)),w — u(s))+

+p(w) — p(u(s)) > 0,Yw € R", a.e. s >0, (78)
and thus

[ G wons [ twris [ otutsnas >

> _/0 (F(u(s)),w — u(s))ds, Y € R™.

On the other hand

b du _ [t d _ _ _
/O(E(s),u(s)—:c)ds—/o (75 (u(s) = 2),u(s) — z)ds =
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= [ Z5hute) = alPds = 3llu(®) = = 5hu(©) = ol = lute) = ol > 0.
Thus . .
| Gehw—aas > [ ptute)dst
t t
—/ <p(w)ds—/ (uls) — G(u(s)),w — u(s))ds, Yw € R™. (79)
0 0
Let us set

(1]

t
0= [ (G0 PG@) - )is

Setting w := P,(G(z)) in (79), we see that

20> [ plue)ds = [ oPo(Ga))ds = [ (uls) = Glule), Py Go) — u(s))ds
t t t
= [ vt - [ oPaG@)ds - [ (u(s) = Glulo), Po(G(u(x) ~ u(s))ds
0 0 0
By definition of P,, we have

(Po(G(u(5))) = Guls)), w = Pp(G(u(s)))) + ¢(w) — p(Pp(G(u(s)))) 2 0,Yw € R™.

Setting w := u(s), we get

Thus
p(u(s)) — p(Pp(G(2))) + (u(s) — G(u(s)),u(s) — Pp(G(u(s)))) =

= p(u(s)) = p(Po(G(2))) + lu(s)I” + (G(u(s)), P, (Glu(s)))+
—(G(u(s)), u(s)) = (u(s), Pp(G(u(s)))) 2
> (P (G(u(s)))) = (Pp(G(2))) + llu(s)]I* = 2{Py (G (u(s))), u(s)) + 1P (G (u(s)I*
P(Py(G(u(5)))) — 9(Py(G(x))) + llu(s) — Pyp(G(u(s)))II?

[1]
=
(A2

o\ﬁ_
o}
B
Q
£
&

|
S}
&0
Q
&

+
s
=

|
B
Q

I
=
=

IS

)
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—/0 (u(s) — G(u(s)), Pp(G(x)) — Pp(G(u(s))))ds.
Using Claim 4 (e) and (b), (a), (¢) and (d), we see that
P(Pp(G(u(s)))) — p(Pp(G(x))) < C1l|Pp(G(u(s))) — Po(G(2))| <
< G1lIG(u(s)) - G@)| < Cillu(s) — ol + CLllF(u(s)) = F@)|l < 0(Cy + C1Co)V5.
Using Claim 4 (c), (a) and (d), we obtain also
(u(s) — G(u(s)), Pp(G(2)) — P (G(u(s)))) < IIF(u(s))ll[|Po(G(2)) — Po(G(uls)))ll <
< (IFO) + Collu(s)IDIIG(2) — G(u(s))]] <
< (IFO)]I + Co) ([l — u(s)l| + [|1F(z) — F(u(s))]) <
< (IFO)[1 + Co)(1 + Co)llz — u(s)[| < (IF(O)] + Co)(1 + Co)bs.
Thus
¢ 2 s
E(t) > /0 llu(s) = Py (G (u(s)))|Ids — 301+ Co)([[F(0)]| + Co + C1)t2.

If [lu(t)|| > 7 then using Claim 4 (f),we may assert that |lu(s)|| > §,Vs € (0,#] and then
using (41), we obtain that

E(t) >t — O3 if JJu(t)]| > (80)

>~

It is also clear that , r
2t) > —Ct2 if ||Ju(®)] < i (81)

By Claim 4 (g), we know that

Moreover,
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Setting v := (1

Bernard Brogliato

A)\); we see that
_% At(%(s),w —z)ds + (v(t) — G(z),w —v(t))+

+o(w) —¢(v(t)) = 0,Vw € R™.
Setting w := P,(G(z)), we get

+(Pp(G(2))) — ¢(v(t))]
t

[(v(t) = G(v(?)), P (G(v(1)) = v(t)) + p(Pp (G(v(1)))) — ¢ (v(t))+

+(v(t) — G(v(t), Pp(G(z)) — Pp(G(v(?)))) +(G(v(t)) — G(x), Pp(G(z)) — v(t))+
+¢(Pyp(G())) — (P (G(v(?))))]
We know that

