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Abstract: We introduce a general static analysis framework to reason about program properties at an infi-
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languages. Based on this instancewise framework, we extend the concept of induction variables to recursive pro-
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Analyse par instances des programmes

Résumé : Nous introduisons un cadre général d’analyse statique afin d’étudier les propriétés des programmes en
un nombre infini de points d’exécution, appelés instances. Ces ensembles infinis d’instances sont représentés sous
la forme de langages rationnels. Sur la base de ce modéle, nous étendons le concept des variables d’induction aux
programmes récursifs. Pour une certaine classe de structures de données dont le domaine est de type monoide,
—ce qui inclut les tableaux et les arbres—, les variables d’induction capturent la valeur exacte des emplacements-
mémoire accédés aux différentes étapes de ’exécution. Cette caractérisation associée a la compilation est calculée
en temps polynomial comme une fonction rationnelle.

Mots-clés : programmes récursifs, analyse par instances, variables d’induction, transducteurs.



RR n° 5117

Instancewise Program Analysis 1
Introduction 1
1.1 Statementwise Analysis. . . . . . . . . . L e e e e 1
1.2 Instancewise Analysis. . . . . . . . . . . L e e e e e e e e e e 2
Control Structures and Execution Traces 3
2.1 Control Structures in the MOGUL Language . . . . .. ... ... ... ... ........... 3
2.2 Interprocedural Control Flow Graph . . . . . . . .. .. .. ... .. . 4
2.3 The Pushdown Trace Automaton . . . . . . . . . . . . i i i i it i e e e e e e 5
2.4 The Trace Grammar . . . . . . . . v v v v i e e e e e e e e e e e e 6
The Instancewise Model 9
3.1 From the Pushdown Trace Automaton to Control Words . . . . . . . . .. . ... ... ...... 9
3.2 From Traces to Control Words . . . . . . . . . . . . e 9
3.3 From the Trace Grammar to Control Words . . . . . . . . . . . . . . . .. . ... ... ...... 10
34 Control Words and Program Termination . . . . . ... ... ... .. ... ... ... ..., 11
3.5 The Control Automaton . . . . . . . . . . . . . e 12
3.6 Instances and Control Words . . . . . . . . . . . . . e e e e e 13
Data Structure Model and Induction Variables 15
4.1 Data Model . . . . . . . . e e e e e e e e e e e e e e e e 15
4.2 Induction Variables . . . . . . . . . . . e e e e e e e e e e e e e 15
Binding Functions 19
5.1 From Instances to Memory Locations . . . . . . . . . . . . . . .. 19
5.2 Bilabels . . . . . . 19
5.3 Building Recurrence Equations . . . . . . . . . . .. 20
Computing Binding Functions 23
6.1 Binding Matrix . . . . . . . . L. e e e 23
6.2 Binding Transducer. . . . . . . . . . . L e e 25
Experiments 27
Conclusion and Perspectives 31



Instancewise Program Analysis 1

Chapter 1

Introduction

Static program analysis aims at the compile-time computation of program properties. Despite tremendous
theoretical progresses and application success stories, this old problem is still a difficult one for two main
reasons.

First of all, general properties of the concrete program semantics are undecidable, and most practical analyses
evaluate conservative approzimations. There are three main paradigms for static analysis [26]: type systems,
data-flow (or constraint-based) analysis and abstract interpretation. Together, they contribute to the formal-
ization, proof, computation and implementation of approximate static analyses and their applications. These
approximate analyses do not capture cases in which exact properties can be evaluated on Turing-incomplete
domain-specific languages — like bounded memory usage in synchronous languages [3] or array dependences on
Fortran loop nests [15].

For a wide area of static analysis problems, there is another, more technical, but probably more important
difficulty: static analyses lack the ability to attach properties at an infinite set of control points. Indeed, program
semantics assigns “meaning” to a finite set of syntactic elements — statements or variables — using inductive
definitions (rules, sequents, etc.). It is very natural to attach static properties to these syntactic elements: e.g.,
constant propagation [1] is interested in computing a property of a variable v at a statement s, asking whether v
has some value v before s executes. For more complex analyses, attaching properties to a finite set of syntactic
elements is not practical. E.g., induction variable recognition [18] captures the value of some variable v at a
statement s as a function f; of the number of times s has been executed. In other words, it captures v as a
function of the execution path itself. Of course, the value of a variable at any stage of the execution is a function
of the initial contents of memory and of the execution path leading to this stage. For complexity reasons, the
execution path may not be recoverable from memory. In the case of induction variables, we may assume the
number of executions of s is recorded as a genuine loop counter. From such a function f, for s, we can discover
the other induction variables using analyses of linear constraints [12].

1.1 Statementwise Analysis.

We use the term statementwise to refer to the classical type systems, data-flow analysis and abstract interpreta-
tion frameworks, that define and compute program properties at each program statement. A typical example is
static analysis by abstract interpretation [11, 9, 10]: it relies on the collecting semantics to operate on a lattice
of abstract properties. This restricts the attachment of properties to a finite set of control points. Few works
addressed the attachment of static properties at a finer grain than syntactic program elements. Refinement of
this coarse grain abstraction involves a previous partitioning [9] of the control points: e.g., polyvariant analysis
distinguishes the context of function calls, and loop unfolding virtually unrolls a loop several times. Dynamic
partitioning [5] integrates partitioning into the analysis itself; but we are not aware of any type-system, ab-
stract interpretation or data-flow analysis allowing the attachment of program properties to a finitely-presented,
unbounded set of control points.

!However, unbounded lattices have long been used to capture abstract properties in statementwise analyses [12, 13].

RR n° 5117



2 Pierre Amaranoff , Albert Cohen , Paul Feautrier

1.2 Instancewise Analysis.

On the other hand, domain-specific approaches to static analysis are able to compute program properties at
an infinite number of control points. The so-called polytope model encompasses most works on analysis and
transformation of the (Turing-incomplete) class of static-control programs [15, 28], roughly defined as nested
loops with affine loop bounds and array accesses. An iteration vector abstracts the runtime control point
corresponding to a given iteration of a statement. Program properties are expressed and computed for each
vector of values of the surrounding loop counters. Instead of iteratively merging data-flow properties, most
analyses in the polytope model use algebraic solvers for the direct computation of symbolic relations: e.g., array
dependence analysis uses integer linear programming [15]. Iteration vectors are quite different from time-stamps
in control point partitioning techniques [5]: they are multidimensional, lexicographically ordered, unbounded,
and constrained by Presburger formula [29)].

First Contribution. We introduce a general static analysis framework for sequential procedural languages.
Within this framework, one may define, abstract and compute program properties at an infinite number of
runtime control points. Our framework is called instancewise and runtime points are further referenced as
instances. We will formally define instances as trace abstractions, understood as iteration vectors extended to
arbitrary recursive programs. The mathematical foundation for instancewise analysis is formal language theory:
rational languages finitely represent infinite set of instances, and instancewise properties may be captured by
rational relations [4]. This paper goes far beyond our previous attempts to extend iteration vectors to recursive
programs, for the analysis of arrays [8, 7, 6, 2] or recursive data structures [16, 6].

Second Contribution. Building on the instancewise framework, we extend the concept of induction variables
to arbitrary recursive programs. The valuation of induction variables is analog to parameter passing in a purely
functional language: each statement is considered as a function, binding and initializing one or more induction
variables. In this paper, we assume not to take the outcome of loop and test predicates into account. Thus, we
will consider a superset of the valid traces for the evaluation of induction variables. We propose two alternative
algorithms for this evaluation. The result of both algorithms for each induction variable is a binding function
mapping instances to the abstract memory locations they access. It is a rational function on the Cartesian
product of two monoids and can be efficiently represented as a rational transducer [4]. This binding functionwill
give an exact result for valid traces, a non sensical one for others.

