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Abstract: The goal of this paper is to study heavy traffic asymptotics of many Addi-
tive Increase Multiplicative Decrease (AIMD) connections sharing a common router in the
presence of other uncontrolled traffic, called "mice". The system is scaled by speed and
average number of sources. With appropriate scalings of the packet rate and buffer content,
an approximating delayed diffusion model is derived. By heavy traffic we mean that there is
relatively little spare capacity in the operating regime. In contrast to previous scaled mod-
els, the randomness due to the mice or number of connections is not averaged, and plays its
natural and dominant role. The asymptotic heavy traffic model allows us to analyze buffer
management policies of early discarding as a function of the queue size and/or of the total
input rate and to choose its parameters by posing an appropriate limiting optimal control
problem. This model is intuitively reasonable, captures the essential features of the physical
problem, and can guide us to good operating policies. After studying the asymptotics of a
large number of persistent AIMD connections we also handle the asymptotics of finite AIMD
connections whose number varies as connections arrive and leave. The data illustrate the
advantages of the approach.
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Analyse de modéles AIMD en charge lourde

Résumé : L’objectif de cet article est d’étudier des régimes asymptotiques de charge lourde
d’un grand nombre de connexions & débit controlé de type croissance additive et décroissance
multiplicative (AIMD) partageant un routeur commun, en présence d’autres connexions
non-controlées appelées "souris". Avec un passage & D’échelle appropriée des débits des
connexions et de la taille du tampon, nous obtenons un modéle approché de diffusion a retard.
Par "charge lourde" nous entendons qu’il reste peu de capacité disponible dans ce régime.
Contrairement aux approches précédentes de modélisation du passage a I’échelle, I’aléa du
aux souris et au nombre de connexions ne disparait pas dans le régime de charge lourde,
mais joue un role prépondérant. Le régime de charge lourde nous permet d’analyser des
mécanismes de gestion des tampons et de rejet préventif des paquets en fonction de la taille
du tampon et/ou du débit total de transmission, et nous permet de choisir les paramétres de
ces mécanismes 3 travers une formulation de problémes asymptotiques de controle optimal.
Nous étudions des connexions AIMD permanentes mais aussi des connexions AIMD finies,
dont le nombre varie di aux arrivées et des départs de connexions. Des calculs numériques
illustrent ’avantage de notre approche.

Mots-clés :  Processus stochastiques, files d’attentes, théorie de controle, AIMD, TCP
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1 Introduction

Background and motivation One of the most active research areas in networking in
recent years has been the modeling and analysis of AIMD traffic see e.g. [1, 2, 3, 4, 6, 9, 14,
15,16, 17, 19] and references therein. When considering a single connection and modeling all
other connections through an idealized loss process that they create, simple mathematical
formulas for the connection’s throughput can be obtained, see e.g. [1, 6, 17]. However, it
may be important in practice to understand the interaction of competing random numbers of
connections and the associated system randomness which determines both the throughput
as well as the losses suffered by each connection. One approach is through a fixed point
argument; see e.g. [4]. If losses over the nodes (or links) traversed by the connections are
sufficiently small and can be assumed to be additive, an alternative framework can be used
where the throughputs of TCP are obtained as the solution of a convex optimization problem
and where the loss probabilities are obtained as the Lagrange multipliers [15].

Although the methodologies in [4, 15] are quite useful due to their simplicity, no dy-
namical systems description is provided, hence the actual “processes” do not appear, and it
is very difficult to add dynamical (say, queue and packet rate dependent) controls to the
formulation. The way that packet losses affect individual sources and the consequent effects
on the full system are not modeled explicitly, and it is difficult to analyze the oscillations
or instabilities that might be caused by delays. They do not provide a sample-path or tran-
sient analysis nor allow us to compute the probability distribution of interacting connections.
Models including some of these features appear in [2, 5] under simplified assumptions on the
protocol’s behavior (e.g. an assumption in [2] that loss probabilities do not depend on rates,
or an assumption in [5] that all connections simultaneously lose a packet when the buffer
is full). In order to analyze more complex systems which include buffer management, early
discarding, and the impact of the delay in the feedback loop, an alternative line of research
has emerged based on fluid models using delay differential equations methodology, see e.g.
[8, 16].

Once such models are formulated, a key question is what is the relation between the fluid
model and the original discrete random system. In [19], the authors establish conditions
under which common fluid models based on delayed differential equations are obtained as
limits of discrete systems with random variations of the non controlled connections, as the
number of connections and the speed of the system grows. More detail on the relations
between [19] with our work appears in the Section VII.

Our goal is to identify and analyze heavy traffic approximating models for multiplexing
between AIMD and non controlled traffic, where the losses are a consequence of the under-
lying physical processes, and to show how alternative scalings lead to this model as their
asymptotic limit, as well as to determine good controls for buffer management. Although the
model is not deterministic, it is much simpler to handle than the original discrete stochastic
system, and (as seen through numerical examples) it allows us to optimize the design of the
control for buffer management, and analyze its properties.
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4 Altman & Kushner

The basic ideas. As with many models for TCP, we will use a “fluid” model for describing
the rate of transmission; i.e., rather than work explicitly with the widow size; we work with
the number of packets that are allowed to be sent per unit time, and do not explicitly
control window sizes. We consider a model for AIMD traffic in the operating region where
the system is near capacity. The analysis will be ‘asymptotic,” as the system grows in speed.
In particular, the bandwidth (speed of the router) as well as the mean number of users will
be roughly proportional to a parameter n, which is to go to infinity. The analysis will be of
the so-called heavy traffic (HT) type [12], which has been of considerable help in studying
complex queueing systems that would often be intractable otherwise. Several formulations
of the demand process are given. In all cases, there are a certain number of controlled users
of the order of n, each having a lot of data to transmit. These share the channel with a large
and randomly varying number of users with smaller amounts of data, commonly referred to
as “mice.” While each of the mice (resp., each of the controlled users) has identical statistical
properties, this is only for convenience in the numerical analysis: Any number of classes can
be handled.

