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Abstract: Given polynomials fi,..., fx,g1,---,9s in Q[X1,...,X,], we consider the semi-
algebraic set S defined by:

fi=...=fik=0

g1>0,...,9,>0

and focus on the problem of computing at least one point in each connected component of S.
We first study how to solve this problem by considering S as the union of solutions sets of
polynomial systems of equations and strict inequalities and proceed to the complexity analysis
of the underlying algorithm. Then, we improve this approach by proving that computing at
least one point in each connected component of & can be done by computing at least one
point in each connected component of real algebraic sets defined by vanishing the polynomials
fi,-.., fr and some of the polynomials gi,...,g;. The complexity analysis shows that this
latter approach is better than the former one. Finally, we present our implementation and use
it to solve an application in Pattern Matching.
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Sur le calcul d’au moins un point par composante connexe
d’un semi-algébrique défini par un systéme polynomial
d’équations et d’inégalités larges

Résumé : Soient f1,..., fr, 91,. .., gx dans Q[ X7, ..., X,,], considérons I’ensemble semi-algébrique
S défini par:

fi=...,fk=0

(A1 20;---195 20

Notre probléme est de calculer au moins un point par composante connexe de S§. Ce pro-
bléme peut étre résolu en considérant I'union de I’ensemble des solutions de plusieurs systémes
d’équations et d’inégalité strictes. Nous montrons qu’en fait, il suffit de considérer les en-
sembles de solutions de plusieurs systémes d’équations polynomiales. Cette méthode a une
meilleure complexité que la précédente. Finalement nous présenterons une implémentation de
I’algorithme et une application au pattern matching.

Mots-clés : Systémes polynomiaux, Solutions réelles, Inégalités larges
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1 Introduction

Polynomial systems of equations and inequalities appear in many fields like computer aided
design, signal theory, robotics, and pattern matching. Deciding the emptiness, and computing
at least one point in each connected component of the solution set of such systems is conse-
quently a fundamental algorithmic problem in effective real algebraic geometry. This paper
proposes an efficient algorithm computing at least one point in each connected component
of a semi-algebraic set defined by a polynomial system of equations and non-strict inequali-
ties. We present its implementation and apply it to a problem coming from pattern matching
which is, up to our knowledge, intractable by the other existing implementations dealing with
semi-algebraic sets.

Related works The problem of computing at least one point in each connected component
of a semi-algebraic set defined by a polynomial system of equations and non-strict inequalities
is not specifically addressed in the literature, since it can be naively reduced to the problem
of computing at least one point in each connected component of several semi-algebraic sets
defined by polynomial systems of equations and strict inequalities.

A widespread algorithm taking as input a polynomial system of equations and inequalities
and computing at least one point in each connected component of the solution set of the input
system is the well-known cylindrical algebraic decomposition algorithm due to Collins and his
collaborators (see [12]). Its complexity is doubly exponential in the number of variables of
the studied polynomial family, and the best implementations of this algorithm are limited to
non-trivial problems having less than 5 variables.

Since the two last decades, several algorithms with a single exponential theoretical complex-
ity in the number of variables have been proposed (see [18, 19, 20, 7, 8, 9, 24]). These works
culminate with the results of Basu, Pollack and Roy, provided in a unified way in [10], where
the complexity of computing at least one point in each connected component of a semi-algebraic
set defined by a polynomial system of equations and strict inequalities is decomposed into a
combinatorial factor and an algebraic one. Most of the aforementioned algorithms rely on a
geometrical result allowing to reduce the case of a polynomial system of equations and strict
inequalities to the computation of at least one point in each connected component of several
real algebraic varieties defined by polynomial systems with coefficients in a Puiseuz series field.
We recall now, how to deal with this step.

Computation of one point in each connected component of a real algebraic set
Optimal algorithms computing at least one point in each connected component of a real alge-
braic set are based on the critical point method. This consists in computing the critical locus,
supposed to be zero-dimensional, of a mapping, which is supposed to reach its extrema on each
connected component of the studied real algebraic set.

