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Abstract: This paper analyses the implementation of the generalized finite differ-
ences method for the HJB equation of stochastic control, introduced by two of the
authors in [4]. The computation of coefficients needs to solve at each point of the
grid (and for each control) a linear programming problem.

We show here that, for two dimensional problems, this linear programming prob-
lem can be solved in O(p) operations, where p is the size of the stencil. The method
is based on a walk on the Stern-Brocot tree, and on the related filling of the set of
positive semidefinite matrices of size two.
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Un algorithme rapide pour ’équation HJB
du contréle stochastique en dimension deux.

Résumé : Cet article analyse "implémentation de la méthode de différences finies
généralisées pour ’équation HJB du contrdle stochastique, introduite par deux des
auteurs dans [4]. Le calcul des coefficients nécessite la résolution en chaque point de
la grille (et pour chaque commande) d’un programme linéaire.

Nous montrons que, pour les problémes bidimensionnels, ce programme linéaire
peut se résoudre en O(p) opérations, ol p est la taille du stencil. La méthode est
basée sur un cheminement dans I’arbre de Stern-Brocot, et sur le remplissage associé
de ’ensemble des matrices semidéfinies positives de taille deux.

Mots-clés : Controle stochastique, différences finies, solutions de viscosité, consis-
tance, équation HJB, arbre de Stern-Brocot.
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1 Introduction

In this paper we discuss numerical schemes for the HJB equation of stochastic
control. The model problem we are considering is

(

T
Min I / 0t y(t), u(®))dt + Le(y(T)):

(Pra) \ { d?(? = f(t,y(t), w(t))dt + o (t, y(1), u(t))dw(?),
y T)= .Z-,

[ u(t) eU, T7€][0,T], telr,T].

Here T > 0 is the (given) final time, y(¢) € IR™ and u(t) € IR™ are the state and
control variable, the latter subject to the constraint u(t) € U where U is a compact
subset of IR™ a.e., £ : IR x IR" X IR"™ — IR and £ : IR™ — IR are the distributed and
final cost, f : R x IR"™ x IR™ — IR™ is the trend (deterministic part of dynamics),
o(+,-,-) is a mapping from IR x IR™ x IR™ into the space of n x r matrices, and
w is a standard r dimensional Brownian motion. The control variable w has to be
a function of past events, i.e., is progressively measurable w.r.t. the filtration F;
associated with the Brownian motion. Let U be the set of feasible policies, i.e.,
progressively measurable controls with values in U. We assume for the sake of
simplicity that f, o, £ and £p, are Lipschitz and bounded. Then (e.g. Fleming and
Soner [6]) the stochastic differential equation is, for each policy u € U, well posed and
the corresponding expectation W (t,z,u) is well-defined. Denote the transposition
operator by T. Let a(t,z,u) := %a(t,x,u)a(t,x,u)T, for all (t,z,u) € [0,T] x IR™ x
U, be the covariance matrix. The value function V' of problem (P:,), defined by
V(r,z) := inf, W(7,z,u), is (P.L. Lions [12]) the unique bounded viscosity solution
of the Hamilton-Jacobi-Bellman (HJB) equation

—u(t, x) = Jg{f] {€(t,z,u) + f(t,z,u) - vz (¢, ) + a(t, z,u) o vy (t, z)},

for all ¢,z € [0,T] x IR". (HJB)
o(T,z) = Lp(z), for all z € IR™.

where v, denotes the n X n matrix of second derivatives of v with respect to z, and

given two symmetric matrices A, B, of size n, Ao B := ) =1 A;;B;; is the scalar
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4 J. Frédéric BONNANS , Elisabeth OTTENWAELTER , Housnaa ZIDANI

product associated with the Frobenius norm [lA[| :== (327;_, Afj)l/ 2 (since we do
not use other norms on matrices the notation is non ambiguous). Various numerical
methods have been proposed for solving this problem. Classical finite difference
methods were discussed in Lions and Mercier [13], see also Menaldi [14]. Markov
chain approximation were introduced in Kushner [10], see Kushner and Dupuis [11].
Camilli and Falcone [5] discuss methods based on a priori time discretization (and the
related dynamic programming principle for discrete time problems). Krylov [9] gives
an error estimate of a large class of discretization schemes. Recent improvements of

the error estimates were recently obtained in Barles and Jakobsen [1, 2].

