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Une méthode de Newton utilisant I’évaluation exacte des
jacobiennes pour la résolution de problémes couplés
fluide-structure

Résumé : Dans ce rapport de recherche, nous présentons une méthode de Newton partition-
née afin de résoudre les systémes couplés nonlinéaires issus de ’approximation numérique de
problémes d’interaction fluide-structure. La caractéristique principale de la méthode réside
dans I’évaluation exacte des jacobiennes croisées faisant intervenir la dérivée de forme de
I’état fluide vis-a-vis de perturbations des mouvements du solide. Nous montrons, grice &
des tests numériques fondés sur une implémentation au sein d’un code d’interaction fluide-
structure 3D, comment ’exactitude de 1’évaluation des jacobiennes croisées permet de ga-
rantir la convergence globale de la boucle de Newton.

Mots-clés : Interaction fluide-structure, équations de Navier-Stokes, formulation ALE,
schémas totalement couplés, méthodes de Newton, analyse de sensibilité de forme, hémody-
namique.
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1 Introduction

Nowadays, Computational Fluid-Structure Dynamics (CFSD) spreads out in every engineer-
ing field, from aeroelasticity to bio-mechanics problems (see, for instance, [26, 8, 10, 22, 14,
25, 23, 29, 16, 31]). One issue arising in the numerical approximation of these nonlinear
coupled systems, is the definition of coupling algorithms based on specific solvers involv-
ing efficient discretization for each of the solid and fluid subsystems, that may guarantee
accurate and fast convergence of the overall system. This issue is particularly difficult to
face when the structure is light, namely, when the fluid and the solid densities are of the
same order, as it happens in haemodynamics for example. Indeed, in this case, numeri-
cal experiments show that only fully coupled schemes can ensure stability of the resulting
method (see [22, 28, 6, 16, 23, 24]). Thus, at each time step, the rule is to solve a coupled
highly non-linear system using efficient methods that may preserve, inside inner loops, the
fluid-structure subsystem splitting.

Standard and simple strategies to solve these non-linear problems are fixed-point based
methods [3, 1]. Unfortunately, these methods are very expensive (even if several accelera-
tion techniques may improve their efficiency [25, 6]) and may fail to converge [16]. Recent
advances in this topic suggest the use of Newton based methods for a fast convergence to-
wards the solution of the non-linear coupled system [1, 23, 24, 31, 16, 19]. These methods
rely on the evaluation of the jacobians associated to the fluid-solid coupled state equations.
More precisely, the critical step consists in the evaluation of the cross jacobians [31], e.g.
the sensitivity of the fluid state with respect to solid motions. Up to now, this difficulties
have been overcome either by using finite difference approximations [23, 24, 31, 19], or by
replacing the tangent operator of the coupled system by a simpler operator [31, 16, 5, 7, 17].
In both cases, such approximations may deteriorate or avoid the overall convergence [31]. In
this paper, we provide an explicit expression of these cross jacobians, using shape sensitivity
calculus [30], in the case of an incompressible Newtonian fluid coupled with a nonlinear
elastic solid under large displacements. These expressions are then implemented inside a 3D
finite element (FE) library and we show on some model cases the superiority of using exact
jacobians against approximated versions of the Newton’s method.

The reminder of the paper is organized as follows. In section 2, we introduce a general
fluid-solid coupled system and describe its associated mathematical model. In section 3, the
resulting coupled set of equations is used to build a coupled weak variational formulation.
The latter is discretized in time using a fully coupled scheme in section 4, where, the resulting
nonlinear coupled system is turned into an abstract form. In order to solve this abstract
coupled system, in section 5 we describe the main steps of the Newton’s method in terms
of fluid and solid operators and its derivatives. The expressions of such derivatives are
obtained, in section 6, using general shape derivative calculus results that are recalled in
appendix A. These expressions have been already announced in [12, 13] as brief notes. In
section 7, we detail the major steps of the Newton’s algorithm applied to the coupled fluid-
solid problem. The resulting algorithm has been implemented in a 3D fluid-solid research
code. The numerical results are presented in section 8, showing the relevance of our approach.
Finally, we give some conclusions and draw some lines for future works.
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4 Miguel Angel Ferndndez, Marwan Moubachir

Q(t)

Figure 1: Geometric configurations

2 Mechanical problem

Let us first describe a general non-linear fluid-structure system in large displacements. We
consider a mechanical system occupying a moving domain Q(¢) . It consists of a deformable
structure Q°(¢) (vessel wall, pipe-line, ...) surrounding a fluid under motion (blood, oil,
..) in the complement Qf(¢) of Q%(t) in Q(t) (see figure 1). The problem is to determinate
the time evolution of the configuration §2(t), as well as the velocity and Cauchy stress tensor
within the fluid and the structure. The latter being governed by the classic conservation
laws of the continuum mechanics, endowed with appropriate constitutive laws.
The evolution of Q(t) (see e.g. [8, 20, 22]), can be described through a smooth and
injective mapping
X: Q[) x Rt — ]R3,
which maps any point xq of a given fixed (reference) configuration Qg def Qf U Qf into its

corresponding image x(xg,t), inside the present configuration Q(¢) (see figure 2). We set
xf 4 X|q: and x® & X|oz- For xo € 0, x*(xo,) represents the position at time ¢ > 0 of
the material point X inside the solid domain. This corresponds to the classical lagrangian

flow. In particular, the solid displacement d®(xg,t) reads
s def ¢ s
d*(xg,t) = x°(xq,t) —Xg, Xp € Q.