(Po(G(0(1)) — G(u(t)), w — Po(G(u(t)))) + ¢(w) — p(Pp(G(u(t)))) = 0,Yw € R™.
Setting w := v(t), we see that

(P (G(v(1)) = G(v(t)), Pp(G(v(t))) — v) + p(Pp(G(v(t)))) — ¢(v(t)) <0
and thus

(v(t) = G(v(t), Po(G(v(1))) — v(B) + (P (G(v(1)))) — ¢(v(t))
< =[P, (G(v(t))) —v(@®)II*.

<
Thus

2(1) < - LIP,(G®)) - o0+
.

[(v(®) = G(v(1), Po(G(2)) = Pp(G(v()))) + (G(v(t)) — G(2), Py (G()) — v(t))+

+o(Pp(G(2))) — o(Po(G(v(1))))]-
Using Claim 4 (a), (h) and (i), we see that

(v(t) — G(v(t), Po(G(2)) — P (G(v(1)))) < IF(w(@)IG () = Gu@®)] <
< (IF ) + Codo) ([l — v@)|| + [|1F'(z) — F(uv(®)]]) <
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< (IF0)]| + Cobo)(1 + Co)BV't.
Using Claim 4 (a), (b) and (i), we obtain also that
(Gu(t) — G(2), Pp(G(z)) — v(t)) < (1P (G @)l + lv@®I)(llz — v(@)]|+

+|F(z) = Fu(@))ll) < (81 + o) (1 + Co)fvt.
Moreover, using Claim 4 (b), (g), (a), (i) and (h), we get
| o(Pp(G(2))) — 0(Pp(G(v(1)))) [< CrllPp(G(2)) — Po(G(u(8))] <

< C1]|G(z) — Gw(®)|| < C1(1 4 Co)l|z — v(t)|| < C1(1 + Co)dVt.

Thus
- t 15—
E(t) < =< IPo(G(o(1) — v @I + ;tg[ 1+ Co)(IF )| + 61 + (1 + Co)do + C1)]
2, O3
< —IIP(G (1)) —v(@)II° + 42
Thus
=) < -2 L+ Sid it o) > - (82)
=W = v v -8
and o
B(t) < 2 i |lo(t)]| < 5 (83)
If [lu(t)]| > 7 and [Jv(t)|| > § then from (80) and (82), we get
2 3 2t C 3
- < _p22 4L 2
't —Ct2 < 7711-1-1/1&2
and thus ¢t > g—z which is a contradiction since t < T < %g—z
If lu(t)|| < § and [lv(t)[| > § then from (81) and (82), we get
—ott <ty Cu. (84)
v v

Using Claim 4 (i), we see that

@ el _ @l
“ e —w@l = el = @] ="

where v* = %@. Here (84) yields ¢ > #‘11)2 which contradicts ¢t < T.
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If [lu(t)]| > § and [Jv(t)|| < § then from (80) and (83), we get

n’t—Ct? < %t%. (85)
Using Claim 4 (c), we see that
= @) — 2 > llzll — [lo@)]l >,
lz = w@l ~ [zl + [lu@)

where v, = % Then (85) gives t > Wl:—l)g and a contradiction to ¢t < 7.

If [u(t)]| < & and [[o(t)]| < & then
r r
llzll < Allo@l + @ = M@l < Ag + @ =Nz <7

which is a contradiction since z € 0B,.

Consequently one has z # Mv(t) + (1 — A)u(t),Vz € 0B,, A € [0,1] so that we have proved
W(A,z) #0,Vz € 0B,, A € [0,1] Thus

deg(idg~ — (idr~ +tA,) '(idr» + tG)Pp(sy)-, Br,0) = deg(W(1,.), B;,0) =

= deg(W(Oa ')5 B;,, 0) = deg(ZdR" - S(t)PD(Bga)'a B,, 0)
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