2 Generalized finite differences

Let us recall the generalized finite differences (GFD) method of [4] in the setting
of finite horizon problems. The space discretization steps are positive real numbers
hi,...,hy,. With a point of the grid Z™ of coordinate k € Z™ is associated the point
Tk = .. kie; of the state space, where e; is the ith standard basis vector. Let
Q € IN, @ > 1 be the number of time steps; set hg := T/Q and t, := ghg, for
¢ =0,...,Q. Denote by v} the approximation of the value function V at (¢,z) =
(tq, Ik).

Let ¢ = {pr} be a real valued function over Z". The upwind finite difference
operator D¥ associated with f(tz, zx,u) at point (t,,zy) is

(D*¢y), = w it f(tg, zh,u)i > 0, % if not. (2.1)
g i

With & € Z", associate the second order finite difference operator

Aepr := Qe + Pr—t — 20k = Prte — Pk — (P& — Pr—¢)- (2.2)

The (second-order) stencil S is a finite set of Z™\ {0} containing {ej,--- ,e,}. For
each k € Z", we perform an approximation of the second-order term in the HJB
equation by a linear combination of second order finite difference operators associated
with elements of the stencil, i.e., the expression des aZ,k,gAgvi where ag,k,g are to
be set. Let a® := {a;j/h;h;} denote the scaled covariance matrix. Following [4]
we say that the operator Ege S aZ,k,gﬁg is a strongly consistent approximation of
a(t,zu)o D2, if

S at, £6T = aM(tg,ap,u), forall ke Z™ 2.3)
(€S

INRIA



A fast algorithm for the two dimensional HJB equation of stochastic control 5

This results in the following explicit (backwards) scheme

q q+1
U "% . +
Ut L) + Sl ) D+ Y atedol {0
es
UI? = KF,
forallg =0,...,Q—1and k € Z". The scheme is monotone (i.e., vz is a non decreas-

ing function of v?*!) if all terms v, in (2.4) appear with nonnegative coefficients.
This holds if the coefficients O‘g,k,g are nonnegative and, in addition,

| fi(tg, zk, )| .
D 2 ke < g V(b €27 XU 25)
=1 ' ¢es

This last condition ensures the non decrease w.r.t. vf. Since strong consistency im-
plies Y ecg g p ¢ < trace a"(tq, Tk, u) by [4, Lemma 2.1], condition (2.5) is satisfied
whenever

i 1
I illoo + 2| trace a”||oo < —. (2.6)
hi ho

n
Consequently, when min; k; | 0 we may take hg = C min; (hzz)Q, for C > 0 small
enough (depending on f and a), as expected.

If the strong consistency and monotonicity properties holds, then GFD are a par-
ticular case of consistent chain Markov approximations, and therefore are convergent
in view of Kushner and Dupuis [11, Chapter 10]. Since these schemes are monotone
and consistent, convergence of these schemes is also a consequence of Barles and
Souganidis [3, Thm 2.1]. It is not difficult to see that this scheme satisfies the hy-
potheses of Krylov [9], Barles and Jacobsen |1, 2|, and hence, the error estimates of
these authors apply (for the corresponding adaptation to infinite horizon problems
of GDF if necessary).

The interest of GFD is that it eases the analyzis of consistency properties. For
instance, [4] provides characterizations of the class of covariance matrices for which
the scheme is consistent with the most common stencils, for dimensions n = 2 to
4. We say that such matrices are consistent with a given stencil. What remained
unclear in the analysis of [4] was the easiness of computing the coefficients o g
Since coefficients Qg have to be nonnegative, solving (2.3) amounts to solve linear
inequality constraints (equivalently, a linear program with zero cost) which may be

RR n° 5078



6 J. Frédéric BONNANS , Elisabeth OTTENWAELTER , Housnaa ZIDANI

expensive if the stencil is large. Remember that this has to be done at each point of
the spatial grid, for each time step (and each control is covariances depend on the
control). Define the size of a stencil S as

size(S) = max{[l€]lo0; € € S}.

The main result of this paper is, for two dimensional problems, an algorithm for
computing the coefficients in O(size(S)) operations. More generally, for nonconsis-
tent problems the algorithm computes the closest consistent matrix (in the Frobenius
norm) in O(size(S)) operations. In addition, it has a recursive property: the closest
consistent matrix for stencil of size p is computed in O(1) operations after having
obtained the closest consistent matrix for stencil of size p — 1.