This implies that the configuration velocity matches the solid velocity inside the solid do-
main. Conversely, the map xf = IQS + df can be defined from the interface displacement

d’. as an arbitrary extension over the domain Qf, namely,
0

df = Ext(dpy)-

INRIA
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This explains the use of the terminology Arbitrary Lagrangian Eulerian (ALE) formulation
for the resulting equations [8, 20, 22]. In practice, we can choose an harmonic extension
operator [22, 28, 6, 16], which means that df solves the following elliptic problem:

—kAdf =0, in Qf
d'=d, on I},

where k£ > 0 is a given “diffusion” coefficient, that might depend on d®*. Other alternative
extension approaches can be found, for instance, in [2, 34].
Therefore, the fluid domain can be parametrised as follows:

Q1) = Q1A' (1) = (Tgg +d) (), 1)

and its corresponding velocity (the so-called ALE velocity) by

£\ def ad
V)=
PO
_ R ~
T (t) ,
Fin Qg EFOUt 11‘1 (t) i Qf( ) ;Fout (t)
() w
rg/ I'y

Figure 2: The map x

We deal with a Newtonian viscous, homogeneous fluid under incompressible flow with
density p and kinetic viscosity p. Its behavior is described by its Eulerian velocity u and
pressure p. The constitutive law for the Cauchy stress tensor is given by the following
expression:

o(u,p) = —pl+u [Vu+ (Vu)T].

The elastic solid under large displacements is described by its displacement d® and its stress
tensor S (second Piola-Kirchhoff tensor). The field S is related to d® through an appropriate
constitutive law, S = S(d°) (see [4, 21, 18]). Its boundary is divided into three disjoint parts
[ uUT3 UTY. We impose respectively a homogeneous Dirichlet boundary condition on I'§
and a homogeneous Neumann boundary condition on I'j.

RR n° 5085



6 Miguel Angel Ferndndez, Marwan Moubachir

The coupling between the solid and the fluid is realized through standard boundary con-
ditions at the fluid-structure interface I'f}, namely, the kinematic continuity of the velocity
and the kinetic continuity of the stress:

u = w(d"), "
_ 2
F(d)$(d*)ng = J(d)o(u,p)F(d) o,
with ng being the unit outward normal vector to 2, and

F(d) € 14V,d°, F(d) L14Vod!, J(@) ¥ det F(@®), J(d) L det F(d),
where F(d°) and F(d?) stand, respectively, for the deformation gradient inside the solid and
the fluid domains.

Finally, the fluid-structure coupled state (u,p,d’;d®) satisfies the following strong cou-
pled system (involving an ALE fluid formulation),

( 8J(d’
p I+ pdivus (u-wid) - owp] =0, i 20),
X0
divu=0, in 0Qf(1),
u=w(d"), on TV,
O'(ll,p)l’l =g, on Fin (t) U FOUt (t),
) df = Ext(dTFBv), in Qf, (3)
62(‘18 : S S — H QS
PO g divg (F(d*)S(d*)) =0, in QF,
F(d*)S(d%)ng = J(d)o(u,p)F(d) 'ny, on TV,
d*=0, on T,
L F(d*)S(d°)ng =0, on TIj,

with po the solid density, n the unit outward normal vector to Qf(¢), given by

F-T (df)ng
n= -————"——
[ F="(d)mo|
and g standing for the external forces acting on the fluid. For the sake of simpleness, no

body forces are considered. In the sequel, we shall set T'y;, out def Tin U Toyus-

Remark 1 Let us notice that, in (3), the fluid domain Qf(t) is directly related to the un-
known df through expression (1).

Remark 2 A variant to bypass the fluid ALE formulation in (3) is to use a fully Eulerian
fluid description together with a space-time finite elements discretization, as described in
[52, 33, 31].

INRIA
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3 Continuous weak formulation

Problem (3) can be reformulated in a weak variational form using appropriate test functions
(see [15, 22]), performing integration by parts and taking into account the boundary and
interface conditions. This lead to the following coupled weak formulation (see [28, 22]),
involving a fluid and a solid weak-formulations: Find df : Qf — R3, u : Qf(t) — R?,
p: Qf(t) — R and d° : QO — R3, satisfying the following coupled non-linear subproblems:

1. The fluid weak-formulation:

pi/ u-vfdx—l—p/ div [u® (u —w(d))] - vidx
dt Qf(t) Qf(t)
+/ U(u,p):vadx—/ g(t)-vfda—/ gdivudx
Qf (t) Tin—out (£) Qr () (4)

+/Fw(t)(u—W(df))-£da+/Q (a" - Bxt(dy)) - Adxo =0,

V(v q,& ) € V().

f
0

2. The solid weak-formulation:

o%as
/ P05 v®dxgo + F(d%)S(d°%) : Vv* dxq
23 25

d
+p— / u- Z(Vipy) dx + p/ div[u® (u— w(df))] “HE(Viry)dx  (5)
dt Qf(¢) 0 Qf () 0

+/ o(u,p) : VE(Virw)dx =0, Vv® € V®.
Qf (1) °

Here, the space of solid test functions is given by
Ve E v e HY(M5)? v =0on T},

and the space of fluid test functions V¥(t) is defined using the ALE parametrization x{ (see

[15]),

VEi(t) def {vf =vo (xf)_1 veH H (O, v=00n I‘B"}
lo=do ()" e 120h)}

{e=&0 (x) gy |€€ 2T

x L*(Qf)3.