The packets created by the various users enter the system in some random order, then
are transmitted to a buffer via various links, from which they are further processed. If the
buffer capacity is exceeded, then a packet is said to be “lost.” Unless noted otherwise, the
round trip delay « is the same for all ATMD users. The timing of the various rates are as
seen at the buffer (not at the sources). They depend on the feedback sent from the buffer «
units of time ago, which reached the source ¢; units of time ago, was acted on and affected
the rates at the input to the buffer ¢5 units of time later, where t; + t2 = a.

We wish to identify a region of operation which is “near capacity” for large n, and a scaling
under which the stochastic effects are apparent. One approach to asymptotic analysis is via a
fluid model (e.g., [19]). These tend to average or eliminate the effects of stochastic variations
in the number of users, mice, data rates, etc. But we are more concerned with demonstrating
the actual random processes of losses and buffer content in terms of the random processes
of arrivals, data levels, etc.

We are guided by the scaling used for heavy traffic models, as in [12]. There are two
related aspects to being “near capacity.” One is the difference between the mean packet
creation rate and the speed of the system, and the other concerns the buffer size. Suppose
that the mean rate of arrival of packets to the buffer is vn. In order for the system to be in
the heavy traffic regime, the speed of exiting the buffer would have to be slightly greater than
the mean arrival rate, but not so much faster that the buffer is virtually empty almost all of
the time. If the arrival process is the superposition of many independent users, then (loosely
speaking) the standard deviation of the “randomness” would be O(y/n). This suggests that
if the system is near capacity at that time, then both the buffer size and the extra capacity
would be O(y/n). Indeed, if either the buffer or speed are of a larger order, then the buffer
level (scaled by 1/+/n) would go to zero as n — oo, and there would be no observable packet
loss. Indeed, these are the usual orders in heavy traffic analysis. The amplitude scaling will

be 1/y/n.
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Heavy Traffic Analysis of AIMD Models 5

The heavy traffic regime is one important region of operation, one where small changes
in the rates will have major consequences for buffer overflow (i.e, lost packets) and queueing
delay. One can view the system as starting much below capacity, with a lower packet rate,
and with the rates increasing until capacity is almost reached, at which point the control
mechanisms are activated. Our analysis is confined to the time that the system is in this
heavy traffic regime.

The controls. Typically, there are two types of rate control for each user. The first (the AI
in AIMD) is the usual simple slow and steady linear increase in the allowed rate of packet
creation when there are no buffer overflows.! As noted above, in the heavy traffic regime,
the number of controlled users is proportional to n on the average, and the excess capacity is
O(4/n). This suggests that the cumulative effect of the first type of control should be a rate
increase of O(y/n) over all controlled users, which implies a rate increase of O(1/+/n) per
user. Otherwise, the system would experience very serious packet losses in short order. Thus
we suppose that there is a constant u; such that the rate per source increases by uy/\/n.
This is the correct order in the heavy traffic regime.? [The constant could be replaced by a
function of the current buffer state and rate, if desired, but we stick to the more traditional
form.] It will turn out that the cumulative effects of this control and of the buffer overflow
controls are of the same order. The second type of control (the MD part) is the usual
multiplicative decrease when there is a lost packet.

To improve the performance, we also use another type of control, called a preemptive
control, by which packets are selected at random to be “marked” as they enter the buffer.
This chance of being selected depends on the buffer-state and/or on the input rate, and
is a control function to be chosen. (Early discarding has become very popular since it
was proposed and deployed in the well known RED buffer management [7]). The selection
probability will increase when the system nears a dangerous operating point. There are
two choices of how to handle the marked packets. Either they are deleted so that no
acknowledgment is sent, or they are not deleted and an altered acknowledgments are sent
back [18] (in TCP, this avoids the need for retransmission). In either case, the source rate
is decreased as though the packet were lost. This control, which anticipates the possibility
of lost packets in the near future, can actually reduce the queueing as well as the rate of
overflow considerably, which is desirable if we wish to protect other real-time connections
(which can be considered to be part of the "mice"); numerical data will illustrate this point.
In either case, the use of the preemptive control “spreads out” the “rejections,” thereby
helping to avoid oscillations or instability due to the effects of bursts of lost packets caused
by the delays. Here, we work with the second option, and do not delete the selected packets,
although the results are similar in both cases. Although the second option is not harder to
implement than the first option, its advantages are enormous.

1This might approximate a fixed increase in the allowed number of packets that can be sent in each round
trip interval, if the system allows this. We would then assume that the queueing time is small with respect
to « so that the linear increase in each round trip interval can translate into a linear increase of the rate as
a function of time.

20ne could change the model, using fewer sources, each with a higher rate, and allow an accordingly
faster increase in the AI control. The analysis would be similar.
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6 Altman & Kushner

Outline of the paper. A general model for the mice is discussed in the next section. Two
properties are paramount. One concerns the asymptotic (scaled) total number of packets
that have been transmitted by them over any time interval. The other concerns the current
rate of creation of packets. The assumptions are intuitively reasonable. To emphasize this,
we discuss one particular example in detail, starting from more “physical” assumptions. It is
supposed (as is commonly done) that the mice enter with a fixed packet rate (possibly ran-
dom among the individuals), but that they are in the system for a relatively short time, are
not controlled and do not retransmit lost packets. This latter assumption can be dispensed
with, but we prefer to keep the development relatively simple, so that the central issues are
not obscured.

