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Abstract: We analyze an M /G /1 Processor-Sharing queue with Batch arrivals. Our anal-
ysis is based on the integral equation derived by Kleinrock, Muntz and Rodemich. Using the
contraction mapping principle, we demonstrate the existence and uniqueness of a solution
to the integral equation. Then we provide asymptotical analysis as well as tight bounds for
the expected response time conditioned on the job size. In particular, the asymptotics for
large size jobs depends only on the first moment of the job size distribution and on the first
two moments of the batch size distribution. That is, similarly to the Processor Sharing with
single arrivals, in the M/G/1 — PS with batch arrivals the expected conditional response
time is finite even when the job size distribution has infinite second moment. Finally, we
show how the present results can be applied to the Multilevel Processor Sharing scheduling.
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M/G/1 "Processor Sharing" avec des arrivées en rafales
avec application a la théorie d’ordonnancement
"Multilevel Processor Sharing”

Résumé : Nous analysons une file d’attente M /G /1 Processor-Sharing avec des arrivées
en rafales. Notre analyse se base sur I’équation intégrale de Kleinrock, Muntz et Rodemich.
En utilisant le principe de contraction, nous démontrons l’existence et 1’unicité de sa solu-
tion. Ensuite, nous fournissons une analyse asymptotique ainsi que des bornes serrées pour
le temps de réponse moyen conditionné sur la quantité de travail requise. En particulier,
I’asymptote pour des tiches trés longues dépend seulement du premier moment de la distri-
bution du temps de traitement et des deux premiers moments de la distribution de la taille
des rafales. Pareillement & la file Processor Sharing avec des arrivées individuelles, dans la
file M/G/1 Processor Sharing avec des arrivées groupées, le temps de réponse moyen de-
meure fini méme lorsque le deuxiéme moment de la distribution du temps de traitement est
infini. Finalement, nous montrons comment ces résultats peuvent étre appliqués a 'analyse
de politiques d’ordonnancement basées sur le service écoulé.

Mots-clés : Processor Sharing, arrivées en rafales, Loi de conservation, Multilevel Pro-
cessor Sharing



Processor Sharing with batch arrivals 3

1 Introduction and Motivation

The M/G/1 — PS queue with batch arrivals (M/G/1 — BPS) has not been fully charac-
terized yet. Kleinrock et al. [1, 2] showed that the derivative of the expected response time
conditioned on the job size satisfies an integral equation. Furthermore, they obtained an
analytic solution for the job size distributions of the type F(x) = q(7)e ** where ¢(7) is
polynomial. Bansal [3], using the Kleinrock’s integral equation, obtained the Laplace trans-
form of the expected conditional response time for hyperexponential distributions and more
generally for distributions with rational Laplace Transforms. More recently, Feng and Misra
[4] provided bounds for the expected conditional response time. Their bounds depend on the
second moment of the job size distribution. Rege and Sengupta [5] found the distribution
of the expected conditional response time for a tagged customer, given the service times of
all customer in the system.

One of the main motivations to study the M/G/1 — BPS queue is its application to
attained service based scheduling. Attained service based scheduling has recently received
a fairly big attention in connection with the differentiation of Short and Long flows in the
Internet [6, 7, 8, 4, 9]. Kleinrock et al. [1, 10, 2] introduced a quite general set of size-based
scheduling termed as Multilevel Processor Sharing (M LPS). In MLPS, jobs are served
with a discipline that will depend on their attained amount of service. That is, based on
their attained service, jobs are classified into different classes. Jobs within the same class
are served either with FIFO or PS or Least Attained Service (LAS) policy. The classes
themselves are served according to the LAS policy, that is, the class that contains jobs with
smallest attained service is served first. It turns out, that when PS is used to serve jobs in
any of the classes, the expected conditional response time in this class can be expressed as
a function of the expected conditional response in an M/G/1 — BPS.