X
X

In addition, we denote by & a given linear continuous lift operator

c%:H%(FB") — {vfzfro (xf)f1

v e HY(Qf)®, v =0on FiHut} .

RR n° 5085
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Remark 3 Notice that the interface coupling condition (2)2 is implicitly treated in (5).
Indeed, the last three terms of equation (5) represent nothing but the residual of the fluid
momentum equations in (4). This furnishes a weak description of the fluid load at the
interface (see [22]).

4 Time semi-discretised weak formulation

The weak coupled formulation (4)-(5) is now semi-discretized in time. Numerical exper-
iments (see [28, 22, 23, 24, 16, 6]) show that only fully coupled schemes (e.g. the fluid
geometry and the interface coupling conditions are implicitly treated) ensure stability and
allow to solve effectively problems in which both the fluid and structural densities are of the
same order. This arises, for instance, in haemodynamics applications (see [28, 14, 6, 16, 17]).

4.1 An implicit coupling scheme

We use an implicit Euler scheme for the ALE Navier-Stokes equations, with a semi-implicit
treatment of the non-linear convective term. Furthermore we use a mid-point rule for the
structural equation (see [22, 14, 16, 6]). Thus, for n = 0,1, ..., the semi-discretized in time
problem writes: Given (u”,d5";d*", w*"), find

n+1l _n+l f,n+1. gs,n+1
(11 D ) d ) d )7

satisfying the following coupled non-linear subproblems:

1. Fluid time semi-discretised weak-formulation:

P / n+1 f 14 / n f
— u vidx — — u”-vidx
At Qf(t"+1) At Qf(tn)

+ p/ div [u"™ @ (u” — wy(d"" )] - vl dx
Qf (tny1)
# [ ottt vetax- [ g(tns1) - v' da (6)
Qf (tn+1) Fin—out(tn+1)
_ / g divu™*! dx + / (0" — wy(d"™H1) - £ da
Qf (tnt1) I (tn41)

<,

1
with the notation wg(d""*1) % 5 (@bt —dtn).

(df’n—i_l - EXt(dff‘Tg"—f—l)) “Adxg = 0, v (Vfa qa£3 A) € Vf(tn-i-l)a

£
0

INRIA
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2. Solid time semi-discretised weak-formulation:

2 2
W As pods,n-‘rl - v dxg — W /QS 00 (dS,n + Atws’n) -v® dxy
0 0

+ % F(ds’n+1)S(ds’n+1) . vvs dXO + % F(ds,n)s(dS,n) . VVS dXO
2 2
+ L/ u"tt . B (Vi) dx — ﬁ/ u” - Z(viw) dx (7
At Qf (tn41) T3 At Qf (tn) TS

+p / div [0 @ (u® — wg(dFm1))] - R(vipy) dx
Qf (tn41) °
+/ a(u™, p"th) VR (Vi) dx =0, Vv eV,

Qf (tn41)

with ws"t! = Ait (dsa"+1 _ ds,n) — WS,

4.2 Abstract formulation

In order to use general methods to solve the coupled-system (6)-(7), it is useful to turn it
into an abstract form. Let Uf x U® be the space of fluid and solid states. We introduce the
following operators:

1. Fluid operator:
F: UxUs — (VY
(uf,u%) +—  F(ul,u®),
with uf € (u,p,d) and u* 4 g, whose action on fluid test functions (in VE(tny1))
is defined as follows,

s P f p n f
F(u,p,d';d%), (vi,q &N déf—/ u-v dx——/ u”-vidx

+ p/ div [u® (u" — wg(d))] - v dx + / o(u,p) : Vv' dx
Qf (dr) Qf(dr)

—/ g(tn+1)-vfda—/ gdivudx
1—‘in—c)ut (df) Qf (df)

’ /FW(df) (u = wy(d) '€da+/Q

with wyg(df) =

f (df — Ext( Trz;)) - Adxo,
0
Ait (@' —d"").
2. Solid operator:

RR n° 5085



10 Miguel Angel Ferndndez, Marwan Moubachir

whose action on solid test functions is defined as follows,

e 2
<3(u,p, df; ds)avs> s / pod® - v dxg
(A)? Jop

2 s,n s,n i S 1 s s . s
A /QS po (d>™ + Atw™™) - v* dxg + 2 Jo F(d®)S(d®) : Vv®dxg (9)

+ % F(@>™)S(d*™) : Vv®dxg + (L(u,p,d"),v*),
Q3

where the fluid load transfer operator £ : Uf — (V®)' is defined by

(L(u,p,d"),v*) € (F(u,p,d';d°), (#(viy),0,0,0))

= L . S _ L n. (v d
A7 /Qf(df)u ‘@(V|F5")dx A7 /Qf(tn)u ’(VIFB") x

10
+ p/ div [u® (u™ — wy(d))] "%(Vfrg) dx (10
Qf (df)

+/ o(u,p) : VEZ(virw) dx.
Qf (af) °

Therefore, using the above definitions, the coupled problem (6)-(7) reads: For n = 0,1, ...,

find

n+l . n+l1 af,n+1. 3s,n+1
(u ) Jd, 7d, )7

p
solution of the following non-linear coupled system:
<]:(un+1,pn+1, df’n+1; ds’n+1)7 (vfa q, £7 )‘)> = 07 v (vfa q, g) )‘) € Vf(tn+1)7
<S(u”+1,p”+1, df’"+1; ds,n—{—l)7 vs> — 07 Vv € VS,
that is,
]_-(un—{—l pn—i-l df,n+1_ds,n+1) — 07
S(un+1 pn+1, df,n+1; ds,n+1) =0.