This method is used in [18, 19, 20, 7, 8, 9, 24| to obtain algorithms which are polyno-
mial in a Bézout-like bound. Nevertheless, to deal with non-compact and non-smooth cases
some infinitesimals and algebraic manipulations are introduced and they do not allow to ob-
tain efficient implementations: they make heavier the arithmetic on which the computations
are performed and lead to consider systematically zero-dimensional polynomial systems whom
degrees are Bézout-like. This prevents to give intrinsic geometric degree bounds.

RR n’ 5079
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The problem is tackled with a view toward practical efficiency in [2, 29| by using the distance
function, and in [32] by using projection functions, and no complexity estimates is given.

In [4, 3|, the authors use the elimination procedures provided in [16, 14, 15, 17, 21] to obtain
an algorithm which is polynomial in an ¢ntrinsic geometric degree bound and which computes
at least one point in each connected component of a smooth and compact real algebraic set
defined by a regular sequence.

These complexity results are generalized to non-compact situations in [31] using projection
function and in |6, 5], where the authors go back to the distance function. We use in the sequel
the complexity result given in [31] that we recall now. We denote by M(z) the number of
operations required to multiply polynomials of degree z and the notation f € Oje(z) means
that f € O(xlog(x)*) for some constant a.

Theorem 1 [81] Let (f1,..., fx) be a polynomial family in Q[X1,...,X,] of degree bounded
by D generating a radical and equidimensional ideal of dimension d and defining a smooth
algebraic variety V. Let S denote the combinatorial number S = (nfd).(z;li) and G denote the
polynomial family

Jiseoos Joy My, ..oy Mys

where (M, ;) is a sequence of the (n — d,n — d) minors of the jacobian matriz associated to
(f1,---, fx) with respect to the variables X1, ..., X,.

Let § be an integer bounding the algebraic degree of any prefix subsequence of the polynomial
family G. There exists a probabilistic algorithm computing at least one point in each connected
component of YV NR™ whose complexity is within

Orog (Ln'*S(k + S)M(D(n — d)5)?)
arithmetic operations.

All these algorithms return zero-dimensional systems whose real solutions can be found
by computing a rational parametrization of their complex solution set using the algorithms
provided in either [1, 25] or [16, 14, 15, 17, 21]. We refer to [27] for the isolation of real roots of
a univariate polynomial with coefficients in an archimedean field using Uspensky’s algorithm
and [10] (and references therein) for the same task on Puiseux series fields using Sturm-Habicht
sequences.

Contributions We focus on polynomial systems of equations and non-strict inequalities.
All along the paper, we consider polynomials fi,..., fx and g1,...,¢s in Q[X;, ..., X,] for
some k, s and n in N and the semi-algebraic set S C R" defined by:

g>0,....,9s>0

As mentioned above, the solution set of such a polynomial system of equations and non-
strict inequalities is the union of the solution sets of polynomial systems of equations and strict
inequalities:

fi=...=fk=0
9y =---=6i,=0
gJ>0 v]%{zlvaw}

for all subset {i1,...,4,} of {1,...,s}.

INRIA
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Thus, computing at least one point in each connected component of S can be done by
computing at least one point in each connected component of the semi-algebraic sets defined
by the above polynomial systems. Using the results of [8, 9, 10] and [31], this leads to an
algorithm whose complexity is a sum of products decomposed into a combinatorial factor and
the power of an intrinsic geometric degree bound. The arithmetic operations are here counted
in a Puiseux series field since the use of results of [8, 9, 10] induces the introduction of an
infinitesimal.

Our main result consists in reducing the computation of at least one point in each connected
component of a semi-algebraic set defined by a polynomial system of equations and non-strict
inequalities to the computation of at least one point in each connected component of several
real algebraic sets defined by polynomials with coefficients in Q. More precisely, we prove that
computing at least one point in each connected components of S can be done by computing at
least one point in each connected component of the real algebraic sets defined by:

G == gy =0
for all subset {i1,...,4} in {1,...,s}. Thus, the infinitesimal deformation introduced in the

preceding approach is avoided and the number of arithmetic operations performed by the un-
derlying algorithm is counted over Q. Compared to the preceding approach, we show this
allows to reduce the combinatorial factors, while the algebraic ones are still polynomial in some
intrinsic geometric degree bounds.