The organization of the paper is as follows: First we prove the existence and uniqueness
of a solution to the Kleinrock’s integral equation. Second we show that under natural con-
ditions, the expected conditional response time has an asymptote and we give an analytical
expression for the slope and the bias of the asymptote. In particular, this asymptote pro-
vides a tight upper bound for the expected conditional response time for large jobs. Yet
another upper bound is obtained for small jobs. Combining these two bounds we obtain a
very good characterization of the expected conditional response time for all job sizes. In
particular these bounds are insensitive to the job size distribution and depend only on the
distribution through the first moment. Finally, as an example of the application of these
results, we show that in the case of M LPS schedulers, the expected conditional response
time has an asymptote.

RR n° 5043



4 Avrachenkov & Ayesta € Brown

2 Analysis of the Batch M/G/1 — PS queue
2.1 Model and Notation

Let us denote Tgps(x) the conditional response time for a job of size z in an M/G/1 — PS
system with batch arrivals. Let T pg(z) be its derivative. Kleinrock et al. [1, 2] has shown
that T po(2) is a solution of the following integral equation

Thps(e) = AE[N] / " s ) F (e + )iy

BN [ Thpsu) P~ y)dy
0
+bF(z) + 1, (1)
where A is the batch arrival rate, E[N] is the average batch size, b is the average number
of jobs that arrive in addition to the tagged job b+ 1 = E[N?]/E[N] and F(z) =1 — F(z)

is the complementary distribution function. The load in the BPS system is given by p =
AE[N]E[X].

2.2 Fixed Point Approach to the Kleinrock’s integral equation
Theorem 1 shows that there exists a unique solution to the integral equation (1).

Theorem 1 Let the service time distribution have finite mean, the batch size distribution
have o finite second moment and p < 1. Then there exists a unique solution of the integral
equation (1).

Proof 1 We consider the fixed point iterations
Tin@) = MBIV [ Tiw)Fo +y)dy
0
BN [ TP = )iy ®

+bF(x) +1, k=0,1,..

on the complete functional space of continuous bounded non-negative functions C[0,00) with

the supremum metric. Let ||T’|| = sup, {7'(z)} < oo. Define the linear integral operator
Al[B(x)] as follows:

AB(z)] = AE[N] /Ommy)me)dy

+AE[N] / " B F( — y)dy + bF(z) + 1

INRIA



Processor Sharing with batch arrivals 5

Clearly the operator A[B(x)] maps the space C[0,00) into itself.

If we show that the linear integral operator A[B(x)] is a contraction, then the integral
equation (8) has a unique solution in C[0,00). Let us denote as d the distance in the metric
space C[0, 00), that is, d(B1, B2) = sup, |B1(x)—Pa(z)|. We show now that the linear operator
A[B(z)] is indeed a contraction mapping on C|0, 00).

d(A[B], AlB2]) = sup{|A[B] — AlB][}
< AE[N]sup{|A[5] — AlB]l}

sup (/000 F(z + y)dy+ /Ow F(r — y)dy)
= AE[N]d(B1,32)E[X]

= pd(Bi,B2)-
Thus, the mapping is a contraction if p < 1.

Theorem 1 implies that we can apply the Fixed Point Iterations (2) for the solution of
the integral equation (1). A numerical example will be provided in Section 3.

For the ensuing analysis, it will be convenient to remove the constant component of
the solution of equation (1), hence we note that the solution of the integral equation (1) is
equivalent to the solution of the following integral equation

8T'(x) = M\E[N] /Ooo 8T'(y)F(z +y)dy
BN [ 67 F(a -~ )dy 3)
+bF(x),
where 1
T (0) 1= Thpse) ~ 1. @

2.3 Asymptotic Analysis

It is known that in a queue, under any work conserving discipline, the total unfinished work
in the system does not depend on the particular scheduling policy being used. This fact has
been widely exploited since it poses a constraint on the average conditional response time
T(z) of the system among the scheduling disciplines that are service time independent, i.e.,
disciplines that do not take advantage of the length of the jobs when choosing which job to
serve first.

RR n° 5043



6 Avrachenkov & Ayesta & Brown

Lemma 1 [11, 12] In an ergodic queue, under any work conserving and service-time inde-
pendent scheduling discipline, the expected conditional response time satisfies

)\/000 T(z)F(z)dz =W (5)

where A is the job arrival rate and W is the time-average unfinished work in the system.