In Section 3, we consider the case where there are just n controlled users, analogously
to the setup in [19]. Each of them has a very large (infinite, here) amount of data to
be sent, and is subject to rate control. However, the randomness of the mice process has
significant effects on the total throughput, due to the lost packets (buffer overflows), and the
consequent rate control. Section 4 considers various extensions of the basic model of Section
2, including the case where there is no buffer and where the rate for the controlled users
changes randomly, perhaps due to reinitializations; this can be useful to model a sequence
of TCP connections that are opened consecutively by the application layer as is the case in
the HTTP/1.1 version.

Section 5 deals with the case where the controlled users appear at random, each with
a random amount of data to be sent, and vanish when their data has been transmitted.
This introduces additional randomness, which (in the asymptotic limit) shows up via the
addition of new Wiener processes in the dynamics for the rate process. There are analogs
of the extensions noted in Section 4. Some typical data that show the advantages of the
approach are in in Section 6.

2 The Model for the Mice

Recall that we use the name “mice” to describe any set of sources whose transmission rates
are uncontrolled. Generally, they involve small numbers of packets. But various cases where
the number of packets is large are covered by the assumptions. We suppose that the total
rate at which mice packets are being put into the buffer at time ¢ is amn + 1/n€™(t), where
am > 0 and £"(+) is a random process such that f(f &™(s)ds converges weakly to a Wiener

process wy, (+), with variance 2. More specifically (where = denotes weak convergence),

(total number of mice packets by) t — nam,t
t \/ﬁ (21&)
- / £"(s)ds = wn(t),
0

INRIA



Heavy Traffic Analysis of AIMD Models 7

mice rate(-) — na,, _ £"(-)
- =

= “zero” process,
(2.1b)

sup E sup
n s<t

/ & (r)dr| < 00, eacht>0.
0

(2.1a) says that the total mice packet rate is the sum of a “fluid” component and a part
that is essentially independent over short and disjoint intervals. It is motivated by the
central limit theorem. Owing to the complicated way that packets from different users are
scrambled in transmission, it might be hard to say more, or to specify the “mice” model more
explicitly. However, one specific example, is given below. The sizes of the individual mice
can grow with n, but slower than O(n). All that we require is that (2.1) hold. If desired,
the mice effects can have a more general form, where the Wiener process wy,(+) is replaced
by a centered Lévy process In any case, the analysis will generally have to be numerical,
and the Lévy form can be used there too.

Example of a “mice” model. Consider the following example, which was one of the
motivations of the general conditions above. The example is meant to be illustrative, and
does not exhaust the possibilities. Suppose that the mice arrive as a Poisson process with
rate A\, n, with each arrival having an exponentially distributed (and independent among
arrivals) amount of packets, with mean v,, /. The packets are sent at a rate v,,. Then
the number of active mice at any time is given by N (t), where

AN (t) = nAmdt — pm Ny (£)dt + dM 7 (8),

where the quadratic variation process of the martingale M2 (-) is fot [RAm + N2 (8)um]ds.
Let us work with the stationary processes. It follows from this that the process N (-)/n
converges weakly to the process with constant values A, /pm. The rate at which mice
packets arrive is N (t)vp,. Write N2 (t) = nAm/tim + /202 (t). Then

i, () = —Hmyy, (t)dt + My, (t)//n.

The quadratic variation of the martingale M (-)/+/n is the integral of A\, + p,m N (8)/n,
which converges weakly to the constant process with values 2)\,,,, and M (-)/1/n converges
weakly to a Wiener process ., (-) with variance 2\,,,. The process 1" (-) converges weakly
t0 Nm(+), where dnn, (t) = —pmnm (t)dt + diw,,(t). The arrival rate process from the mice
satisfies (which defines £(+))

U NZ () —\/%vmkm/“m = O (-) = £

Note that (2.1b) holds.

The variance of (mice packet rate at t)//n is, asymptotically, v2, A /fim. The (packet
rate) correlation function is this times e #m*. For large enough u, and v, this is an
“approximation to white noise.” To show that (2.1a) holds “approximately,” write (neglecting
the initial condition),

t
Nm (1) :/ eiﬂm(tis)dwm(s)a
0

RR n° 5088



8 Altman & Kushner

/{ ds—vm//e”’"(Swa (1)

= U () — —m/ e (=) (s).

m Hm

The dominant part is the Wiener process. Thus, in (2.1a), am = UmAm/m and the variance
of the Wiener process is an =2\ [vm/ ,um]2. The stationary variance of the error process
(the last term on the right) is (v2,/u2,)A\m/pm. Suppose that pu,, is large, with o2, kept
“moderate.” Then the error process is close to the “zero” process, in that it converges weakly
to it as p,, — 0.

We could also suppose, alternatively, that the individual mice send their packets all at
once, but they are interleaved randomly with those from other sources along the way, then
we come even closer to (2.1).

3 n Controlled Users, Each With Infinite Backlog

In this section, there are a fixed number, namely n, of controlled users, with each having a
very large (infinite here, for modeling simplicity) amount of data to be sent. Let r;(¢) denote
the rate for controlled source ¢ at time ¢, and suppose that there are positive a; such that
ap < r;(0) < a1, so that no single source dominates. Thus fo r;(s)ds is the total number
of packets generated by controlled source ¢ by time ¢. Since n is large, it is unimportant
that this integral will not always have integer values. Define 7(t) = > I, ri(t)/n, and
v = 7(0), v2 = >,[r?(0)]?/n, and p"(t) = [>; ri(t) — nv1] /v/n. We suppose that vy is
the desired average rate of packet transmission per user and is approximately the level at
which we enter the heavy traffic regime. The analysis commences at the point at which this
regime is entered. With this in mind, the service rate (channel speed in packets per second)
is C™ = nv1 + amn + by/n,b > 0, which covers the mean requirements (for both persistent
connections as well as the mice process) and gives an excess (over the mean requirements)
by/n.