The main result is strongly related to geometric properties of the set of PSD
(symmetric, positive semidefinite) matrices on IR?, that are the subject of the next
section.

3 Structure of 2D covariance matrices

Scaled covariance matrices belong to the cone C of PSD matrices. We may view
these matrices as elements of IR?. The mapping

(a11 a12) — (a11, V2a9, ag)’ (3.7)

@12 Q22

is norm preserving from the space of 2 X 2 symmetric matrices, endowed with the
Frobenius norm, onto the three dimensional Euclidean space. The image of the PSD
cone by the mapping (3.7) is the set

{z € Rz > 0; 23> 0; %(22)2 < z123}. (3.8)

It is convenient to represent directions of this cone by drawing their intersection with
the hyperplane z; 4+ z3 = 1 (image of the set of matrices with unit trace), see figure
1. By the orthonormal change of coordinates

w1 = (21 — 23)/V2; wa = 295 w3 = (21 + 23)/V2,

we obtain that this intersection is the Euclidean ball of IR? of radius 1/v/2. For
a given PSD matrix a, coordinates in this hyperplane are (wi,ws)/ws = (a11 +
a22) (@11 — a2,2a12) and are called the view of a. The view of matrices with unit

INRIA
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Figure 1: Cone of positive semidefinite matrices

&

21 < 23

qr

0] &

Figure 2: quadrant

RR n° 5078

Zz>0

Qrr

29

21 2 23
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20

Figure 3: Correspondance of angles

trace is simply (@11 — @22, 2a12) and the corresponding set is the unit Euclidean ball.
The view of the identity, denoted as €, is the zero vector, and the view of 1", where
n:=(10)T,is (10).

The lemma below eases the computation of the view of any rank one symmetric
nonnegative matrix, and is illustrated in figures 2, 3.

Lemma 3.1 Let 7 = (cos 0,sinf). Then the view of nm' makes an angle of 20 with
the view of (1,0)(1,0)T.

Proof. With 7 are associated z = (cos? #,v/2 cos fsin@,sin? )" and w = (cos? 6 —
sin 0,2 cos @sinf,1)/v/2 = (cos 20,sin26,1)/+/2. The result follows. [ |

Let us discuss the case of diagonal dominant matrices. The view of such matrices
is the unit ball of L!(IR?), since it can be easily checked that a matrix is diagonal
dominant iff |a11 — ag2| + 2|ai2| < @11 + ag. For a diagonal dominant matrix we
have the well-known decomposition

o= an —onl) () (1 0)+ @~ o)) (1) 0 1)
+max(a12,0) G) (1 1) + max(—ais,0) (_11) (-1 1)

Let us call “inner region” of the PSD cone, the set of diagonal dominant matrices.
There are four outer regions corresponding to the violation of one of the four con-

(3.9)

INRIA



A fast algorithm for the two dimensional HJB equation of stochastic control 9

straints ta12 < a4, for 2 = 1, 2. They are numbered from I to IV according to figure
2. The outer region I is the set of PSD and non diagonal dominant matrices such
that agse < @19 < a11. It is easy to reduce to this case by permutation of variables
and change of sign of one state variable. Therefore in the sequel we will discuss
essentially the fast decomposition of such matrices. Note that for PSD and diagonal
dominant matrices in region I an alternative decomposition, involving the identity
matrix, and referred to in section 5, is

o = (a11 — a9) ((1) g) + (azs — a19) (é (1’) s G }) . (3.10)

4 The Stern-Brocot tree

Figure 4: Stern-Brocot tree 1

If the function ¢ of section 2, defined over Z", is the value at grid points of a
smooth function ® : R™ — IR, i.e., ¢ = ®(zy), where z3 := ), k;h;, then the op-
erator A¢ defined in (2.2) allows, as can be seen by a Taylor expansion of ® around
Tk, to obtain a consistent approximation of ®"(z)(x¢, z¢), the curvature of @ at zy
along direction z¢. The consistency condition (2.3) expresses the fact that a non-
negative combination of such curvatures equals the second order term of the HJB
equation. Two elements of the stencil generate the same direction if they are not
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10 J. Frédéric BONNANS , Elisabeth OTTENWAELTER , Housnaa ZIDANI

linearly independant. Since the algorithm should use points in the stencil as close to
xj as possible, it suffices to take such £ with relatively prime components.

