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Abstract: Static cost models have a hard time coping with hardware components exhibit-
ing complex run-time behaviors, calling for alternative solutions. Iterative optimization is
emerging as a promising research direction, but currently, it is mostly limited to finding
the parameters of program transformations. We want to extend the scope and efficiency of
iterative optimization techniques by searching not only for the appropriate parameters of a
given transformation, but for the program transformations themselves, and especially for
compositions of program transformations.

The purpose of this article is to introduce a framework for easily expressing composi-
tions of program transformations. This framework relies on a unified polyhedral represen-
tation of loops and statements. The key is to clearly separate the impact of each program
transformation on the following three components: the iteration domain, the schedule and
the memory access functions. We show that, within this framework, composing a long se-
quence of program transformations induces no code size explosion. As a result, searching
for compositions of transformations is not hampered by the multiplicity of compositions,
and in many cases, it is equivalent to testing different values for the coefficients of the rep-
resentation matrices. Our techniques have been implemented on top of the Open64/ORC
compiler.

Key-words: iterative optimization, polytope model, loop-restructuring compiler.
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Facliliter l’exploration de compositions de transformations de
programmes

Résumé : Les modèles de coût statiques s’accommodent très difficilement des composants
matériels au comportement dynamique complexe, ce qui suggère des solutions alternatives.
L’optimisation itérative apparaît comme une voie de recherche prometteuse, mais pour
l’instant, elle se limite principalement a la recherche des paramètres des transformations de
programme. Nous voulons étendre l’envergure et l’efficacité des techniques d’optimisation
itérative en recherchant non seulement les paramètres apropriés d’une transformation don-
née, mais aussi les transformations elles mêmes, et particulièrement les compositions de
transformations de programme.

Cet article a pour but d’introduire un cadre général pour exprimer facilement des com-
positions de transformations de programme. Ce cadre général est fondé sur une représenta-
tion polyédrique unifiée des boucles et des instructions. L’idée directrice consiste a séparer
radicalement l’impact de chaque transformation sur les trois composantes suivantes : le do-
maine d’itération, l’ordondancement, et les fonctions d’accès à la mémoire. Nous montrons
que, dans ce cadre général de travail, composer des transformations selon une longue sé-
quence n’induit pas d’explosion de la taille du code. Ainsi, la recherche de compositions
de transformations n’est pas limitée par la multiplicité des compositions, et bien souvent,
elle apparaît comme équivalente a l’essai de différentes valeurs pour les coefficients des
matrices de la représentation. Nos techniques sont implémentées dans l’environnement du
compilateur Open64/ORC.

Mots-clés : optimization itérative, modèle polyédrique, transformation de boucles à la
compilation.
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1 Introduction

Both high-performance and embedded architectures include an increasing number of hard-
ware components with complex run-time behavior, e.g., cache hierarchies (including write
buffers, TLBs, miss address files, L1 and L2 prefetching. . . ), branch predictors, trace cache,
load/store queue speculation, pipeline replays. . . Static cost models have a hard time coping
with such hardware components, calling for alternative solutions. Iterative and feedback-
directed optimizations are emerging as a promising research direction, with several recent
research works [19, 24, 16] suggesting that optimizations based on dynamic information
can better harness complex architectures and can be effectively used in practice [12].

Current approaches to iterative optimizations usually choose a rather small set of trans-
formations, e.g., cache tiling, unrolling and array padding, and focus on finding the best
possible transformation parameters, e.g., tile size, unroll factor and padding size [24] using
parameter search space techniques. However, a recent comparative study of model-based
versus empirical optimizations [36] outlines that many motivations for iterative optimiza-
tion are irrelevant when the proper transformations are not available. Another recent study
[26] also outlines that complex compositions of many distinct transformations can bring
significant performance benefits.

We want to extend the scope and efficiency of iterative optimization techniques by
searching not only for the appropriate parameters of a given program transformation, but
for the program transformations themselves, and especially for compositions of program
transformations; the sequence of program transformations then becomes a set of parame-
ters in the search space, in addition to the program transformations parameters. For that
reason, we need a generic method for expressing program transformations with the follow-
ing properties: (1) allowing the easy composition of program transformations, (2) allowing
compositions of program transformations to be searched in a systematic and practical way.

The ability to search for compositions of program transformations using existing com-
pilers is limited. Compilers can embed a large array of transformations, but they are often
expressed as a collection of adhoc syntactic transformations based on pattern-matching. In
addition, control structures are regenerated after each program transformation, sometimes
making it harder to apply the next transformations. Moreover, compilers follow a rigid or-
dering of phases, so that only short and fixed sequences of program transformations can be
applied [34]. O’Boyle et al. [24] and Cooper et al. [16] have outlined that the ability to
perform long sequences of composed transformations is key to the emergence of iterative
optimization frameworks.

This article introduces a framework for easily expressing and searching compositions
of program transformations. This framework relies on the polyhedral representation of
loops and statements [11]. The key to our framework is to clearly separate the three dif-
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4 Cohen, Girbal & Temam

ferent types of actions performed by program transformations: modification of the iteration
domain (loop bounds and strides), modification of the schedule of the iteration of each indi-
vidual statement, and modification of the memory access functions (array subscripts). For
instance, loop interchange or loop fusion modify the schedule, strip mining and unrolling
modify the iteration domain, and padding or privatization modify the memory access func-
tions. However, current representations of program transformations do not clearly separate
these three types of actions; as a result, the implementation of program transformations
and especially the composition of those is complicated. For instance, current implemen-
tations of loop fusion must include loop bounds and array subscript modifications even
though they are only byproducts of a schedule-oriented program transformation; after ap-
plying loop fusion, target loops are often peeled, increasing code size and making further
optimizations more complex. Within our representation, loop fusion is only expressed as a
schedule transformation, and the modifications of the iteration domain and memory access
functions are implicitly handled. Similarly, a domain-oriented transformation like unrolling
has no impact on the schedule or memory access functions representations; or a memory
access function-oriented transformation like padding has no impact on the schedule or iter-
ation domain representations, thus not conflicting with the later application of skewing or
tiling.

Within that representation, each type of actions is represented in a parameterized way
using three matrices per statement, so that any program transformation is represented as a
set of operations on these matrices. The output of any transformation is a number of state-
ments with a modified matrix triplet, and consequently, the output of any composition of
transformations is again a number of statements with a modified matrix triplet. As a re-
sult, searching for compositions of transformations is not hampered by the multiplicity of
compositions, and in many cases, it is equivalent to testing different values of the matrices
parameters. Besides, with this framework, it should also be possible to find new composi-
tions of transformations for which no static model has yet been developed, either because of
their complex interplay with other transformations, their restricted scope or their possibly
negative impact on performance, e.g., array expansion and speculation [9, 31, 4, 29].