When the buffer overflows and a packet is lost, that packet is assumed to come at random
from the various users, in proportion to their individual current rates of packet creation:
The various users (mice and controlled) would send their packets in some order, and the
order would be more or less scrambled in the course of transmission, so that buffer overflows
can be assigned at random to the various users.

As noted in the introduction, the standard multiplicative decrease control is activated
by lost packets. L.e., there is some constant x € (0,1) such that, if the dropped packet was
from connection i, then the rate r;(t—) at t— is changed to r;(t) = (1 — k)r;(t—).

The “preemptive” control. It is often claimed that the system would have better prop-
erties if the sources were also signaled to reduce their rates as the buffer level or total input
rate increases, but before actual buffer overflow. The type of control, called the preemptive
control, attempts to do just this (see e.g. [7]). It selects packets on arrival, either at random
or in some deterministic way with the appropriate averages, and in a buffer state and total

INRIA



Heavy Traffic Analysis of AIMD Models 9

rate dependent way. There are two possibilities in the treatment of the selected packets.
They could be deleted, in which case no acknowledgment of receipt would be sent, and the
source would decrease its rate accordingly. The idea is that a rejection of relatively few
packets, as the system nears congestion, would reduce the buffer overflows even more. The
selected packets could even be “marked” low priority ones. Of course, this comes at the cost
of (buffer-state-dependent) rate reduction.

An alternative is to modify the protocol, so that the selected packets are not deleted,
but a modified acknowledgment is sent, which is used to reduce the flow, similarly to what
would happen if the packet were actually lost [18]. The treatment of both is similar, the main
difference concerns the retransmission of the selected packets, where appropriate. We will
use the latter approach, since it seems to be more promising in the sense of improving system
performance with minimal extra complications. We suppose that there is a k; € (0,1) so
that the rate for such a selected source i is reduced from r;(t—) to r;(t) = (1 — K1)rs(t—).
This preemptive control is to be chosen by the system designer and, when suitably selected,
it can have a major beneficial effect on the overall operation.

Buffer input-output equations. We have

p™(t) = p™(0) + ust — [overflow control effects]

—[preemptive control effects], (3.1)

The term z(t), with or without superscripts) denotes 1/4/n times the number of packets in
the buffer at time ¢. Then

z"(t) = z"™(0)
+ [total input - total output - overflow by t] /v/n.

If the buffer is not empty, then the output rate is C™. If this output rate is always used, then
we must correct for “fictitious” outputs when the buffer is empty. This is done by adding
an “underflow” correction term to assure that the buffer never goes negative, as is usual in
heavy traffic analysis [12]. The terms L(-) (resp, U(:)) (with or without superscripts) are
1/4/n times the buffer underflow (resp., overflow) or their limits. This leads to

1
x"(t) = z™(0) + / [p"(s) = b+ &"(s)]dt — U™(t) + L"(¢t). (3.2)
0
By the proof of [12, Theorem 3.4.1, 3.5.1], there is a constant C' such that, for each T,
t
U™T) < Csup [:c"(O) + / [p™(s) + £™(s)] ds| - (3.3)
t<T 0

Thus, for each ¢, sup,, EU™(t) < 0o, and so the number of buffer overflows on any bounded
interval is bounded by O(1/n).

Approximating the buffer overflow or lost packet control. Suppose that there is a
single overflow at time t — a. lLe., v/ndU™(t — a) = 1. Let I;(t — ) denote the indicator

RR n° 5088



10 Altman & Kushner

function of the event that the overflow is associated with controlled source i. Then r;(t) =
r;(t—)(1 — kI;(t — o)) and

2= Slnt) i)

n (3.4)
= —mz ri(t—)L(t — a)dU™(t — ).

i=1
The user with the lost packet is selected at random, with the probability that controlled
user 14 is selected being (its rate divided by the total rate, all at ¢t — )
ri(t — a)
it —a) + nam + /g (t — a)

Use (3.5) to center (3.4) about the conditional mean (given that dU™(t—«a) > 0) and rewrite
(3.4) as

[t —a) = (3.5)

o ri(t — a)dU™(t — o)
_,g;n(t )erj(t—a)+nam+\/ﬁ£"(t—a)

(3.6)

+dM7 (1),

where M7*(+) is the martingale
/ Zn VfF(s —a) = Li(s — )] dU™ (s — ).

By the random association of buffer overflow to user,

E|M}(t 1)EY " |dU™(s)|* = O(1/v/n)EU™(t).

s<t

Hence M™(-) converges weakly to zero, and the left side of (3.6) can be used for (3.4), as
n — 00.
By (3.3) and the conditions on £™(-), and dividing each part of the term

2. Ti(t=)ri(t — o)
32 it — @) + nam + Vag" (t — @)

by n, we see that it converges weakly to the constant process, with values vy /[v1 + am], as
n — 00. The above computations imply that, as n — oo, the buffer overflow control term in
(3.1) is well approximatable by (kvs/[v1 + a,,])U™(t — ). A very similar argument can be
used if there is more than one buffer overflow at the same time.