For two dimensional problems on which we focus now, such points have a specific
structure. Assume for simplicity that £ = 0. For reason of symmetries, we have
represented in figure 5 one eighth of the neighbouring points, namely the points &
in Z%, such that & < &. Those with an irreducible associated (symbolic) fraction
&2 /&1, that we will call irreducible points, are in red (boldface in black and white).

As we will see, a very effective way for generating these irreducible points is to use
the Stern-Brocot tree (see [7]) (which by the way is not a tree in the classical sense),
displayed in figure 4. In the sequel, when we write ¢/p this should be understood as
the pair (p, q), so that p = 0 makes no problem.

The tree starts with two roots 0/1 and 1/0. At any stage of the construction,
between two adjacent nodes ¢/p and ¢'/p’, called the parents, insert the son node
(¢g+¢")/(p+ 7). The two roots are adjacent, and hence, the first son is 1/1. Then
each son is made adjacent with each of his two parents, and we can repeat the process
of generating sons (in any order).

Figure 5 shows the links between parents and son. For convenience we give a
short proof of some classical properties of the Stern-Brocot tree.

Lemma 4.1 Let q/p and ¢'/p’ be adjacent nodes such that q/p < ¢'/p’, with son
q"/p", where p" =p+9p', ¢" =q+4q. Then

(1) a/p <4¢"/p" < d'/¥',

(ii) every mode of the Brocot tree is irreducible,

(iii) ewery irreducible fraction b/a belongs to the Brocot tree.

Furthermore, if q/p and ¢'/p' are adjacent nodes of the tree such that q/p < b/a <

¢/, then
a>p+p; b>q+q. (4.11)

Proof. (i) It is easily checked that ¢/p < (¢+¢')/(p +p") < ¢'/p'. (This property
explains why generation of sons may be made in any order.)
(ii) We prove by induction that, if ¢/p and ¢'/p" are adjacent nodes of the tree, then

¢p—qp' =1 (4.12)

The relation is obviously true for the root nodes 0/1 and 1/0. Assume that it is
satisfied for adjacent nodes ¢/p and ¢'/p’. It follows from (4.12) that ¢'(p + p') —
p'(¢+¢)=1and p(¢g+¢') —q(p+p') =1, proving the induction. Combining (4.12)

INRIA
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7 L 1
6 L] ]
5 [ ] [ R
4 (] 1
3 [ [} 1
2 (] 1
1 ( ] [ ] 1
0 2 3 4 5 6 7

Figure 5: Family relations in regular grid

and Bézout’s theorem, we obtain (ii).

(iii) Let b/a be an irreducible fraction, with 0 < b/a < 1, and ¢/p, ¢'/p’ be adjacent
nodes of the tree such that ¢/p < b/a < ¢'/p'. Then bp — aq > 1 and aq’ — bp' > 1.
Multiply the first (second) inequality by p’ (by p) and add them; multiply the first
(second) inequality by ¢’ (by ¢) and add them; using (4.12), relation (4.11) follows.
Since p” > max(p, p') + 1, this relation implies that there is a finite number of couple
of adjacent nodes (q/p,q'/p') in the tree such that ¢q/p < b/a < ¢'/p' holds. This
is the case for the two root nodes. Assume now that b/a does not belong to the
Stern-Brocot tree. If ¢/p < b/a < ¢'/p', setting ¢" = ¢+ ¢’ and p" = p+ p/, we
see that either ¢/p < b/a < ¢"/p", or ¢"/p" < b/a < ¢'/p’. In this way we generate
an infinite sequence of adjacent nodes such that ¢/p < b/a < ¢'/p’. The desired
contradiction follows. |

RR n° 5078



12 J. Frédéric BONNANS , Elisabeth OTTENWAELTER , Housnaa ZIDANI

w

Figure 6: Correspondance of directions

5 Decomposition of the scaled covariance matrix

As discussed at the end of section 3, it suffices to discuss the case when the matrix
a" is in the outer region I; i.e., when it is PSD and non diagonal dominant, and ags <
a1z < a11. On figure 6, this means that the view of a” belongs to the quarter of ball
in the upper right side, and is not in the triangle with summits of coordinates (0, 0),
(1,0) and (0, 1), corresponding to the identity matrix, and degenerate diffusions with
horizontal and angle of 7/4 diffusions. (The cone generated by these three points is
the set of matrices for which decomposition (3.10) holds).