The interest of Lemma 1 lies in the fact that if the expected conditional response time is
known for a particular scheduling discipline, then one can compute the average unfinished
work in the system W. Since this quantity is independent of the scheduling discipline, the
expected conditional time for any other scheduling discipline have to satisfy equation (5).

Let W be the expected unfinished work in the case of Poisson batch arrival queue. In

order to apply Lemma, 1 to the the Poisson batch arrival system, we note that the job arrival
rate is AE[N], thus

B

AE[N] /0 o) F(a)dn = W (6)

The expected unfinished work W” in a Poisson batch arrival queue can be easily com-
puted [13, 14].The basic step is to consider a FIFO discipline and to define the random
variable Y = va X, where N is the size of the batch and X; is the size of the i-th job.
Then the expected unfinished work can be computed directly by the Pollaczek-Khinchin
formula. The expressions given in [13, 14] become more transparent if they are expressed as
a function of b, namely,

Tr7Batch—FIFO _ AE[Y?]  ME[N]E[X?] bE[X]p
W= 30 AEY]) 205 20-p) @

We illustrate Lemma 1 with two particular examples.

Example 1 We consider an FIFO queue with Poisson batch arrivals. The expected re-
sponse time of a job is the sum of its own service requirements, the service time of jobs of
the same batch that are ahead of him in the batch and the amount of unfinished work he finds
in the system upon arrival. A more detailed analysis can be found in [18, 15]. Expressing

their result as a function of b we obtain Tgasen—_rrro(z) =z + %E[X] + w?.

AE[N] /OOO (a: Lo bE[X] LW )F(a:)dx

E[XQ] bE[X]
5 p+
= (—p)W + pW ZWB

AE[N] /000 TBateh—rrro(z)F(z)dx

= AEN]=E W

INRIA



Processor Sharing with batch arrivals 7

Example 2 Let us consider now a BPS queue with exponentially distributed file sizes.
This is the only distribution for which there exists an analytical expression for the expected
conditional response time Tgpg Then it is known that [1, 2, 5]

exp *

1fp b(2(1—)E)[X]( - ), ®)

Then, proceeding similarly as in the previous example we obtain

TBPS.,, =

o 2
ABIN] [ Taps. () F)ds = E%%%§Mwmmi%%%%ﬂmm
2P EIX] [X ] / e
:AMMMWLF@ PPEIX] b2 = p)p EIX]
2(1-p) 20-p2 " 201-p2(2-p)
_ MEINIEXY] | bpBIX)(2—p—1) _ s
- 2(1-p) 2(1-p2

In the following Lemma, we take advantage of equation (6) to obtain a result that is
crucial for the ensuing analysis.

Lemma 2 Let 6T(z) = Tgps(x) — 1f—p, and let the service time distribution have a finite

mean, the batch size distribution have o finite second moment and p < 1. Then it holds that

bE[X]p
20— p) ©

AE[N] / " ST () F(x)ds =

Proof 2 Let X be a random variable with complementary distribution function F(x) and
density function f(x). The second moment of X is allowed to be infinite. We consider the
truncated random variable Xy at t, that is X; = min{X,t}. The complementary distribution
of the truncated random variable is

T Fl2), <t
Fi(z) = { 0, otherwise.

The mean of the truncated random variable is given by

ﬂmzémﬁwwzﬁfww

We note that the second moment of the truncated random variable is always finite.

E[X}] =/0 2yF(y)dy < oo

RR n° 5043



8 Avrachenkov & Ayesta & Brown

Let TE pg(x) be the expected conditional response time in a BPS queue in the case when
jobs are distributed according to the random variable X, and p = AE[N|E[X:]. Then from
equation 7 and Lemma 1 we have

AEINJE[X?] | pE[Xb
2(1 = pt) 2(1 = pr)

AE[N] /OO Tpps(x)Fy(x)dx

AE[N] / (

@) Fite)as

AE[N]E[X?] / =
————— + AE[N 6T (x) Fy(x)d
Consequently, we have that AE[N] [;° 6Ty(z)Fy(z)dz = gg[f;f]l)’ Taking the limit when
t — oo we obtain - PELX]
gl _ p
AE[N] /0 T@F (@) = 5=

Let us prove now another Lemma.