Approximating the preemptive control. The preemptive control is defined by a bounded
function us(z, p) (it might depend on one or both of its arguments and is to be chosen) such

INRIA



Heavy Traffic Analysis of AIMD Models 11

that an incoming packet at time t is selected with probability ua(z™(t), p"(t))/v/n.> The
effects of the preemptive control are analyzed similarly to those of the buffer overflow control
and only a few comments will be made. The mean rate at which packets are selected at

time ¢t — o is
[uz (2" (t = @), p"(t — )/ v/n]
x [Z; ri(t —a) + nam, + /n&"(t — a)] .
The probability that any one is associated with controlled user i is f*(t—«), and the chances
that more than one are chosen from the same user in any finite time interval goes to zero as

n — 00. Following the arguments used for the buffer overflow control, the conditional mean
rate of change of ), r;(-)/+/n at t is approximatable by, for large n,

uz (2" (t — a), p"(t — @)

> ri(t=)ri(t — o)

- (3.7)
& vaua(z™(t — o), p™(t — @)).

The error terms and the martingale associated with the randomizations all go to zero as
n — 00. Hence, this term times k; well approximates the effects of the preemptive control
in (3.1).

The limit dynamical equations. The Lipschitz condition in the proof of [12, Theorem
3.4.1, 3.5.1] and the tightness criterion in [12, Theorem 2.5.7] or [10, Theorem 2.7b| assures
that the sequence {z"(-),p"(-),U"(-),L™(-)} is tight in the Skorohod topology. The fact
that some arguments are delayed is irrelevant. The equations satisfied by the weak sense
limits (using the model (2.1) for the mice) are

dp(t) = urdt — vy [ﬁdU(t —a) (58)

+rrua(z(t — ), p(t — oz))dt] ,

2(t) — 2(0) = /0 [p(s) — b ds + wam(t) + L(t) — U(2). (3.9)

Equations (3.8) and (3.9) are suggestive even for more general models. They capture much of
the essence of the AIMD and the preemptive control mechanisms, and retain the fundamental
role of the randomness, all for an aggregated and scaled system.

Cost functions and nearly optimal controls for the physical system. In order to
optimize the performance of the AIMD connections one can design the controls u; (where in
particular, us will be implemented by the buffer management). Typically, u1(-) is constant,

3By the limit theory, in the heavy traffic regime, 2™(-) is approximatable by a diffusion, hence varies
“relatively slowly,” even though the individual inputs and outputs are fast. p™(t) is computed from the
current total input rate, and can often be well estimated. The selection need not be at random, provided
that the average selection rates are close to the probabilities. This allows the possibility of selecting marked
low priority packets, etc.
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and we leave it that way in the sequel (we shall not optimize it, since it is assumed to be part
of the description of the standardized source behavior). The quantities to penalize in the
cost are queueing delay (to which the mice traffic may be sensitive) measured by z(-), the
loss of throughput due to the control (measured by —p(-)), and buffer overflow (measured
by U(+))*. Let us work with a discounted cost criterion, where 3 > 0 can be as small as we
wish, ¢y > 0, and the k;(-) > 0 are Lipschitz continuous:

W(uz) =

BE /0 e B [k (2(8)) — ka(p(t))] dt + codU (1)) (3.10)

The possibly nonlinear k;(-) are useful, since (e.g.) we might wish to heavily penalize long
queues, but not be too concerned with short queues.

Using the methods of heavy traffic analysis for controlled problems [12], it can be shown
that the optimal costs for the physical problem converge to the optimal cost for the limit
problem. The optimal control for the limit problem is of the switching curve type: For
example if the delay is zero, then us(z, p) takes the maximum value on one side and is zero
on the other, and the separating curve is smooth. The switching curve character follows
from a formal examination of the Bellman equation for the optimal value, since the control
appears linearly in the dynamics and does not appear in the cost. The smoothness was borne
out by the numerical computations. See. for example, 1, for the data given in Section VI.
Such switching optimal controls are nearly optimal for the physical system for large n. We
note that the cost (3.10) is well defined, since it can be shown that E|p(t)|+EU(t) < a1+ast,
for some a; > 0.

We shall also consider using an ergodic cost criterion

v(u) = lim E

T
Tim %/0 le12(s) — eap(s)] ds + csU(T)| . (3.11)

At present, there is little theory concerning stability or ergodicity theory for delayed reflected
diffusions such as ((3.8), (3.9)) or ((3.9), (5.15)) for the model of the next section. If the
delay is zero then, for any control us(+), stability can be shown and the model ((3.9), (5.5))
has a unique invariant measure. In the numerical computations (where zero delay was always
used), we were always able to compute an optimal control for the ergodic cost criterion (with
cost and control well approximated by those for the discounted problem for small 3), and
both stability and convergence to the stationary distribution under the optimal (or other
reasonable) controls was apparent.

4Penalizing buffer overflow may be important for two reasons. First, if the mice correspond to real
time applications, then these applications will suffer due to losses. Secondly, the AIMD themselves may
correspond to real time applications which are "T'CP friendly", in which case lost packets are typically not
retransmitted. Losses due to overflow then again degrade the quality of the communication.
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4 Extensions of the Model of Section 3

No Buffer. Suppose that there is no buffer, so that if the total current packet rate exceeds
the channel speed, then the excess packets are rejected. The forms of the input processes
and channel speed (service rate) are as in the last section, but U"(-) needs to be defined.
Define

y"(t) = lC’n— (Zn(t)+amn+\/ﬁ£ (t)) /v/n 1)

=[b—p"(t) - £"(1)],
the scaled difference between the channel speed and input packet rate at t. Then the scaled
number of rejected packets is

Un(t) = / W™ (s)] ds = / [€7(s) + p"(s) — B]* ds (4.2)

Now, the value of the preemptive control us(-) at time ¢ will be a function of only the scaled
excess capacity [y™(t —)]T.

Suppose that the correlation time of £™(-) is short (e.g., large u,, in the special mice
model). Then a law of large numbers argument can be used to show that £™(¢) can be
“integrated out” of (4.2), in that, as n — oo and the correlation time goes to zero, the
integrand can be replaced by the average over £"(t). This simplifies the expression for
U™(-), but it does not simplify the control us(-).