Up to now, such compositions of transformations were only possible for unimodular
transformations [34]. To date, the most thorough application of the polyhedral represen-
tation is the Petit dependence analyzer and loop restructuring tool [17] within the Omega
project [18]. These tools show that most single loop transformations (both unimodular
and non-unimodular) can be modeled as geometric transformations of polyhedra. How-
ever, this representation does not separate the three abovementioned actions induced by
program transformations. As a result, it is not appropriate for complex compositions of
transformations. Because space-time transformations in the polytope model [11, 17] were
aimed at model-based optimizations through operations research algorithms, e.g., linear
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Facilitating the Exploration of Compositions of Program Transformations 5

programming, a black-box approach emerged with no real need for composition sequences.
Although we could have built our new representation on top of Omega and benefit from
the high level abstraction of Presburger arithmetic, we prefered the more focused PolyLib
[21] for its robustness and for the scalability of its algorithms.1 Similarly, we use a code
generation technique suitable to a polyhedral representation that is again significantly more
robust than the code generation proposed in the Omega library [1]. For instance, full bench-
marks have been successfully handled and nests with more than 1700 statements could be
generated with optimal control structures [2].

Note also that previous research works suggest that major potential performance bene-
fits rest with across nests optimizations [22], and that simultaneously considering all loop
nests may be a better iterative optimization strategy [24]. By considering each statement in-
dividually, this framework facilitates the development of complex across loop nest transfor-
mations such as forward substitution and copy propagation. Using precise array data-flow
analyses [9, 5, 35], it is possible to generate compensation code across loop nests automat-
ically, e.g., copy-in/out after privatization. More generally, facilitating across loop nests
optimization is one step towards the general goal of achieving whole program optimization
on a given architecture using iterative optimization.

While our framework is geared toward iterative optimization techniques, it can also fa-
cilitate the implementation of statically driven program transformations in a traditional opti-
mizing compiler. The framework operates at an abstract semantical level to hide the details
of the control structures, rather than on a syntax tree. Consequently, it eases the extension
of existing transformation techniques, allowing per-statement and versatile transformations
that make few assumptions about control structures and loop bounds, e.g., allowing trian-
gular loops and non-convex domains.

This article is organized as follows. Section 2 presents our program and transformation
framework, Section 3 shows how this representation facilitates the composition of transfor-
mations and searching for such compositions, and Section 4 describes the implementation
of our representation and the associated code generation technique in Open64/ORC [25].

2 Separate Polyhedra for Unified Program Transformations

Compared to syntax tree approaches to program transformations, the polytope model is
based on a more specific semantics-based representation of loop nests, abstracting away
many implementation details and relying on the underlying polyhedral tools [10, 21, 1]
to avoiding pattern matching. This semantics-based representation clearly identifies three

1Based on the dual representation of polyhedra and Chernikova’s algorithm, compared to Fourier-Motzkin
in the Omega test.
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6 Cohen, Girbal & Temam

separate components: array access functions — affine functions describing the mapping of
iterations to memory locations — from the iteration domain — a geometrical abstraction of
loop bounds and strides shaping loop structures — and from the affine schedule — another
geometrical abstraction of the ordering of iterations and statements. In addition to classical
characterization of affine schedules, we also separate the description of iteration ordering of
a single statement from inter-statements scheduling. In the following, we will use the term
separation principle to refer to these separation properties. Despite their expressive power
and flexibility, affine schedules and the separation principle seem overlooked in optimizing
compiler approaches.2 Our approach takes the form of a unified representation of program
transformations that separates the three abovementioned components.

For the sake of the explanation, we consider the very simple example of Figure 1: the
three loops can be fused to improve temporal locality of accesses to arrays A and B, and,
assuming A is a local array not used outside the code fragment, it can be replaced with
a scalar a. Figure 2 shows the corresponding optimized code. Both figures also show a
graphical representation of the separate domains, schedules and access functions for the
three statements A, B and C of the original and optimized versions. Notice the middle
loop in Figure 1 has a reduced domain. In this example, optimizations mainly consist in
loop fusions, which only have a visible impact on scheduling. In addition, the domain of
statement A is reduced since the last iteration (1000) is useless, and the access function to
array A disappeared since the array was replaced with a scalar.

Limitations of syntactic representations. We try to optimize this example using modern
loop-restructuring compilers, namely Intel Electron (IA64) and ORC (IA64).3 These com-
pilers classically rely on pattern-matching techniques to look for transformation opportuni-
ties. Those techniques are fairly fragile because previous transformations may break target
patterns of further ones. To better understand the interplay of loop peeling, loop fusion,
scalar promotion and dead-code elimination, we first assume that A is a global (escaping)
array, effectively restricting ourselves to peeling and fusion.

The reduced domain of B has no impact on our framework, which succeeds in fusing
the three loops and yields the code in Figure 3. However, to fuse those loops, syntactic
transformation frameworks require some iterations of the first and third loop to be peeled
and interleaved between the loops. ORC was able to peel the last iteration to only fuse the
first two loops, Figure 4; Electron failed to cope with the unbalanced iteration counts.

Now, because the pattern for loop fusion in ORC only matches consecutive loops, peel-
ing prevents fusion with the third loop, as shown in Figure 4; we checked that neither a

2This is not the case in automatic parallelization [11, 18, 20, 13].
3ORC can produce source code.
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B(1) = 0
do i = 1, 1000

(A) A(i) = ...
do i = 1, 999

(B) B(i+1) = A(i) ...
do i = 1, 1000

(C) C(i) = B(i) ...
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Figure 1: Original program and graphical view of its polyhedral representation

B(1) = 0
do i = 1, 999

(A) a = ...
(B) B(i+1) = a ...
(C) C(i) = ...

C(1000) = B(1000) ...
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Figure 2: Target optimized program and graphical view

B(1) = 0
do i = 1, 999

A(i) = ...
B(i+1) = A(i) ...
C(i) = B(i) ...

A(1000) = ...
C(1000) = B(1000) ...

Figure 3: Fusion of the
three loops

B(1) = 0
do i = 1, 999

A(i) = ...
B(i+1) = A(i) ...

A(1000) = ...
do i = 1, 1000

C(i) = B(i) ...

Figure 4: Peeled iter-
ation prevents fusion

B(1) = 0
do i = 1, 999
a = ...
A(i) = a
B(i+1) = a ...

do i = 1, 1000
C(i) = B(i) ...

Figure 5: Dead co-
de elimination first

B(1) = 0
do i = 1, 999
a = ...
B(i+1) = a ...

do i = 1, 1000
C(i) = B(i) ...

Figure 6: Scalar pr-
omotion first

B(1) = 0
do i = 1, 1000

(A) A(i) = A(1) ...
do i = 1, 999

(B) B(i+1) = A(i) ...
do i = 1, 1000

(C) C(i) = A(i) + B(i)

Figure 7: Advanced exam-
ple

B(1) = 0
do i = 1, 999

A(i) = A(1) ...
B(i+1) = A(i) ...
C(i) = B(i) ...

A(1000) = A(1) ...
C(1000) = A(1000) + B(1000)

Figure 8: Fusion of the three
loops

B(1) = 0
do i = 1, 999

A(i) = A(1) ...
B(i+1) = A(i) ...

A(1000) = A(1) ...
do i = 1, 1000

C(i) = A(i) + B(i)

Figure 9: Peeled dependen-
ces prevent fusion

failed dependence test nor an erroneous evaluation in the cost model may have caused the
problem. Within our transformation framework, it is possible to fuse loops with differ-
ent domains without prior peeling transformations because hoisting of control structures is
delayed until code generation.