Lemma 3 Let the service time distribution have a finite mean, the batch size distribution
have a finite second moment and p < 1. Then, 6T (z) = Tgps(z) — 1, 18 increasing with
respect to x.

Proof 3 Let us show that 6T'(z) = T pg(x) — 1% > 0.

(T} = inf (ABIN] / 5T (y)F (& + y)dy + \E[N] / ST (4)F(z — y)dy + bF ()}

> AE[N] 1nf{6T’ (/ F(z +y)dy + /m F(x — y)dy)
= ABIN inf (5T"(0)} BIX)

= pinf{6T"'(z)}

. . 1
Hence §T"(x) > 0 and in particular Tppg(x) — =, 2 0.

A direct consequence of Lemma 3 is that 67 (x) > 0 Va > 0. Next we obtain an upper bound
for the expected conditional response time.

Lemma 4 Let the service time distribution have a finite mean, the batch size distribution
have a finite second moment and p < 1. The upper bound for the expected conditional
response time is given by

: b(pE[X]+2B[X.])(1 - p))

Teps(z) < 1—p + 2(1 - p)(1 = p,)

INRIA



Processor Sharing with batch arrivals 9

Proof 4 Let us consider the first term on the right hand-side of equation (3). Integrating
by parts we have

)\E[N]/ 6T (y a:-l—y)dy = MAE[N] (6T() (a:-l—y))l =°
BN [ 6T (o + )y

Noting that 6T_( ) = 0 in a Processor Sharing system and that as a consequence of Lemma 2
limy_. o 6T (y)F(x 4+ y) = 0 we have

AE[N] / ST()F(x +y)dy = ME[N] / ST(y)f (& +)dy
0
Using the integral equation (8) and the fact that 6T (z fo 6T (x)dx, we can write
/ 6T (z)dx = )\E[N]/ / 8T (y)F(x + y)dydx
0

FAE[N] / / §T'(y)F(x — y)dydz + b /0 F(z)da
- )\E[N]/ / 6T (y)f (@ + y)dyde

FAE[N] / 5T'(y / F(o — y)dedy + bEX.]
- )\E[N]/ §T(y / f(@+y)dady

FAE[N] /0 5T (y) /0 " F(h)dhdy + bE[X.]
= AEW] [ 67) (F) - Flo -+ 2) de

z z—y

+AE[N] / 5T (y) / F(h)dhdy + bE[X.]
0 0

Next by Lemma 3 it follows that

< AE[N] / ST (y)F(y)dy
+AE[N]E[X.] / §T'(y)dy + bE[X.]
(1 - AE[N]E[X,))§T(z) < AE[N] / 5T (y)F(y)dy + bE[X.].

RR n° 5043



10 Avrachenkov & Ayesta & Brown

Substituting the result obtained in Lemma 2 and taking into account that p, < 1, we get

) b(pB[X] + 2E[X.](1 - )
/‘5T e (I (RS B

Consequently, we obtain the upper bound for Tpps(z)

Tups(z) = 1= +67()
z | b(pEIX]+2E[X.](1—p))
1—p 20-p)(L=p.)

In the next Theorem we state the main result of this paper. Namely we show that
Tsps(z) has an asymptote. This result will be useful afterwards to provide tight upper
bounds on the expected conditional and unconditional response times.

<

Theorem 2 Let the service time distribution have a finite mean, the batch size distribution
have a finite second moment and p < 1. The conditional response time for the BPS queue
has an asymptote with slope 1/(1 — p) and bias

| ¢ \ _ bE[X](2-p)
Jim (TBPS('T) T1C p> 201 —p)?

Proof 5 Let us show that there exists an asymptote. From Lemma 4 we know that Tgps(z)—

1f—p 1s upper bounded and from Lemma 3 that Teps(x) — pr 1s increasing with respect to
x. Consequently lim, .o Tpps(x) — pr exists. This justifies the following calculation of

the asymptote bias. Proceeding in a similar way as in the proof of Lemma 4, we can write

/ " ST () da =

= AE[N] / / ST'(y)F(z + y)dyda

Jim (TBPS(CU) 1 fp>
+/\E[N]/ / 6T (y )dydac—{—b/oOo F(x)dx
= AEIN] / / 6T (y)f (z +y)dyda
FAE[N] / 5T (y / y)dzdy + bE[X]
= AEIN] / 6T (y) / f (@ +y)dady

+AE[N] /O T T ) /0 " F(h)dhdy + bE[X]

INRIA



Processor Sharing with batch arrivals 11

AE[N] [ " ST () Fy)dy

+AE[N]E[X] / " ST (y)dy + bE[X]

bE[X]p o
T )\E[N]E[X]/O 6T (y)dy + bE[X]

Solving the equation for f0°° 6T"(y)dy, we obtain

r ) _bEIXI2-p)
1—p)  2(1—p)?

