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Abstract: This paper concerns incorporation of geometric information in the camera cal-
ibration and 3D modeling. Using the geometric constraints enables stabler results and
allows to perform tasks with fewer images. Our approach is motivated and developed within
a framework of semi-automatic 3D modeling, where the user defines geometric primitives
and constraints between them. It is based on the observation that constraints such as
coplanarity, parallelism or orthogonality, are often embedded intuitively in parallelepipeds.
Moreover, parallelepipeds are easy to delineate by a user, and are well adapted to model the
main structure of e.g. architectural scenes. In this paper, first a duality that exists between
the shape of a parallelepiped and the intrinsic parameters of a camera is described. Then,
a factorization-based algorithm exploiting this relation is developed. Using the images of
the parallelepipeds, it allows to simultaneously calibrate cameras, to recover shapes of par-
allelepipeds and to estimate the relative pose of all entities. Dealing with a well constrained
three-dimensional structure makes it possible to overcome the common problems of the fac-
torization methods: missing data and unknown scale factors. The reconstruction obtained
this way is of the affine character. To remove the affine ambiguity, all the available metric
information: constraints on parallelepipeds’ edge lengths and angles, as well as the usual
self-calibration constraints on cameras can be used simultaneously. The proposed algorithm
is completed by a study of the singular cases of the calibration method. Also a method for
the reconstruction of scene primitives that are not modeled by parallelepipeds is introduced.
The method is validated by various experimental results for real and simulated scenes, for
cases where a single or several views are available.
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3D scene analysis
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Comment utiliser les parallélépipédes pour calibrer des
images et construire des modéles 3D

Résumé : Ce rapport traite de 'utilisation de contraintes géométriques dans les processus
de calibrage de caméras et de modélisation 3D & partir d’images. Ces processus sont en effet
sensibles aux bruits et les contraintes géométriques, introduites par I'utilisateur, permettent
d’en stabiliser les résultats méme lorsque peu d’image sont considérées. Nous nous focali-
sons, dans ce document, sur les contraintes géométriques associées & un type de primitive
particulier, les parallélépipédes. Ces primitives permettent de caractériser des contraintes
de coplanarité, de parallélisme et d’orthogonalité. De plus, les parallélépipédes sont facile-
ment identifiables par 'utilisateur dans les images et sont bien adaptés & la modélisation de
batiments ou d’environnements architecturaux. Nous mettons en évidence, dans ce rapport,
le fait que 'image d’un parallélépipéde de caractéristiques connues caractérise entiérement
la transformation de projection dans I'image. Il y a en fait dualité entre les caractéristiques
du parallélépipéde et celles de la caméra au travers de la transformation de projection. Nous
développons ensuite un algorithme de factorisation qui exploite cette relation de dualité et
permet de calibrer et de reconstruire simultanément ’ensemble des caméras et des parallé-
lépipédes définis par 1'utilisateur dans un jeu d’images. L’intérét des parallélépipédes est de
résoudre les difficultés classiques des méthodes de factorisation appliquées aux points : les
données manquantes et les facteurs d’échelle inconnus. La reconstruction obtenue de cette
maniére est de type affine. Pour lever ’ambiguité, I’ensemble des informations métriques
sur les parallélépipédes et sur les caméras peut étre utilisées simultanément. Nous com-
plétons la présentation de 'algorithme par une étude des configurations singuliéres pour le
calibrage. Une méthode de reconstruction des primitives qui ne sont pas modélisées par les
parallélépipédes est aussi présentée. Les performances de I’algorithme sont démontrées au
travers d’expériences sur des données synthétiques et réelles, pour des jeux d’une seule ou
de plusieurs images.

Mots-clés : calibrage de caméras, contraintes géométriques, parallélépipédes, factorisa-
tion, analyse 3D
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1 Introduction

Efficient 3D modeling from images is one of the most challenging issues in computer vision.
The tremendous research effort made to develop feasible methods in this domain has proved
that recovering 3D structures from 2D images is a difficult and often under-constrained prob-
lem. Several reasons account for that, including the fundamental fact that without any prior
information on cameras, or on the scene to recover, a metric reconstruction is not possible
at all [13, 19]. This is why knowledge on the acquisition process, or on the scene, is required.
A number of approaches have been proposed to exploit various prior information, both on
camera and scene parameters. Such prior information do not only solve the projective ambi-
guity in the reconstruction but do also usually stabilize the sensitive reconstruction process.
Furthermore, it often leads to simple and direct solutions for the estimation of both camera
and scene parameters, which may eventually be adjusted non-linearly for highest accuracy.
In addition, it enables modeling from small sets of images, in particular from single images,
thus making possible reconstructions from images not originally taken for that purpose, like
archival images or images from the internet for instance.

The literature on using prior information for self-calibration and for metric reconstruction
is vast and widely scattered. An exhaustive review of all existing approaches is therefore
beyond the scope of this article, and we will concentrate on works which have somehow
inspired the method we propose, especially the direct approaches giving a good first estimate
of the camera and scene parameters. Among many possible criteria for classifying modeling
methods in this context, two appear to be more natural: first, the type of information which
is used and second, how this information is used. There is a large variety of information
which can be incorporated into a 3D modeling process. It can be simple knowledge on camera
intrinsic parameters or poses (stationarity, translation, etc.) or on 3D scene structures
(calibration patterns); it can also be the complete knowledge of calibration primitives and
scene elements such as points, lines and planes, as well as a partial knowledge of high-level
primitives like cubes, prisms, cylinders, etc. Nonetheless, note that whatever the information
is, it can often be used at any stage of the 3D modeling process, including the initial intrinsic
calibration, the pose estimation, the model reconstruction or even an additional non-linear
adjustment of the initial estimate at every step.