We then present an implementation of this algorithm, which will be integrated in the next
release of the RAGLib Maple Library [30] and show how it can be applied to a problem coming
from pattern matching.

Organization of the paper In the following section, we show how to tackle polynomial
systems of equations and non-strict inequalities by considering polynomial systems of equations
and strict inequalities. We proceed a complexity analysis of the algorithm induced by this naive
approach, in some generic cases. In next section, we show how to tackle the same problem by
solving exclusively polynomial systems of equations. We show how this improve the complexity
of the new obtained algorithm which is successfully applied in the last section to a pattern
matching problem.

2 A first approach

In this section, we show how finding at least one point in each connected component of a
semi-algebraic set defined by equations and non-strict inequalities is reduced to finding at least
one point in each connected component to several semi-algebraic sets defined by equations and
strict equalities.

Proposition 1 Let (fi,..., fx,91,--.,9s) be polynomials in Q[X1,...,X,], S C R be the
semi-algebraic set defined by:

fi=...=fik=0

g>0,...,9s>0

and S be a connected component of S.

RR n’ 5079
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Then, there ezists a subset {iq, ..., 14} C{1,...,s} such that the semi-algebraic set defined by:

fi=...=fi=0
9, =...=gi, =0,
g >0 Vi€l s\ {ir,...,ic}

has a connected component S" included in S.

Proof. Let y be a point of S C S and {i1,...,i,} the set of indices of polynomials of
{g1,---,9s} that vanish in y. Let S’ be the semi-algebraic connected component of the semi-
algebraic set by:

fi=...=fr=0

9, =...=¢;, =0,

g; >0 Vje {1,...,8}\{i1,...,i1{}
such that y € S’. For any point 3’ € S’, there exists a continuous semi-algebraic path - :
[0,1] — S’ such that y(0) = y and (1) = . Since for all ¢ € [0,1], y(¢) € S’, for all t € [0,1]
and all j € {1,...,s}\ {41,...,%}, g;(t) does not vanish on 7(t) and is consequently positive
on this path since g;(y(0)) > 0. Thus, S’ C S.

Ul

Thus the problem of computing at least one point in each connected component of a semi-
algebraic set defined by equations and non-strict inequalities is reduced to computing at least
one point in each connected component of several semi-algebraic sets defined by equations and
strict inequalities. As mentioned in the introduction, this problem is tackled by asymptoti-
cally optimal algorithms, in particular those of Basu, Pollack and Roy based on the following
geometric result:

Theorem 2 [8, 9, 10] Let (f1,..., fes 91,---,9s) be a polynomial family in Q[ X1, ..., X,| and
S be a connected component of the semi-algebraic set defined by:

f1:...:fk:0, gl>0,...,gs>0

Then, there exist {i1,...,i} C{1,...,s} such that the real counterpart of the algebraic variety
defined by:

f1=...=fk=gz~1—5=...=giz—6:0
has a connected component included in S.

This result reduces the problem of finding at least one point in each connected component
of a semi-algebraic set defined by a polynomial system of equations and strict inequalities with
coefficients in Q to the problem of finding at least one point in each connected component of a
real algebraic set defined by a polynomial system of equations with coefficients in Q(e), using
for example the algorithms provided in |2, 29, 31]. In the sequel, we denote by Components a
routine taking as input a polynomial system of equations in Q[X7,..., X,] and returning an
encoding of at least one point in each connected component of the real algebraic set defined
by the input system, under the form of a list of rational parameterizations with coefficients in
Q(e) of the complex solution sets of zero-dimensional systems.