Against common belief, pattern matching is not the only limitation to compositions.
Consider the example of Figure 7 which adds two references to the original program, A(1)
in statement (A) and A(i) in statement (C). These references do not compromise the ability
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8 Cohen, Girbal & Temam

to fuse the three loops, as shown in Figure 8. Optimizers based on more advanced rewriting
systems [33] and most non-syntactic representations [23] will still peel an iteration of the
first and last loops. However, peeling the last iteration of the first loop introduces two
dependences that prevent fusion with the third loop: backward motion — flow dependence
on A(1) — and forward motion — anti-dependence on A(i) — of the peeled iteration is
now illegal. Electron cannot cope with this example and ORC yields the partially fused
code in Figure 9, whereas our framework may still fuse the three loops as in Figure 8.

Limitations of phase ordering. To address the issue of transformation composition, com-
pilers come with an ordered set of phases, each phase running some of the compiler opti-
mizations or analyses. This phase ordering has a major drawback: it prevents transforma-
tions to be applied several times, after some other “enabling” transformation has modified
the applicability or adequation of further optimizations. We consider again the example of
Figure 1, and we now assume A is a local array only used to compute B. ORC applies dead-
code elimination before fusion: it tries to eliminate A, but since it is used to compute B, it
fails. Then the compiler fuses the two loops, and scalar promotion replaces A with a scalar,
as shown in Figure 5. It is now obvious that array A can be eliminated but the dead-code
elimination will not be run again. Conversely, if we delayed dead-code elimination until
after loop fusion (and peeling), we would still not fuse with the third loop but we would
eliminate A as well as the peeled iteration, as shown in Figure 6. Clearly, both phase order-
ings lead to sub-optimal results. However, if we compile the code from Figure 5 with ORC
— as if we applied the ORC sequence of transformations twice — array A and the peeled
iteration are eliminated, allowing the compiler to fuse the three loops, eventually reaching
the target optimized program of Figure 2.

These simple examples illustrate the artificial restrictions to transformation composi-
tion and the consequences on permuting or repeating transformations in current syntactic
compilers. Beyond parameter tuning, existing compilation infrastructures may not be very
apropriate for iterative compilation. By design, it is hard to modify either phase ordering
or transformation selection, and it is even harder to get any transformation pattern to match
a significant part of the code after a long sequence of transformations. In addition, given
the complex interplay of the applicability constraints and transformation side-effects, the
structure of the search space is hard to understand.

2.1 Static Control Parts

Let us now define the principles of our unified polyhedral representation. The scope of our
representation are loop nests amenable to an exact representation in the polytope model [27].
In particular, we assume constant strides and affine bounds; affine array substripts are hoped

INRIA



Facilitating the Exploration of Compositions of Program Transformations 9

for but not mandatory; and we do not consider interprocedural analyses and transformations,
pointers and data-dependent control.

Loops are normalized and split in two categories: loops from 1 to some bound expres-
sion with an integer stride, called do loops; other kinds of loops are referred to as while
loops. Within a function body, a Static Control Part (SCoP) is a maximal set of consecu-
tive statements without while loops, where loop bounds and conditionals may only depend
on invariants within this set of statements. These invariants include symbolic constants,
formal function parameters and counters surrounding the SCoP: they are called the global
parameters of the SCoP. This definition is a slight extension of static control nests [11]. We
only consider SCoPs holding at least one loop, and the scope of a program transformation
is always restricted to a given SCoP. An example with several SCoPs is shown in Figure 10,
where the while loop does not belong to a SCoP.

integer x, y, A(N), B(N, 3*N+M-1), D(N), E(N)
do M = 1, 3
...........................................................................................................
x = 0 SCoP 1, two statements
N = M*M no loop: ignored

...........................................................................................................
while (x .le. 100)

...........................................................................................................
do i = 1, N SCoP 2, five statements
A(i) = 0 (S1) parameters: M, N
do j=1, M iterators: k

A(i) = A(i) + B(i,2*i+j+N-1) (S2)
D(1) = 1 (S3)
do k = 3, N, 2
D(k) = 2 * D(k-2) (S4)
E(k) = -A(k) (S5)

...........................................................................................................
do p = 1, 9, 2 SCoP 3, two statements

x = x + A(p) (S6) parameters: M
D(p) = D(p) - x (S7) iterators: p

Figure 10: Decomposition into static control parts

Let us now introduce the formal representation of a SCoP and its elementary trans-
formations. A static control part is a triple (S ,A , igp), where S is the set of consecutive
statements, igp is the vector of global parameters of the SCoP, and A is the set of abstract
arrays involved in the polyhedral representation (most arrays and some scalars). Vector igp

is constant for the SCoP but statically unknown; yet its value is known at runtime, when
entering the SCoP. dgp = dim(igp) denotes the number of global parameters. Each abstract
array A is a pair of an identifier and a shape matrix describing its dimensions.
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10 Cohen, Girbal & Temam

For the second SCoP in Figure 10, S = {S1, . . . ,S5} and igp = {N,M}, and

A = {(A,ΣA),(B,ΣB),(D,ΣD),(E,ΣE),(x,Σx),(y,Σy)};

shape matrices will be described in the next section.

2.2 Domains, Schedules and Access Functions

To implement the separation principle, we need to define the iteration domain, the state-
ments schedule and the memory access functions of array references. We call d S the depth
of statement S, i.e., the number of nested loops enclosing the statement in the SCoP. A
statement S ∈ S is a quadruple (D S,LS,R S,θS), where DS is the dS-dimensional iteration
domain of S, L S and R S denote array references written by S (left-hand side) and read by
S (right-hand side) respectively, and θS is the affine schedule of S, defining the sequential
execution ordering of iterations of S. We will use the second SCoP of Figure 10 to illustrate
these definitions.

In the remainder of this text, the term polyhedron will be used in a broad sense to denote
a convex set of points in a lattice (also called Z-polyhedron or lattice-polyhedron), i.e., a set
of points in a Z vector space bounded by affine inequalities. We will always denote matrices
by capital letters, as opposed to vectors and functions.

Iteration domains. DS is a convex polyhedron defined by matrix ΛS ∈Mn,dS+dS
lv+dgp+1(Z)

such that
i ∈DS ⇐⇒ ∃ilv,ΛS ·

(

i, ilv, igp,1
)t
≥ 0

where ΛS is the matrix defining the domain inequalities; n is the number of inequalities
necessary to define the domain (the number of matrix rows, a priori not limited); dgp was
defined in Section 2.1 as the number of SCoP global parameters; 1 adds a matrix column
to specify the affine component of each domain inequality; and dS

lv is the number of local
variables defined as follows. To represent arbitrary lattice polyhedra, a number d S

lv of local
variables are added, when applicable, to each statement, in order to implement integer
division and modulo operations via affine projection. Consider for instance statement S4 of
the second SCoP in Figure 10: a local variable p, defined by ∃p,k = 3 + 2p, is added to
represent the odd values of k; consequently, dS

lv = 1 (note also that dS = 1 and dgp = 2, see
below).

Note that program statements guarded by non-convex conditionals — such as 1 ≤ i ≤
3∨ i≥ 8 — are split into separate statements with convex domains in the polyhedral repre-
sentation.