To simplify the notation, we shall only consider one time step so that we drop the upper

index n 4+ 1. Thus, the above coupled problem writes: find uf def (u,p,df) and u* def g

such that

> (1)
0

In the sequel, we shall assume that a fluid solver and a solid solver are at our disposal.
Hence, it is useful to turn problem (11) into an abstract form in terms of the fluid and

INRIA



Newton method for solving fluid-structure coupling 11

structure solvers. To this end, we introduce the fluid solver operator .# : U> —s U, defined
by
F(ZF@W®),v*) =0, Vu° e U, (12)

and the solid solver operator .# : Uf — U®, defined by
S, 7)) =0, vul eU" (13)

Therefore, using the above definitions, the coupled non-linear problem (11) can be reduced
to: find u® € U?® solution of the following non-linear equation

R(u) € ws — F 0 F(u) =0, (14)

see [16]. If (uf, u®) solves (11) then u® satisfies (14) and, conversely, if u® is a solution of (14)
then (uf = F(u®),u®) solves (11).

In the next section, we describe the main steps of the Newton’s algorithm when applied
to the above nonlinear problem.

5 The Newton’s algorithm

Standard forms for solving the non-linear problem (14) are fixed-points based iterations, see
[28, 25, 16, 6]. Unfortunately, these methods usually show poor convergence properties and
may fail to converge (see [23, 24, 25, 6, 16]). In order to speed up the convergence, it is
useful to use Newton-Raphson based methods (see [23, 24, 31, 16, 19]).

The Newton’s method applied to the non-linear equation (14) reads:

1. Choose #®* € U®

2. Do until convergence

(a) Evaluate the fluid operator uf = .7 (u*)
(b) Evaluate the solid operator @° = .7(u')
(c) Evaluate the residual R(@°) =@° —4°

(d) Solve
[Dys R(w%)]0u® = —R(w®)

(c) Update rule: o’ «— u®+ dub.

Step 2(b) of this algorithm can be carried out by using an iterative free matrix method
as GMRES (see [23, 24, 31, 16]). In this case, we only need to evaluate several times the
operator D,s R(u®) against solid state perturbations z. In particular, we have,

[Dys R(@)]2 = 2 — [Dyr L(@')]  [Dus F(@)]2
N—————’
suf = (6u, bp, dd")
5z

RR n° 5085



12 Miguel Angel Ferndndez, Marwan Moubachir

By differentiating the equations (12) and (13), we are able to split the above expression
in terms of the derivatives of the fluid an solid operators (8)-(9), defined in the previous
section:

(i) Solve the fluid tangent sub-problem:
[Dy F(@',@*)]6u’ = —[Dy: F(@', @)z, (15)
(ii) Solve the solid tangent sub-problem:
[Dys S(@',0%)]62 = — [ Dy S(@', a%)] 60,

(iii) Evaluate

[Dy: R(@®)]2 = 2 — d2.

The main difficulty here (see [23, 24, 31, 16, 19]) relies on the fluid tangent subproblem
(15). Indeed, as we shall see in the next section, this problem involves the evaluation of the
following cross-derivative of the fluid operator:

Dys F (1, p, df; ds)éd!,

which corresponds to the directional derivative with respect to fluid-domain perturbations.
In previous works, the evaluations of these cross-jacobians were performed using finite differ-
ence approximations, that only require state operators evaluations [23, 24, 31, 19]. However,
the lack of a priori rules for selecting optimal finite difference infinitesimal steps, leads to
non-consistent jacobians and a reduction of the overall convergence speed [16]. In the fol-
lowing section, we will show how to avoid these approximations by establishing the exact
expression of the above linearized sub-systems.

6 Weak state operators derivatives

In this section, we present the differentiation of the fluid and solid operators with respect
to the fluid and solid state variables. We will use shape derivative calculus results in order
to perform the differentiation of integral terms with respect to their supports.

6.1 Fluid operator derivatives

We are able to obtain the expressions of the action of the derivative of the fluid weak
state operator J with respect to the state variables uf = (u,p,d") and u* df 35 at point
(@, p,df;d%) in the direction (du,dp,dd’;6d®). We can split the operator derivative in two

terms:

D(u df) f(ﬁaf)a &f; d_s)(dll, 6p7 6df) = D(u D) ]:(ﬁaﬁa df; ds)(dll, 6p)

P > T (16)

INRIA



Newton method for solving fluid-structure coupling 13

The first term Dy ;) F(1,p, df; ds)(u, dp) is a classical Fréchet derivative, in the sense we
do not need to perturb the support of the integrals inside the operator. Thus, we have

(Duyp) F(1,p,df; d%)(du,6p), (v',q,€,0)) = p/ su-v'dx
At Qf(c{f)

+ p/ _ div[fu® (u" - wg((if))] -vidx +/ _ o(du,dp) : Vv dx (17)
Qf(df) Qf (df)

—/ qdivdudx—}—/ du-£da.
Qf(df) I (df)

