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Broose : une table de hachage distribuée souple
basée sur le graphe de De-Brujin
Résumé : Un protocole pair-a-pair similaire & Kademlia est proposé sur la base d’une
topologie inspirée du graphe de De-Brujin. Les tables de routage reposent sur la maintenance

de deux pools d’adresses de contacts seulement. Les échanges de messages permettent de
mettre & jour ces pools.

Mots-clés : pair-a-pair, table de hachage distribuée, De-Brujin
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1 Introduction

This paper describes Broose, a peer-to-peer distributed hashtable protocol. It allows to
store key, value associations in a loose way in the sense that nodes in charge of storing
the values associated to a given key are defined in a loose way conversely to most previous
distributed hashtables propositions. This feature is mostly inspired from Kademlia [4]. The
major improvement over Kademlia resides in the use of a De-Brujin Topology for reducing
the routing table size and enhancing its accuracy.

Broose follows the basic approach of many distributed hashtables where keys are 160-bit
binary strings and where each node randomly chooses an ID in the 160-bit key space. As in
Kademlia, a key, value association is stored on the nodes close to the key for some metric
instead of splitting the key space among nodes in a rigid manner. This allows provable
consistency even in a highly dynamic asynchronous context. Instead of storing contact
information about nodes in charge of specific parts of the key space, buckets of possible
contacts are maintained with the goal of achieving best accuracy. Contrarily to Kademlia
that maintains O(log N) buckets for each node where N is the number of nodes, Broose
maintains only two buckets per node allowing the protocol to concentrate on achieving best
accuracy of them.

To allow this, the protocol is based on the De-Brujin topology. Although this topology is
intrisicly asymmetric, the protocol allows efficient update of the buckets of contact informa-
tion by using simultaneously and indifferently two reverse lookup schemes. A lookup allows
any node to locate nodes with IDs close to a destination key by following simultaneously «
paths.

Section Bldescribes the De-Brujin topology and makes an overview of existing distributed
hashtables solutions based on it. Section Bl describes the breakthrough proposed by Kadem-
lia. Section Hl describes the main details of Broose for adapting the De-Brujin topology to
the ambitious goals of Kademlia design.

2 De-Brujin topologies

2.1 The De-Brujin Graph

For any n-bit binary string u, let u[i, j] denote the substring from the ith bit to the jth bit.
For example, u = u[l,n|. The De-Brujin B,, graph (see [3] for an overview) over N = 2"
nodes is defined as follows. Every node u has two successors: u[2,n]0 and u[2,n]1 (one of
these successors may be u itself). This simply defined graph has the property of having
constant in-degree and out-degree 2 and logarithmic diameter n. One can easily find a route
from u to any node v = vy ---vp: w[2,njv; — w3, nlvive — -+ = uln,njuy v — o,
Note that another route can be similarly found by following edges backward. This graph
can be easily generalized to a A = 2° degree graph with log N/log A diameter.
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2.2 De-Brujin Distributed Hashtables Overview

Several propositions [Il B, 2] have been made to adapt the De-Brujin topology in the con-
text of distributed hashtables. They address the problem of constructing a De-Brujin like
topology with a variable number of nodes N. They share some similarities: each node is
supposed to be identified by an n-bit binary string u (typically n = 160) and is supposed to
store all key, values associations for some range of keys I,,. I, is almost always an interval
containing u. For the sake of simplicity, we will identify a node u and its ID.

Koorde [2] defines I, as the keys smaller than u and greater than the preceding ID. (All
IDs are ordered along the cycle of unsigned integers of n bits modulo 2".) For Naor and
Wieder [5], node u must store the keys between u and the next ID. They view the keys
and the IDs as the binary representations of reals in [0,1) (u is associated to 0.uj - - - uy,)
but obtain a very similar definition of I,. (This “continuous approach” allows a very nice
interpretation of the De-Brujin graph where the two predecessors of a node with real ID r
are r/2 and r/2 + 1/2.) In D2B [I], each node u has a label u[1,!] which is a prefix of w.
[ is the smallest index such that the label of v is unique. I, is then defined as the keys k
admitting this label as prefix (k[1,!] = u[1,1]).

We can define I, << 1 as the set of keys k such that 0k[1,n — 1] or 1k[1,n — 1] isin I,,.
The basic idea in the three propositions consist in linking node u to all nodes in charge of
any key in I, << 1. Note that u may have more than 2 successors when the IDs are not
smoothly balanced. Naor and Wieder introduce the “smoothness” p of the IDs distribution
Ilﬁ‘l All nodes have thus degree O(p), however it can be shown that the
average degree is constant. Koorde maintains a constant degree by pointing only towards
the first node whose interval intersects I, << 1. Each node also points to the node with
next ID allowing to find all nodes whose interval intersects I,, << 1 linearly. This results in
a O(log N + p) routing procedure instead of O(log N + log p) as achieved by the two other
propositions.