To simplify the control, suppose that a low pass filter is applied either to the scaled
excess capacity [y™(-)]* or to the scaled current rate, and then the control us(-) is applied
to the output of this filter. In fact, such filters are sometimes used in practice to reduce the
dependence of the controls on sudden bursts. Suppose further that the correlation time of
£™(+) is short relative to that of p™(-), so that the output of the filter can be approximated
by b — p™(-). Then the control takes the simpler form ux([b — p™(¢)]*), delayed by «, and
the limit equation for the scaled and centered rate process p™(-) is

) = uld
p(t) t 4.3)

v, [vl e Ut — a) + srus([b — p(t — a]+)dt] :

where U(t) = E, [¢™(t) + p(t) — b]", and the expectation is over the £™(t), as n — oo.

The randomness due to the mice in the arrival process does not appear explicitly in
(4.3), but it affects the value of the expectation which yields the buffer overflow rate U(t).
An analogous result holds for the model of Section 5, but there the randomness due to the
arrival and departure processes of the controlled users remains in the limit. As for the case
of this paragraph, only the £(¢) would be integrated out.

Random r;(0). In the rest of this section, we suppose that there is a buffer as in the original
problem of Section 3. Suppose that the initial values of the rates are random, identically
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14 Altman & Kushner

distributed, and mutually independent, with Er;(0) = v; and E[r;(0)]?> = va. Then all the
asymptotic results continue to hold.?

Randomly changing rates. In some internet applications, where a user sends a sequence
of consecutive TCP connections, the rate of transmission is reinitialized for each new TCP
transfer (e.g. HTTP/1.1). We propose a model of which this scenario is a special case.
Suppose that the users change the packet transmission rates at random, and each with rate
Ao- The new rates (which are uniformly bounded) are chosen randomly with the same first
two moments. More precisely, there are mutually independent Poisson processes P;(-) all
with rate A\g. When P;(-) jumps, the rate for user i is replaced. The set of replacements,
over all users and time, is mutually independent, and independent of all other “driving”
processes. Let ¢ denote the canonical rate replacement, and define v; = Eq, vo = Eq?,
Uy = E[g — v1]*> = vo — v}. Define R™(t) = Y, 7;(t). Then

dR™(t) = v/nuy (t)dt — [effects of controls|

"o [R™(£) = nvn] dt + dMP(t), (4.3)
where the martingale M(-) can be shown to have quadratic variation process
1
/\on/ ZE [ri(s) — g ds
0
(4.4)

+ v9| ds,
n

t 2
r4(s 2v 78
o [ Bt 2 Zints
0 n
where the expectation is over ¢ only. It can be shown that, on dividing (4.3) by v/n and
taking limits, we get

dp(t) = u1(t)dt — effects of controls — Agp(t)dt + dw.(t), (4.5)

where the Wiener process w,(-) has variance 2)\o72, and the effects of the controls are
represented as in (3.8). The limit system equations are (3.9) and (4.5).

Delay depending on the user. Up to now, all users had the same delay. The general
theory can handle user-dependent delays. Suppose that user ¢ has delay a; < D < o0. If
a buffer overflows at time s. The information will reach user ¢ at time s 4 ¢, ;. Thus, at
time t, user ¢ (if selected for the overflow) receives information concerning overflows at time
t —t1,;, and its response reaches the buffer ¢, ; units of time later, with ¢; ; +t2 ; = a;. This
leads to dU™(t — ) in (3.6) being replaced by dU™(t — a;). To simplify matters in this brief

5This can be useful in adding to the modeling of ATMD connections a "slow start" phase such as in TCP,
where the transition level (slow start threshold) between the slow start phase and the congestion avoidance
phase varies (randomly) between the short connections. The slow start phase is then modeled for simplicity
as an instantaneous jump to that transition level, since during slow start, the rate increases exponentially
fast.
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presentation, suppose that all initial rates are equal: r;(0) = v1. Then, for large n, the main
term in (3.6) is approximately

ri(t — a;)dU™(t — ;)
_n;m(t—) Ej 7i(t — @) + Ny + /Nt — ;)

~ v 1 idU"(t a;)
= am +v1 M I
More succinctly, with 57(-) being a measure with mass 1/n at a;, write
1< K
= dUMt— ;) = / dU™(t — a)B™(da).
n 1=1 t—D

Suppose that the distribution of delays 5" (-) converges weakly to a distribution 5(-). Then
the dU(t — ) in (3.8) is replaced by [dU(t — «)B(da). All else remains the same. Details
of the proof are omitted.

5 A stochastic process of finite AIMD connections

In the model of Section 3, the number of users is fixed at n. Now, we consider a model
where the controlled users arrive independently and randomly and leave at random, with
the arrival process independent of the mice process. New users come from an unlimited
population, with (Poisson) arrival rate An. Each new user comes with an exponentially
distributed number of data packets, with mean v; /i, and independent of the mice process
and arrival time, where v; is a constant.5

We suppose that 1/u is large relative to the delay «. With this model, as with the
previous ones, the buffer overflows (i.e., packet losses) are created by the physical process
and not imposed. Note that, in this model, the mean amount of data in a new source does

SExponential distribution of interarrival times and session duration are more appropriate for telephone
calls than to data connections. Thus this model is expected to be more useful for VoIP applications that
use TCP friendly mechanisms to regulate their rate. The “exponential” assumptions can be helpful even for
the data connections for some preliminary dimensioning purposes.

Non exponential distributions can be handled as well, with an increase in the dimensionality of the limit
model. For example, a k-stage Erlang model would require a k-dimensional process to represent the rate
process. The mathematical development and results are similar. This higher dimensionality is a handicap for
numerical computations, say via the Markov chain approximation method [11], or a pathwise approximation
method. But it is not a serious handicap for simulation. Indeed, simulating the approximating limit model
is substantially simpler than simulating the physical process, when there are very many users.