To focus on the core concepts and contributions, we introduce MoGUL, a language with high-level constructs
for traversing data structures addressed by induction variables in a finitely presented monoid. In a general-
purpose (imperative or functional) language, our technique would require additional information about the shape
of data structures, using dedicated annotations [22, 23, 17] or shape analyses [19, 31]. Despite the generality of
the control structures in MOGUL, as said before, binding functions give exact values for valid traces and this

may be used to derive alias and dependence information of recursive programs with an unprecedented precision
[6, 2].

Organization of the Paper. Chapter 2 describes the control structures and trace semantics of the MoGuL
language. Chapter 3 defines the abstraction of runtime control points into instances. Chapter 4 extends
induction variables to recursive control and data structures. Chapter 5 states the existence of rational binding
functions. Chapter 6 addresses the computation and representation of binding functions as rational transducers.
We consider practical examples in Chapter 7, before we conclude and outline ongoing and future work.

INRIA
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Chapter 2

Control Structures and Execution Traces

We consider a simplified notion of ezecution trace with emphasis on the identification of runtime control points.
For our purpose, a trace is a sequence of symbols called labels that denotes a complete execution of a program.
Each label registers either the beginning of a statement execution or its completion. A trace prefiz is the trace
of a partial execution, given by a prefix of a complete trace. In the remainder, we will consider trace prefixes
instead of the intuitive notion of runtime control point.

Figure 2.1 presents our running example. It features a recursive call to the Toy function, nested in the body
of a for loop, operating on an array A. Thus, there is no simple way to remove the recursion. In this paper, we
will construct a finite-state representation for the infinite set of trace prefizes of Toy, then compute an ezact
finite-state characterization of the elements of A accessed by a given trace prefix.

int A[20]; structure Monoid_int A;
void Toy(int n, int k) { A function Toy(Monoid_int n, Monoid_int k) {
if (k < n) B if (k < n)
{ C {
for (int i=k; i<=n; D for (Monoid_int i=k; i<=n;
i+=2) d i=i.2)
{ E {
A[i] = A[i] + A[n-i]; F A[i] = A[i] + A[n-i] ;
Toy(n, k+1); G Toy(n, k.1);
} }
} }
return
} }

int main() {
Toy (20, 0);
}

H function main() {
I Toy (20, 0);
}

Figure 2.1: Program Toy in C Figure 2.2: Program Toy in MOGUL

2.1 Control Structures in the MOGUL Language

Figure 2.2 gives the MOGUL version of Toy. It abstracts the shape of array A through a monoid type
Monoid_int. Induction variables i and k are bound to values in this monoid. Traversals of A are expressed
through i, k and the monoid operation -. Further explanations about MOGUL data structures and induction
variables are deferred to Chapter 4. We present in Figure 2.3 a simplified version of the MOGUL syntax,
focusing on the control structures.

This is a C-like syntax with some specific concepts. Italic non-terminals are defined elsewhere in the syntax:
elementary_statement covers the usual atomic statements, including assignments, input/output statements,
void statements, etc.; predicate is a boolean expression; 4nit_lZst contains a list of initializations for one or

RR n° 5117



4 Pierre Amaranoff , Alvert Cohen , Paul Feautrier

program = function SD
function program (52)
prog

function == ’function’ ident ’(’ formal_parameter_list ’)’ block (S3)
block = LABEL ’:° ?{’ 4nit_list statement_list ’}’ (S4)
| LABEL ’:’ ’{’ statement_list ’}’ (S5)

statement_list = ¢ (S6)
| LABEL ’:’ statement statement_list SN

statement = elementary_statement ’;’ (S8
| dident *(’ actual_parameter_list ’)’ ’;? (S9)

| ?if’ predicate block ’else’ block (S10)

| for’ ’(’ 4mit_list ’;’ LABEL ’:’ predicate ’;’> LABEL ’:’ translation_list ’)’ block (S11)

| block (512)

Figure 2.3: Simplified MOGUL syntax (control structures)

more loop variables, and translation_list is the associated list of constant translations for those induction
variables; block collects a sequence of statements, possibly defining some induction variables. Every executable
part of a program is labeled, either by hand or by the parser.

2.2 Imnterprocedural Control Flow Graph

push [ !
Toy (20, 0) et O

e . Toy N
B
i=k '
) Did’
i<=n r—  <ic=
B F
o — |A[i] — ALil+A[n-1] | ret@ |A[i] _= A[i]+A[n-i] |
push G - | = FG
- I|¢c
~ pop G d
end i=1i.2 end i=1i.2
Figure 2.4: Interprocedural Control Flow Graph Figure 2.5: Simplified Pushdown Trace Automaton

We start with an intuitive presentation of the trace semantics of a MOGUL program, using the Interproce-
dural Control Flow Graph (ICFG): an extended control flow graph [1] with function call and return nodes. The
ICFG associated to Toy is shown in Figure 2.4.

Each elementary statement, conditional and function call is a node of the ICFG. More specifically:

e one node is associated to each block entry;
e each for loop generates three nodes: initialization (entry), condition (termination), and iteration;

e a return node exists for each function call.

INRIA
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The iteration node follows the last node of the loop block and leads to the condition node. Given a function
call ¢ in the program source, there is an edge in the ICFG from the node associated to ¢ to the corresponding
function body. Moreover, there is an edge from the return node to the statement following the function call in
the source program.

To forbid impossible matchings of function calls and returns, i.e., to preserve context-sensitivity [26], we
provide the ICFG with a control stack [1], see Figure 2.4. The result is the graph of a pushdown automaton. A
complete trace is characterized as the word along a path from the initial node to the end node, the stack being
empty at the latter node. We ignore the outcome of loop and test predicates, see Section 3. Consequently,
some accepted paths correspond to valid execution traces, but others may still take wrong branches. Since we
focus on a static scheme to name runtime control points, our trace semantics will make the same simplifying
assumption and we will consider a superset of the valid traces:

2.3 The Pushdown Trace Automaton

Although MOGUL uses a C syntax, the instancewise framework in Chapter 3 considers each statement as
a call to a function implementing elementary operations, conditional branches and iteration (as in a purely
functional language). We extend the control stack of the ICFG to take these implicit calls into account. The
stack alphabet now holds every statement label. Moreover, each statement is provided an additional label to
separate the implicit function call from the implicit return. If ¢ a label, ¢ corresponds to the beginning of the
execution of a statement, and ¢ indicates its completion. Regarding the control stack, £ pushes ¢ while £ pops /.
An additional state, called return state, is associated to the completion of each statement. The result is called
the pushdown trace automaton and the recognized words are the execution traces.

When all states are considered final, the automaton recognizes all trace prefizes. It also recognizes prefixes
of non-terminating traces in case the program loops indefinitely. We thus exclude non-terminating programs in
the following,.

Figure 2.6 presents the trace pushdown automaton of the Toy program. We exhibit here a prefix of a valid

trace: . .
IABCDOEFF GABCDSEFF GABBAGEGSAIEF

I A
|Main { | |Toy(20, 0) I IToy {I
J

{ B

k<n

In the stack:
C ¢ pushes ¢, while ¢ pops /.

|
o
'
|
@
"
o
ul
S
n |—
=

|
=
=
H
—
I
=
=
.
—
+
=
=
-]
1
-
—

Il } Main Ile—— return | 13}

E===a ==

Figure 2.6: Pushdown Trace Automaton
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6 Pierre Amaranoff , Alvert Cohen , Paul Feautrier

For clarity of exposure and figures relative to the running example and without loss of precision, we use a
simplified representation of the trace pushdown automaton in Figure 2.5: it omits return states, except for Toy
calls, and states associated to block statements and to loop predicates. Now, the previous trace prefix reduces

to: IBDFFGBDFF GBBGdF. We will use this simplified representation of traces in the following.