This smoothness factor p is interesting for analyzing the reliability of the protocol towards
node insertion and deletion. If the IDs are chosen randomly, it is a classical result to show
that p = O(log® N).

Finally, the above propositions can easily be generalized by shifting b at a time to allow
O(log N/b) lookups at the cost of expected degree O(2Y).

as p = MaXy,y

3 Kademlia : a Loose Distributed Hashtable

3.1 Kademlia

Kademlia [4] is a distributed hashtable architecture similar to Pastry [6] allowing a lot of
flexibility with regard to the topology compared to other schemes such as Chord [7] or the
De-Brujin schemes [B) [}, 2] described above. The basic idea is to use a metric such that
any node at distance d from some destination stores in its routing table nodes at distance

INRIA
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roughly d/2. Kademlia uses the xor metric indicating that two IDs are close if they share a
long common prefix.

The main breakthrough of Kademlia is to loosen the rule defining which nodes are in
charge of storing values for some key. This is achieved along with another design goal which
is the rapid population of routing tables. For that reason, a node performing a request
successively contacts all nodes on the route towards the destination instead of using routing.
The basic idea is that requests should allow nodes to populate their routing tables. This
procedure may seem a simple optimization but it allows a major simplification of the scheme:
a node does not have to determine the set of keys it is in charge of. This greatly alleviate
the protocol since this set usually depends on the IDs of other nodes which are close to the
node ID making it highly dynamic when nodes are inserted and deleted.

To allow this, the lookup procedure allows to find the k£ nodes with closest ID to a
requested key. These k nodes will be in charge of storing an information associated with the
key for some period of time. To avoid overcaching, a node stores a key, value association
during a time exponentially inversely proportional to the estimated number of nodes having
an ID closer to the key. (Notice that key, value associations must be re-published regularly.)

Basically, a node u maintains a bucket B; for each prefix u[1,]. Each bucket is a cache
with IP addresses of alive nodes with ID sharing a common prefix with u: v[1,4] = u[1,1].
A lookup consists in iteratively querying a set of nodes for IPs of alive nodes with an ID
close to the requested key. Each node gives its bucket with longest common prefix with the
key. At each iteration, the set is replaced by the nodes closest to the key until the lookup
process comes to a fix point.

A key point of Kademlia is that any node must have an accurate view of the k nodes
with closest ID to its own ID. This insures that the lookup procedure effectively converges
towards the k& nodes with ID closest to the requested key. (This implies a special treatment
of the buckets sharing longest common prefix with the node ID.)

3.2 Bucket accuracy in Kademlia

A nice feature of Kademlia resides in bucket refresh through requests. Each time v contacts
u performing a request, v may refresh its bucket for w (if u replies) and u may refresh its
bucket for v. In other words, both buckets B; of u and v are refreshed where 7 is the length
of the longest common prefix of v and v. We are going to see that requests indeed mainly
refresh buckets with low value of 4.

Suppose that each node performs a request once every T' seconds on average, each time
towards a random key. Now consider how the buckets of some node u are refreshed. The
number of nodes which fall in the range of bucket B; is roughly n; = 25 One of this nodes
will contact u at the jth step of the lookup procedure with probability #"2] where « is the
number of nodes queried in parallel in the lookup procedure, 1/27 is the probability that u
shares j bits with the requested key and 1/n; is the probability that u is chosen among all
nodes that share j bits with the key. B; is thus refreshed at rate O(log N/2¢).
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To cope with this problem, Kademlia includes a refresh procedure for buckets that are
not sufficiently refreshed by requests. Notice however that buckets where great accuracy is
required are the buckets which are less statistically refreshed by requests. On the contrary
we are proposing a scheme with only two buckets allowing to achieve maximal accuracy of
them.

4 Loose Distributed Hashtable with De-Brujin Tolopy

We now propose a loose topology protocol similar to Kademlia functionning with a topology
close to the De-Brujin graph. This protocol is called Broose.