Following [8, 9, 10|, the sign of a polynomial ¢ € Q[Xj,...,X,] at each real point of a
zero-dimensional system can be computed from such an encoding, by pseudo-remainder com-
putations to reduce the multivariate problem to a univariate one and by isolating the real roots

INRIA
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of univariate polynomials with coefficients in Q(¢). Below, we denote by TestSign a subroutine
taking as input a list of parameterizations with coefficients in Q(¢) and a list of polynomials
in QX1,...,X,] which returns the parameterizations encoding real points on which all the
polynomials of the second input list are positive.

Algorithm 1

e Input : two lists of polynomials {fi,..., fx}, and {g1,...,¢:} in Q[Xy,..., X,].

e Output : an encoding of at least one point in each connected components of the semi-
algebraic set defined by:

fi=-..=fr=0
9G120,...,9,>0
1. result < (
2. For all {i1,...,ie} C {1,...,s}
e For all {j1,...,5p} C{L,...,s} \ {i1,... %}

e UR<«Components([fi,..., [k, Girs---+9is> Gj1 — €5 +++»9j, — €))
o result«TestSign(UR,{g; |j € {1,...,s} \ {é1,--- %0, J1,---,Jp}) Uresult

3. return result

Complexity analysis Our complexity analysis is based on [31, Theorem 3|. The arithmetic
complexity of Algorithm 1 is the arithmetic complexity of Components multiplied by the
number of possible choices for Z and J, i.e. Y ;_, (‘9.).25*i.

3

Theorem 3 Let (f1,..., fx,91,---,9s) be polynomials of degree bounded by D in Q[ X1,. .., X,],
and 8§ C R be the semi-algebraic set defined by:

fi=...=fk=0
g>0,....,9s>0

Given any subset T = {iy,...,4} of {1,...,s}, and J a subset of {1,...,s}\Z, let Fr,7 denote
the polynomial family

(fl;--"fkagila'"’giz’gjl _6"“’gjp_6)’

dz. 7 denote the dimension of the algebraic variety defined by Fr s, Cz g the combinatorial

number (k:ﬂ;gl).(nfng), Lz s denote the length of a Straight Line program evaluating Fr g,

and 07,7 the algebraic degree associated to Fr, s in Theorem 1.

Assume that for any subsets T and J, Fr 5 generates a radical and equidimensional ideal
and defines a smooth algebraic variety. There exists a probabilistic algorithm computing at least
one point in each connected component of S with an arithmetic complexity within

D" Ouog(Lz,gn'°Cr g (k + |T| +|T| + Cz,7)M((n — dz,7) Doz, 7)*)
ZcCA1,..., s}
Jc{L,..., sI\T

arithmetic operations in Q(g).

RR n’ 5079
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In the following section, we show how to reduce this complexity, by providing an algorithm
studying exclusively polynomial systems with coefficients in Q and studying less polynomial
systems than Algorithm 1.

3  Our algorithm

In this section, we show how to reduce the problem of finding at least one point in each
connected component of a semi-algebraic set defined by a polynomial system of equations and
non strict inequalities with coefficients in QQ to the problem of finding at least one point in each
connected component of several real algebraic sets defined by polynomial systems of equations
with coefficients in Q.

The result allowing such a reduction is based on the following intuition: if a polynomial () is
positive and negative on a connected component of an algebraic set V', then by the intermediate
value theorem, it vanishes on this component and then one can study V NV (Q).

The result below is similar to [28, Proposition 6.17] (see also [8, 9, 10]) and its proof is based
on the same principles.

Theorem 4 Let (f1,..., [k, 91,---,9s) be a polynomial family in Q[ X1, ..., X,], S CR" be the
semi-algebraic set defined by:

and S be a connected component of S.
Then there exists {i1,...,ic} such that the algebraic variety defined by:

f1:---:fk:gi1:---:gig:0

has a connected component C included in S.

Proof. Consider {i1,...,i;} be a maximal subset for inclusion of
{IcA{l,...,s} |Fx e S, Viel, gi(x) =0}
and denote by V the real algebraic variety defined by:

f1:---:fk:gi1:---:gi[:0

Let Cj denote a connected component of SNV and C the connected component of V' containing
Co. Remark that, since {i1,...,i,} is maximal, any polynomial g; for ¢ ¢ {i1,...,i,} do never
vanish on Cy. We show now that C' = Cj, which will establish a proof of the theorem.