2.4 The Trace Grammar

After the intuitive presentation above, this chapter gives a formal definition of traces. There is one context-free
trace grammar G p per program P.

1. For each call to a function id, i.e., each derivation of production (59), there is a production schema

C;a 1= Label B;4 Label (2.4.1)

where C;q and B;4 are the respective non-terminals of the function call and body. Label is the terminal
label of the call to function id, and Label marks the end of the statement, here a return statement.

2. For each loop statement s, i.e., each derivation of production (S11), there are four production schemas

Ly, == ¢ | Label, Label, B; O, Label, Label, (2.4.2)

Os == ¢ | Label;j Label, B, Oy Label, Label; (2.4.3)

where the three non-terminals L,, O, and B, correspond to the loop entry, iteration and body, respectively.
Label,, Label, and Label; are terminals, they are the labels of the loop entry, predicate and iteration,
respectively.

3. For each conditional s, i.e., each derivation of production (S10), there are two productions schemas

I, := Label T; Label | Label F; Label (2.4.4)

where the three non-terminals I, T and F correspond to the conditional, then branch and else branch,
respectively. Label is the terminal label of the conditional.

4. For each block s, i.e., each derivation of productions (S4) or (S5), there is a production schema
B, := Label S; ... S, Label (2.4.5)

where the non-terminal B, corresponds to the block and non-terminals S1,...,S, correspond to each
statement in the block. Label is the terminal label of B,.

5. For each elementary statement s, there is a production schema

S, = Label Label (2.4.6)

where Label is the terminal label of statement s.

The axiom of the trace grammar is the non-terminal associated with the block of the main function.

Definition 1 (Trace Language) The set of traces of a program P — called the trace language of P — is the
set of terminal sentences of Gp.

For a given execution trace ¢, runtime control points are sequentially ordered according to the appearance
of statement labels in ¢.

Definition 2 (Sequential Order) The sequential order <., is the strict prefiz order of the trace prefizes. It
is a total order for a given execution trace.

INRIA



Instancewise Program Analysis 7

Calling L, the alphabet of labels, the trace language recognized by Gp is a context-free (a.k.a. algebraic)
subset of the free monoid L}, , and ¢ denotes its empty word. Clearly, the trace language fits the intuition
about program execution and the previous presentation in terms of the interprocedural control flow graph: the
pushdown trace automaton recognizes the trace language.

Grammar Gp generates many terminal sentences that are possible execution sequences for P. These sen-
tences depend on choices between productions (2.4.1) to (2.4.6). In a real execution of P, these choices are
dictated by the outcome of loop and test predicates, which our grammar does not take into account. It is
customary to say that predicates are not interpreted (in the model theory sense), or that P is a program schema
[25]. We are free to select which predicates and operations should be interpreted: e.g., the polytope model
interprets every loop bound and array subscript in number theory [28]. In this paper, we will interpret address
computations in the theory of finitely-presented monoids; everything else will remain uninterpreted.

Eventually, a runtime execution may be represented in the shape of an activation tree [1]: the sequential
execution flow corresponds to the depth-first traversal of the activation tree. This representation is used in
the formal definition of instances. Figure 2.7 shows an activation tree for Toy. We label each arc according to
the target node statement. The trace is obtained while reading the word along the depth-first traversal: each
downward step produces the arc label, and each upward step produces the associated overlined label.

Trace prefix: IBDFFGBDFFGBBGAIFFGBBGdddDBGdF

Figure 2.7: Activation tree

RR n° 5117
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Chapter 3

The Instancewise Model

This chapter is dedicated to the first part of our framework: the abstraction of trace prefizes into control
words, the formal representation of instances. The control word abstraction characterizes an infinite set of
trace prefixes in a tractable, finite-state representation. We present the properties of control words from several
points of view: pushdown trace automata, trace prefixes, activation trees, and MOGUL grammar. This last
insight introduces a control words grammar that generates a superset of control words. We then investigate
the conditions realizing the equivalence of the language generated by the control words grammar and the set of
control words. This chapter ends with the description of the control word language in the form of a finite-state
automaton, a counterpart of the pushdown trace automaton. Finally, we expose one of the main results of this
work, justifying the introduction of control words as the basis for instancewise analysis.

3.1 From the Pushdown Trace Automaton to Control Words

The pushdown trace automaton will help us prove an important property of control words.

Definition 3 (Stack Word Language) The stack word language of a pushdown automaton A is the set of
stack words u such that there exists a state q in A for which the configuration (q,u) is both accessible and
co-accessible — there is an accepting path traversing q with stack word u.

Definition 4 (Control Word) The stack word language of the pushdown trace automaton is called the control
word language. A control word is the sequence of labels of all statements that have begun their execution but
not yet completed it. Any trace prefix has a corresponding control word.

Since the stack word language of a pushdown automaton is rational [30], we have:
Theorem 1 The language of control words is rational.

The activation tree is a convenient representation of control words. When the label of node n is at the top of
the control stack, the control word is the sequence of labels along the branch of n in the activation tree, i.e., the
path from the root to node n [1]. Conversely, a word labeling a branch of the activation tree is a control word.

For example, IBDdF is the control word of trace prefix IBDFFGBDFFGBBGIFFGBBGdddDBGdF in
Figure 2.7.

3.2 From Traces to Control Words

The trace language is a Dyck language [4], i.e., a hierarchical parenthesis language. The restricted Dyck
congruence over L%, is the congruence generated by ¢/ = ¢, for all £ € Lop.! This definition induces a rewriting
rule over L7, , obviously confluent. This rule is the direct transposition of the control stack behavior. Applying
it to any trace prefix p we can associate a minimal word w.

Lemma 1 The control word w associated to the trace prefix p is the shortest element in the class of p modulo
the restricted Dyck congruence.

IThe restricted qualifier means that only o couples are considered, o0 being a nonsensical sub-word for the trace grammar.

RR n° 5117



10 Pierre Amaranoff , Alvert Cohen , Paul Feautrier

Definition 5 (Slimming Function) The slimming function maps each trace prefiz to its associated control
word.

Theorem 2 The set of control words is the quotient set of trace prefizes modulo the restricted Dyck congruence,
and the slimming function is the canonical projection of trace prefixes over control words.

From now on, the restricted Dyck congruence will be called the slimming congruence. The following table
illustrates the effect of the slimming function on a few trace prefixes.

Trace prefix [BDFF GBDF
Control word IBD  GBDF

Trace prefix [BDFF GBDFFGBBGAFF G

Control word IBD _GBD _ _d _G L
Trace prefix IBDFFGBDFFGBBGIFFGBBGdddDBG dF
Control word IBD dF

The slimming function extends Harrison’s NET function, and control words are very similar to his procedure
strings [21]. Harrison introduced these concepts for a statementwise analysis with dynamic partitioning.

3.3 From the Trace Grammar to Control Words

We may also derive a control words grammar from the trace grammar. This grammar significantly differs from
the trace grammar in three ways.

1. Control words contain no overlined labels.

The control stack ignores overlined labels.

2. Each non-terminal is provided an empty production.

A control word is associated to each trace prefiz.

3. If the right-hand side of a production consists of multiple non-terminals, it is replaced by an individual
production for each non-terminal.

Only the last statement of an uncompleted sequence remains in the control stack, i.e., in the control word.

Under these considerations, the productions for the control words grammar are the following, with the same
notations and comments as the trace grammar.