Interestingly, we observe that the value of the bias is insensitive with respect to the job
size distribution, that is, it depends on the distribution only through the first moment.

lim (TBpg(x) -

r—00

Corollary 1 Let the service time distribution have a finite mean, the batch size distribution
have a finite second moment and p < 1, then the slowdown of M/G /1 — BPS is given by

T 1
lim 22Ps(@) _

Proof 6 The result is a direct consequence of Theorem 2.

Corollary 1 shows that in the BPS queue, very large jobs obtain service at the same rate
they would in the equivalent PS queue, that is lim,_, ., ~225@) = Tes(@)

x x

2.4 Bounds

In this section, we use the results obtained in the preceding section to obtain tight upper
bounds for the expected conditional response time as well as for the average unconditional
response time. We start by providing upper and lower bounds for the expected conditional
response time.

Theorem 3 The lower and upper bounds for the expected conditional response time in the
BPS queue are given by:

+1x T bE[X](2 — p)

L < Tgps(z) < min{ll)

}.

1—p —p '1=p  2(1-p)?
The bounds on the right hand part of the inequality intersect at the point x* = %.
Proof 7 Since Tppg(z) — li_p >0, Tgps(z) approaches the asymptotic from below. Hence

for large job sizes we obtain a bound that is asymptotically tight. Thus, from Lemma 2 we
have:
s bEX](2—p)

l—p  2(1-p) (10)

Tgps(z) <

RR n° 5043



12 Avrachenkov & Ayesta & Brown

Clearly, the upper bound (10) is not appropriate for small job sizes, since we know that

TBps(O) =0.
Thus, for small values of x, the function Teps(x) can be approzimated by calculating an
upper bound of its derivative. Let us estimate sup,o{6Tzpg()}

sup(6Tpps(@)}) = sup(AEWN] [ 6Tpps(wiFla+ )iy
> r> 0

BN [ 6Ty Fla = )y + F(a) + 1)
< AE[N] SL;I;{(STJIS»PS(.%)} (/OOO F(x +y)dy + /Oz F(x - y)dy) +b+1

= ME[N] ili%{&T]lgps(x)} /Ooo F(2)dz+b+1

= AE[N]sup{6Tpps(2)}E[X] +b+ 1= psup{éTpps(z)} +b+1
>0 >0

and hence sup{6Tgpg(x)} < i’f—:}. Noting that Teps(0) = 0 and integrating between 0 and
x we obtain another upper bound, that is,

1+0b
T < — 11
BPs() < 1 _px (11)
Equating the bounds (10) and (11), we find the intersection point

v EX)@=p) _1+b . EX[2-p)

= T
l1—p  201-p)? l—-p 2(1-p)

Thus, we have

la: x bE[X](2-p)
pil=p  2(1-p)?

The lower bound is a direct consequence of the inequality Tp pg(x) — ﬁ > 0.

. b+
Trps(z) < min{ =

}.

In Section 3 we show that the upper bound characterizes quite closely the expected
conditional response time for large jobs in the BP.S queue. In the next theorem, we use the
upper bound of the expected conditional response time to provide an upper bound on the
unconditional response time.

Theorem 4 The lower and upper bounds for the expected unconditional response time in a

BPS queue are given by:
E[X] E[X] b
—— < E[T < —— + ——FE[X,-].
o) < Blfaps] < 721+ T BIX.]

where x* is the same as in Theorems 3.

INRIA



Processor Sharing with batch arrivals 13

Proof 8 The lower bound is straightforward from the lower bound in Theorem 8. Now we
calculate the upper bound.