First remark that by definition of C, Cy C C. Consider now zy a point in Cy and z; a
point in C. Let v be a semi-algebraic path from xy to z; in C and consider Z as the set of
polynomials that vanish in ([0, 1]).

Suppose Z to be non-empty. For any polynomial g in Z, g o 7y is algebraic and vanishes on
a finite number of point in [0, 1] (or is identically zero on [0, 1]). Moreover, by definition of Z,
g o7y vanishes on at least one point in [0, 1]. Thus, one can define ¢7 the least vanishing point
of go~in [0,1]. Then, as Z is finite, one can define ¢ the least 0] for g in Z.

Any polynomial in {gi,...,gs} is zero or positive on the path ([0,6]), and there exists a
polynomial ¢? in Z (if it is not empty) that vanishes on ().

INRIA
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Thus v(f) is a point of S on which ¢° g;,,..., and g;, vanish, which is not possible from
the definition of {iy,...,4%}. Therefore no polynomial in {g;,,,,...,g;} vanishes on 7 and z,
belongs to Cy, which implies that C' C C; and ends the proof.

O

Thus, to compute at least one point in each connected component of a semi-algebraic set
S defined by a polynomial system of equations and non-strict inequalities with coefficients in
Q, it is enough to compute one point in each connected component of the real counterparts of
some algebraic sets defined by polynomial systems with coefficients in Q.
As in the preceding paragraph, we use subroutines called Components and TestSign to compute
at least one point in each connected component of a real algebraic set and select among a
list of rational parameterizations those encoding at least one real point on which some given
polynomials are positive.

Algorithm 2

e Input : two lists of polynomials {fi,..., fx}, and {g1,...,9s} in Q[X1,..., X,].

e Output : an encoding of at least one point in each connected components of the semi-
algebraic set defined by:

fi=...=fik=0
g >0,...,9, >0

1. result <+ ()
2. For all {iy,...,3} C {1,...,s}

o UR<«Components(|fi,.-., fk; Girs---,9i,])
o result<TestSign(UR,{g; | j € {1,...,s} \ {41,...,%}}) Uresult

3. return result

Complexity Analysis Our complexity analysis is still based on Theorem 1 (see [31]).

Algorithm 2 calls the subroutine Components for each subset of {1,...,s}, i.e. 2° times.
In the case where each polynomial family studied by our algorithm verifies the assumptions of
Theorem 1, one can estimate the complexity of Algorithm 2 (where the number of operations
is counted in Q).

Theorem 5 Let (f1,..., fx,91,---,9s) be polynomials of degree bounded by D in Q[ X1, ..., X,],
and & C R" be the semi-algebraic set defined by:

g>0,....,9,>0

Given any subset T = {i1, ..., 10} of {1,...,s}, let Fr denote the polynomial family (f1,- .., fx,
Gir»- - - Gi,), dz denote the dimension of the algebraic variety defined by Fr, Cr the combinatorial
number (f:‘dzz‘).(n_"dl), Lz denote the length of a Straight Line program evaluating Fr, and 07
the algebraic degree associated to Fr in Theorem 1.

RR n’ 5079
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Assume that for any subset T, Fr generates a radical and equidimensional ideal and defines
a smooth algebraic variety. There exists a probabilistic algorithm computing at least one point
in each connected component of S with an arithmetic complexity within

Z O]og(LITLmCI(k + |I‘ + CI)M((TL - dI)D51)3)

ZC{1,...,s}
arithmetic operations in Q.