INRIA



Facilitating the Exploration of Compositions of Program Transformations 11

The domains of the five statements in the second SCoP are
DS1 = {i | 1≤ i≤ N},
DS2 = {(i, j) | 1≤ i≤ N,1≤ j ≤M},
DS3 = {()} (the zero-dimensional vector),
DS4 = DS5 = {k | 3≤ k ≤ N∧∃p,k = 3+2p}.
For instance, the Λ-matrices for statements S2 and S4 are

ΛS2 =









1 0 0 0 −1
−1 0 1 0 0
0 1 0 0 −1
0 −1 0 1 0









with

∣

∣

∣

∣

∣

∣

i = (i, j)
ilv = ()
igp = (N,M)

ΛS4 =









1 0 0 0 −3
−1 0 1 0 0
1 −2 0 0 −3
−1 2 0 0 3









with

∣

∣

∣

∣

∣

∣

i = (k)
ilv = (p)
igp = (N,M)

In ΛS2 , the first two columns correspond to iterators i, j, the next two columns to the
global parameters N,M and the last column to the affine component; in ΛS4 , the first column
corresponds to iterator k, the second column to variable p, and the next columns as above
(N, M, 1).

Shape matrices and memory access functions. For each abstract array (A,ΣA) in A , ΣA

characterizes an affine function from the global parameters to array dimensions. Formally,
if A is a d-dimensional array, ΣA is a dgp + 1 by d matrix such that ΣA · (igp,1) is the vector
of dimensions of the declaration of A, following the Fortran conventions (column-major
format, 1 is the first index), and assuming scalars are 0-dimensional arrays.

For instance,

ΣA = ΣD = ΣE =
[

0 1 0
]

,ΣB =
[ 0 1 0

1 3 −1

]

,Σx = Σy = [].

LS and R S are sets of (A, f ) pairs, where A is an array variable and f is the access
function mapping iterations in D S to locations in A. The access function f is defined by a
matrix F ∈Mdim(A),dS+dS

lv+dgp+1(Z) such that

f (i) = F ·
(

i, ilv, igp,1
)t

.
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12 Cohen, Girbal & Temam

For instance, L S2 =
{(

A,(i)
)}

and R S2 =
{(

A,(i)
)

,
(

B,(i,2∗ i+ j−N−1)t
)}

, are stored
as

LS2 :
{(

A,
[

1 0 0 0 0
])}

R S2 :
{(

A,
[

1 0 0 0 0
])

,
(

B,
[ 1 0 0 0 0

2 1 1 0 −1

])}

with i = (i, j), ilv = () and igp = (N,M).
Since SCoPs may contain non-affine array subscripts, access functions do not describe

all array references in general; non-affine ones must be handled conservatively in static
analyses [5, 35, 29].

Affine schedules. θS is the affine schedule of S; it maps iterations in D S to multidimen-
sional time stamps, i.e., logical execution dates. Multidimensional time stamps are com-
pared through the lexicographic ordering over vectors, denoted by �: iteration i of S is
executed before iteration i′ of S′ if and only if θS(i)� θS′(i′).

θS is defined by a matrix ΘS ∈M2dS+1,dS+dgp+1(Z) such that

θS(i) = ΘS ·
(

i, igp,1
)t

.

Notice ΘS does not involve local variables, since they would be redundant with the
iterators they are related to. Notice also that the number of rows is 2d S +1 instead of dS. To
define the relative ordering of statements across iterations at depth k, we need d S dimensions
(recall dS is the number of nested loops enclosing statement S in the SCoP); we also need to
define the relative ordering of statements within each iteration, i.e., we need an additional
dimension for each depth plus depth 0, hence the 2dS +1. This encoding was first proposed
by Feautrier [11] and used extensively by Kelly and Pugh [17].

The schedule matrix is decomposed in a form amenable to transformation composition
and code generation; it consists of three sub-matrices: a square iteration ordering matrix
AS ∈ MdS,dS(Z) operating on iteration vectors, a statement ordering vector βS ∈ N

dS+1,
and ΓS ∈ MdS,dgp+1(Z) called a parameterization matrix. The structure of the schedule

matrix ΘS is shown below. The AS
i, j coefficients capture the iteration order of statement S

with respect to its surrounding loop counters. The βS
i coefficients specify the ordering of S

among all other statements executed at the same iteration; the first row of ΘS corresponds to
depth 0, the outermost level.4 The ΓS

i, j coefficients are added to extend the nature of possible
transformations, allowing iteration advances and delays by constant or parametric amounts
(an example using Γ is presented in Section 3.2).

4Notice the first component of β is numbered β0.
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ΘS =

























0 · · · 0 0 · · · 0 βS
0

AS
1,1 · · · AS

1,dS ΓS
1,1 · · · ΓS

1,dgp
ΓS

1,dgp+1

0 · · · 0 0 · · · 0 βS
1

AS
2,1 · · · AS

2,dS ΓS
2,1 · · · ΓS

2,dgp
ΓS

2,dgp+1
...

. . .
... 0

. . . 0
...

AS
dS,1 · · · AS

dS,dS ΓS
dS,1 · · · ΓS

dS,dgp
ΓS

dS,dgp+1

0 · · · 0 0 · · · 0 βS
dS

























(1)

Consider again statement S2 in the second SCoP of the example in Figure 10, matrix
ΘS2 splits into

AS2 =

[

1 0
0 1

]

,βS2 =





0
1
0



 ,ΓS2 =

[

0 0 0
0 0 0

]

Coefficients in A indicate that statement S2 is executed every iteration (i, j); the β coef-
ficients indicate the relative ordering of S2 among all instructions executed at this iteration;
Γ can be null as in the above example, it is only used for transformations, see Section 3.2.
Thus, the Θ-matrix for S2 is:

ΘS2 =













0 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 0 0













with

∣

∣

∣

∣

∣

∣

i = (i, j)
ilv = ()
igp = (N,M)

and the corresponding schedule is θS2(i) = (0, i,1, j,0) The schedules of the other state-
ments of this SCoP are: θS1(i) = (0, i,0)t , θS2(i) = (0, i,1, j,0), θS3(i) = (1), θS4(i) =
(2,k,0), θS5(i) = (2,k,1).

2.3 Enforcing Proper Program Representation

With the above framework, a given program can have multiple representations, and that, in
turn, can limit the application of transformations. For instance, consider statements B and

C in the first two loops of Figure 1; their β vectors are respectively βB =

[

2
0

]

and βC =
[

3
0

]

. Now, if we had used βC =

[

4
0

]

instead, the schedule would be strictly identical
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14 Cohen, Girbal & Temam

since the loop of statement C is still scheduled after the loop of statement B, however there
is now a gap between the depth-0 coefficients of statements B and C. A condition for the
application of fusion is that the target statements must be consecutive; otherwise, if there
is a statement in between, either it can prevent fusion because of dependences, or at least,
it is necessary to first decide where to move it. Consequently, in the above example, it is
necessary to “normalize” the β vector in order to forbid such gaps. Such normalization
conditions are called invariants. Besides avoiding useless composition prohibitions, these
invariants also serve to avoid matrix parameters overflow. The different invariants are listed
below.

Schedule density. The purpose of this invariant is to ensure that all statements at an iden-
tical depth have a consecutive β ordering (no gap). As a side-effect, this invariant also serves
to avoid integer overflows on the β parameters:

βS
k > 0⇒∃S′ ∈ S ,pfx(βS,k) = pfx(βS′ ,k)∧βS′

k = βS
k −1, (2)

where pfx(βS,k) denotes the k first dimensions of vector βS; the condition states that, for
any non-null β parameter at dimension k, there necessarily exists another statement S ′ with
the same k-prefix and the preceding value at dimension k.