The first class of approaches we mention is based on known positions of points in the 3D
space, or known calibration patterns [50]. Unfortunately, such information relies on specific
acquisition systems and is therefore seldom available in general situations. The use of prior
knowledge on some intrinsic camera parameters, i.e. self-calibration, offers the opportunity
to build much more flexible systems. In standard self-calibration algorithms [30, 48, 18, 33],
the 3D reconstruction is done in 3 steps, recovering, in order, the projective, affine and
Euclidean strata, the projective—affine step being considered as the most non-linear and
thus most difficult step. One of the main problems are the critical motion sequences, for
which the self-calibration does not have a unique solution [40]. This problem has been dealt
with by restraining the camera motions [17, 10, 2] or by incorporating prior knowledge on the
camera [58] or the scene into the calibration process. To get stable results for self-calibration,
an important number of images is usually necessary.

RR n° 5055
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A large variety of geometric constraints can disambiguate projective reconstructions from
metric ones and allow to decrease the number of images required to obtain a satisfying
reconstruction. Many of them can easily be incorporated into a self-calibration framework. A
very common constraint in this category is given by vanishing points of mutually orthogonal
directions, as defined by known cuboidal structures [7, 9, 8] or by dominating scene directions
[24]. Also, knowing the metric structure of scene planes appears to be useful in this context,
through rectified planes [26], maps [5] or known 3D plane-image homographies [42, 57]. It
is also possible to use multiple images of unknown planes, however more images in general
positions are needed in that case [49, 27].

Another category of approaches allows for the simultaneous recovery of cameras and 3D
models. Factorization methods have been successfully applied to points [46, 44, 28, 39],
lines [47, 29] and planes [38, 41]. Even though accurate, factorization algorithms suffer
from missing data, i.e. when one primitive is not present in all the concerned images.
That is why various systems based on image tensors have been proposed [3, 14]. These
systems reconstruct the scene structure using 2, 3 or 4 images, and eventually sequentially
or hierarchically join these reconstructed parts into consistent models. An overview of this
can be found in [20].

When cameras are calibrated, it is relatively easy to reconstruct 3D structure. How-
ever, and as mentioned previously, using geometric constraints improves dramatically the
reconstruction quality, especially when a single or only few images are considered. Even
simple constraints can be very efficient for this purpose. In [1, 43|, vanishing lines of planes
and coplanarity constraints are used for single image reconstruction. More complex systems,
dealing with multiple images, use constraints such as coincidence, parallelism, orthogonality,
etc., between points, lines, and planes [35, 21, 16, 53, 55].

Most of the mentioned methods give solutions for both reconstruction and calibration.
However, it is usually advantageous to optimize the obtained parameters using non-linear
methods in an additional step. One way to incorporate geometrical information in this
process is to augment the cost function by the penalty terms corresponding to the model
constraints [31] or use the constrained optimization techniques [45, 32, 51]. The first type
of methods however do not always ensure that the final structure will respect the given
constraints exactly, and the constrained optimization techniques are in general designed for
small equation systems, sometimes not sufficient to describe all the 3D scene dependencies.
In answer to this, some systems rather try to find a minimal subset of parameters such that
the associated scene models conform to the geometric constraints, and then, optimize over
that subset. This includes methods which use simple primitives and constraints to compute
the minimal scene parameterization [4, 55], as well as methods which are based on high-
level scene descriptions through complex primitives like cubes, prisms, cylinders, etc. [11].
Recently, some effort has been devoted to the automatic detection of such primitives [12, 52].
The methods in this category ensure, by the strong inherent geometric constraints, that the
final models are visually correct. On the other hand, they require scenes to be composed
of basic primitives only, which is not always the case, see for example most archaeological
environments.

INRIA
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In this paper, we address the first part of the 3D model acquisition process, the intrinsic
and extrinsic camera calibration. In particular, we study the use of a specific calibration
primitive: the parallelepipeds. Parallelepipeds are frequently present in man-made envi-
ronments and they naturally encode the affine structure of the scene. Any information
about their Euclidean structure (angles or ratios of edge lengths), possibly combined with
information about camera parameters allows for Euclidean reconstruction. We propose an
elegant formalism to incorporate such information, in which camera parameters are dual
to parallelepiped parameters, i.e. any knowledge about one entity provides constraints on
the parameters of the others. Consequently, the image of a known parallelepiped defines
the camera parameters, and reciprocally, a calibrated image of a parallelepiped defines its
Euclidean shape (up to its size). In this paper, we synthesize our work on parallelepipeds
[53, 54] and propose more elegant and efficient approaches.

The cameras and parallelepipeds parameters are recovered in two steps. Firstly, the
factorization based approach is used to compute their intrinsic and orientation parameters.
Interestingly, the use of the three-dimensional structure allows to deal very easily with
the classical problems of the factorization methods: the unknown scale factors and the
missing data. Then the least square optimization is used to recover simultaneously the scale
and position parameters in the common euclidean frame. The use of the well-constrained
calibration primitives allows to obtain good calibration results even from very small number
of images, however, depending on the information about the scene, the singularities might
occur. They are collected into a detailed dictionary, accompanied by the sketch of the
methodology used for its construction.