1. For each function call id, i.e., each derivation of production (59), there are two productions

Cijqg == Label Bijy | ¢

2. For each loop statement s, i.e., each derivation of production (S11), there are six productions

L, == Label, Label, B, | Label, Oy | ¢
O, u= Label; Label, B, | Label; Oy | ¢

3. For each conditional s, i.e., each derivation of production (S10), there are three productions

I, == LabelTs | Label Fy | ¢

4. For each block s enclosing n statements, i.e., each derivation of (54) or (S5), there are n + 1 productions

By == Label S; | --- | LabellS, | e

5. For each elementary statement s,

INRIA
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The axiom of this grammar is the block of the main function.
The control words grammar grammar above is right linear,? hence its generated language is rational.

Lemma 2 The language of control words is a subset of the language generated by the control words grammar.

The proof comes from the three above observations that translate the effect of the slimming function. For each
trace grammar derivation, we associate a corresponding derivation of the control words grammar. The control
words grammar generates any stack word corresponding to a path — accepting or not — in the pushdown trace
automaton.

The next chapter will show that the control words grammar only generates control words, assuming the
trace grammar satisfies a termination criterion.

3.4 Control Words and Program Termination

Assuming any incomplete execution can be completed until the termination of the program, stack words corre-
sponding to a path of the pushdown automaton are all stack words of trace prefixes, i.e., control words.

Conversely, if a partial execution has entered a step where the last opened statement can never be completed,
a recursive cycle in the trace derivation cannot be avoided.

Example. Consider the following trace grammar:

S — aAbba B — fCf
A — cBe C — ¢Byg
A — deed

a labels the body of function main and b labels an elementary statement. A is a non-terminal for a conditional
test; function B is called in the then branch, while elementary statement s is executed in the else one. Function
B calls function C' and conversely. Thus, the then branch may never terminate. The corresponding control
words grammar is:

S — dA A — ¢
S — ab B — fC
S — ¢ B — ¢
A — ¢B C — g¢B
A — de C — ¢

This grammar generates ac, thanks to the derivation
S —aA; A—cB; B—«.

However, no trace prefix can be generated by the trace grammar for which the control word is ac, hence ac is
not a control word. To avoid this, we need a criterion that forbids recursive trap cycles. This criterion is defined
through the structure of the trace grammar; we refer to the definition of a reduced grammar [32].

Definition 6 (Reduced Grammar) A reduced grammar is a context-free grammar such that:
1. there is no A — A rule;
2. any grammar symbol occurs in some sentential form (a sentential form is any derivative from the aziom);

3. any non-terminal produces some part of a terminal sentence.

The third rule is the criterion we are looking for: a non-terminal which produces some part of a terminal
sentence is said active. The control words grammar of the program must have only active non-terminals; it is
called an unlooping grammar. In the previous example, B and C' are not active.

2 At most one non-terminal in the right-hand side, and non-terminals are right factors.
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Termination criterion for the trace grammar. Starting from a set of non-terminals N, we recall an
inductive algorithm that determines the set of active non-terminals N’ C N; if N = N’, the grammar is
unlooping [32]. The initial set N{ contains active non-terminals that immediately produce a part of a terminal
sentence; ¢ denotes the set of grammar rules, T is the set of terminals, and m is the cardinal of N.

Algorithm 1
N —{A|A—-aed A aeT*}
Fork=23,....m

N, —N_, U{Ad|A—aec® A ac(TUN,_))"}
IfN, =N, , Vk=m
Then N’ — Nj,

Applied to our example where N = {S, A, B,C}:
N ={A}; Ny ={A, S} Ny=Ny; N'={A S} N#N".

Thanks to Lemma 2, we may state a necessary and sufficient condition for the control words grammar to
only generate control words.

Theorem 3 Let P be a program given by its trace grammar Gp, and let G be the associated control words
grammar. The control words language of P is generated by G'» if and only if Algorithm 1 concludes that Gp s
unlooping.

3.5 The Control Automaton

I All states are final.
0
B 3 A few control words:
DI IBDAF,
3) IBDGBDF,
IBDGBDdG.

@ F
Figure 3.1: Example Control Automaton

We now assume the program satisfies Theorem 3.

It is easy to build a finite-state automaton accepting the language generated by the right-linear control words
grammar, i.e., a finite-state automaton recognizing the language of control words. We call the latter the control
automaton.

Figure 3.1 shows the control automaton for Toy; the control word language is I + IB + IBD(d + GBD)* (e +
F+ G+ GB).

The transformation from traces to control words is a systematic procedure. A similar transformation exists
from the pushdown trace automaton to the control automaton; this is important for the design of efficient
instancewise analysis algorithms (see Chapter 5).

e In the pushdown trace automaton, a sequence of successive statements is a chain of arcs, while, in the
control automaton, each of these statement is linked by an edge from the common enclosing block, see
Figure 3.2. Thus, the control automaton makes no distinction between the sequence and the conditional.

e As in the pushdown automaton for trace prefixes, all states are final.

e Since a return statement closes the corresponding function call and deletes every label relative to it in
the control word, return nodes are not needed anymore.

INRIA
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F F G

Toy (20, k+1)
G

Each statement in a sequence is linked to the enclosing block.

Figure 3.2: Construction of the Control Automaton

3.6 Instances and Control Words

Consider any trace t of a MOGUL program and any trace prefix p of t. The slimming function returns a unique
control word. Conversely, it is easy to see that a given control word may be the abstraction of many trace
prefixes, possibly an infinity. E.g., consider two trace prefixes differing only by the sub-trace of a completed
conditional statement:® their control words are the same.

This chapter will prove that, during any execution of a MOGUL program, the stack that registers the control
word at runtime cannot register twice the same control word (i.e., for two distinct trace prefixes). In others
words, control words characterize runtime control points in a more compact way than trace prefixes. For the
demonstration, we introduce a strict order over control words.

Definition 7 (Lexicographic Order) We first define the partial textual order <j.p over labels. Given s1 and
sg two labels in Lap, s1 <iqp S2 if and only if

e there is a production generated by (2.4.5) in the trace grammar, such as sy is the label of S; and so is the
label of Sj, with 1 <i<j <mn;

e or there is a production generated by (2.4.2) or (2.4.3) such as s is the label of Bs and so is the label of
Os.

We denote by <, the strict lexicographic order over control words induced by <yup.

In other words, <}, is the textual order of appearance of statements within blocks, considering the loop iteration
statement as textually ordered after the loop body.

Lemma 3 The sequential order <., over prefix traces is compatible with the slimming congruence. The lexi-
cographic order <c; is the quotient order induced by <., through the slimming congruence.

The proof takes two steps. First of all, let ¢ be a trace and T its activation tree. The set of all paths in T is
ordered by a strict lexicographic order, <, isomorphic to <jex.

Then, let o be the function mapping any path in 7" to the last label of the path word (accurately speaking
of the control word labeling this path). Given a trace prefix p and the <p ordered sequence {by = ¢, b1, ..., b, }
of all paths in T', the (partial) depth-first traversal of T' until p yields the following word:

dft(p) £ a(bo)a(br)...a(by),

where b, is the branch of p, ¢ < n. Now, the definition of dft(p) is precisely p.
Let p, and p, be two prefixes of ¢, p, being a prefix of p, itself, and write

pq = a(bo)a(br)...alby), pr = a(bg)a(by)...a(by).

We have the following: p; <seq Pr <= by <7 b,. Together with the first step, py <seq Pr <= bg <iex br-
We now come to the formal definition of instances.

Definition 8 (Instance) For a MOGUL program, an instance is a class of trace prefizes modulo the slimming
congruence.

It is fundamental to notice that, in this definition, instances do not depend on any particular execution.
From Lemma 3 and Theorem 2 (the slimming function is the canonical projection of trace prefixes to control
words), we may state the two main properties of control words.