Domain parameters. The purpose of this invariant is to avoid redundant inequalities and
integer overflows in the domain matrix ΛS parameters. For that purpose, we impose that the
coefficients in a row of ΛS are always relatively prime:

∀1≤ i≤ dS,gcd(Λi,1, . . . ,Λi,dgp+1) = 1. (3)

Since these parameters are only used in the inequality ΛS
(

i, ilv, igp,1
)t
≥ 0 (see previous

section), factoring a parameter has no effect on the domain definition.

Sequentiality. The sequentiality invariant states that two distinct statements, or two iden-
tical statements in distinct iterations, cannot have the same time stamp:

S 6= S′∨ i 6= i′⇒ θS(i) 6= θS′(i′). (4)

A sufficient (though not necessary) condition to enforce that property is the following

|det(AS)|= 1, i.e., AS is unimodular, and S 6= S′⇒ βS 6= βS′ . (5)

INRIA
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2.4 Constructors

In our framework, program transformations will take the form of a set of elementary oper-
ations on the different matrices and vectors describing each statement in a SCoP. We first
define the different elementary operations called constructors, and in the next section, we
explain how to implement program transformations using these constructors.

Many matrix operations consist in adding or removing a row or column. Given a vector
v and matrix M with dim(v) columns and at least i rows, AddRow(M, i,v) inserts a new row
at position i in M and fills it with the value of vector v, whereas RemRow(M, i) does the
opposite transformation. Analogous constructors exist for columns, AddCol(M, j,v) inserts
a new column at position j in M and fills it with vector v, whereas RemCol(M, j) undoes
the insertion. AddRow and RemRow are extended to operate on vectors.

Moving a statement S is also a common operation. It only impacts the statement order-
ing vector βS′ of some statements S′. Forward or backward movement of S at depth ` trig-
gers the same movement on every subsequent statement S′ at depth ` such that pfx(βS′ , `) =
pfx(βS, `), where pfx(v,n) returns a length-n prefix of v (the vector built from its n first
components). Although rather intuitive, the following definition with prefixed blocks of
statements is fairly technical. Consider a SCoP S , a statement ordering prefix P defining the
depth at which statements should be moved, a statement ordering prefix Q — prefixed by P
— marking the initial time-stamp of statements to be moved, and an offset o; o is the value
to be added/subtracted to the component at depth dim(P) of any statement ordering vector
βS prefixed by P and following Q. The move constructor Move(P,Q,o) leaves all statements
unchanged except those satisfying the following conditions:

∀S ∈ S ,Pv βS∧ (Q� βS∨Qv βS) : βS
dim(P)← βS

dim(P) +o, (6)

where uv w denotes that u is a prefix of v. If o is positive, Move(P,Q,o) inserts o free slots
before all statements S sharing the same prefix P and preceded by the statement ordering
prefix Q, at the depth of P. Respectively, if o is negative, Move(P,Q,o) deletes −o slots.
Notice these constructors make no assumption about the representation invariants and may
violate them.

2.5 Primitives

From the earlier constructors, we will now define transformation primitives that enforce
the invariants and serve as building blocks for higher level transformation sequences. Most
primitives correspond to simple polyhedral operations. Figure 11 lists the main primitives
affecting the polyhedral representation of a statement.5 This figure uses the following nota-

5Many of these primitives can be extended to blocks of statements sharing a common statement ordering
prefix (like the fusion and split primitives).
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16 Cohen, Girbal & Temam

Syntax Prerequisites Effect

UNIMODULAR(S,U,V) U ∈MdS,dS (Z) AS← U.AS.V
∧|det(U)|= |det(V)|= 1

SHIFT(S,M) M ∈MdS,dgp+1(Z) ΓS← ΓS +M

PAD(A,M) M ∈Mdim(A),dgp+1(Z) ΣA← ΣA +M

CUTDOMAIN(S,c) dim(c) = dS +dS
lv +dgp +1 ΛS← AddRow

(

ΛS,0,c/gcd(c1, . . . ,cdS+dS
lv+dgp+1)

)

INSERT(S, `) `≤ dS ∧βS
`+1 = · · · = βS

dS = 0 P = pfx(βS, `); S ← Move(P,(P,βS
` ),1)∪S

∧
(

∃S′ ∈ S ,pfx(βS, `+1)v βS′

∨ (pfx(βS, `),βS
` −1)v βS′

)

DELETE(S) P = pfx(βS,dS); S ← Move(P,(P,βS
dS ),−1)\S

EXTEND(S, `) dS← dS +1; ΛS← AddCol(ΛS, `,0);
AS← AddRow(AddCol(AS, `,0), `,1`);
βS← AddRow(βS, `,0); ΓS← AddRow(ΓS, `,0);
∀(A,F) ∈ LS ∪R S,F← AddRow(F, `,0)

ADDLOCALVAR(S) dS
lv← dS

lv +1;
ΛS← AddCol(ΛS,dS +1,0);
∀(A,F) ∈ LS ∪R S,F← AddCol(F,dS +1,0)

PRIVATIZE(A, `,s) dim(A)← dim(A)+1; ΣA← AddRow(ΣA, `,s);
∀S ∈ S ,∀(A,F) ∈ LS ∪R S;
F← AddRow(F, `,1`)

CONTRACT(A, `) dim(A)← dim(A)−1; ΣA← RemRow(ΣA, `);
∀S ∈ S ,∀(A,F) ∈ LS ∪R S;
F← RemRow(F, `)

FUSE(P,o) b = max{βS
dim(P)+1 | (P,o)v βS}+1;

Move((P,o+1),(P,o+1),b); Move(P,(P,o+1),−1)
SPLIT(P,o,b) Move(P,(P,o,b),1); Move((P,o+1),(P,o+1),−b)

Figure 11: Main transformation primitives

tions: 1k denotes the vector filled with zeros but element k set to 1, i.e., (0, . . . ,0,1,0, . . . ,0);
likewise, 1i, j denotes the matrix filled with zeros but element (i, j) set to 1.

Each primitive may have a few prerequisites; they capture the minimal requirements
on the primitive’s parameters to preserve the structure of the polyhedral representation,
including the invariants.

UNIMODULAR implements any per-statement unimodular transformation, extended to
arbitrary iteration domains and loop nesting. U and V denote unimodular matrices. The
prerequisites enforce that both matrices are dS-dimensional and unimodular.

SHIFT is a kind of source-level hierarchical software pipeline, extended with parametric
forward/backward iteration shifts, e.g., to delay a statement by N iterations of one surround-
ing loop. Matrix M implements the parameterized shift of the affine schedule of a statement.
M must have the same dimension as Γ.

PAD implements array padding. Matrix M allows fine-grain updates of each dimension
of the array, adding an arbitrary affine expression of the global parameters. M must have
the same dimension as ΣA
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Facilitating the Exploration of Compositions of Program Transformations 17

CUTDOMAIN constrains the domain with an additional inequality, given in the form of
a vector c with the same dimension as a row of matrix Γ.

INSERT and DELETE are the simplest statement creation and removal primitives. These
primitives enforce representation invariants through careful allocation or deallocation of
free slots in statement ordering vectors, thanks to the Move constructor. INSERT requires
that the new statement ordering vector immediately precedes or follows an existing prefix
and ` denotes the depth of the insertion.

EXTEND inserts a new intermediate loop level at depth `, initially restricted to a single
iteration.