Our calibration approach is conceptually close to self-calibration methods, especially
to methods for upgrading affine to Euclidean structure [18, 33] or methods that consider
special camera motions [17, 10, 2]. The way the metric information of a parallelepiped is
used, is also similar to the vanishing point based methods [7, 9, 8, 24]. Some properties
of our algorithm are also common with plane-based approaches [42, 57, 49, 27, 38, 41].
While more flexible than standard calibration techniques, homography-based approaches
still require either Euclidean information or, for self-calibration, many images in general
position [48], or at least one plane visible in all images [37]. In this sense, our approach
is a generalization of plane-based methods with metric information, to three-dimensional
parallelepipedic patterns. This allows to handle missing data and unknown scale factors
and simplifies the formulation of calibration constraints.

While the main contributions of the paper concern the estimation of camera and paral-
lelepiped parameters, we also propose a method for enhancing reconstructions with primi-
tives other than parallelepipeds. The complete system allows for both calibration and 3D
model acquisition from a small number of arbitrary images, and this with a reasonable
amount of user interaction.

The paper is organized as follows. Section 2 gives definitions and some background.
Section 3 introduces the concept of camera—parallelepiped duality. Calibration using par-
allelepipeds and a study on the singular configurations are described in sections 4 and 5.

RR n° 5055
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Sections 6 and 7 describe our approaches for pose estimation and 3D reconstruction. Ex-
perimental results are then presented in section 8 before concluding.

INRIA



Utilisation de Contraintes Géométriques pour la Modélisation 3D 9

2 Preliminaries

2.1 Camera parameterization

We represent cameras using the pinhole model. The projection from a 3D point P to its
2D image point p is expressed by: p ~ MP, where M is a 3 x 4 matrix, which can be
decomposed as:

M=K(R t)

The 3 x 4 matrix (R t) encapsulates the camera’s pose in the world coordinate system, or
its extrinsic parameters: the rotation matrix R represents its orientation and the vector t
its position. The matrix K is the 3 x 3 calibration matrix containing the camera’s intrinsic
parameters:
Qy S Ug
K=10 a wv], (1)
0 0 1

where a, and «a, stand for the focal length, expressed in horizontal and vertical pixel di-
mensions, s is a skew parameter considered here as equal to zero, and (ug,vg) are the pixel
coordinates of the principal point. The notation 7 = Z—: will be used for the camera aspect
ratio. The term camera axes will be used for axes of the coordinate system attached to the
camera projection center, where two axes are parallel to pixel edges and the third one is
orthogonal to the image plane (the viewing axe). In the following, we will also use the IAC
(image of the absolute conic) representation of the intrinsic parameters, namely the matrix
w~ KTK L

1 0 —Ug
W~ 0 T2 —7’2’1)0 . (2)

—ug —T2v9 1202 +ul+ 7?08

2.2 Parallelepiped parameterization

A parallelepiped is defined by twelve parameters: six extrinsic parameters describing its ori-
entation and position, and six intrinsic parameters describing its Euclidean shape: three di-
mension parameters (edge lengths l1,l» and I3) and three angles between edges (012, 623,613)-
These intrinsic parameters are illustrated in figure 1. The parallelepiped may be represented
compactly in matrix form by a 4 X 4 matrix N:

S v\~
(5 )

RR n° 5055
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L1110 Lay’

ﬂ :
E A 213
\913 O‘L X
) 912 21y

Figure 1: Parameterization of a parallelepiped: 2I; are the edge lengths; 68;; are the angles
between non-parallel edges.

where S is a rotation matrix and v a vector, representing the parallelepiped’s pose (extrinsic
parameters). The 4 x 4 matrix L represents the parallelepiped’s shape:

ll l2€12 13013 0
[ 0 Iz812 ] l3276232 e ] 0
0 0 I3 512*013512:%223*813812) 0
0 0 0 1

with: Cij = COS oi]‘, Sij = sin@ij, oi]‘ € ]0 71'[, l; >0.

The matrix L represents the affine transformation between a canonic cube and a paral-
lelepiped with the given shape. Concretely, a vertex (£1,+1,+1, I)T of the canonic cube is
mapped, by L, to a vertex of our parallelepiped’s intrinsic shape. Then, the pose part of N
maps the vertices into the world coordinate system.

Other parameterizations for L may be chosen, but the above one is attractive due to
its upper triangular form. This underlines the fact that L plays the same role for the
parallelepiped as the calibration matrix K for a camera.

The analogous entity to a camera’s IAC w, is the matrix u, defined by:

l% l1l2 COS 012 lllg COS 013
M~ LTL ~ l1l2 COS 012 lg lzl3 COSs 023 s (3)
l1l3 COS 013 l2l3 COS 923 l%

where L is the upper left 3 x 3 matrix of L.

Hence, there is a seemingly perfect symmetry between intrinsic parameters of cameras
and parallelepipeds. The only difference is that in some cases, the size of a parallelepiped
matters, as will be explained in the following. As for cameras, the fact that K33 = 1 allows
to fix the scale factor in the relation w ~ K~TK~! and thus to extract K uniquely from the
TAC w, e.g. using Cholesky decomposition. As for parallelepipeds however, we have no such
constraint on its “calibration matrix” L, so the relation y ~ LTL gives us a parallelepiped’s

INRIA
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Euclidean shape, but not its (absolute) size. This does not matter in general, since we
are usually only interested in reconstructing a scene up to some scale. However, when
reconstructing several parallelepipeds, one needs to recover at least their relative sizes.

There are many possibilities to define the size of parallelepipeds. We choose the follow-
ing definition, due to its appropriateness in the equations underlying our calibration and
reconstruction algorithms below: the size of a parallelepiped is defined as

s = (det L)*/3 .