The second term, Dgs F (i, p,df; d%)ddf, requires the derivation with respect to df of Eule-
rian integrals over Qf(df) and its boundary. Actually, this kind of derivatives can be viewed
as shape derivatives, see for instance [30]. Some elements on shape derivative calculus are
given in appendix A and allow to establish the following identity,

(Dae 7 (8,5, 45 8)5d", (v, 4,6, ) = 2. / (div 6 - v* dx
")
+/ - pdiv{a® (u" - Wg((if)) [Idivéd" — (Véd )]} - vidx
Qf(dr)

_ L / div(a ® éd’) - vi dx + / o(1,p) [Idivad' — (Vod)"] : vvidx
At Qf (df) Qf (df)

- / ~ p[vaved® + (ved )T (via)T] : vvidx — / ~ (n(6d?) - n)g(tny1) - vida
Qf (df) Tin—out (df)

—/  qdiv {a [Idivéd" — (Véd") ']} dx + [ dd" - Adxo
Qf (df)

a4
_ = odf
[ @@ w - 5| gda
I (df)
(18)
Here, we used the notation n(ddf) = def [Idivédf — (Védf)T] n, which represents the first
order variation of the surface vector nda (see, for instance, [11, 9]). The derivative of F
with respect to the solid variable is given by,

(Do F (a5, ds )3, (v,0,6, X)) = = [ Bxt'(d)sd* - Adxo (19)
Qf

with the notation Ext'(d*)éd® % Dg. Ext(d®)sd®.

RR n° 5085



14 Miguel Angel Ferndndez, Marwan Moubachir

6.2 Solid operator derivatives

We proceed in the same fashion for the solid operator differentiation. We first get the
classical Fréchet derivatives,

(Dga- S(1, p, df; d*)6ds, v®) = ﬁ/ po0d® - v3 dxg
25

X (20)
+3 / (F(d)55 + Vod*S(d®)) : Vv* dxg
0
where 65 % Dg. S(d®)sd®.
Again we can split the derivative with respect to the fluid state in two terms:
D(u,p,df) S(ﬁ,ﬁ, (if; JS)((SUJ 6p7 (Sdf) = D(u,p) S(ﬁ7ﬁ7 d_f; d_s)((sua 6p) (21)

+ Dgr S(u, p, df; d)éd".

The first term Dy ) S(1, P, df; ds)(éu, dp) is a classical Fréchet derivative. Thus, we have

(D(u,p) S(1, B, df; ds)(du, op), v*) = ﬁ/ ou - Z(vipw) dx
’ At Qf (d) 0 (22)

+ p/m(af) div [u @ (u" — wy(df)] * R (Virw) +/Q o(du,0p) : VA (Viry ) dx.

f(&f)

Using the definition (9), the derivative of the solid operator with respect to df corresponds
to the derivative of the fluid loads operator with respect to df, i.e.

(Dge S(@,p,df; d)odf, v*) = (Dgr L(a, p, df)dd’, v*)
= (Dar F(a,p,d’; d)6d", (Z(viry), 0,0,0)).

Then using (18), we get
Dye S(ii, p,df; d5)od’, vs) = 2 divédha - Z(viw) dx
ia
A Qf (df) 0

+ / _ pdiv{n® (u" - wy(d)) [Tdived" — (Véd")"]} - Z(viry ) dx
Qf (df) 0

p

_ 1 u f . B
A Joriar, div(da ® od") %’(V‘FBV) dx (23)

+/ _ o(@,p) [Idived" — (VédH)T] - V.@(vlsrg) dx
Qf (df)

- / p [Vaved' + (véd) " (Vi)'] : V2 (i) dx,
Qf (df) 0
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Newton method for solving fluid-structure coupling 15

7 Detailed Newton’s algorithm sub-steps

Let us recall the following notations:

2y, o ¥ (a,p,d), o e &,
o < ds, suf X (5u, op, 5d), 52 % 5.
Thus, from (16), it follows that step 2(d) (i) consists in solving for (6u, dp, df) the following
linear variational problem

D (u,p) F (1,7, df; &°)(6u, 6p) + Dgr F(u, p,df; d*)éd’ = — Dy F(a,p, df; d®). (24)

Using the expressions of the fluid operator derivatives provided in (17)-(19) and by taking
(0,0,0, ) as test function in (24) we obtain that

sd" = Ext/(d®)z, in Qf.

On the other hand, taking the quadruplet (0,0,&,0) as test functions in (24), we obtain the
following boundary condition,

_adf

611—5

— (@ —wg(d"))(n(dd) -n), on I™(d). (25)
Moreover, since by definition @' = Z(@®), it follows that @ — wg(df) = 0 on T™(df) so that
(25) reduces to

sdf =
— w (
du= 7> on v (df). (26)

Finally, using (17)-(19) and choosing the quadruplet (0, 0,&,0) as test functions in (24), we
obtain the following variational expression satisfied by (du, dp),

<D(u,p) f(ﬁ;ﬁy (if; &S)((Su; 6p)7 (vfa q, 07 0)) = _< Ddf f(ﬁ;ﬁa (if; &S)(Sdfa (Vfa q, 07 0)>7 (27)

Actually, the last expression corresponds to the weak formulation associated to the following
PDE involving the linearized ALE Navier-Stokes equations:

( é&u + pdiv [fu® (u” — wg(dF)) — o(du, 6p)] = —L (divid)a

At
—div {[pa ® (u" — wy(df)) — o(@1,p)] [Idived® — (Ved")']}
\ + Aﬁt div(a ® 6d7) — div {p [Vavsd® + (véd")T(va)T]}, in QF(d),

| divéu = —div {u [Idivéd’ — (V6d)"]}, in Qf(dF),

RR n° 5085



16 Miguel Angel Ferndndez, Marwan Moubachir

endowed with the following inflow-outflow condition on T, oyt (df):
o(6u,6p)n = g(tny1)(n(6d") - n) — o(a, p)n(3d") + p [Vaved’ + (véd") " (va)'| n.