ADDLOCALVAR creates a new local variable, initially not used. This local variable is
typically used in following CUTDOMAIN primitives.

PRIVATIZE and CONTRACT implement basic forms of array privatization and contrac-
tion, respectively, considering dimension ` of the array. Privatization needs an additional
parameter s, the size of the additional dimension; s is required to update the array decla-
ration and cannot be inferred in general, because some array references may not be affine.
These primitives are simple examples updating the data layout and array access functions.

FUSE and SPLIT best illustrate the benefit of designing loop transformations at the ab-
stract semantical level of our unified polyhedral representation. First of all, loop bounds
are not an issue since the code generator will handle any overlapping of iteration domains.
Next, these primitives do not directly operate on loops, but consider prefixes P of statement
ordering vectors; they have no prerequisite and may virtually be composed with any pos-
sible transformation. For the split primitive, vector (P,o) prefixes all statements concerned
by the split; and parameter b indicates the position where statement delaying should occur.
For the fusion primitive, vector (P,o+1) prefixes all statements that should be interleaved
with statements prefixed by (P,o). Eventually, notice that fusion followed by split (with the
appropriate value of b) leaves the SCoP unchanged.

Although this table is not complete, it demonstrates the expressivity of the unified rep-
resentation through classical control and data transformations.

In addition to the prerequisites in Figure 11, we have specified a number of optional
validity prerequisites that check for the semantical soundess of the transformation, e.g.,
there are validity prerequisites to check that no dependence is violated by a unimodular
or array contraction transformation. When exploring the space of possible transformation
sequences, such validity prerequisites avoid loosing time on useless transformations.

Note about data layout transformations. Because the liveness of array identifier may
escape the current SCoP, each update to array dimensions (e.g., through padding or pri-
vatization) should be made consistent with the rest of the program. Although we did not
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18 Cohen, Girbal & Temam

address this issue yet, it is always possible to insert copy-in and/or copy-out code automat-
ically [32, 7].

Defining program transformations using primitives. Let us for instance define two sim-
ple transformations, strip-mining and interchange, using primitives. INTERCHANGE(S,o)
swaps the roles of io and io+1 in the schedule of S; it is a per-statement extension of the
classical interchange making no assumption about the shape of the iteration domain. The
formal definition of INTERCHANGE is provided in Figure 12. STRIPMINE(S,o,k) — where
k is a known integer — introduces a new iterator to unroll k times the schedule and iteration
domain of S at depth o. This transformation is a sequence of six primitives, see Figure 12.
Finally, we can define two-dimensional tiling by composing strip-mining and interchange:
TILE(S,o,k) tiles the loops at depth o and o+1 with k× k blocks, see Figure 12.

Syntax Prerequisites Effect Comments

INTERCHANGE(S,o) o < dS V = IdS −1o,o−1o+1,o+1 +1o,o+1 +1o+1,o swap rows
S← UNIMODULAR(S,IdS ,V) o and o+1

STRIPMINE(S,o,k) o≤ dS S← EXTEND(S,o); insert intermediate loop level
∧ k > 0 S← ADDLOCALVAR(S); insert local variable

p = dS +1; u = dS +dS
lv +dgp +1; constant and local variables

S← CUTDOMAIN(S,1o+1−1o); io ≤ io+1
S← CUTDOMAIN(S,1o−1o+1 +(k−1)1u); io+1 ≤ io + k−1
S← CUTDOMAIN(S,1o−1p); k× p≤ ii
S← CUTDOMAIN(S,1p−1o); ii≤ k× p

TILE(S,o,k) o < dS S← STRIPMINE(S,o,k); strip outer loop
∧ k > 0 S← STRIPMINE(S,o+2,k); strip inner loop

S← INTERCHANGE(S,o+1); interchange in the middle

Figure 12: Composition of transformation primitives

3 Compositions of Transformations

When composing long sequences of program transformations, the code ultimately gener-
ated by our framework will not necessarily be simpler than the code obtained after the same
sequence of syntactic program transformations. The main asset of our framework is to
completely hide the code complexity induced by long sequences of program transforma-
tions until the very end, i.e., the code generation. At intermediate steps, the complexity of
the code representation within our framework remains fairly low, i.e., it only depends on
the number of statements with a matrix triplet per statement; using syntactic program trans-
formations, the code complexity may increase at each intermediate step, sometimes even
preventing further optimizations as illustrated in Section 2.
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3.1 Controling Code Complexity

With a simple example, let us compare how the code complexity may evolve at interme-
diate steps within a sequence of program transformations using our framework and using
syntactic program transformations.

Composing transformations without code size explosion. The example in Figure 13
performs two matrix-vector multiplications, yielding D =t BEC (typical of quadratic form
computations), where arrays B and E store M×N rectangular matrices. The left-hand side of
this figure displays the code in a typical syntactic transformation framework; the right-hand
side displays our polyhedral representation.

We apply a sequence of three transformations to this program The result of the first
transformation is shown in Figure 14; the loops in the first nest are interchanged to optimize
spatial locality of array B.6. The second transformation is shown in Figure 15; it fuses the
two nests to improve temporal locality on array A. The result of the third transformation is
shown in Figure 16; it advances the assignments to A by 4 iterations to increase instruction-
level parallelism and cover the latency of floating-point multiplications.

In our framework, this sequence of transformations corresponds to the following primi-
tives:

INTERCHANGE
(

S1,1
)

; FUSE
(

(),0
)

; SHIFT
(

S1,

[

0 0 0
0 0 −4

]

)

.

and as shown in Figure 16, it does not complicate the program intermediate representation.
Based on the final polyhedral representation, the code generation phase will generate

control-optimized code quite similar to the hand-optimized version (both shown in Fig-
ure 16), and without sacrificing efficiency in redundant guards or lost iterations.

do i = 1, M
do j = 1, N

(S1) A(i) += B(i,j)*C(j)
do k = 1, M

do l = 1, N
(S2) D(k) += E(l,k)*A(l)

DS1 = {i, j | 1≤ i≤M ; 1≤ j ≤ N}

AS1 =

[

1 0
0 1

]

,ΓS1 =

[

0 0 0
0 0 0

]

,βS1 =





0
0
0





LS1 =
(

A,
[

1 0 0 0 0
])

DS2 = {k, l | 1≤ k ≤M ; 1≤ l ≤ N}

AS2 =

[

1 0
0 1

]

,ΓS2 =

[

0 0 0
0 0 0

]

,βS2 =





1
0
0





LS2 =
(

B,
[

1 0 0 0 0
])

Figure 13: Original code and its representation

6E is already traversed in column-major order
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do j = 1, N
do i = 1, M

A(i) += B(i,j)*C(j)
do k = 1, M

do l = 1, N
D(k) += E(l,k)*A(l)

DS1 = {i, j | 1≤ i≤M ; 1≤ j ≤ N}

AS1 =

[

0 1
1 0

]

,ΓS1 =

[

0 0 0
0 0 0

]

,βS1 =





0
0
0





LS1 =
(

A,
[

1 0 0 0 0
])

DS2 = {k, l | 1≤ k ≤M ; 1≤ l ≤ N}

AS2 =

[

1 0
0 1

]

,ΓS2 =

[

0 0 0
0 0 0

]

,βS2 =





1
0
0





LS2 =
(

B,
[

1 0 0 0 0
])