31.e., after both branches have been completed, the first sub-trace denoting the then branch and the other the else one.
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Theorem 4 Given one execution trace of a MOGUL program, trace prefizes are in bijection with control words.
Theorem 5 For a given MOGUL program, instances are in bijection with control words.

Theorem 4 ensures the correspondence between runtime control points and control words. Theorem 5 is just a
rewording of Theorem 2, it states the meaning of control words across multiple executions of a program.

In the following, we will refer to instances or control words interchangeably, without naming a particular
trace prefix representative.
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Chapter 4

Data Structure Model and Induction
Variables

This chapter and the following ones apply instancewise analysis to the ezact characterization of memory locations
accessed by a MOGUL program. For decidability reasons, we will only consider a restricted class of data
structures and addressing schemes:

e data structures do not support destructive updates (deletion of nodes and non-leaf insertions);

¢ addressing data-structures is done through so called induction variables whose only authorized operations
are the initialization to a constant and the associative operation of a monoid.

In this context, we will show that the value of an induction variable at some runtime control point — or the
memory location accessed at this point — only depends on the instance. Exact characterization of induction
variables will be possible at compile-time by means of so-called binding functions from control words to abstract
memory locations (monoid elements), independently of the execution.

4.1 Data Model

To simplify the formalism and exposition, MOGUL data structures with side-effects must be global. This is not
really an issue since any local structure may be “expanded” along the activation tree (e.g., several local lists
may be seen as a global stack of lists).

A finitely-generated monoid M = (G, =) is specified by a finite list of generators G and a congruence = given
by a finite list of equations over words in G*. Elements of M are equivalence classes of words in G* modulo =.
When the congruence is empty, M is a free monoid. The operation of M is the quotient of the concatenation
on the free monoid G* modulo =; it is an associative operation denoted by - with neutral element &,,.

Definition 9 (Abstract Location) A data structure is a pair of a data structure name and a finitely-
generated monoid M = (G,=). An abstract memory location in this data structure is an element of the monoid.
It is represented by an address word in G*. By definition, two congruent address words represent the same
memory location.

Typical examples are the n-ary tree — the free monoid with n generators (with an empty congruence) — and
the n-dimensional array — the free commutative monoid Z" (with vector commutation and inversion). Below
are listed some practical examples of monoid-based data structures.

4.2 Induction Variables

Traditionally, induction variables are scalar variables within loop nests with a tight relationship with the sur-
rounding loop counters [1, 18]. This relationship, deduced from the regularity of the induction variable updates,

1Leaf insertions are harmless if data-structures are implicitly expanded when accessed.
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Free monoid. M
G = {right, left}, = is the identity relation, Tott right
- is the concatenation: monoid elements ad- O/O\O O/O\O

dress a binary tree.

Free group. ~o<__

_ . . 1 -1 . . _
Q = {‘rlght7 left,rlgh.t ,1e.ft }, =is the O. right 1 ot Tight
inversion of 1left and right (without commu- ~~ right
tation): Cayley graphs [14, 20]. /O\ yo\
(0] O (0,—-1) (0]

o~ 061 0.1 0,
Free commutative group. T’ - e —==0= —
. Y—1.0)0:1) 3 (0,1) 3 (0,1) \

G = {(071)7(170)7(07_1)7(_170)}7 = is the (1,0) /( 1,0) by X /
vector inversion and commutation, - is vector Yo \ 3 \

. X X (1,0)],(=1,0) , , ;
addition: a two-dimensional array. o o o
Free commutative monoid. (170)T (0,1) T (0,1) T (0,1) T'
G ={(0,1),(1,0)}, = is vector commutation: T O O (r
a two-dimensional grid. (L, O)O I I I
Commutative monoid. o ; 5 o
G = {(0,1),(1,0)}, = is vector commutation Lo Lo (0,1) (0,1) (0,1)
and (0,1)-(0,1) = €;,: a two-dimensional grid (Lo J.0)
folded on the torus Z x Z. O—= —CoT —=1 O 0
Free partially-commutative monoid. 0 ———0—— =0
G = {next,1,—1}, = is the inversion and ™%\  _——_ _ _——_ __———_ .
commutation of 1: nested trees, lists and ar- nextT o nexs| _ _ _ o
rays. O;\‘O O/ -~ \/\h: =~ =0

ri

Monoid with right-inverse. left — —=¢
G = {right, left,parent}, right - parent = /OW;M pa;e,wo\
€m, left-parent = ¢,,: a tree with backward o= = : R~ o=—- ~==0
edges. o==- )

is a critical information for many analyses (dependence, array region, array bound checking) and optimizations
(strength-reduction, loop transformations, hoisting).

A basic linear induction variable x is assigned (once or more) in a loop, each assignment being in the form
X = corx = x + ¢, where cis a constant known at compile-time. More generally, a variable x is called a linear
induction variable if on every iteration of the surrounding loop, x is added a constant value. This is the case
when assignments to x in the cycle are in the basic form or in the form x = y + ¢, y being another induction
variable. The value of x may then be computed as an affine function of the surrounding loop counters.

MoGUL extensions are twofold:

¢ induction variables are not restricted to arrays but handle all monoid-based data structures;
¢ both loops and recursive function calls are considered.

As a consequence, induction variables represent abstract addresses in data structures, and the basic operation
over induction variables becomes the monoid operation.

Definition 10 (Induction Variable) A wvariable x is an induction variable if and only if the three following
conditions are satisfied:

a. x is defined at a block entry, a for loop initialization, or x is a formal parameter;
b. x is constant in the block, the for loop or the function where it has been defined;
c. the definition of x (according to a) is in one of the forms:

1. x = ¢, and c is a constant known at compile-time,

2. x =y - ¢ and y is an induction variable, possibly equal to x.
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A MoGUL induction variable can be used in different address expressions which reference distinct data
structures, provided these structures are defined over the same monoid. This separation between data structure
and shape follows the approach of the declarative language 81/2 [20]. It is a convenient way to expose more
semantics to the static analyzer, compared with C pointers or variables of product types in ML.

Eventually, the MOGUL syntax is designed such that every variable of a monoid type is an induction
variable, other variables being ignored. The only valid definitions and operations on MOGUL variables are
those satisfying Definition 10. For any monoid shape, data structure accesses follow the C' array syntax: D[a]
denotes element with address a of structure D, where a is in the form x or x - ¢, x an induction variable and ¢
a constant.

If A is an array (i.e., A is addressed in a free commutative group), the affine subscript A[i+2j-1] is not a
valid MOGUL syntax. This is not a real limitation, however, since affine subscripts may be replaced by new
induction variables defined when necessary while i or j are defined. As an illustration, let k be the induction
variable equal to i+2j-1, the subscript in the reference above. We have to build, through a backward motion,
static chains of induction variables from the program start point to the considered reference. Suppose the last
modification of the subscript before the considered program point is given by the statement j= h denoted by
s, where h is another induction variable. We have to define a new induction variable g = i+2h-1, living before
this statement, and to consider that s initializes k through an additional assignment k= g. This work has to be
done recursively for all paths in the control flow graph until reaching the start point.
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Chapter 5

Binding Functions

In MoGUL, the computations on two induction variables in two distinct monoids are completely separate.
Thus, without loss of generality, we suppose that all induction variables belong to a single monoid My, with
operation - and neutral element ¢,,, called the data structure monoid.

5.1 From Instances to Memory Locations

In a purely functional language, function application is the only way to define a variable. In MoGUL, every
statement is handled that way; the scope of a variable is restricted to the statement at the beginning of which
it has been declared, and an induction variable is constant in its scope.

Since overloading of variable names occurs at the beginning of each statement, the value of an induction
variable depends on the runtime control point of interest. Let x be an induction variable, we define the binding
for x as the pair (p, v,), where p is a trace prefix and v, the value of x after executing p.