Experimentation with the basic model can lead to insights that are useful for more general cases. For
example, numerical results for the basic model indicate that threshold controls, based on the rate only,
provide good approximations to the values obtained by optimal controls. This observation provides a basis
for getting good controls, which would be very hard to compute otherwise, for more general large size
systems.
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16 Altman & Kushner

not depend on n. The parameter n scales the system speed and mean number of users only.”
The source (i.e., the user) stays “active” until all data is sent, and then disappears. Time
is still measured at the buffer and the mice model is (2.1). For simplicity, suppose that the
initial rate of each new controlled source is v;. There are analogs of all of the extensions of
Section 4, but we stick to the basic model.

First suppose that there are no controls (constant transmission rate from each source)
and buffer overflows are not retransmitted. Then the packets are sent from each active
source to the buffer at a rate v;. The mean time that a source is active is 1/, and the total
rate at which the sources drop out at ¢ is uN™(¢), where N™(t) denotes the number of active
sources. The (stationary) mean number of sources in the system is nA/u. Hence, the analog
of the channel speed C,, of Section 3 is

A
C" =vi=n+ amn + by/n,
w

where, again, by/n denotes the excess capacity over the mean rate n[v1A\/u + a.,). On de-
parture of a user, its rate v; is lost.®

Now suppose that the input rates from the non-mice sources are actually controlled.
There are several approaches that one can take for the source departure process. One
approach supposes that the departure rate (of an AIMD connection) is g, and does not
depend on the current packet transmission rate for the source. Then the lost packet rate if
connection 7 leaves is 7;(¢). This situation arises when the AIMD connections correspond to
real time applications that have a dynamic compression rate (which is then "TCP friendly").
In these applications, lost packets are not retransmitted (the possibility of lost packets might
be anticipated in the coding). For simplicity in the development, this is the approach that
will be taken. °

The dynamics and limit for the rate process. Only a sketch will be given, since the
details are similar to those of Sections 3 and 4, except for the treatment of the randomness
due to controlled user arrivals and departures. Write N™(t) = nN + /nv™(t), N = M p.
Since the user arrival process is Poisson and the user departure rate is constant,

AN™(t) = Andt — pN™(t)dt + dM™(t) — AM7(t). (5.1)

Here M (-) is the martingale associated with the arrival process and has quadratic variation
process nAt, and M7 () is the martingale associated with the departure process and has

"The rate of arrivals of new users can be a smaller order of n, and then they would each have an amount
of data that would depend on n. E.g., rate of arrival O(y/n), with data O(y/n). In this case the rate of work
on each source is O(y/n), so that the average sojourn in the system is still O(1).

8Strictly speaking a source should not depart until an acknowledgment of its last transmission has been
received. But our approximation to the actual departure rule has little effect, since the order of lost packets
is still O(4/n), and p is large.

9 An alternative approach replaces the value of u by a time varying quantity to reflect the fact that even if
the service rate per source changes the total amount of data per source doesn’t. For example, if the allowed
data rate for an AIMD connection is cut in half due to an increase in the number of sources, then the value
of the connection departure rate for that source should be cut in half. The mathematical development of
this situation is much harder.
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quadratic variation process p fot N™(s)ds. For simplicity, suppose that N™(-) is stationary.
Tt follows from this, (5.1), and the cited values of the quadratic variations, that the sequence
N™(-)/n converges weakly to a process with constant value A/u, as n — oco. Also, v"(-)
satisfies

dv™(t) = —pv™(t)dt + [dM2(t) — dM}(t)]/v/n. (5.2)

The quadratic variation of the scaled martingale term in (5.2) is At +p fot N™(s)ds/n, which
converges weakly to 2A. The sequence v™(+) converges weakly to v(-), where

dv(t) = —pv(t)dt + dw(t), (5.3)
where w(-) is a Wiener process with variance 2. X A
Returning to the rate process, write Y. r;(t) = R™(t) = nR++/np"(t), where R = vi /.
The process R™(-) satisfies
dR™(t) = Avindt — pR™(t)dt + uy (t)/ndt
—[effects of overflow and preemptive controls] (5.4)
FordM, (t) — dMg (1),

where M7, () is the martingale associated with the “rate departure” process and it has

quadratic variation process p fot > 72(s)ds. This, divided by n, converges weakly to the
process with values v} \t, as n — oo. Finally, it is not hard to show that p"(-) = p(-), where

dp(t) = —pp(t)dt + [N/ plurdt
o2 [%dU(t —a) (5.5)
+r1 M/ plue(z(t — ), p™(t — oe))dt] + vidw.

Approximations to the optimal control via the limit model. The limit system
equations are (3.9) and (5.5). The comments made below (3.10) concerning the costs and
controls, and on the approximation of optimal costs and controls for the physical system by
the optimal controls for the limit, also hold here.

Comment concerning retransmission of lost packets. The model that has been dis-
cussed did not involve retransmission of lost packets. Such retransmission is not hard to
model, if desired. Basically, a lost packet implies that more data remains to be transmitted,
hence a reduction in the user and data departure rate. This reduction can be expressed in
terms of the buffer overflow process U™(-), and the details will be given elsewhere.