This complexity is clearly better than the one obtained for Algorithm 1: this algorithm studies
more polynomial systems than Algorithm 2. Moreover, remark that if we assume additionally
that for each Z C {1, ..., s}, the polynomial family Fr defines a regular sequence, then one has
only to consider the subsets Z containing at most d indices where d denotes the dimension of
the algebraic variety defined by:

4 Application to pattern matching and experimental re-
sults

Description of the problem Let P and Q be two geometric objects in an euclidean space
FE, with a distance function d over such objects, and G' a group of transformations. Given a
real positive number €, the typical geometric pattern matching problem is to decide if there
exists a transformation ¢ in G such that d(P,¢Q) < e.

To describe our specific problem we need the following notations and definitions. First, a
polygonal curve P is a function from [0 : m] to R?® such as P(i) = p; is the i'® vertex of P.

Notation 1 We denote by Mon(X,Y) the set of all non-strictly increasing surjective mappings
from a set X to a set’Y, where X and Y are finite subsets of N.

This set of mappings will be useful to reindex the vertex of polygonal curves.

Definition 1 The discrete Fréchet distance between two polygonal curves P and Q is:

4(P.Q) =min | Por— QoA |

K,
where the pairs (k, \) range over
Mong,, = Mon([1: m+n],[0: m]) X Mon([1:m+n],[0:n])

In our case, P and Q are polygonal curves in R?® represented as the list of their vertex, the
distance under consideration is the discrete Fréchet distance and G = SO(3, R) is the group of
rotations in R3.

Our problem is to decide whether G(P, Q, €, dr), the set of all g in G such that dp(P, gQ) <
€, 1s empty or not.

Since it is easier to work on points than to work with curves we introduce (G, €)-transporter
set for points p and ¢ in R3:

O =1g€G || p—gq|< e}

INRIA
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In [23, 22| the following straightforward relation between G(P, Q, ¢, dr) and transporter sets

is given:
G(P) QJ 67 dF) = U ﬂ TPCi,(Z)aq)\(s)

(K, A)EMony,,n s€[1:m+n)
Deciding the emptiness of G(P, Q, €, dr) is equivalent to deciding, for each x, A in Mony, ,, the

: G,e
emptiness of (V¢ (1.min] Tpore)ane)”

Transporter polynomials To describe Tﬁfs)m © with polynomials, the group SO(3,R) is

parametrized by unit quaternions. We will also use the following mapping:

R3 — H
(z,9,2) = (1,2,9,2)

The matrix of rotation gy zy..) is:
1 0 0 0
0 w? + z2 — y2 — 22 2zy — 2wz 2zz + 2wy
0 2zy + 2wz w? — 22 + y2 — 22 2yz — 2wz
0 2zz — 2wy 2yz + 2wz w? — 22 — 'y2 + 22

A (SO(3,R), €) transporter polynomial for p and ¢ is calculated as follows:

1 1
e _ 2 b q 2
gp,q =€ — || pz - g(w7$7y=z) qi ||
Dz qz

where €, (pg, Py, P2), and (¢z, gy, g.) are rationals.
This leads to the following polynomial system in four unknowns

€

gpm(l)’%(l) Z 0
€
gpn(m+n)aQ)\(m+n) — 0

for each k, A in Mony, .

Other groups of transformation We can do the same with the group of translations as
the group of acceptable transformations by using the following matrix:

1 0 00
a 1 0 0
b 01 0
c 0 01

Applying this matrix to (1,z,y,2) we get (1, + a,y + b,z + ¢) and back in R® we get (z +
a,y + b,z + ¢) which is (z,y, z) + (a, b, ¢).
We can also use non-uniform scalings (or uniform scalings if \; = Ay = A, = A):

1 0 0 0
0 X 0 O
00 X O
00 0 X\

RR n’ 5079
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To guarantee that we work on the group of scalings we must add the following constraint which
prevents any A from vanishing:

AeAg A =1

where A is a new variable.
These transformations can be combined and several polynomial systems of equations and
non-strict inequalities can be generated. Some restrictions can be imposed:

e one can choose to consider translations following a fixed direction; this is equivalent to
fix 2 variables among a, b and ¢ and lead to consider polynomial systems with 5 variables.

e one can choose between uniform or non-uniform scalings: this leads to polynomial systems
in 11 or 9 variables.

e mixing the above choices is also possible: we get polynomial systems in 7 variables ob-
tained by considering translations with respect to a fixed direction and uniform scalings.