Consider two trace prefixes p; and p, representative of the same instance. The previous rules guarantee
that all induction variables living right after p; (resp. p2) have been defined in statements not closed yet. Now,
the respective sequences of non-closed statements for p; and p, are identical and equal to the control word of
p1 and ps. Thus the bindings of x for p; and ps are equal. In others words, the function that binds the trace
prefix to the value of x is compatible with the slimming congruence.

Theorem 6 Given an induction variable x in a MOGUL program, the function mapping a trace prefiz p to the
value of x only depends on the instance associated to p, i.e., on the control word.

In other words, given an execution trace, the bindings at any trace prefix are identified by the control word
(i-e., the instance).

Definition 11 (Binding Function) A binding for x is a couple (w,v), where w is a control word and v the
value of x at the instance w.
Ay denotes the binding function for x, mapping control words to the corresponding value of x.

5.2 Bilabels

We now describe the mathematical framework to compute binding functions.

Definition 12 (Bilabel) A bilabel is a pair in the set L%, x Mi,.. The first part of the pair is called the input
label, the second one is called the output label.

B = L}, x M, denotes the set of bilabels. From the direct product of the control word free monoid L, and
the data monoid M, B is provided with a monoid structure: its operation e is defined componentwise on L7}
and Mo,

(afa) o (816) < (apla - ). (5.2.1)

A binding for an induction variable is a bilabel. Every statement updates the binding of induction variables
according to their definitions and scope rules, the corresponding equations will be studied in Chapter 5.3.
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Definition 13 The set of rational subsets of a monoid M is the least set that contains the finite subsets of M,
closed by union, product and the star operation [4].
A rational relation over two monoids M and M’ is a rational subset of the monoid M x M'.

We focus on the family By, of rational subsets of B.

Definition 14 A semiring is a monoid for two binary operations, the “addition” +, which is commutative, and
the “product” x, distributive over +; the neutral element for + is the zero for x.

The powerset of a monoid M is a semiring for union and the operation of M [4]. The set of rational subsets
of M is a sub-semiring of the latter [4]; it can be expressed through the set of rational expressions in M. Thus
B4t is a semiring.

We overload e to denote the product operation in Brag; 0 is the zero element (the empty set of bilabels); and
the neutral element for e is £ = {(g,£,,)}. From now on, we identify By, with the set of rational expressions
in M, and we also identify a singleton with the bilabel inside it: {(s|c)} may be written (s|c).

5.3 Building Recurrence Equations

To compute a finite representation of the binding function for each induction variable, we show that the bindings
can be expressed as a finite number of rational sets. First of all, bindings can be grouped according to the last
executed statement, i.e., the last label of the control word. Next, we build a system of equations in which
unknowns are sets of bindings for induction variable x at state n of the control automaton. Given A,, the
control automaton modified so that n is the unique final state, let £,, be the language recognized by A,. The
binding function for x at state n, A, is the binding function for x restricted to £,,. We also introduce a new
induction variable z, constant and equal to c,,.

The system of equations is a direct translation of the semantics of induction variable definitions; it follows
the syntax of a MOGUL program P; we illustrate each rule on the running example.

1. At the initial state 0 and for any induction variable x,

A =¢ (5.3.1)

E.g., the Toy program involves three induction variables, the loop counter i and the formal parameters k and n.
We will not consider n since it does not subscript any data structure. The output monoid is Z, its neutral element
em is 0.

Ap = A{ = (]0).

2. A denotes the set defined by

z

Ay = (wlem). (5.3.2)

weLy

A7 is the binding function for the new induction variable z restricted to L, ; it is constant and equal to
Em-

For each statement s defining an induction variable x to ¢, (case .1 of Definition 10), and calling d and
a the respective departure and arrival states of s in the control automaton,

A2 D AL o (s]csy). (5.3.3)

Since A? o (s|csy) = Uwer, (wslesx), (5.3.3) means: if w € Lq is a control word, ws is also a control word
and its binding for x is (ws|csx)-

The control automaton automaton of Toy has 5 states. For the case c.1 of Definition 10,
statement I : k = 0, (5.3.4)
and (5.3.3) yields
Ay D Al e(I]0).
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3. For each statement s defining an induction variable x to y - ¢ (case ¢.2 of Definition 10), and d and a the
respective departure and arrival states of s,

A2 D A% e (s|cs). (5.3.5)

X — X

To complete the system, we add for every induction variable x unchanged by s a set of equations in the
form (5.3.5), where cox = €.

E.g., for case c.2 of Definition 10,

statement G : k=k -1 (5.3.6)
statement d : i=1i.2 (5.3.7)
statement D : i=k (5.3.8)
and (5.3.5) yields
Ai 2 AY o (G0) Af D Af e (F|0)
A DAL e (G1) x 2 A3 e (F|0)
A D Al o (B|0) AL D A2 e (I]0)

i 2 Ac o (B|0) Az D A7 e (Gl0)
A? D AZ e (D|0) A2 2 AL e (B0)
AY DAY e (df2) A7 D AZ o (D|0)

2 A e (D)0) A7 D AZ e (d|0)

A D AL e (d]0) Az D A7 e (F|0)

Gathering all equations generated from (5.3.1), (5.3.3) and (5.3.5) yields a system (S) of n, X ns equations
with n, X ns unknowns, where n, is the number of induction variables, including z, and ns the number of
statements in the program.!

Toy yields the system

A =¢ A$ = A} o (d]2) + AZ ¢ (D|0)
o_ ¢ A} =AY« (d]0) + A ¢ (D|0)
Al‘; =& Af = A o (F|0)

Y Ag = A o (F|0)

REE PPN AI; = Az * (G|0) + (1]0)

L= A} e (G1) + (1]0) fe e o

2 __ 1 z — tlz

AZ _Ai T A2 = A2 e (D]0) + A2 o (d|0)
BT e ) A= A3 e (FI0)

Let A be the set of unknowns for (S), i.e., the set of A? for all induction variables x and nodes n in the control
automaton. Let C be the set of constant coefficients in the system. (S) is a left linear system of equations over
(A, C) [30]. Let X; be the unknown in A appearing in the left-hand side of the i*" equation of (S). If + denotes
the union in B;,¢, we may rewrite the system in the form

Vie{l,...,m},X;i=) X;0C;;+R (5.3.9)
j=1

where R; results from the terms A) = £ in right-hand side. Note that C; ; is either () or a bilabel singleton
of Brat. Thus (S) is a strict system, and as such, it has a unique solution [30]; moreover, this solution can be
characterized by a rational expression for each unknown set in A.

Definition 15 (Rational Function) If M and M’ are two monoids, a rational function is a function from
M to M’ whose graph is a rational relation.

We may conclude that the solution of (S) is a characterization of each unknown set X; in A as a rational
function.

Lemma 4 For any induction variable x and node n in the control automaton, the binding function for x
restricted to L, A} is a rational function.

1Some unknown sets correspond to variables that are not bound at the node of interest, they are useless.
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Theorem 7 For any induction variable x, the binding function for x Ay is a rational function.

The Theorem is a corollary of Lemma 4, since the functions A} are defined on disjoint subsets of control words,
partitioned according to the suffix n.