6 Numerical Data: Optimal Preemptive Controls
It is not possible at present to compute optimal policies when there is a delay, so we set

a = 0. But the results do shed light on the system behavior. The results suggest that, even
with a non zero delay, a rate based threshold control will yield good results.
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Numerical results were obtained for the optimal control and costs for the model of Section
5 for cost (3.10), with k1 () = c12, k2(p) = cap, and either small 3, or the ergodic cost analog.
The results were nearly the same when § < .02, and the ergodic case will be described. The
Markov chain approximation method [11], the most appropriate current numerical method
for controlled reflected diffusions, was used. Only a few details can be given here. Use
w = LA/p=4,b=1v = 15a, = 4,k = Kk = .5, 02 = 4, the upper bound on
uz(z, p) < 1, the buffer capacity is 12.8/n packets, and ¢y = 100,¢; = 1,¢co = 5, reflecting
our desire to penalize lost packets most heavily. The mice account for about 40% of the
traffic and the system is quite “noisy,” since the variances of the Wiener processes driving
(z,p) are (9,4.5).

The optimal preemptive controls are determined by a switching curve: wa(z,p) = 0
below the curve and equals its maximum value above the curve. The curve obtained for our
example in the asymptotic regime is given in Fig 1. As we see, in (x, p) space, the curve is

Switching curve in (x,rho), unit = .1, rho =0 is at 128.
T T T T

200 q

=128

150 B

rho in units of .1, center

Il Il Il Il
20 40 60 80 100 120
X in units of .1

Figure 1: The switching curve

initially (for small z) almost a straight line with a slightly decreasing slope as x increases. As
the buffer fills up, the slope becomes sharply more negative, as expected. The optimal cost
for the problem with preemptive control was about 1/10th of that without. In general, The
values of the cost components (stationary mean values of z(t), p(t), and lim; o, EU(t)/t)
are more significant than the optimal cost, since they give us information on the tradeoffs.
Optimal control is not of interest for its own sake, but rather for the information provided
on good design, and tradeoffs among the cost components as the weights change.

For the uncontrolled problem, the total buffer overflow rate (for all users) was 5.35y/n, vs
0.284/n, under optimal control for the given cost coefficients. The mean queue was virtually
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full for the uncontrolled case, compared to an average of one-third full under optimal control.
The total input rate for the controlled users was reduced by an average of 0.364/n under
optimal preemptive control, compared with an increase of 6.3y/n with no control. Thus
to get an improvement in overflow of about 20 times cost a fractional reduction in the
throughput of (6.3 4+ 0.36)/[(v1A/1) + am]/n) = 0.666//n.

If the buffer size is increased, its average percentage occupancy is about the same (queue
size is not weighted heavily), the average Ep increases, and the average overflow rate does
not change dramatically (e.g., doubling the buffer only halves the overflow, under our pa-
rameters). The optimal system adapts to an increased buffer size mainly by increasing the
average flow, keeping the queue size roughly in proportion to the buffer size, an interesting
fact in itself. Of course, a larger weight on x will reduce the average queue size.

These numbers illustrate the type of tradeoffs that are possible. One pays for reduced
overflow by reduced packet rate. But the packet rate is reduced only where it does the most
good. The tradeoffs vary with the cost coefficients. To use the method effectively, one makes
a series of runs, varying the coefficients ¢; This yields a set of possible tradeoffs between the
competing criteria. In each case, the tradeoff is under an optimal control. The approach
to the use of numerical methods and heavy traffic approximations is similar to what was
done for the problem of input control of a multiplexer system in [13]. A comparison with
threshold controls shows that the effects of the optimal control can be well approximated
by a threshold control depending on p (or on the overall low pass filtered rate, as discussed
above (4.3)) only, for appropriate values of the threshold. The cost components for the no
control, optimal, and threshold cases are summarized in Table 1. If the threshold controls
are activated only when the buffer exceeds some modest level, their performance is even
better. Keep in mind that the described optimal control and costs are for a very heavy
weight on overflow.

Table 1. Cost components.
under run type | buf overflow/\/n | Ex Ep
no cont. 5.35 11.92 | 6.35
opt. cont. .28 4.4 -.36
thresh p =0 .69 7.6 | 1.46
thresh p = -1 .48 6.4 .98
thresh p = -3 .33 4.9 2

7 Appendix: Comparison With a Fluid Model

Reference [19] also dealt with a limit approximation for large systems and justified the use
of a delayed deterministic differential equation as an approximation for a certain class of
problems. Since there are major differences between that work and this, apart from the
different scaling, a brief discussion of a few of the differences is worthwhile.

In the basic model of Section 3, capacity (i.e., bandwidth) scales linearly with n, and so
does the number of sources. The packet rate for each source is O(1). Our general approach
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also allows the possibility that the number of sources grows more slowly with n, with the
packet rate per source growing accordingly faster. While there are no explicit capacity
constraints in [19], it is clear that the bandwidth (BW) is proportional to their n? and we
use this fact below. They use a fixed number of connections of the order of vBW (and
no analog of the models of Sections 4 and 5), each sending packets at rate O(vBW). The
number of mice connections grows linearly with +/BW, and so does the rate of each mouse.
Time is divided into “decision intervals” of length O(1/v/BW), and the rates are (perhaps
unrealistically) averaged over these successive intervals before feedback and decisions. This
averaging, over O(v/BW) packets before feedback, effectively eliminates the randomness due
to the mice. We work closer to system capacity where the effects of random variations are
greater, and it is the true instantaneous randomness that causes the losses and activates the
controls.

The total overall rates of increase of the packet rate due to the slow additive control is
the same here and in [19]. In [19] the rate of each connection in the nth model (the one
corresponding to n TCP connections) increases by 1/n per each time slot, so that in terms
of real time the rate of increase does not depend on n. Thus the total rate of increase is
of the order of vBW. In our model, the packet losses of each AIMD source is random
and determined by the loss process associated with that source. this is in particular in
conformance with the objectives of buffer management schemes [7]. In [19], in contrast, all
AIMD sources have the same instantaneous dynamics, hence identical losses.
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