4.1 Distance metric in the De-Brujin topology

To allow a Kademlia like lookup process, we need to define a distance metric between IDs.
However, the circular shifting of bits in the De-Brujin topology makes it less intuitive.
Suppose we know the distance d in number of hops from a node u to a node v storing
information about a key k. The intuition behind the De-Brujin topology is that u[d 4+ 1, n],
v and k will share a common prefix. The closer u is from v, the longer the prefix will be.
We thus define

Dy(u, k) =uld+1,n]® k[1,n — d]

as the d-hops distance from u to k. We have chosen to use the xor operation as Kademlia
for its simplicity but any definition such that Dg(u, k) gets smaller as u[d+1,n] and k[1,n—
d] share a longer prefix would be suitable. More precisely, any distance metric verifying
the triangular inequality and such that for any bits b; and be, dist;(u[2,1]b1,v[2,1]b2) =
O (dist; (u[1,1],v[1,1])) for I < n would be suitable for defining Dg4(u, k) = dist,_q(u[d +
1,n],k[1,n — d]). We will prefer the xor metric for which the distance is multiplied by 2
after shifting rather than the euclidian metric for which it may be multiplied by 4. As
stated in [4], the xor metric verifies the triangular inequality u ® v+ v ® w > u & w since
uPw=(udv)®d(vdw)anda+b>adbfora>0andb>0.

Notice that this definition of Dy(u, k) is not symmetric conversely to the distance used
in Kademlia. This is due to the intrisicly oriented nature of the De-Brujin topology. We
will discuss the implications in Section EE4l

4.2 Routing tables

The main advantage of Broose is to offer an ultimately simple routing table. Each node
u simply stores two buckets S and P. S should contain the possible successors of u and
is composed of the § nodes v with ID closest to u[2,n], i.e. those for which D;(u,v) is
minimal ever seen by v and still alive. P should contain the possible predecessors of u and
is composed of the ¢ nodes v for which D;(v,w) is minimal (those which share a common
prefix with either Ou[l,n] or 1u[l,n]). § is a parameter of the protocol.

INRIA
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P can be split in two sub-buckets Py and P; according to the first bit of the IDs. Let
| B| denote the number node actually stored in a bucket. Notice that it is very unlikely (if
IDs are chosen randomly) that |Py| be much greater or much smaller than |P;|. Indeed, it
follows from Chernoff boundl] that Pr[|Py| < 1] < e=9/16. Similarly, S can be split in two
sub-buckets. Let u[2,1] be the longest common prefix of nodes in S. Define Sy and S; as the
subsets of nodes with prefix u[2,1]0 and u[2,!]1 respectively. Unbalanced bucket avoidance
is discussed later in Section EL8l

4.3 Lookup procedure

To make a lookup for a key k from a node u, one should estimate an upper bound d of the
distance in hops from u to a node storing values for k. A lookup set L is initialized with
L4 = {u} and the following iteration is performed for i = d — 1,...,0. Contact all nodes in
L;+1 and retrieve their S buckets. Let L; be the union of these. If it contains more than
a nodes, keep only the o nodes v that minimize D;(v, k). « is a parameter of the protocol
discussed later. d can be deduced from N since d is roughly log N. See Section for
hints about estimating log N. A better approach is to continuously estimate the maximal
hop distance to keys since half of the keys are at maximal hop distance. Another approach
would be to query for key u with increasing d until u finds its own ID in L.

To enhance P buckets accuracy, all nodes contacted at phase ¢ should be informed of alive
nodes in L;_1. (Alive nodes simply means those that answered here.) (This information can
easily be piggybacked in the request.)

4.4 Reverse lookup procedure

A reverse lookup procedure is similarly defined base on the P buckets. A lookup set L
is initialized with Ly = {u} and the following iteration is performed for ¢ = d — 1,...,0.
Contact all nodes in L;y; and retrieve their P buckets. Let L; be the union of these. If
it contains more than a nodes, keep only the a nodes v that minimize D;(v,k), where
Di(v,k) = v[l,n —i] @ k[i + 1,n] = D;(k,v). To enhance S buckets accuracy, all nodes
contacted at phase i should be informed of alive nodes in L;_;.

Notice that lookups and reverse lookups are complementary: lookups use the S buckets
and contribute to the accuracy of the P buckets whereas reverse lookups use the P buckets
and contribute to the accuracy of the S buckets. Lookups and reverse lookups should be
indifferently used for performing requests.

4.5 Sketch of proof

To prove that the lookup procedure from u for key k succeeds, we show that L; always
contain the ~ closest IDs to k; = u[d — i + 1,d]k[1,n — i] with high probability. This is

1Recall that so-called Chernoff bound says that, the number of successes X (n) during n independent
Bernoulli trials with probability p of success verifies Pr{X(n) < (1 —e€)pn] < e—<’pn/2
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achieved by choosing « = O(logn) and 6 = O(log n) sufficiently large and relying on bucket
accuracy.

Lemma 1 When node IDs are randomly chosen, the number of nodes ot distance less than
clog N from a random ID v with respect to the zor metric is ©(log N) w.h.p. (with high
probability).