Properties of rational relations and functions are similar to those of rational languages [4]: membership,
inclusion, equality, emptiness and finiteness are decidable, projection on the input or output monoid yields
a rational sub-monoid, and rational relations are closed for union, star, product and inverse morphism, to
cite only the most common properties. The main difference is that they are not closed for complementation
and interchapter, although a useful sub-class of rational relations has this closure property — independently
discovered in [27] and [6]. Since most of these properties are associated with polynomial algorithms, binding
functions can be used in many analyses, see [7, 16, 6, 2| for our previous and ongoing applications to the
automatic parallelization of recursive programs.
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Chapter 6

Computing Binding Functions

This chapter investigates the resolution of (S). Starting from (5.3.9), one may compute the last unknown in
terms of others:

m = O;:m,m(mz_:l X;0Ci;+ Rm). (6.0.1)
i=1

The solution of (S) can be computed by iterating this process analogous to Gaussian elimination. This was the
first proposed algorithm [6]; but Gaussian elimination on non-commutative semirings leads to exponential space
requirements. We propose two alternative methods to compute and represent binding functions effectively. The
first one improves on Gaussian elimination but keeps an exponential complexity; its theoretical interest is to
capture the relations between all induction variables along a single path on the control automaton. If we only
need to represent the computation of induction variables separately from each other, Section 6.2 presents a
polynomial algorithm.

6.1 Binding Matrix

M,at denotes the set Bl of square matrices of dimension m with elements in Bya; Mgt is a semiring for the

induced matrix addition and product and M, is closed by star operation [30]. The neutral element of M.,y is

£ 0
g 51' (6.1.1)

]E:

Practical computation of the transitive closure of a square matrix C' is an inductive process, using the following
block decomposition where a and d are square matrices:

a c¢
<[]
The formula is illustrated by the finite-state automaton in Figure 6.1; its alphabet is constituted of labels
{a,b,c,d} of the block matrices; i and j are the two states, they are both initial and final. If i and j denote
the languages computed iteratively for the two states, and matrix C' represents a linear transformation of
the vector (4,7): (i1,51) = (ioa + job,ioc + jod). We compute the transitive closure of C' as the union of

all words labeling a path terminated in states ¢ or j, respectively, after zero, one, or more applications of C"
(ix, ji) = ((io + jod*b)(a + cd*b)*, (jo + iva*c)(d + ba*c)*). Writing P = (a + c¢d*b)* and Q = (d + ba*c)*,

Y 0 0O (6.1.2)

From (5.3.9), system (S) can be written X = XC + R, where matrix C = (C;;)i<ij<m and vectors
R=(Ry,...,Rn), X =(X1,...,Xm). Vector RC* is the solution of (S), but direct application of (6.1.2) is
still laborious, given the size of C.

C*:{a c]*:{ P d*bp]_
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CO——=0 )

Figure 6.1: Computation of a matrix star

Matrix Automaton
Our solution relies on the sparsity of C: we represent the system of equations in the form of an automaton
A, called the matrix automaton.

The graph of the matrix automaton is the same as the graph of the control automaton. Each statement s is
represented by a unique transition, gathering all information about induction variable updates while executing
s. The binding function for x after statement s, Asx, maps control words ended by s to the value of x. It is
the set of all possible bindings for x after s. A" denotes the binding vector at state n, i.e., the tuple of binding
functions for all induction variables at state n (including z). Conversely, A denotes the binding vector after
statement s, i.e., the tuple of binding functions for all induction variables after executing statement s.

With d the departure state of the transition associated to statement s, we gather the previous linear equations
referring to s and present them in the form:

—
VS € Myag, Ay = A% x . (6.1.3)
As an example, we give the result for statement G of Toy:

Aci = A o (G|0), Ack = A o (G]1), Ag. = A2 e (G|0)

Glo)y 0 0
Ae=Ax| 0 (@ o
0 0 (Glo)

Now, the transition of statement s in A is labeled by the statement matriz S. Thus, A recognizes words
with alphabet in M;,¢: concatenation is the matrix product and words are rational expression in M., hence
elements of M. Grouping equations according to the transitions’ arrival state, we get, for each state a,

—
A= Y A% Su0,Sda € Mras, (6.1.4)
depred(a)

where pred(a) is the set of predecessor states of a and Sy, is the statement matrix associated to the transition
from d to a.
E.g., state number 1 in the matrix automaton of Toy yields

—

A=A+ A=A xI+ A xG.

Theorem 8 Let A0 = (&,...,&) be the binding vector at the beginning of the execution. The binding vector
for any state f can be computed as

A=A L, (6.1.5)

where L is a matriz of regular expressions of bilabels; 1. is computed from the reqular expression associated to
the matriz automaton A, when its unique final state is f.

This result is a corollary of Theorem 7.
Because this method operates on regular expressions, it has a worst-case exponential complexity in the
number of states and induction variables. However, this worst-case behavior is not likely on typical examples.

Application to the Running Example. We now give the statement matrices associated with equatlons
(5.3.4) to (5.3.8). With the three induction variables i, k and z, the binding vector after statement I, A; =
(Ari, Ak, Ar,) and I the statement matrix for I, we have.

A =A0xI, RKp=ATx A—JSP
K~ M xo, Ag—NxG Ap—Nx
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with the following statement matrices:

[ 10 0 0
statement [ : I= o 0 0

0 10 1o

[ Glo 0 0
statement G: G = 0 G0

| 0 0 Glo

[ d2 0 0
statement d: D= 0 do 0

| 0 d|o

[0 0 0
statement D : D= D0 Djo 0

0 ® D|o

The other statements matrices let unchanged the induction variables.

[ Bl0 0 0

statement B: B = g Blo 0
| 0 ¢ BJO

[ Flo 0 0

statement F': F = 0 FlO 0
0 0 Fl0

The resulting matrix automaton is shown in Figure 6.2 (all states are final).

©
I
]B
® e L=1I + IB+ IBD(p+GBD) (E+F+G+GB)
D
@‘ (E is the neutral element of M;,4.)
@ F

Figure 6.2: Example of matrix automaton

6.2 Binding Transducer

We recall a few definitions and results about transducers [4].

Definition 16 A rational transducer is a finite-state automaton where each transition is labeled by a pair of
input and output symbols (borrowing from Definition 12), a symbol being a letter of the alphabet or the empty
word.

A pair of words (u,v) is recognized by a rational transducer if there is a path from an initial to a final state
whose input word is equal to v and output word is equal to v.?

Theorem 9 A rational transducer recognizes a rational relation, and reciprocally.

A transducer offers either a static point of view — as a machine that recognizes pairs of words — or a dynamic
point of view — the machine reads an input word and outputs the set of image words.

The use of transducers lightens the burden of solving a system of regular expressions, but we lose the ability
to capture all induction variables and their relations in a single object. The representation for the binding
function of an induction variable is called the binding transducer.

1Pair of words leads to an equivalent definition.
2A transducer is not reducible to an automaton with bilabels as elementary symbols for its alphabet; as an illustration, two
paths labeled (z|e)(y|z) and (z|z)(y|e) recognize the same pair of words (zy|z).

RR n° 5117



Pierre Amaranoff , Albert Cohen , Paul Feautrier

Algorithm 2
Given the control automaton and a monoid with n, induction variables (including z), the binding transducer
is built as follows:

e For each control automaton state, create a set of n, states, called o product-state; each state of a product-
state is dedicated to a specific induction variable.

e Initial (resp. final) states correspond to the product-states of all initial (resp. final) states of the control
automaton.

e For each statement s, i.e., for each transition (d,a) labeled s in the control automaton; call P* and P® the
corresponding product-states; and create an associated product-transition ts. It is a set of n, transitions,
each one is dedicated to a specific induction variable. We consider again the two cases mentioned in
Definition (10.c).

— case c.1: the transition runs from state PS in P¢ to the state PS in P®. The input label is s, the

output label is the initialization constant c;
— case c¢.2: the transition runs from state Pyd in P? to state P® in P®. The input label is s, the output
label is the constant c.

The binding transducer for Toy is shown in Figure 6.3. Notice that nodes allocated to the virtual induction
variable z are not co-accessible except the initial state (there is no path from them to a final state), and initial
states dedicated to i and k are not co-accessible either. These states are useless, they are trimmed from the
binding transducer.