ElTsps] = /mTBps@:)f(x)dx
0

® g " ba
< [ i@ [ Epaa

= bE[X](2 - p)
+/Z* 51— )7 f(z)dz
E[X] , b b EX)2-p)

= X4 " ElX,]-
1-p 1—,0[ ] 1-p 2(1-p)

bE[X](2 - p)
2(1=p)?
E[X] b

= — + —FE[X,
1—p+1—p [ ]

F(z*)

2.5 Reducing the upper bound iteratively
We observe that combining the results of Theorem 3 and 4 with the fact that

Tpps(0) = AE[N] /0ij Tsps(y)F(y)dy +b+1
- AEwy/mﬂwawf@My+b+1=AEmnmﬂwd+b+L (13)

it is possible to perform successive iterations to lower the upper bound on E[Tpps]. Note
that T;pg(0) > Tppg(z) V. If we plug the upper bound obtained in Theorem 4 in (13) ,
% - %. Hence, we can lower the upper bound, that is,
1+0 b(p - pz*)
T < —
Brs(z) < (l—p 1—p T,

which is clearly more accurate than the previous one.
Then, in the spirit of Theorems 3 and 4, we can write

we get T pg(0) <

. (1+b  b(p—par) z  bEX]|(2-p)
T < —
BPS(w)_mln{(l_p 1—p w’l—p+ 2(1_p)2 }
with intersection at =3 = %, and also
Similarly, ’
E[X] ©bE[X:] bE[X](2- — po+ ) F (a3
p p (1 =p)2(L+ par — p)

RR n° 5043



14 Avrachenkov & Ayesta & Brown

3 Numerical examples

In this section we provide some numerical examples of the results of the preceding sections.
In order to compute numerically Trpg(z) (or its derivative) for a general distribution we
perform the Fixed Point Iterations (2). Indeed, we have shown in Theorem 1 that the Fixed
Point Iterations (2) will converge to the solution of equation (1).

First of all, we consider the case of exponentially distributed file sizes and we demonstrate
a high speed of convergence of the Fixed Point Iterations. Taking the derivative of the
expected conditional response time for the exponential distribution case (see equation (8) ),
we obtain

dTpps..,(z) _ 1 L M2-p) e
dx 1—p 2(1-p)
In Figure 1 we depict equation (14) and the Fixed Point Iterations (1st, 6th and 11th) of
equation (2). We take E[N] = 2, b =5, E[X] = 20 and p = 0.7. We note that the Fixed
Point Iterations converge very rapidly to the analytic solution.

(14)