The polynomial systems we studied and a Maple code generating them can be downloaded at
the URL:

http://www-calfor.lip6.fr/~safey/Applications/

The implementation To solve this problem the algorithm Algorithm 2 has been imple-
mented in the RAG’Lib Maple Library [30]. Each part of the algorithm works as a black
box.

We begin our walk through subsets of {1,..., s} by subsets of size one, and if a subset I
gives no solution we do not test any subset containing I. The routine used to find at least
one point in each connected component of an algebraic variety is an experimental version of
RAG’Lib’s function called a_component which mixes the algorithms provided in [32] and [31].
It uses the softwares Gb implemented by J.-C. Faugere for Grobner bases computations and
RS implemented by F. Rouillier for computing rational parametrizations of zero-dimensional
algebraic sets (see [13]). To evaluate the sign of multivariate polynomials at real algebraic
points given by a rational parametrization, we substitute classically the parametrization to the
variables in the polynomials so that the problem is reduced to evaluate the sign of univariate
polynomials at real roots of an other univariate polynomial. This is actually the blocking part
of our algorithm on this problem.

Experimental protocol We used our algorithm to solve such problems in four (in the case of
rotations) seven (in the case of rotations and translations) and eleven (in the case of rotations,
translations and scalings) unknowns and s constraints.

The examples were generated with the following protocol. We first decide the number of
constraints s and the precision of the matching e. Then if we want our system to have a
solution:

e a first polygonal curve P is generated in the cube [—1, 1]
e we decide a perturbation § < €

e a second polygonal curve Qy is generated from P by adding an arbitrary vector of size
to each point of P
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e we choose a transformation and we apply it to Qg to get Q

If we do not want our system to have a solution, P and Q are both randomly generated. Once
we have P and Q we only study the system:

AAALA = 1
] Iprg = 0
\ g;saqs 2 0

The first two constraints depend on the acceptable transformation and appear only if necessary.
Our tests have been done with s = 9 on systems with 4, 7 and 11 variables.

Experimental results The computations have been performed on PC Pentium III 1 GHz
with 512 Mbytes of RAM. The evaluation of the sign of the constraints by the method we
describe above is a blocking stage. A more efficient one is provided in [26] where the constraints
modulo the studied zero-dimensional system are represented by a rational function instead of
a polynomial. We did not filter the output, and the execution time we give below is the time
needed to calculate the zero-dimensional systems encoding at least one point in each connected
component of the real algebraic sets studied during the walk of Algorithm 2.

The software QEPCAD (see [11]) can not solve the polynomial systems we studied after two
weeks of computations on the same machine.

Systems with 4 variables and 9 constraints corresponding to the group of translations are
solved approximately in 5 hours and 45 minutes. Each algebraic system studied during the
walk of Algorithm 2 is solved in at most 2 minutes and a half. The largest degree of the
returned zero-dimensional sets is 196. Thus, the case where the group of transformations is the
the group of rotations seems to be reachable by algebraic techniques.

Considering the group of rotations and translations with respect to a fixed direction gener-
ates polynomial systems with 5 variables and 9 constraints which are solved by our implemen-
tation in 1 hour. Each algebraic system studied during the walk of Algorithm 2 is solved in
at most 40 seconds. The largest degree of the returned zero-dimensional sets is 140. Thus, this
case also is reachable by algebraic techniques.

The same conclusion occurs when considering the group of rotations and uniform scalings.
The generated polynomial systems contain 6 variables and are solved in 20 minutes. Each
algebraic systems studied during the walk of Algorithm 2 is solved in at most 10 seconds.
The largest degree of the returned zero-dimensional sets is 80. Thus, the case where the group
of transformations is the the group of rotations seems to be reachable by algebraic techniques.

Considering the group of translations (without restrictions) or the group of scalings lead to
polynomial systems which can not be solved by our techniques.
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