In short, taking into account the above considerations, step 2(d) (1) can be carried out by
computing §df = Ext'(d%)z and by solving the following linearized Navier-Stokes problem
for (du, dp):

4

Ait(Su + pdiv [fu® (u" — w, (df)) — o(&u, ép)] = —Ait(div sdh)a
—div {[pa ® (u" — wg(d")) — (@, p)] [Ldived® — (Ved")']}
+ L div(a g sdf) — div {u [Vaved + (véd))"(va)T]}, in QF(d),

At
J divéu = —div{a [Idivéd’ - (Véd')']}, in Qf(dr), (28)
odf =
_ w(df
du= Apr Oon rv(df),

(6u,6p)n = g(tn+1)(n(6d") - n) — o(u, p)n(sd’)
+p [Vaved: + (VodH)T(Va) ] n, on Tin_ouw(dS),

\

Finally, using the expressions of the solid operator derivatives provided in (20)-(23), we are
able to identify the structure of step 2(d) (ii). It consists in solving for the perturbed solid
state dz the following problem:

2

g L s s . s
(At)?2 /93 podz - v® dxo + 5/90 (F(d )8S(z) + VézS(d )) 1 Vv® dxg

=r / ou - Z(viry) dx + p/ div [fu ® (u" — wg(df)] K (Vry)
At Qf (dF) 0 Qf (df) 0
+ /Q _ o(6u,8p) : VR(viry) dx + Aﬁt / _ (divéd)a- #(vipy) dx
f(df) Qf(df)
+ / ~ pdiv{a® (u" —wy(d")) [Idivéd’ — (Vad)™]} - RB(Vipy) dx
Qf (dF)
_r iv(ia . B
A Joriar, div(a ® 6d") %(vlrg)dx
+/ o(a,p) [Idivad — (vad)"] - VR (Vipy) dx
Qf (df) 0

- / p [Vaved' + (véd) " (Va)'] : V2 (vi.) dx,
Qf (df) °
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Newton method for solving fluid-structure coupling 17

Let notice, that the right hand side of this problem is nothing but the residual of the
linearized fluid momentum equation (28); involved in step 2(d) (1).

An approximate fluid tangent problem can be simply derived from exact expression (28)
by neglecting the shape derivative terms (see [31, 5, 7]), yielding

(L su+ pdiv [fu® (u™ — wg(df)) — o(du, ép)] =0, in Qf(df),

At
divéu=0, in Qf(df),

< 6df _ (29)
du on I™(df),

= A )
[ 0(6u,6p)n =0, on Tin_ou(dl),

Still, by neglecting here the convective and diffusive terms we get the following approximate
fluid tangent problem:
( Aﬁt(su +Vop=0, in Qf(d),

divéu=0, in Qf(df),
4 f

od -

611 = E, on I‘W(df),
[ dpn =0, on Tiy oue(df),
that was introduced in [16] (see also [7, 17]).

8 Numerical results

In this section we compare the exact Newton’s algorithm, whose jacobian evaluations have
been described in Section 7, with two former approaches:

e fixed-point iterations combined with an Aitken’s acceleration techniques (FP-Aitken)
[25, 16],

e a quasi-Newton’s algorithm, whose approximate jacobians evaluations are carried out
using the simplified fluid tangent problem (29), i.e., without taking into account the
shape derivatives of the fluid operator (see [31, 5, 7]).

As we shall see, in the sequel, the expected superiority of the exact jacobian approach is
validated by the numerical experiments, mainly when using moderate time steps.

We consider a fluid-structure problem arising in the modelling of the blood flow in
large arteries: it consists of a thin elastic vessel conveying an incompressible viscous fluid
(see [6, 5, 28, 14, 16]). The solid is described by the linear elasticity equations (Saint
Venant-Kirchhof material), while the fluid is described by the incompressible Navier-Stokes
equations. We consider two different geometries:

1. a straight cylinder of radius Ry = 0.5 cm and length L = 5cm,

RR n° 5085



18 Miguel Angel Ferndndez, Marwan Moubachir

x X

(a) t = 0.0025s (b) t = 0.005s
(c) t = 0.0075s (d) t =0.01s

Figure 3: Pressure wave propagation (straight cylinder)

2. a curved cylinder of radius Ry = 0.5 cm with curvature ratio 0.25cm™1!.

The surrounding structure has a thickness of A = 0.1 cm. The physical parameters are the
following (see [14, 16]):

e Fluid: viscosity u = 0.003 poise, density p = 1g/cm?,

2

e Solid: density pp = 1.2g/cm?, Young modulus E = 3 x 10 dynes/cm? and Poisson

ratio v = 0.3.
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Newton method for solving fluid-structure coupling 19

(a) t = 0.0025s (b) t = 0.005s

(c) t = 0.0075s (d) t =0.01s

Figure 4: Pressure wave propagation (curved cylinder)

Both systems, the fluid and the structure, are initially at rest. The structure is clamped at
the inlet and the outlet. An over pressure of 1.3332 x 10~ 4 dynes/cm? (10 mmHg) is imposed
on the inlet boundary T, during 3 x 1072 seconds. The fluid equations are discretised using
Py bubble/P; finite elements, whereas for the solid equations we use P; finite elements.