Figure 14: After interchange

MN = min(M,N)
do x = 1, MN

do y = 1, MN
A(y) += B(y,x)*C(x)
D(x) += E(y,x)*A(y)

do y = MN+1, M
A(y) += B(y,x)*C(x)
D(y) += E(y,x)*A(y)

do x = MN+1, N
do y = 1, MN

A(y) += B(y,x)*C(x)
D(y) += E(y,x)*A(y)

DS1 = {i, j | 1≤ i≤M ; 1≤ j ≤ N}

AS1 =

[

0 1
1 0

]

,ΓS1 =

[

0 0 0
0 0 0

]

,βS1 =





0
0
0





LS1 =
(

A,
[

1 0 0 0 0
])

DS2 = {k, l | 1≤ k ≤M ; 1≤ l ≤ N}

AS2 =

[

1 0
0 1

]

,ΓS2 =

[

0 0 0
0 0 0

]

,βS2 =





0
0
1





LS2 =
(

B,
[

1 0 0 0 0
])

Figure 15: After fusion

More about code size. With syntactic program transformations, code complexity is due
— in a large part — to control optimizations (hoisting of conditionals, unrolling) which
do not affect the complexity of our representation. This is a major difference with the
simpler polyhedral representations used in HPF compilers (to implement data distribution
and generate communications) or MARS [23], where domain and schedule information are
mixed together. When applying transformation sequences in our framework, schedule and
domain updates are independent and the final imperative code generation phase takes care
of producing a control-efficient loop nest; see Section 4.1. For instance, loop unrolling is
done in a lazy fashion: we perform strip-mining instead, delaying the proper unrolling to
the code generation phase. Separate transformations of the virtually unrolled iterations are
still possible.
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MN = min(M-4,N)
do x = 1, MN

A(1) += B(1,x)*C(x)
A(2) += B(2,x)*C(x)
A(3) += B(3,x)*C(x)
A(4) += B(4,x)*C(x)
do y = 1, MN

A(y+4) += B(y+4,x)*C(x)
D(x) += E(y,x)*A(y)

D(x) += E(MN-3,x)*A(MN-3)
D(x) += E(MN-2,x)*A(MN-2)
D(x) += E(MN-1,x)*A(MN-1)
D(x) += E(MN,x)*A(MN)
do y = MN+1, M-4

A(y+4) += B(y+4,x)*C(x)
D(y) += E(y,x)*A(y)

D(M-3) += E(MN-3,x)*A(MN-3)
D(M-2) += E(MN-2,x)*A(MN-2)
D(M-1) += E(MN-1,x)*A(MN-1)
D(M) += E(MN,x)*A(MN)

do x = MN+1, N
A(1) += B(1,x)*C(x)
A(2) += B(2,x)*C(x)
A(3) += B(3,x)*C(x)
A(4) += B(4,x)*C(x)
do y = 1, M-4

A(y+4) += B(y+4,x)*C(x)
D(y) += E(y,x)*A(y)

D(M-3) += E(MN-3,M-3)*A(MN-3)
D(M-2) += E(MN-2,M-2)*A(MN-2)
D(M-1) += E(MN-1,M-1)*A(MN-1)
D(M) += E(MN,M)*A(MN)

DS1 = {i, j | 1≤ i≤M ; 1≤ j ≤ N}

AS1 =

[

0 1
1 0

]

,ΓS1 =

[

0 0 0
0 0 -4

]

,βS1 =





0
0
0





LS1 =
(

A,
[

1 0 0 0 0
])

DS2 = {k, l | 1≤ k ≤M ; 1≤ l ≤ N}

AS2 =

[

1 0
0 1

]

,ΓS2 =

[

0 0 0
0 0 0

]

,βS2 =





0
0
1





LS2 =
(

B,
[

1 0 0 0 0
])

Figure 16: After four shifts

Search space properties. Confluence and commutativity properties are additional bene-
fits of the separation principle. Of course, data and control transformations commute, but
surprisingly, inter-statement and intra-statement iteration reordering as well, e.g., loop fu-
sion commutes with loop interchange. Confluence properties are also available but their
structure is still not well understood. Such properties are useful in the context of iterative
searches; they may dramatically reduce the search space, and they also improve the under-
standing of its structure, which in turns enables more efficient search strategies [16].
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3.2 Searching for Compositions

Let us now describe how iterative searches may benefit from our contributions. Using the
framework two search approaches are possible: the incremental composition of program
transformations, and direct search of code representation parameters.

The incremental composition of program transformations simply consists in compos-
ing sequences of adhoc program transformations (or primitives). In many cases, applying
a program transformation amounts to recomputing the matrix triplets of every statement.
With the incremental approach, the framework fulfills its primary role: enabling the easy
composition of arbitrarily long sequences of program transformations without increasing
code complexity. Only the matrix triplets of each statement are modified after each trans-
formation, as illustrated in the previous section, while the code complexity is incrementally
increased using syntactic transformations. Only transformations which increase the number
of statements can increase the complexity of the representation, such as prefetching; and
still, the complexity increase remains fairly moderate in most cases.

The code representation framework also opens up a new approach for searching com-
positions of program transformations. Since many program transformations have the only
effect of modifying the parameters of the matrix triplets, then an alternative is to directly
search the matrix parameters themselves. In some cases, changing one or a few parame-
ters is equivalent to performing a sequence of program transformations, so that searching
for compositions of program transformations is much more systematic and simple. For
instance, let us consider again the example of Section 3.1, and let us assume the matrix
parameters of A, Γ and β of the statements in the original representation are being sys-
tematically searched. The point in the search space corresponding to the values of the
matrix parameters in Figure 16 also corresponds to a composition of the transformations

INTERCHANGE
(

S1,1
)

; FUSE
(

(),0
)

; SHIFT
(

S1,

[

0 0 0
0 0 −4

]

)

.

This search approach needs to take into account the impact of invariants and valid-
ity prerequisites on matrix parameters, i.e., the search space. Also, this approach is still
not amenable to program transformations that increase/decrease the number of statements.
Future work may include adapting the model to make an even greater number of transfor-
mations amenable to this search approach.

4 Implementation

The whole infrastructure is implemented as a plug-in for Open64/ORC and is publicly avail-
able at http://www-rocq.inria.fr/a3/wrap-it.
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4.1 Code Generation

After polyhedral transformations, the regeneration of imperative loop structures is the last
step to the final program. It has a strong impact on the target code quality: we must en-
sure that no redundant guard or complex loop bound spoils performance gains achieved
with polyhedral transformations. We used the recent Quilleré et al. method [28] with some
additional improvements to guarantee the absence of duplicated control. The modified al-
gorithm, CLooG, is presented and evaluated in [1].

The most computationally intensive task of the code generation process consists in sep-
arating the statement polyhedra into disjoint convex polyhedra. The statement polyhedra
are obtained by merging the iteration domain and schedule polyhedra of each statement in
a single polyhedron. In terms of polyhedral operations, the worst-case complexity is O(3n).
We will investigate methods for further reducing this complexity. The CLooG generator
can handle all 12 benchmarks in Figure 17. Experiments were conducted on a 512MB
1GHz Pentium III machine; generation times range from 1 to 127 seconds (34 seconds on
average).