This definition is actually directly linked to the parallelepiped’s volume: s® = det L = Vol/8
(the factor 8 arises since our canonic cube has an edge length of 2).

RR n° 5055
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3 Projections of Parallelepipeds

3.1 One Parallelepiped in A Single View

X~[KRSL | KRv+K{]

camera parallel epiped canonical cube

Figure 2: The projection of the canonic parallelepiped (cube) into the image. Matrices K, L
correspond to intrinsic parameters of camera and parallelepiped and (R, t), (S, v) correspond
to extrinsic parameters of camera and parallelepiped, respectively.

In this section, we introduce the concept of duality between the intrinsic characteristics
of a camera and those of a parallelepiped.

To do so, consider the projection of the parallelepiped’s vertices into the camera. Let
C;,i = 1..8 be the homogeneous coordinates of the canonic cube’s vertices. As described in
section 2.2, the corresponding vertex of the parallelepiped is given as:

S wv\~r
Pi_NCi_(OT 1) LC;

and its image point is:

pi~MP; =K (R t) <OST ‘{) LC; . (4)

In the above equation, we define the canonic projection matriz:
X~ K (R t)(OT I)L. (5)

This matrix represents a perspective projection that maps the vertices of the canonic
cube onto the image points of the parallelepiped’s vertices. This is illustrated on the fig-
ure 2. Given image points for sufficiently many vertices!, the canonic projection matrix

1Five image points and one image direction are in general sufficient. Additional points make the compu-
tation more stable.

INRIA
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can be computed, even in the absence of prior knowledge on intrinsic or extrinsic param-
eters. Our calibration and pose estimation algorithms are based on the link between the
canonic projection matrix (which we suppose given from now on) and the camera’s and
parallelepiped’s intrinsic and extrinsic parameters.

Let us consider this in more detail. First, we may identify the relative pose between
camera and parallelepiped in (5), represented by the following 3 x 4 matrix:

R ¢t <OST ‘1’>:(Rs Rv + t)

_ Second, let us consider the leading 3 x 3 sub-matrix X of the canonic projection matrix
X, which is given by:
X ~ K(RS)L. (6)

Due to the orthogonality of the rotation matrices R and S, it is simple to derive the
following relation between the camera’s IAC w and the corresponding entity p of the paral-
lelepiped:

XTwX ~ p. (7)

This equation establishes an interesting duality between the intrinsic parameters of a
camera and those of a parallelepiped. It shows (unsurprisingly) that knowing the par-
allelepiped’s shape p allows to calibrate the camera. Conversely, knowing the camera’s
intrinsic parameters allows to directly compute the parallelepiped’s Euclidian shape, also
from a single image.

In the next sections, we generalize the use of this duality for calibration and pose esti-
mation to the case of multiple parallelepipeds seen in multiple cameras and to the use of
partial knowledge about the camera’s or parallelepiped’s intrinsic parameters. Before doing
80, let us describe a few interesting links between our and other (self-) calibration scenarios.

Classical self-calibration proceeds usually in two main steps: first, a projective 3D recon-
struction of the scene is obtained from correspondences across two or more images. Then,
the projective reconstruction is transformed to a Euclidean one using the available prior
knowledge on intrinsic parameters. This upgrade is sometimes interlaced by an intermedi-
ate upgrade to an affine reconstruction.

In our scenario, we have a 3D reconstruction of the scene already from a single rather
than multiple images, which is furthermore of affine rather than projective nature: we know
that the observed parallelepiped’s shape is that of a cube, up to some affine transforma-
tion. Analogously, our canonic projection matrix is equal to the true one up to an affine
transformation. Hence, self-calibration in our scenario does not need to recover the plane at
infinity, which is known to be the hardest (“most non-linear”) part of classical self-calibration.
Indeed, our calibration method is somewhat similar to the affine-to-Euclidean upgrade of
stratified self-calibration approaches, e.g. [18, 33].

Similarities also exist with (self-) calibration approaches based on special camera motions:
calibrating a rotating camera [17, 10] is more or less equivalent to self-calibrating a camera in
general motion once affine structure is known. Other approaches recover the affine structure

RR n° 5055
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by first performing pure translations and then general motions or to approaches that consider
special camera motions [2, 34].

Our scenario is similar to these. In the following sections we show how it allows to
efficiently combine the usual self-calibration constraints with constraints on scene structure.
This enables to perform calibration (and 3D reconstruction) from very few images; one image
may actually be sufficient.

3.2 n Parallelepipeds in m Views

The main motivation for the work described in this paper is to generalize the use of the
duality introduce in the previous section: we consider the general case where multiple par-
allelepipeds are seen by multiple cameras (not all parallelepipeds need to be seen by all
cameras). Furthermore, we do not in general suppose that some cameras or parallelepipeds
are fully calibrated. We rather want to make efficient and complete use of any kind of
partial calibration information. As for the cameras, this amounts to partial knowledge on
their intrinsic parameters that is routinely used for self-calibration. As for parallelepipeds,
we rather consider them as “vehicles” to jointly express simple yet useful geometric scene
constraints. Defining orthogonality or parallelism constraints between for example “only”
pairs of lines, amounts to providing information about the structure of individual planes in
the scene. Parallelepipeds however allow to directly express richer couplings of constraints
on 3D scene structure.