A pressure wave propagation is observed in both configurations. Figures 3 and 4 show
the fluid pressure at time ¢ = 0.0025,0.005,0.0075,0.01 s with time step At = 10~*s. These
results are similar to those provided in [16, 14]. In figures 5 and 6 the corresponding solid
deformed configurations (half section) are displayed.
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20 Miguel Angel Ferndndez, Marwan Moubachir

Remark 4 The boundary data imposed on the inlet and outlet boundaries [14, 16, 17] do
not have any physiological meaning. Let us notice that the typical period of a heart beat is
about 1 second [27]. Providing realistic physiological simulations of the interaction between
the blood and the arterial wall, lies outside the scope of this paper. This will be the purpose of
a forthcoming work. In such cases, the use of moderate time steps will be crucial to perform
over several cardiac beats.

NN

(a) t = 0.0025s (b) t = 0.005s
(c) t = 0.0075s (d) t =0.01s

Figure 5: Solid domain deformed configuration (straight cylinder)
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A A\

(a) t = 0.0025s (b) t = 0.005s
(c) t = 0.0075s (d) t =0.01s

Figure 6: Solid domain deformed configuration (curved cylinder)

For comparison purposes, we give in figures 7 and 8 the number of iterations of either
method at each time level, for At = 10~*s. The superior convergence properties of both
Newton’s algorithms are evident. However, the cost of each Newton iteration is higher than
the cost of a fixed-point iteration. Therefore, the previous promising convergence behavior
does not necessarily imply an overall reduction of the computational cost. Hence, in order to
compare the computational cost of these algorithms, we furnish in tables 1 and 2 the elapsed
CPU time (dimensionless) for either algorithm after 300 time steps of length At = 10™%s.
We can notice that both Newton’s algorithms are (in our implementation) about 2 times
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22 Miguel Angel Ferndndez, Marwan Moubachir

faster than the fixed-point algorithm. This computational gain can be also recovered (from
figures 7 and 8) by simply estimating the cost of each Newton iteration in terms of the
number of fluid and solid solvers calls. Each Newton iteration requires:

e 3 fluid solver evaluation,
e a solid solver evaluation,
e about 9 inner GMRES iterations (with a tolerance of 107%).

At this point, it is important to remark that each call of the fluid solver updates the fluid
mesh and the corresponding FE fluid matrices, while the tangent fluid solver keeps the same
FE matrix during the GMRES process. As a result, and since we are dealing with linear
solvers, the cost of each Newton iteration is approximately 7 times the cost of a fluid solver
evaluation, plus 10 times the cost of a solid solver evaluation. This explains the observed
overall computational cost reduction. Obviously, this performance rises much more when
the fluid and solid solvers are non-linear.

Now, let us address in details the comparison between the exact Newton and quasi-
Newton algorithms. Obviously, the GMRES iterations in the exact version are more expen-
sive than in the quasi version. Indeed, the exact Newton’s algorithm involves the computa-
tion of a shape derivative which is required by the fluid tangent problem (28). However, this
is usually compensated by a reduced number of Newton iterations. For instance, Figures
7 and 8 and tables 1 and 2 show that, for At = 10~*seconds, these algorithms exhibit a
comparable behavior.

50 T

Newton

a5 [t FP-Aitken - i

number of iterations

15

10

WA

0 0.005 0.01 0.015 0.02 0.025 0.03
time

Figure 7: Straight cylinder At = 10745
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number of iterations

60

10

T
Newton

FP-Aitken --------

"""" VWA G NIV VTR AW N T VWA TTWAMM MO ATV [

0.005 0.01 0.015 0.02 0.025 0.03
time

Figure 8: Curved cylinder At = 107*s

Algorithm CPU time
FP-Aitken 1.00
Quasi-Newton 0.56
Newton 0.52

Table 1: Dimensionless CPU time (straight cylinder)

Algorithm CPU time
FP-Aitken 1.00
Quasi-Newton 0.55
Newton 0.60

Table 2: Dimensionless CPU time (curved cylinder)

The superiority of the exact Newton’s algorithm can be simply illustrated by increasing
the time step. Indeed, in figures 9 and 10, we specify the number of iterations of either
method at each time level, with time step At = 1073 s. The fixed-point and quasi-Newton
algorithms fail to converge after two time steps: the allowed maximum number of iterations
is in both cases reached, whereas the exact Newton’s method converges and requires a low
(almost constant) number of iterations. This illustrates the expected good convergence
properties of the Newton’s method using exact jacobians evaluations. Figures 11 and 12
show the evolution of the residual during the iteration process in both Newton’s algorithms
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2 : ‘
* Newton —+—
([H(’\S\'NP,"JTUH """"
FP-Aitken -~
20
2
£ 15
"
2
s
B
E 10
c
5
v NV B 2 NI Vg
0
0 0.005 001 0015 0.02 0,025 003
time
Figure 9: Straight cylinder At = 1073 s
2 : ‘
Newton —+—
([H(’\S\'NP,"JTUH """"
FP-Aitken -~
20
2
£ 15
"
2
5
B
E 10
c
5
0
0 0.005 001 0015 0.02 0,025 003

time

Figure 10: Curved cylinder At =10 3s

at the third time step. We may observe that the quasi-Newton’s algorithm is unable to
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reduce the residual after 100 iterations, while the exact Newton only requires 3 iterations to
reach the convergence threshold.
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Figure 11: Straight cylinder At = 1073
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Figure 12: Curved cylinder At = 1035
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Let notice that the initial guess used in our computations, for starting each Newton’s
loop, is based on a extrapolation of the displacement of the previous time steps (see, for
instance, [22, 28, 16]). Consequently, larger time steps lead to worse initial guess and then to
a higher number of iterations. The variations of the fluid domain become thus more relevant
and, therefore, the shape derivatives (18) can not be neglected in (28).