Figure 6.3: Binding Transducer for Toy

The binding transducer does not directly describe the binding functions. A binding transducer is dedicated to
an induction variable x when its final states are restricted to the states dedicated to x in the final product-states.

Theorem 10 The binding transducer dedicated to an induction variable x recognizes the binding function for
X.

This result is a corollary of Theorem 7.
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Chapter 7

Experiments

The construction of the binding transducer is fully implemented in OCaml. Starting from a MOGUL program,
the analyzer returns the binding transducer according to the choice of monoid. This analyzer is a part of a
more ambitious framework including dependence test algorithms based on the binding transducer [2]. Our
implementation is as generic as the framework for data structure and binding function computation: operations
on automata and transducers are parameterized by the types of state names and transition labels. Graphs of
automata and transducers are drawn by the free dot software [24].

We present two examples processed by our instancewise analyzer of MOGUL programs. The first one
operates on an array, the second one on a tree.

The Pascaline Program Figure 7.1 shows a program to evaluate the binomial coefficients (a line of Pascal’s
triangle). It exhibits both a loop statement and a recursive call, two induction variables I and L plus the
constant induction variable n; x and y are not induction variables. Statement D, x = 1, is an elementary
statement without induction variables: MOGUL simply ignores it. The else branch of the conditional is
empty: it ensures the termination of recursive calls.

Figure 7.2 shows the binding transducer for Pascaline, as generated by the software. The transducer
is drawn by hand to enhance readability, and in complement with the indication of the dedicated induction
variable, we filled each node of the graph with a statement borrowed from the program: the statement is
written in the arrival nodes of the associated transitions. Nodes dedicated to the induction variable n are not
used; they have been trimmed. Notice the use of induction variable z to initialize loop counter I.

The Merge_sort_tree Program Figure 7.3 shows an implementation of the merge sort algorithm, imple-
mented over a binary tree of lists, called Tree. The three functions Split, Merge and Sort are recursive.
Induction variables A, B and C are locations in the tree; they are overloaded and exchanged as formal param-
eters of the three functions. Parameter n of Split is an independent induction variable not used for memory
accesses, and p, q and r are not induction variables. @ denotes the empty word, i.e., the root of the tree.

The binary tree of lists is represented as a ternary tree: next is the field for the first branch, it traverses a
list of integers, the left and right fields traverse the backbone binary tree. At the beginning, the unsorted
list is stored in the next branch of the tree named T'ree. It is split in two halves stored in the left and right
branches. Both these lists are recursively sorted, then merged back in the root node. Figure 7.4 shows the
binding transducer for Merge_sort_tree as drawn by dot [24] from the MOGUL software output. Octogonal
states correspond to the tree references at the elementary statements. These states are useful for the computation
of data dependences. Indeed, from this binding transducer, we developed algorithms to detect that the two
calls to the Sort function (j and k) can be run in parallel [16, 6].

Other sample programs Figure 7.5 summarizes some results about recursive programs we implemented in
MoGUL. The last column of the table gives the number of states in the binding transducer.

Since the first survey of instancewise analyses techniques [6], we discovered many recursive algorithms
suitable for implementation in MOGUL and instancewise dependence analysis. Therefore, it seems that the
program model encompasses many implementations of practical algorithms despite its severe constraints.

Program n-Queens is the classical problem to place n Queens on a nxn chessboard. To_&_fro is the recursive
merge-sort algorithm alternating over two arrays. It is optimized in To_&_fro+Terminal_insert_sort by using
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structure Monoid_int A;

function Pascaline(Monoid_int L, Monoid_int n) {

int x, y;
if (L < n)

x =1;
for (Monoid_int I=1; I<n;
I=I.1)

y = A[I];
AlI] = x + '
x = A[I];
}
Pascaline(L.1, n);
}
}

function Main() {
Pascaline(0, 10);
T

Figure 7.1: Program Pascaline

Figure 7.2: Binding transducer for Pascaline

an insertion sort for the leaves of the recursion (on small intervals of the original array). Sort_3_colors consists
in sorting an array of balls according to one color among three, using only swaps. V1si_test simulates a test-
bed to filter-out good chips from an array of untested ones; the process relies on peer-to-peer test of two chips,

a good chip giving a certified correct answer about the other.
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monoid Monoid_tree [next, left, right]; h  function Merge(Monoid_tree A, Monoid_tree B,
structure Monoid_tree Tree; Monoid_tree C, int p, int q) {
g if ((q !'=0) & ( p = 0 || Tree[B] < Tree[C]))
t function Main() { |4 {
s Sort(@, 37); T Tree[A] = Treel[B];
¥ U Merge(A.next, B.next, C, q-1, p );
T
S  function Split(Monoid_tree A, Monoid_tree B, e else
Monoid_tree C, Monoid_int n) { d {
F if (n>0) c if (p != 0)
B { Y {
A Tree[B] = Treel[A]; w Tree[A] = Treel[C];
} X Merge(A.next, B, C.next, q, p-1);
L if (n>1) }
H { T
G Tree[C] = Tree[A.next]; T
}
R if (n>2) r  function Sort(Monoid_tree T, int r) {
N { q if (r > 1)
M Split(A.next.next, B.next, C.next, n-2); m {
} 3 Split(T, T.left, T.right, r);
} J Sort(T.left, (r+1)/2);
k Sort(T.right, r/2);
l Merge(T, T.left, T.right,(r+1)/2, r/2);
T
T
Figure 7.3: Program Merge_sort_tree
tl@ !
<D
s|l@
re
a.
ae llett
m|l@ !
a,
i | right i| left i@ I right 1] left @
sl@ sl@ sle hie hle hl@\
@ G @D @® @
Ll@ |R|@ | Mlnext [ F|@ |R|@ | M|next [ M|nextnext [ R|@ /F|@ )L|@ |gl@ |U|l@ gl@ | U|next gl@ | U|next
Hl@ \ N|@ Bl@ \ N|@ Nl@ [B|l@ [ HI@ (el@\ VI|@ el@\ Vi@ el@ \ Vi@
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Code name Data structure | Lines | Data references | Loops | Function calls | Transducer nodes
Pascaline 1D array 21 2 1 2 13
Multiplication table 2D array 17 5 1 3 22
n-Queens 1D array 39 2 2 2 27
To_&_fro 1D array 115 12 0 19 164
Merge_sort_tree ternary tree 75 8 0 8 80
To_&_fro+Terminal_insert_sort 1D array 162 17 2 26 195
Sort_3_colors 1D array 80 4 0 11 97
Vlsi_test linked lists 58 2 0 7 97

Figure 7.5: Sample recursive programs applicable to binding function analysis
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Chapter 8

Conclusion and Perspectives

The instancewise paradigm paves the way for better, more precise program analyses. It decouples static analyses
from the program syntax, allowing to evaluate semantic program properties on an infinite set of runtime control
points. This paradigm abstracts runtime execution states (or trace prefixes) in a finitely-presented, infinite set
of control words. Instancewise analysis is also an extension of the domain-specific iteration-vector approach
(the so-called polytope model) to general recursive programs.

As an application of the instancewise framework, we extend the concept of induction variables to recursive
programs. For a restricted class of data structures (including arrays and recursive structures), induction variables
capture the exact memory location accessed at every step of the execution. This compile-time characterization,
called the binding function, is a rational function mapping control words to abstract memory locations. We
give a polynomial algorithm for the computation of binding functions.

Our current work focuses on instancewise alias and dependence analysis, for the automatic parallelization
and optimization of recursive programs [2]. We also look after new benchmark applications and data-structures
to assess the applicability of binding functions; multi-grid and sparse codes are interesting candidates. We would
also like to release a few constraints on the data structures and induction variables, aiming for the computation
of approximate binding functions through abstract interpretation.
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