Let us now consider the general case where n parallelepipeds are seen by m cameras. Let
X, be the canonic projection matrix associated with the projection of the kth parallelepiped
in the ith camera:

5 S s
Xit ~ Ki (Ri ;) ((ﬁ vlk) L

Let us explicitly introduce scale factors A;; such that the equality up to scale in the
above equation can be turned into a component-wise equality:

. S .
AieXie = K; (R; ) ((ﬁ vlk) L (8)

We may group together these equations for all m cameras and n parallelepipeds, into
the following single matrix equation:

INRIA
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A1 X1 AnXin
At Xt o AmnXmn
) Xs;rxz;n ’
. (Rl tl) Si1 vi)~ S Vn\ &
s [ERIERSN R o)
\Km (Rm  tm) A o -

M3zmxa

This equation naturally leads to the idea of a factorization-based calibration algorithm,
which will be developed in section 4. It is based on the following observation. The matrix X
contains all information that can be recovered from the parallelepipeds’ image points alone
(below, we discuss the issue of computing the scale factors ;). In analogy with [46], we
call it the measurement matriz. Since the measurement matrix is the product of a “motion
matrix” M of 4 columns, with a “shape matrix” S of 4 rows, its rank can be 4 at most (in
the absence of noise).

We might aim at extracting intrinsic and extrinsic parameters of cameras and paral-
lelepipeds directly from a rank-4-factorization of X'. One step of many factorization meth-
ods for structure and motion recovery is to disambiguate the result of the factorization: in
general, for a rank-r-factorization, motion and shape are recovered up to a transformation
represented by an r x r matrix (in our case, this would be a 3D projective transformation).
The ambiguity can be reduced using e.g. constraints on intrinsic camera parameters (see
more details in section 4). In our case, we observe that the 4 x 4 sub-blocks of the shape
matrix S are affine transformations (last row consists of three zeroes and a one). We would
have to include this constraint into the disambiguation, but nevertheless, the result would
not in general exactly satisfy the affine form of these sub-blocks. We thus cut the problem in
two steps, which allows to easily guarantee that the sub-blocks of the shape matrix be affine
transformations. In the first step (section 4), we consider a “reduced measurement matrix”
consisting of the leading 3 x 3 sub-matrices of the X;;,. We extract intrinsic parameters
and orientation of our cameras and parallelepipeds based on a rank-3-factorization and a
disambiguation stage using calibration and scene constraints. In the second step (section 6),
we then estimate the position of cameras and parallelepipeds, as well as the parallelepipeds’
size.

Just as a sidenote, we observe that, for two views 7 and j, and a parallelepiped k, the
infinite homography between the two views is given by the product XikX;kl.
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4 Estimating Intrinsic and Orientation Parameters by
Factorization

In this section we concentrate on the computation of the cameras’ and parallelepipeds’ in-
trinsic parameters and orientation (rotation), based on equation (9) and the observations
concerning it, cf. the previous section. As mentioned previously, we first restrict our atten-
tion to the leading 3 x 3 submatrices of the X;, like we did in section 3.1 for the establishment
of the duality between intrinsic parameters of cameras and parallelepipeds. We thus deal
with the corresponding subpart of equation (9):

)\11X11 T /\lnxln Kl Rl
)\mlxml e }\mnxmn Km Rm Sé:h
N -~ N —_—
Xémx3n MémxS

In the following sections, we describe the different steps of our factorization-based method.
We first deal with the important problem of missing data. Then it is described how the scale
factors A;; needed to construct the measurement matrix X', are computed. The factorization
itself is described in section 4.3, followed by the most important aspect: how to disambiguate
the factorization’s result in order to extract intrinsic and orientation parameters. A sum-
mary of these steps and a discussion of minimal cases and singularities is provided at the
end of this section. The computation of position parameters and parallelepiped size is dealt
with in section 6.

4.1 Missing Data

As with all factorization problems, our method might suffer from the problem of missing
data, i.e. missing X;r. Indeed, in practice, the condition that all parallelepipeds are seen
in all views can not always be satisfied. However, each missing matrix X;; can be deduced
from others if there is one camera j and one parallelepiped [ such that the transformations
Xj1, X and X;; are known. The missing matrix can then be computed using:

Xk ~ Xa (Xj1) " K- (11)

Several equations of this type may be used simultaneously to increase the accuracy. In that
case, care has to be taken since equation (11) is defined up to scale only. This problem can
be circumvented very simply though, by normalizing all X;; to unit determinant.

These observations motivate a simple recursive method? to compute missing matrices
Xik: at each iteration, we compute the one for which most equations of type (11) are
available. Previously computed matrices X;r can be involved at every successive iteration
of this procedure.

2Compare with the analogous method in [41].
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4.2 Recovery of Scale Factors

The reduced measurement matrix X’ in (10) is, in the absence of noise, of rank 3, being
the product of a matrix of 3 columns and a matrix of 3 rows. This however only holds if
a correct set of scale factors \;; is used. For other problems, these are often non trivial to
compute, see e.g. [27, 44, 56]. In our case however, this turns out to be rather simple.

Let us first write A; = K;R; and By = SgLx. What we know is that (in the absence of
noise), there exist matrices A;,¢ = 1..m and By, k = 1..n such that:

Vz,k : sz ~ Asz
Since this equation is valid up to scale only, we also have:
Vi, k: Xik ~ (a;iA;) (bxBg)

for any non-zero scale factors a;,7 = 1..m and by, k = 1..n. Consequently, this is also true
for the scale factors with:

det (a;A;)) = 1
det (bxBy) 1

Note that we do not need to know these scale factors; it is sufficient to know they exist.
Hence:

V'i, k: Xz'k ~ a,-bkAin,

with det (a;brA;Bg) = det (a;A;) det (bxBg) = 1.
To achieve a component-wise equality i X = (a;A;)(bgBx), we need to use scale fac-
tors® \i such that det(\;X;;) = 1. Hence:

Aik = (det Xik)_1/3

In the following, we assume that the X;; are already normalized to unit determinant, i.e.
that A\;x = 1. Equation (10) becomes:

X11 . Xln ai K1 R1
Xot -+ Xumn]  [amKuRm, Shom
XémxSn Mg}mXS

The scale factors a; and by, do not matter for now; all that counts is that the measurement
matrix X’ containing the normalized X;, is of rank 3 at most, and can thus be factorized
as shown below.