16

T T
—— Analytical Formula
— — Fixed Point Iteration, k=1
~~~~ Fixed Point Iteration, k=6
— - Fixed Point Iteration, k=11 []

[N
N

B =
o © o N

derivative of expected conditional response time

IN

2 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

job size

Figure 1: Converge of Ty pg(2) for exponential distribution: Analytical formula (14) and
Fixed Point Iterations of equation (2)

In Figure 2 we plot the value of Tsps(z) obtained by Fixed Point Iterations for the case
of Pareto distribution with infinite variance (1 < a < 2). We also plot the upper bound for

INRIA



Processor Sharing with batch arrivals 15

the conditional response time of Theorem 3. The Pareto distribution is F(z) = 1 — % and
the parameters are k = 10, o = 1.5, E[N] =3, b =10 and p = {0.3,0.7}.

14000

— Fixed Point, p=0.3
—/A - Theoretic Bound, p=0.3
+ . . P
12000 — — Fixed Point, p=0.7 -
—@ - Theoretic Bound, p=0.7 P
e
(] //
£ 100000 Pied E
) Phe
[%2] P
c -7
S P
Q P
$  sooof- L= 1
s _z7
o Py
E 6000 -
8 -
s z
2 PR
[} -
Q40001 -7 E
x - -
(] - s
- - 7
- e
2000(-1 -~ // |
. -
/ -
, e
%‘ L L L L L
0 500 1000 1500 2000 2500 3000
job size

Figure 2: Tppg for Pareto distribution: Fixed Point iterations and upper bound of Theo-
rem 3

We consider now the upper bound for the unconditional expected response time obtained
in Theorem 4. In the case of a general distribution, we can compare the upper bound of
Theorem 4 with the numerical value of the expected unconditional response time obtained
by the Fixed Point Iterations. In Figure 3, we consider a Pareto distribution, and we plot
the upper bound provided in Theorem 4 and the numerical calculation of the expected
unconditional response time for different loads. As in the previous numerical example with
Pareto distribution, we take k = 10, @ = 1.5, E[N] = 3 and b = 10.

The tightness of the upper bound provided in Theorem 4 depends on the characteristics
of the job size distribution. After performing extensive numerical analysis, we conclude that
Theorem 4 provides a quite tight upper bound approximately up to load 0.6.

We note that it can be power consuming to calculate accurately the value Tppgs(z) and
E|Tppg] for distributions with infinite second moment, for example, Pareto if 1 < a < 2.
In this case, we emphasize that the bounds provided in Theorems 3 and 4 are useful to
characterize in a simple way and with good accuracy the performance of the BPS queue
when the job size has a heavy-tail distribution.
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Figure 3: Expected unconditional response time for Pareto file size distribution: Fixed Point
iterations and Theorem 4

4 Application to Multilevel Processor Sharing

One of the classical results of queuing theory says that when information on the size of the
jobs is available for the server, the Shortest Remaining Processing Time SRPT scheduling
discipline is optimal with respect to the expected unconditional response time of the system
[16]. In some scenarios, this information is not available to the server, for instance, in
computer networks the file size is not known in advance. Hence, scheduling disciplines that
only take advantage of the attained service of jobs have drawn significant attention recently.
The performance of the attained service based scheduling depends on the characteristics of
the distribution function. For instance, it is known that when the distribution of the job size
has a decreasing hazard rate u(z) = f(z)/F(z), the Least Attained Service LAS scheduling
minimizes the expected unconditional response time among all disciplines that do not know
the job’s total size [17, 18] . In few words, we can describe LAS as the scheduler who gives
full service to the job who has obtained the least amount of service.

It is clear that choosing an appropriate scheduling policy may significantly improve the
performance of the system. In the current TCP/IP architecture of the Internet the length of
a flow is not known in advance. This, coupled with the fact that no job obtains preferential
treatment, have led researchers to propose Processor Sharing PS as a good mathematical
abstraction for the bandwidth allocation that the network provides [19].
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It has been widely reported that whereas most of the connections are made up of few
packets, most of the data is carried by some few large connections [20]. This type of dis-
tributions (pareto, hyperexponential) have decreasing hazard rate. Therefore, from the
theoretic point of view, it seems that giving priority to short flows might improve the overall
performance of the system.

Even though the apparent desirable properties of LAS, its deployment does not seem
to be a simple task. Hence, researchers have recently analyzed and proposed different size-
based scheduling disciplines that aim to improve the performance that the current network
architecture provides [6, 7, 4, 8, 9]. In the next section, we describe these schedulers as
particular examples of the set of Multilevel Processor-Sharing Scheduling M LPS disciplines
introduced by Kleinrock [1] and we show how the results presented here for the BPS queue
can be applied.