With every node ¢/p of the Stern-Brocot tree, ¢ < p, we associate the directions
bpg = (p @7 and X,, := §p,q§;:q. With two adjacent nodes is associated the
plane H(q/p, ¢’ /p’) generated by X, , and X, o, and two half spaces, the inner one
(containing the identity matrix) and the outer one. Denote by Py(q/p,q'/p’) the
orthogonal projection onto this plane (since the mapping onto IR? is norm invariant,
projection w.r.t. Frobenius norm is equivalent to the Euclidean projection in the
image space IR?).

Beginning the search of a decomposition, we are in the following situation: the
matrix a” belongs to the outer half space of H(q/p,q'/p'), with ¢/p = 0/1 and
q'/p" = 1/1. So, let us assume more generally that a” belongs to the outer half space
of H(q/p,q'/p'), where q/p and ¢'/p' are adjacent nodes. Note that its projection

h

INRIA



A fast algorithm for the two dimensional HJB equation of stochastic control 13

on the cone generated by matrices of the form X, 5., with either ¢;/p; < ¢/p or
¢'/p' < ¢i/pi, belongs to the cone generated by X, ; and Xy 4.

In that case we should use another direction of the form §/p, with ¢ and p
nonnegative, such that ¢/p < §/p < ¢'/p’, and as small as possible. In view of (4.11),
the optimal choice is to take the son ¢"/p" = (¢ +¢')/(p +p') (ie. ¢"/p" =1/2 the
first time). Then (see figure 6) there are two possibilities.

- The matrix a” belongs to both inner half spaces of H(q/p, ¢" /p") and H(q" /p",q' /D).
Then a” belongs to the cone generated by Xp,q» Xpr ¢ and Xpn gn. Since these three
matrices are linearly independant, the corresponding coefficients are solution of the
invertible (three dimensional) system

_h
p,q Xpg + ap g Xprg + aprgn Xpn gn = a”. (5.13)

- The matrix a” belongs to at least one outer half space. Since Xy v belongs
to the boundary of the cone of PSD matrices, a” cannot belong to both outer half
spaces (see figure 6). We are therefore lead to the situation at the beginning, setting
either ¢/p or ¢'/p' to ¢"/p".

This leads to an effective algorithm, that will stop either if the exact decomposi-
tion is obtained, or if either p"” > pyaz, or if the projection of a” onto H(q/p,q'/p")
is close enough to a”. The precise algorithm is as follows; € is the maximal relative
error of projection of a” onto the class of consistent matrices, and ppqz is the size of
stencil:

Algorithm DECOMP
INITIAL PHASE: Data € > 0, pmaz- Set k:= 0.
e If " is diagonal dominant: set o using (3.10) and stop.
e Reduction to region I, i.e. ab, < al, < al.
Set qo/po :=0/1, qy/pp :== 1/1.
REPEAT
e Compute a’ := Py(q/p,q'/p")a".
o If ||la’ — a”|| < €||la®|| or p+p' > Pmaz: compute o, decomposition of a' as
combination of X, , and X,y o and stop.
e Set ¢"/p" :=(¢+¢")/(p+ 1)
e If a" in inner half spaces of H(q/p,q"/p") and H(q/p,q"/p"): compute
using (5.13) and stop.

e If a is in outer half space of H(q/p,q"/p"): ¢'/p" := " /p".
Otherwise q/p := ¢"/p".

RR n° 5078



14 J. Frédéric BONNANS , Elisabeth OTTENWAELTER , Housnaa ZIDANI

e k:=k+1.
END REPEAT

From the above discussion we have the following result.

Theorem 5.1 Algorithm DECOMP stops after no more than ppa. iterations, the
cost at each iteration is O(1) operations, and hence, its total cost is no more than

Obviously it is useful to compute the largest distance between a” and its projec-
tion (as a function of pp,.,) and to evaluate the resulting approximation error. This
is the subject of the next section.