3Tt is well known that two non-singular 3 x 3 matrices that are equal up to scale and whose determinants
are equal, are also equal component-wise.
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4.3 Factorization

As usual, we use the SVD (Singular Value Decomposition) to obtain the low-rank factoriza-
tion of the measurement matrix. Let the SVD of X' be given as:

! _ T
X 3mXx3n — U3m><3nz3n><3nv3n><3n

The diagonal matrix ¥ contains the singular values of X”. Let them be ordered:
o1 > 09 > --- > 03,. In the absence of noise, X' is of rank 3 at most and 04 = --- = g3, = 0.
If noise is present, X' is of full rank in general. Setting all singular values to zero, besides
the three largest ones, leads to the best rank-3 approximation of X’ (in the sense of the
Frobenius norm [36]).

In the following, we consider the decomposition of the rank-3 approximation of X’ (for
ease of notation, we denote this also as X'):

X' = U3m><3n diag(01702;03;0:---70) V—3rn><3n

In the matrix product on the right, only columns of U and rows of VT that correspond to
non-zero singular values, contribute. Hence:

g1

r_ T
X = 3mx3 02 (V )
3x3n

g3

where U’ (resp. V') consists of the first three columns of U (resp. V). Let us define

Vo1
UII — UI \/0__2
V03
Vo1
VII — VI \/6
NG

Thus:
X = U//V//T

This represents a decomposition of the measurement matrix X’ into a product of a matrix
of 3 columns with a matrix of 3 rows. Note however, that this decomposition is not unique.
For any non-singular 3 x 3 matrix T, the following is also a valid decomposition:

XI — (U”T_l) (TV”T)
Making the link with equation (12), we obtain:

ai K1 R1
[iSiLi - baSaLa] = (U'TY) (TV!T) (13)

amKmRm
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Let us write U” and V" as follows as a composition of 3 x 3 submatrices:

U, Vi
U” = : V” = .
U V,]
Equation (13) thus becomes:
a1 KiRy U; T-17
amKmRm UmTfl_

How to estimate T is explained in section 4.4. Once a correct estimate is given, we
can directly extract the matrices A; = a;K;R; and By = bgpSgLg, from which in turn the
individual rotation matrices and calibration matrices can be recovered using a Cholesky
or QR-decomposition. The Cholesky decomposition of A;A] for example, results in an
upper triangular matrix M; = q;K;. Based on the requirement K; 33 = 1, we can compute
the unknown scale factor a; as a; = M;33. The calibration matrix is finally obtained as
K; = aiMz

As for the parallelepipeds, we do not have any constraint on the entries of their calibration
matrices L. Hence, we can compute them only up to the unknown scale factors bg. This
means that we can compute the shape of each parallelepiped, but not (yet) their size (or,
volume). In section 6, we explain how to compute their (relative) size.

We now briefly discuss the structure and geometric signification of the matrix T. Note
that T actually represents the non-translational part of a 3D affine transformation (its upper
left 3 x 3 submarix). This is just another expression of the previously mentioned fact that
due to the observation of parallelepipeds, we directly have an affine reconstruction (of scene
and cameras).

The matrix T can only be computed up to an arbitrary rotation and scale: for any
rotation matrix R and scale factor s, T' = sRT can not be distinguished from T in the
factorization since T'*T' ~ T~!T. This ambiguity is natural and expresses the fact that the
global Euclidean reference frame for the reconstruction of our parallelepipeds and cameras
can be chosen arbitrarily. Without loss of generality, we may thus assume that T is upper
triangular. This highlights the fact that our estimation problem has only 5 degrees of freedom
(6 parameters for an upper triangular 3 X 3 matrix minus one for the arbitrary scale) which
can also be explained in more geometric terms: as explained previously, our problem is
somewhat equivalent to self-calibration with known affine structure. The 5 degrees of the
problem may be interpreted as the coefficients of the absolute conic on the plane at infinity.

4.4 Disambiguating the Factorization

We now deal with the estimation of the unknown transformation T appearing in equa-
tion (14). As will be seen below, and as is often the case in self-calibration problems, it is
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simpler to not directly estimate T, but the symmetric and positive definite 3 x 3 matrix Z
defined as:
Z=T"T (15)

We may observe that this matrix represents the absolute conic on the plane at infinity. Once
Z is estimated, T may be extracted from it using Cholesky decomposition. As described
above, T is defined up to a rotation and scale, so the upper triangular Cholesky factor of Z
can directly be used as the estimate for T.

The matrix Z (and thus T), can be estimated in various ways, using any information
about the cameras or the parallelepipeds, e.g. prior knowledge on relative positioning of
some entities. Here, we concentrate on exploiting prior information on intrinsic parameters,
of both, cameras and parallelepipeds. There are two types of information that we consider:

e knowledge of the actual value of some intrinsic parameter for some camera or paral-
lelepiped.

e knowledge that two or more cameras (or parallelepipeds) have the same value for some
intrinsic parameter. We also sometimes speak of “constant” intrinsic parameters.