4.1 Multilevel Processor Sharing Scheduling M LPS

The framework of M LPS allows us to define a very large class of scheduling disciplines. Let
a; be a set of numbers such that

O=ar<a1<...<an <any41 =0

We consider N + 1 scheduling disciplines, where D; is the discipline which is used to serve
jobs whose attained service 7 belongs to level ¢,that is a;—1 < 7 < a;. We permit D; to
be either LAS or PS. Intervals are served according to a LAS discipline with respect to
each other, that is, at any instant of time, the processor will give full service to the jobs
belonging to the lowest nonempty level. For instance, let us consider a two level M LPS
scheduler with threshold at a, jobs with attained service smaller than a are served with P.S
and jobs that have attained more service than ¢ with LAS. If there are in the system jobs
who have attained less service than a, those jobs receive full service and they will be served
according to a PS discipline. When there are no such jobs, the M LPS scheduler will give
full service to those jobs who have attained more service than a, in this case following a
LAS scheduler. As soon as there is a new arrival, the server will interrupt serving jobs with
attained service greater than @ and start serving a new arrival.

Let 2 be some value belonging to the i-th interval, i.e. a;_; < 2 < a; and TMLP5(x)
the expected conditional response time. An important characteristic of M LPS disciplines
is that TMLP5 () is independent of the scheduling discipline utilized in intervals j # i [1].

Kleinrock showed that when PS is used in the i-th interval, this interval behaves as an
M/G/1— PS queue with batch arrivals (BPS) and interruptions due to arrivals of higher
priority. When LAS is used, the i-th interval is equivalent to a LAS scheduler.

4.2 Truncated and Residual random variables

Let us introduce notations that will be used in the next section. Given a random variable X
that takes values in [0, 00), we consider the truncated random variables Xy, = min{a, X'}
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with density function _
fou() = f(z){z <a} + F(a)éa(z)

We consider as well the residual random variables X, oo = {X — a|X > a} with density

distribution is given by f4,00(2) = % Vz > 0. The mean is given by
o F FIX]| - Fl[Xo.
piro— [~ Fietel,, X B
0 F(.CB) F(a)

We use the notation E[Ty,] and E[T}; ] to denote the average waiting time in a queue
S € {PS,LAS, BPS} with truncated and residual random variable respectively.

4.3 Asymptotic Analysis

We study in this section the effect of giving priority to short jobs on very large jobs. Following
the arguments in Section 4.1, the response time for very large jobs in an M LPS system will
depend only on the scheduling discipline deployed in the last interval. We denote as M LPSg
an MLPS discipline that utilizes {LAS, PS} scheduling in the last interval a < = < oco.

An undesirable property of LAS relies on the fact that in the case of distributions with
infinite second moment, there is no asymptote and the expected conditional response time for
large jobs deviates from PS [9]. As a consequence, the same result will hold for M LPS 45
disciplines. For example, in the case of Pareto distribution with infinite second moment, the
asymptotics of an M LPSy a5 has the following form

LAS 1 k™

T 7 (z) = 1_px+ (1_'0)2(2_&)3327& +o(z2®).

S
There is no asymptote in this case, even though the limit lim,_, o, THETTLA5 (@) exists. This

implies that the performance of LAS deviates increasingly from PS pe;forma,nce with the
increase of the file size.

We consider now an M LPSpg discipline. From [1] we observe that TMLP5rs () if x < a
will depend on the scheduling disciplines utilized in the corresponding lower priority interval

and that if x > a Bps
a+Woo T77°(x—a)
Tarrpses(T) = a , 15
MLPSps(T) = o = pos (15)

2 —_
%. We note that W, is always finite.

In the next theorem, we show that M LPSpg has an asymptote with slope 1/(1—p) even
with service time distributions that have an infinite second moment.

where W , =

Proposition 1 Let the service time distribution have finite mean and p < 1, then the
response time for the MLPSpg queue has an asymptote with slope 1/(1 — p) and bias

INRIA



Processor Sharing with batch arrivals 19

T ) _ WO,a a(po,a — p)
1_p0,a (1_p)(1 _pO,a)
bE[Xa,00](2 = (p + P0,a))
21— p)? ’

lim <TMLPSPS (:L') —

r— o0

where po,e = AE[X0,q].

Proof 9 From Theorem 2 and equation (15) it follows that

T (z) = a+ Wo,a 1 T —a 1 bE[Xa,00](2 — pa,c0)
MEPSes 1—poa  l=poal=pac 1=poa 2(1— paco)?

+o(1)

where pa,c0 45 the load in the last interval, that is, pa,co = AE[N|E[X4,00]. E[N] is the mean
fraction of flows that reach the low priority queue after a busy period of the high priority
queues E[N] = F(a)/(1 — po,a). Thus we have

1 = 1 _ 1- P0,a
1= pa,0 N 1=\ F(a) E[X]-E[Xo.] 1 —p
’ 1-po.a F(a)
and similarly 2 — pg,co = w.

Then we obtain

a+Woo w—a bE[Xu00](2— pa,co)

Tureses(®) = G e T, T S0 = peyi—p) TV
t . Wou | alppa—p)  BEXunl@—(p+p0u))
— + 9 ) + 9 9 +01
T T T=poa T A=) (1=po) 2(1- ) @)

This result shows the robustness of M LPSpg disciplines against distributions that have
an infinite second moment.
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