4.2 WRaP-IT: WHIRL Represented as Polyhedra Interface Tool

To apply our framework to full benchmarks, the first requirement was to streamline the
extraction of static control parts and code generation, achieving a good integration of poly-
hedral techniques into optimizing and parallelizing compilers. This interface tool is built on
top of Open64. It converts the WHIRL — the compiler’s hierarchical intermediate represen-
tation — to an augmented polyhedral representation, maintaining a correspondence between
matrices in SCoP descriptions with the symbol table and syntax tree. This representation
is called the WRaP: WHIRL Represented as Polyhedra. It is the basis for any polyhedral
analysis or transformation. Then, the second part of the tool is a modified version of the
CLooG polyhedral code generator [1]; it regenerates a WHIRL syntax tree from the WRaP.
The whole interface tool is called WRaP-IT. WRaP-IT may be used in a normal compilation
flow as well as in a source-to-source framework; more details can be found in [2]. Although
WRaP-IT is still a prototype, it proved to be very robust; the whole source-to-polyhedra-to-
source transformation was successfully applied to all 12 benchmarks in Figure 17.

4.3 Extracting SCoPs

SCoP extraction is greatly simplified when implemented within a modern compiler infras-
tructure such as ORC. Previous phases include function inlining, constant propagation, loop
normalization, integer comparison normalization, dead-code and goto elimination, and in-
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duction variable substitution, along with language-specific preprocessing: pointer arith-
metic is replaced by arrays, pointer analysis information is available, etc.

SCoPs Statements Array References
All Parametric All in SCoPs All Affine

applu 19 15 757 633 1245 100%
apsi 80 80 2192 1839 977 78%
art 28 27 499 343 52 100%
lucas 4 4 2070 2050 411 40%
mgrid 12 12 369 369 176 99%
quake 20 14 639 489 218 100%
swim 6 6 123 123 192 100%

adm 80 80 2260 1899 147 95%
dyfesm 75 70 1497 1280 507 99%
mdg 17 17 530 464 355 84%
mg3d 39 39 1442 1242 1274 19%
qcd 30 23 819 641 943 100%

Figure 17: Static control parts in high-performance applications

Figure 17 summarizes the results for the SpecFP 2000 and PerfectClub benchmarks han-
dled by our tool (single-file programs only at the time being, without interprocedural analy-
sis or inlining). Construction of the unified polyhedral representation takes much less time
than the preliminary analyses performed by Open64. All codes are in Fortran77, except art
and quake in C, and lucas in Fortran90. The first two columns count the number of SCoPs
and those holding at least one global parameter. The next two columns in the “Statements”
section demonstrate the good covering of program statements by SCoPs (many statements
are enclosed in affine loops). The last two columns in the “Array References” section are
very promising for dependence analysis: most subscripts are affine except for lucas and
mg3d; moreover, the rate is over 99% in 7 benchmarks, but approximate array dependence
analyses will be required for a good coverage of the 5 others. In accordance with earlier
results using Polaris [8], the coverage of regular loop nests is strongly influenced by the
quality of the constant propagation, loop normalization and induction variable detection.

4.4 URUK: Unified Representation Universal Kernel

URUK is the key software component for our framework: it applies compositions of primi-
tives to the WRaP representation. A scripting language defines transformations and enables
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the composition of new transformations. Each transformation is defined by its name, pa-
rameters, prerequisites, and its effect. Nested calls of transformations are allowed.

The definition is written in C++ with overloaded operators for vector and matrices, such
as << for the lexicographic ordering � and <= for the prefix order v. Figure 18 shows
the definition of the Move constructor we defined in Section 2.4, and Figure 19 defines the
SPLIT transformation primitive calling Move itself. From those definitions, URUK pro-
duces the source code of the related transformations; it effectively generates a class for each
transformation with its own methods for prerequisite checking and application.

%transformation move

%param BetaPrefix P, Q
%param Offset o

%prereq P<=Q

%code
{ foreach S in SCoP

{ if ((P<=S.Beta)&&(Q<=S.Beta)) S.Beta(P.dim())+=o;
else if ((P<=S.Beta)&&(Q<<S.Beta)) S.Beta(P.dim())+=o; }}

Figure 18: Definition of constructor Move

%transformation split

%param BetaPrefix P
%param Offset o, b

%code
{ UrukVector Q=P; Q.enqueue(o); Q.enqueue(b);

UrukVector R=P; R.enqueue(o+1);
UT_move(P,Q,1).apply(SCoP);
UT_move(R,R,-1).apply(SCoP); }

Figure 19: Split primitive definition

5 Related Work

Loop restructuring compilers introduced several unified models and intermediate represen-
tations for loop transformations, but none of them addressed the general composition and
parameterization problem of polyhedral techniques. ParaScope [6] is both a dependence-
based framework and an interactive source-to-source compiler for Fortran; it implements
classical loop transformations. SUIF [14] was designed as an intermediate representation
and framework for complex program transformations; it quickly became a standard platform
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for implementing virtually any optimization prototype. Polaris [3] is a parallelizing com-
piler for Fortran; it features a rich sequence of analyzes and loop transformations applicable
to real benchmarks. These three projects are based on a syntax-tree representation, ad-hoc
dependence models and implement polynomial algorithms. PIPS [15] is probably the most
complete loop restructuring compiler, implementing polyhedral analyses and transforma-
tions (including affine scheduling) and interprocedural analyses (array regions, alias). PIPS
uses an expressive syntax tree representation with polyhedral annotations.

Two codesign tools share a lot of motivations and technology with our semi-automatic
optimization project. MMAlpha [13] is a domain-specific single assignment language for
systolic array computations, a polyhedral transformation framework, and a high-level cir-
cuit synthesis tool. The interactive and semi-automatic approach to polyhedral transforma-
tions were introduced by MMAlpha. The PICO project [30] is a more pragmatic approach
to codesign, restricting the application domain to loop nests with uniform dependences
and aiming at the selection and coordination of existing functional units to generate an
application-specific VLIW processor. Both tools only target small kernels.

Within the Omega project [18], the Petit dependence analyzer and loop restructuring
tool [17] is closer to our work: it provides a unified polyhedral framework (space-time
mappings) for iteration reordering only, and it shares our emphasis on per-statement trans-
formations. It is intended as a research tool for small kernels only.

Most iterative optimization works use classical optimizing compiler frameworks with
syntactic intermediate representations. Recently, the MARS compiler [23] has been applied
to iterative optimization [24]. This compiler is based on a polyhedral representation, aiming
at the unification of classical dependence-based loop transformations with data storage op-
timizations. Its successes in iterative optimization [24] makes it the main comparison point
for our work. However, the MARS intermediate representation captures only part of the
loop-specific information, namely the iteration domain and array access functions; it lacks
the characterization of iteration orderdings through multidimensional affine schedules [11].

6 Conclusion

We presented a polyhedral framework that enables the composition of long sequences of
program transformations. Coupled with a robust code generator, this method avoids the
typical code complexity explosion of long compositions of program transformations; these
techniques have been implemented in the Open64/ORC compiler. The ability to perform
numerous compositions of program transformations is key to the extension of iterative opti-
mizations to finding the appropriate program transformations instead of just the appropriate
program transformation parameters. We have also shown that, in many cases, searching
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for compositions of transformations is amenable to searching for parameters of the matrix
triplets of each individual statement, opening even faster and more efficient searching tech-
niques. Next, we will investigate the properties of the new search space defined by this
framework.
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