We first describe the use of prior knowledge on camera intrinsics.

4.4.1 Using Knowledge on Camera Intrinsics

From equation (14), we have:
a;K;R; = UiT_l
Due to the orthogonality of R;, we get:
a KK =U; T T TU]
N~ Vl
-1 z—

Wi

Neglecting the unknown scale factor a; and taking the inverse of both sides of the equation,
we obtain (note that the U; are not orthogonal in general):

w; ~ U7 TZU (16)
We are now ready to formulate constraints on Z based on prior knowledge on the cameras’

intrinsics.

Known values of camera intrinsics Knowing respectively the aspect ratio and principal
point coordinates of a camera i gives the following constraints on its IAC w; (based on
equation (2)):

2

Tiwi1l — w22 = 0
Ujowi11 +wits = 0
Vi owi22 +wiez = 0
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A known value of the focal length «, can only be used to formulate linear equations if the
other intrinsics are also known [42]. In such a fully calibrated case, other algorithms might
be better suited, so we neglect that case in the following.

By substituting w; in the above equations according to (16), we get the following linear
equations on Z:

7 (U7 TZuY),, - (UTzurh),, = 0
uio (U7 TZU7Y), + (U7TZuiY),, = 0
vio (U; 'ZUY),, + (U7 TZU;Y),, = 0

Constant camera intrinsics In the case that two cameras ¢ and j are known to have
the same, yet unknown value for one intrinsic parameter, we in general obtain quadratic
equations on Z. For example, the assumption of equal aspect ratios leads to the equation:

(UTZU7),, (U7T2U7),, = (U7T2077), (UTTZU7),,

In practice, we only use available linear equations. In some minimal cases, quadratic equa-
tions as above might be useful to find a unique solution or a finite set of solutions, if the
available linear constraints are insufficient.

The situation is different if all intrinsic parameters of two (or more) views are known
to be identical. In that case, we can obtain linear equations instead of quadratic ones, as
shown in [17]: the matrices U’ are scaled such as to have unit determinant. Then we can
write the following component-wise matrix equality between any pair (i,5) of views:

—To(-1 —T7-1
Ui ZU;" — U " ZU; = 03x3
This represents 6 linear equations on Z for each pair of views, among which 4 are inde-
pendent.
4.4.2 Prior Information on Parallelepipeds

From equation (14), we have:
biSkLy = TV
Due to the orthogonality of S, we get:
2T _ TryT
by, LiLr = Vi TZT Vg

1223

Neglecting the unknown scale factor b, we obtain:

HE ~ VkZV;—
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Knowledge on parallelepiped intrinsics can be used in an analogous way as knowledge
about camera parameters. For example suppose we know the length ratio of two paral-
lelepiped edges 7y, = ﬁ—: Referring to (3), we get the following linear equation on Z:

T oy = M = Thouo (VRZVE),, — (VEZVE),, =0

Similarly, the assumption that the 6,, is a right angle, i.e. cos ., = 0, leads also to a linear
equation:
fikun = (VeZVy),, =0

As for cameras, quadratic equations may be derived from assumptions about two or more
parallelepiped having the same, yet unknown value for some intrinsic parameter. Further-
more, two parallelepipeds having the same shape, leads to a set of linear equations on Z.
This holds even if the parallelepipeds are of different size. Knowing in addition that they
are of the same size, gives an additional linear equation.

Currently, we only exploit constraints on individual parallelepipeds (right angles and
length ratios), since they are easier to provide for the user.

4.5 Complete Algorithm

1. Estimate the canonical projection matrices X;.

2. Compute missing X;.

Normalize the X;; to unit determinant.

Construct the measurement matrix and compute its SVD.

From the SVD, extract the matrices U; and V.

S ok ®

Establish linear equation system on Z based on prior knowledge of intrinsic parameters
of cameras and parallelepipeds.

=

Solve the system to least squares.
8. Extract T from Z using Cholesky decomposition.

9. Extract the K;,R;, Ly, Sk from the U;T~! and the TV] using e.g. QR-decomposition.
Note that at this stage the Ly can only be recovered up to scale, i.e. the parallelepipeds’
(relative) sizes remain undetermined.

4.6 Minimal cases for the linear calibration

As mentioned in the last section, all constraints provided by knowledge on the cameras and
parallelepipeds can be expressed in terms of the 5 independent parameters of the matrix Z.
Thus, information about a total of only five intrinsic parameters of cameras or parallelepipeds
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parallelepipeds cameras
# | constraint(s) # | constraint(s)
0 5 | e Ki: {s, 7, ug, vo} known;
Ks: s known
e 5 cameras with known s
1 | e 1 known length ratio 4 | e 2 cameras with known s and 7
e 1 right angle e 4 cameras with known s
2 | e 2 right angles 3 | e 1 camera with {s,ug,vo} known
e 1 right angle and 1 known length ratio e 3 cameras with known s
3 | ® 3 right angles 2 | e 1 camera with known s and 7
e 2 right angles and 1 known length ratio e 1 camera with known g and vg
e 1 right angle and 2 known length ratios e 2 cameras with known s
4 | e 3 right angles and 1 known length ratio 1 | e 1 camera with known 7
e 2 right angles and 2 known length ratios e 1 camera with known s
5 | & 3 right angles and 2 length ratios 0
e Lo: 2 and Ly: 3 right angles

Table 1: Some minimal cases for the linear calibration algorithm. The problem has five
degree of freedom (see text). The table contains a non-exhaustive list of cases where the
number of constraints on parallelepipeds and on cameras, sum up to five.

is in general sufficient to calibrate the whole system. In table 1 we give a non-exhaustive list
of practical minimal cases. Note however that certain configurations, i.e. relative positioning
of cameras and parallelepipeds, represent singularities, depending on the amount of prior
information available. Such singularities are discussed in section 5.