This lemma is a direct application of Chernoff bounds since the probability that a random
ID falls at distance less than clog N % from v is clog N % Let X denote the number of

nodes at distance less than clog N % Its mean value E[X] is thus m = clog N. The

Chernoff bounds simply state that Pr[|X —m| > em] < ﬁ with ¢/ = e ¢/3,

According to Lemma [l fix some v = ¢1 logn such that the number of nodes at distance
at most = clogn from a random ID is greater than v w.h.p..

According to Lemma [I fix y = czlogn such that the number of nodes at distance at
most y is lower than v w.h.p.. Finally fix ¢35 > ¢2 + 2¢ and 6 such that the number of nodes
at distance less or equal to y + 2z = c3logn is lower than § w.h.p..

Taking an estimated hop distance d sufficiently large allows to assume that Dg(u, ko) <
x/2 implying Dg_1(u[2,n], k1) < x since Dg_1(u[2,n],
k1) < 2D4-1(u[2,n],ko[2,n]) + 1. Assuming bucket accuracy, the definition of ¢ insures
that Ly will contain the v closest nodes to k; with respect to Dg_1.

Now for i < d—1, let v be one of the v closest nodes to k; with respect to D;. D;(v, k;) < x
w.h.p., implying D;_1(v[2,n],ki+1) < 2z w.h.p.. Any node w among the gamma closest
nodes to k; 1 verifies D;_q(w,k;+1) < y w.h.p. implying that w is at distance at most
y+ 2z from v[2,n]. It is thus in the S bucket of v w.h.p. and will be included in L; ;. This
terminates the proof by recurrence of the correctness of the lookup procedure.

Notice that n, the length in bits of IDs, is a trivial upper bound of log NV, however 30
or 40 is certainly a practical upper bound of log IV allowing a reasonable choice of o = 30
and § = 500. A similar proof could be made for reverse lookup. Notice that the lookup
procedures are quite tolerant to bucket inaccuracies since it is sufficient for the proof to
suppose that the union of buckets retrieved from L; is accurate.

4.6 Avoiding unbalanced ID distribution

One can choose a and § within a factor sufficiently large for making the probability of failure
very low (the probability of failure will tend towards zero as N tends to infinity). However,
this choice limits the acceptable unbalancy in the ID distribution. Typically, the smoothness
p introduced in Section Z2 must stay within O(logn).

Naor and Wieder [B] discuss interesting ways of getting better smoothness. (If the choice
of new IDs can be easily tuned to get better smoothness, the deletion of nodes is more
problematic.) Here, we propose a simple scheme allowing a node to discover that it has
chosen a very popular prefix for its ID and that it should leave the network and join it again
with a new randomly chosen ID.

INRIA
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For that purpose, a node may regularly ask its successors for their P buckets and its
predecessors for their S buckets. Computing the union of all these buckets and keeping the ¢
nodes closest to its ID with regard to Dy it gets the bucket R of its “brothers”. For each bucket
B in S, R,
Py, P1, it computes the length I(B) of the common prefix of all IDs in B. [(B) can be
seen as an estimation of log N. If I(R) is more than loglog N above I(S), [(Py) + 1, or
I(Py) + 1, even after a successive construction of R, then the node detects that the smooth-
ness has reached O(log N) and that it should change its ID. (However, if R contains less
than 6 nodes, the network is still too poorly populated to take such a decision.) Notice that
the probability of such a situation is low and that a node will rarely change its ID.

Neverless, the Broose network is vulnerable to an adversary inserting nodes with unbal-
anced IDs in the purpose of breaking the network.

4.7 Discussion

Each request accurately refreshes either the S buckets or the P buckets of nodes closed to
the key destination. If destinations are chosen randomly, this happens « times per request
interval per node with probability 1/N yielding a refresh period twice longer as the mean
request interval per node.

To keep key, value association close to the nodes with IDs closest to the key with regard
to Dy, these associations should be republished regularly. Typically, if O(N) nodes leave
or enter the network during a period of T seconds, they should be republished O(+/log N)
times per T seconds. To avoid hot spots for popular keys, intermediate nodes should cache
key, value associations: nodes contacted at stage i of a lookup procedure for a store should
keep the association during 7'/2¢ seconds.

The lookup procedure can be accelerated by shifting b bits at a time. The protocol still
remains very simple since the number of buckets remains 2. However, their size ¢ should be
multiplied by 20~

4.8 Summary

Thanks to a De-Brujin approach of the Kademlia functioning, Broose offers ultimately sim-
ple routing tables for achieving a distributed hashtable peer-to-peer system with refresh
frequency of contact information proportional to lookup frequency.
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