6 Projection errors for scaled covariance matrices

Let S, denote the stencil of size p reduced to irreducible elements:

Sp = {(&1,&2) € Z x IN; max(|&1],62) < p; (|€1],&2) irreducible} .

(the point (0, 0) is considered as not irreducible here). The polyhedral cone generated
by these directions is C(Sp) = {>¢c s, €€ Ts ag > 0}. By [r] we denote the smallest
integer greater than .

Lemma 6.1 The distance from a PSD matriz a to C(S,) is at most epl|al|, where

o — p2+1—0p
P V22 pr 1

Conversely, given € > 0, the distance from a to C(Sp) is at most € when p > p., with

pe = Vi—e?2—¢

e i — | TTYF/—
eVl —g?

Proof. We may assume that ||a|]| = 1. Let a’ be the projection of a onto C(S,).

Let us prove first that, if ' is the projection on the hyperplane spanned by ¢£7 and
g'(€')7, then

< p 2 (6.14)

1
1

(6.15)

(1 — cos(ﬁ/,\f’))
V2414 0032(5/,\6’)

la—a’] < lall (6.16)

INRIA



A fast algorithm for the two dimensional HJB equation of stochastic control 15

the bound being sharp. Indeed, we may assume that £ = (cos@ sinf)' and ¢ =
(cos@’ sin@)T. Set 6" := 1(0 + ') and & = (cos6” sin#”)". By reasons of
symmetry, the maximal error is reached for a = &"(¢")7, with ¢ = (cos 8" sing"),
and its projection is of the form a' = ab, where b := (€7 + €/(¢')7), for some
a€R,.

The minimum w.r.t. « of ||a — ab||? is

A = lal? = (a0 b)*/[]plI* =1 = (a0 b)*/|]b]|.
Since this amount is invariant w.r.t. a translation of angles we may assume that
6+ 0 =20" = 0, and hence ¢ = =6, o = (1, 0, 0)7, b= (2cos26, 0, 2sin20) .
We obtain ||b]|? = 4(cos? 6 + sin* §) and a o b = 2 cos? 0. It follows that A =1 — (ao
b)2/|b||?> = sin* 8/(cos* @ + sin ). Setting § = |¢' — 0| = 2|6|, and combining with
2sin’0 = 1—cos’f+sin’?0=1—cosé
cos® 0 +sin? 0 = (cos? 6 — sin? ) + 2 cos? fsin? § = cos? § + 3 sin” §
we get (6.16).

In the p-stencil, the greatest angle between two consecutive vectors is the angle

between & = (1 0)" and & = (p 1)7. By (6.16) and cos(&o,&1) = p/v/p? +1 we
have that, in the p-stencil, the largest error is (6.14).
S

V2 \/2 p2+1 T

e. Taking squares in this inequality, we obtain the equivalent relation (since € > 0)
(p2 +1+4p* - 2p\/p2+1) <2 (2p*+1),

or (2 p? + 1) (1 -2 52) < 2p+/p? + 1. This inequality having positive sides we again
have an equivalent relation by taking squares; the resulting inequality (2 p? + 1)2 (1 -2 52)2 <
4p? (p2 + 1) reduces to

We now prove (6.15). By (6.14), the relative error will be at most € if

— > 0.
ptp 16 €2 (1 —¢e2) —
This quadratic inequality w.r.t. ¢ := p? has discriminant
1-2¢2)? 1
A=1+ ( )

4e2(1—¢2) 4e2(1—e2)

1-2vV1-e2 (V1—e?—¢)?

= . Therefore (6.14) holds
4 ey/1 — €2 4 ey/1 —¢€? (6.14)
iff p > \/q1. The result follows. |

The positive root is g1 =

RR n° 5078
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Figure 7: View of maximal error

We display in the table below the first values of ¢, and some values of p.. An
algorithm involving only the closest neighbour can make up to 17 % of relative error
on covariances, and hence, will perform poorly in general. A relative precision of 1
% needs to take p = 5. This motivates our effort to make a theory for arbitrary large
values of p.

p Ep € p
1 0.169102 1071 2
21 0.055642 102 5
3 | 0.026325 1073 16
410.015153 1072 20
5 | 0.009804 107° 159
15 | 0.001109 1077 [ 1 582