5 Singularities

Many calibration or self-calibration algorithms are subject to more or less severe singular-
ities, i.e. there exist situations, where the algorithm is bound to fail. Furthermore, even
in situations that are not exactly singular, but close to a singularity, the results become
usually very unstable. In this section, we examine the singularities for the linear calibration
algorithm described above. First, we study the singularities in the case of one parallelepiped
being seen by one camera. We then study some multi-view cases, where we exploit results
on critical motions for classical self-calibration.

5.1 One parallelepiped in a single view

We have studied all possible combinations of a priori knowledge, on both camera and paral-
lelepiped intrinsic parameters leading to the linear equations (see sections 4.4.1 and 4.4.2).
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In the following we will sketch the methodology followed, give proofs for one sample config-
uration and provide the results for all configurations studied.

We first formulate the meaning of a singularity in terms of the ingredients of the calibra-
tion algorithm. The existence of a singularity in our case means exactly that equation (7)
has more than one solution for w and p that conform to all available a priori information,
i.e. that there is at least one solution that is different from the true one. It is easy to show
that the existence of a singularity does not depend on the relative position of the camera and
the parallelepiped, only on the relative orientation and the a priori knowledge on camera
and parallelepiped intrinsic parameters.

Let K = KK, be the true calibration matrix, and K' = K;K/, the estimated one (we
decompose in known and unknown parts, so K' and K share of course the known part Ky).
As for parallelepipeds, a similar decomposition into known and unknown parts is not always
possible. If however, we only consider constraints arising from prior knowledge about right
angles, then we can decompose as above: L = L,L; and L' = L,Lj are respectively the true
and estimated intrinsic parameters of a parallelepiped.

With these definitions, a singularity exists if there are solutions for (7) with Kl # K,
and L], # L,. From (7), it is easy to derive the following equality (using X ~ KyK,RL,L,
W ~KTTK ™ and g ~ L'TLY):

RTKTK . TK/ ' KR~ LT T L

A singularity, as defined above, is then equivalent to the existence of matrices
w" = KIK'Z "K' MK, and g/ = L TL/L L. Lo with K. and L/, of the desired form (given by
the constraints), but which are different from the identity (otherwise, w' ~ w and p' ~ p,
i.e. we would look at the true solution).

Depending on the a priori knowledge, w' and u" have special forms (as shown in table 2
for w"), independently of the actual values of the known or unknown intrinsic parameters.
Hence, the configuration is singular for calibration if the relative orientation R between
parallelepiped and camera is such that there are solutions w” and u" of the required special
form and different from the identity, satisfying;:

w" # l3x3, W' #l3x3) : RTw"R~ p" (17)

Based on this definition, it is a rather mechanical, though sometimes tricky, task, to derive
singular relative orientations. Table 3 shows all singularities for nearly all combinations of
the above cases. We explain the singularities in geometrical terms, by describing the relative
orientation of the parallelepiped with respect to the camera. In the following paragraphs,
we give a few comments on different cases of prior knowledge on the parallelepiped.

Three right angles, two length ratios in this case, the Euclidean structure of the
parallelepiped is completely given (up to scale), and it can be used as a classical calibration
object. There are singularities proper to the use of a parallelepiped, but of course the generic
singularities described in [6] apply here too.
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Known camera parameters

(A) None (B) T

(D) 7,u0,v0

(C) wo,vo
d
e
c

a 0 0
0 b O
0 0 ¢

QL O
o = o

1 0 0
0 1 0
0 0 ¢

Table 2: Structure of w" depending on prior knowledge on intrinsic camera parameters.
Structure of p" is similar.

| Case | Conditions for singularity
A-3-1 | v is orthogonal to the x or y camera axis
B-3-1 | v is parallel to the optical axis
C-3-1 | v is parallel to any of the three camera axes
D-3-1 | v is parallel to the optical axis
A-3-0 | always (3 constraints for 4 camera intrinsics)
B-3-0 | any edge is parallel to the image plane
C-3-0 | any edge is parallel to a camera axis
D-3-0 | any edge is parallel to the optical axis
A-2-2 | too difficult to describe
B-2-2 | v || image plane and w || optical axis or image plane
C-2-2 | v || x or y axis and w at 45° angle with image plane
v || z and w || image plane and at 45° to both x and y
D-2-2 | never!
A-2-1 | always (three constraints for four camera intrinsics)
B-2-1 | v is parallel to the image plane
C-2-1 | v parallel to either camera axis
v and w are both orthogonal to the x camera axis
v and w are both orthogonal to the y camera axis
v and w are parallel to the image plane
D-2-1 | v andw are parallel to the image plane
A-2-0 | always (two constraints for four camera intrinsics)
B-2-0 | always (two constraints for three camera intrinsics)
C-2-0 | v orthogonal to the x or y camera axis or || image plane
D-2-0 | v parallel to image plane or to optical axis

Table 3: Singular relative orientations for the case of one parallelepiped seen in one cam-
era, for various combinations of prior knowledge. Cases are denoted X-Y-Z, where X €

{A,B,C,D} refers to table 2 and Y and Z are the number of known right angles respectively

length ratios. For further explanations, see text.

Three right angles, one length ratio (cases *-3-1 in table 3)

in table 3, v represents

the direction of the parallelepiped’s edges which are not “involved” in the known length ratio.
g
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