9 Conclusion

Using Newton based methods for solving the non-linear coupled systems arising in the nu-
merical approximation of fluid-structure interaction problems, requires evaluations of the
jacobian associated to coupled non-linear problem. Up to now, these evaluations were
approximated either using finite differences [23, 24, 31, 19], or by introducing simplified
expressions [31, 16, 5, 7, 17]. In any case, with a loss of some of the convergence features
of the Newton’s method. In this article, we have proposed a new strategy consisting in
implementing linearized solvers in order to evaluate, in a consistent way, the different jaco-
bians involved in the Newton’s algorithm. The main contribution of this paper consists in
establishing the expressions of these jacobians, in the case of a coupled system consisting
of an incompressible Newtonian fluid interacting with a non-linear elastic solid under large
displacements. On the numerical view point, the Newton’s method has been implemented
in a 3D research code in the case of a linear elastic solid. Performing several numerical ex-
periments allowed us to show how the exactness level of the jacobian evaluations influences
drastically the convergence properties of the Newton’s loop.

There exist several ways of improving the results presented in this paper. First we shall
move from a linear to a nonlinear elastic solid. Then we may address the technical point
consisting in preconditioning the GMRES iterations during the Newton’s loop [19, 7]. We
shall also investigate the application of our approach in the case of disretisations involving
space-time finite elements [31]. Our underlying motivation is, in any case, to be able to
provide fast and reliable simulations of the mechanical interaction between the blood and
the arterial wall [14, 28, 6, 5, 16, 17|, over several cardiac beats.
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A Shape derivative calculus

We consider a smooth domain €y € R® and a one-to-one mapping x € 7% where

The € ix | x—Te Wt (R, R), x!'-TeWh=(® R}
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with k£ > 1.

We introduce the transported domain Q(x) = x(€Qg). We introduce a scalar parameter 7 > 0
and a perturbation mapping éx € 7% and we set F, = V(x 4+ 76x) and J, = det F,. The
following identities are easy to verify,

Lemma 1 d
Dy [J]6x & =7, |20 = Jdivix
dr

Dy [F_l] 0x = —F1Véx

We introduce the unit outward normal to I'(x) def 00(x) by
n(x) . F_Tn(]
~ IF~Tng|

where ng is unit outward normal to I'y def 0. We have the following identities,

/ da] 0x = / 7n(6x) -nda
I'(x) I'(x)

/ nda] ox = / n(dx) da
T'(x) I'(x)

with n(0x) = [Idivéx — (Véx)T]n

Lemma 2

Dx

Dy

We also have the classical Piola identity,

Lemma 3
div [Idivx — (Vx)"] =0 (30)

Now we consider a function u(x) : Q(x) — R® depending on the mapping x. We set
def

u(r) = u(x + 7x) : Q(x + 76x) — R3.

Definition 1 We say that the function u(x) admits a shape material derivative u(x;dx) in
the direction dx if the following limit exists,

u(7) o (x + 76x) — u(x) o x

u(x; 0x) 4 Jim
’ 7—0 T

Lemma 4 ([30], Section 2.31)

Dx

/ u-vdx] 6x:/ [(a(x; %) - v + u-v(x;0%) + (divéx) u - v]dx
Q(x) Q(x)
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Let U(€o) be a given abstract functional space of functions defined on g, we define its
transported image through x as follows,

UQx) € {aox?, aeU( )},
Lemma 5 For ((u,p),(v,q)) € U(Q(x)) x V(Qx)), the following identities hold true,

D« / u-vdx|dx :/ (divéx)u-vdx (31)
Q(x) Q(x)

D« / gdivudx| §x =/ gdiv {u[Idivdx — (Véx)"]} dx (32)
Q(x) Q(x)

Dy« / o(u,p) : Vvdx| 6x =/ o(u,p) [Idivox — (Vox)1] : Vvdx
Q(x) | Q(x)

- / p[VaVex + (Vox)T (Vu)T] : Vvdx (33)
Q(x)

Proof. -In the special case where ((u,p), (v,q)) € U(Q(x)) x V(€Q(x)), obviously we have
((a(x; 6x), p(x; 6x)), (v (x; 6x), 4(x; 6x)) = ((0,0), (0,0))

then using Lemma 4, we have

/ u-vdx] éx:/ [(divx) u- v]dx
Q(x) Q(x)

The next results follows using the following identities,

Dy

/ gdivudx = [ gdiv{JaF~"}dx,
Q(x) Qo

/ Vu:Vvdx = | JVaF!:VvF 'dxg
Q(x) Qo

and the definition o (u, p) = —pI+u [Vu+ (Vu)T].
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