Remark 6.1 If consistency does not hold, then the numerical scheme can be inter-
preted as as consistent approximation for the perturbed HJB equation

—v(t,z) = ;g{fj {(t,z,u) + f(t,z,u) - vz(t, ) + ap(t, z,u) 0 vea(t, )},
for all ¢,z € [0,T] x IR".
v(T,z) = {p(x), for all z € R™.
(HJBp)

INRIA
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where by apt, z,u) we denote the projection of at, z,u) on the cone C(Sp). Denote by
vp the (well-defined) corresponding solution. When the step sizes vanish the limit of
error between the solution of HJB and the one of the scheme is ||v — v ||0o. Using [8]
we can obtain estimates of ||v — vp||eo. For infinite horizon problems we can obtain
similar results applying [1, lemma 2.6].

7 Numerical results

We have implemented the algorithm in the C programming language and tested
it on two academic examples in which the value function is known. Also we integrate
on a finite rectangular domain with exact values on the boundary. This allows to
compute the error made by the scheme and to see if its behavior is in agreement with
the theory. For points of the grid close to the boundary, the size of the stencil may
be smaller than p,,., since points out of the domain are not used. Therefore, in the
vicinity of the boundary the errors of approximation of covariances are larger than
far from the boundary.

We use the reverse-time function W(s,z) = V(T — s,x) in order to integrate ¢
from 0 to T.

7.1 An uncontrolled problem

Our first test function is

{ W (t,z1,29) = (1 4+ t)sinz sinzy (7.17)

0 <m 0<zesm 0Kt

We choose Az := hy = hg, N1h1 = Nohy = 7, and the measurement of error is
_ ”Wapprom - Wezact”l

the mean value in L' norm, i.e. e := N < N . The following expressions
1 X Vg

for £, f and o are compatible with the HJB equation:

L(t,z1,29) = sinzisinze[l + (1 +26)(1 + t)]
—2(1+t) coszycoszysin(zy + z9) cos(zy + x2)
ft,z1,29) = 0
sin?(zq + x9) + B2 sin(z1 + x2) cos(z1 + z9)
a(t,z1,29) = . 2 2
sin(zy + z9) cos(z1 + z9) cos*(z1 +x9) + 0

here o(t, 71, 73) = ( sin(z1 +z2) B 0 )

cos(z1 +z2) 0 S

RR n° 5078
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We display in figure 8 the logarithm of error function of discretization step, for
B2 = 0.1 and 0, when ppqr = 5. The scheme is consistent only in the first case.
Accordingly, the error decreases when the space step is reduced in the first case, but
not in the other.

3-

log e
J Ex2
4k
+
5 Ex1
+
61
¥
-Tr #
¥
+
8l .
Y
-9+ ¥
¥
log A x

-10 I I I I ]
-35 -3 -25 -2 -15 -1

Figure 8: Error vs discretization step, pmez = 5

7.2 Numerical example, optimal control

We consider here an optimal control problem where o(-) and a(-) do not depend
on the control. Also, the trend is f(t,z,u) = u, with restriction u? + u2 < 1.
The test function is

{ W (t,z1,29) = (1 +t)sinz; sinzy (7.18)

-1<z1<l; —1<29<1; 0<<t<05
We have here a degenerate diffusion a(t,z1,22) = 30(t, %1, 22)0(t, 1, 22) T with

o1(t, z1,19) = V2 sin(zy + z2), o2(t, 1, T9) = V2 cos(zy1 + z9)

INRIA
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The resulting distributed cost is

L(t,x1, ) = sin(z1) sin(zs)
(14 t) [(COSQ(xl) sin?(z2) + sin® (1) cos? (22)) /2
+ sin(z1 ) sin(z2)
— 2sin(z1 + z3) cos(z1 + z2) cos(z1) cos(za) ]
We display in figure 9 the error, as defined in section 7.1, vs the discretization

step when p;,q = 10. Although the scheme is not consistent, it appears that the
discretization errors are quite small.

-16

+
-17r logl0e 1
18- 1
+

1ok 1

_2 = 4
o1k 1

+
ool 1
3l y 1
+
o4k 1
- logl0 A x

_25 1 1 1 1 1 1

16 -14 -12 -1 -08 -0.6 -0.4 -0.2

Figure 9: Error vs discretization step, optimal control, p,,q. = 10
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