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Abstract: FairThreads offers a very simple framework for concurrent and parallel pro-
gramming. Basically, it defines schedulers which are synchronization servers, to which fair
threads are linked. All threads linked to the same scheduler are executed in a cooperative
way, at the same pace, and they can synchronize and communicate using broadcast events.
Threads which are not linked to any scheduler are executed by the OS in a preemptive way,
at their own pace.

FairThreads defines automata to deal with small, short-lived tasks, which do not need
the full power of native threads. Automata have lightweight implementation and are not
subject to some limitations of native threads.

The implementation in C is based on the pthreads library. Several fair schedulers, exe-
cuted by distinct pthreads, can be used simultaneously in the same program. Using several
schedulers and unlinked threads, programmers can take benefit of multiprocessors machines
(basically, SMP architectures)
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FairThreads:
un mélange de threads coopératifs et préemptifs en C

Résumé : Les FairThreads proposent un moyen simple de programmation concurrente et
paralléle en C. IIs introduisent la notion de scheduler qui peut étre vu comme un serveur de
synchronisation pour les fair threads qui lui sont liés. Les threads liés & un méme scheduler
sont exécutés avec une stratégie coopérative, au méme rythme, en pouvant se synchroniser et
communiquer & l’aide d’événements diffusés. Les threads qui ne sont liés & aucun scheduler
sont, sous le controle de I’OS uniquement et ils s’exécutent de maniére préemptive, 3 un
rythme qui leur est propre.

Des automates sont définis dans les FairThreads pour les taches & courte durée de vie
qui ne nécessitent pas toute la puissance des threads natifs. Les automates nécessitent peu
de ressources et ne sont pas soumis & certaines limitations des threads natifs.

L’implémentation en C utilise la librairie Pthreads. Plusieurs schedulers, exécutés par
des threads natifs distincts, peuvent cohabiter au sein de la méme application. En utilisant
plusieurs schedulers et threads non liés, le programmeur peut profiter du parallélisme fourni
par les machines multi-processeurs (par exemple, les architectures SMP).

Mots-clés : Programmation concurrente, Programmation réactive, Threads, Parallélisme
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1 Introduction

Threads are generally considered as having two main advantages: first, programs can be run
by multiprocessor machines without any change. Thus, multithreaded systems immediately
take benefit from symetric multiprocessing (SMP) architectures, which become now widely
available. Second, blocking I/Os do not need special attention of any kind. Indeed, as the
scheduler is preemptive, there is no risk that a thread blocked forever on an I/O operation
will also block the rest of the system.

The benefit of using threads is however not so clear for systems made of tasks needing
strong synchronizations or a lot of communications. Indeed, in a preemptive context, to
communicate or to synchronize generally implies the need to protect some data involved in
the communication or in the synchronization. Locks are often used for this purpose, but
they have a cost and are error-prone (possibilities of deadlocks). Pure cooperative threads
are more adapted for highly communicating tasks. Indeed, data protection is no more
needed, and one can avoid the use of locks. Moreover, cooperative threads have clear and
simple semantics, and are thus easier to program and to port. However, while cooperative
threads can be efficiently implemented at user level, they cannot benefit from multiprocessor
machines and they need special means to deal with blocking I/Os.

Actually, programming with threads is difficult because threads generally have very
“loose” semantics. This is particularly true with preemptive threads because their semantics
strongly relies on the scheduling policy. The semantics of threads also depends on other
aspects, as, for example, the way threads priorities are mapped at the kernel level. More-
over, threads raise efficiency problems. For example, threads take time to create, and need
a rather large amount of memory to execute. An other issue is related to the limitation
of the number of native threads than can be created at system level. Several techniques
exist to bypass these problems, specially when large numbers of short-lived components are
needed. Among these are thread-pooling, to limit the number of created threads, and the
use of small pieces of code, sometimes called chores or chunks, which can be executed in a
simpler way than threads are.

1.1 The FairThreads Proposal

FairThreads proposes to overcome the difficulties of threads by giving users the possibility
to choose the context, cooperative or preemptive, in which threads are executed.

More precisely, FairThreads defines schedulers which are cooperative contexts to which
threads can dynamically link or unlink. All threads linked to the same scheduler are executed
in a cooperative way, and at the same pace. Threads which are not linked to any scheduler
are executed by the OS in a preemptive way, at their own pace. An important point is that
FairThreads offers programming constructs to dynamically link and unlink threads.

FairThreads has the following main characteristics:

e Programs can take advantage of multiprocessor machines. Indeed, schedulers and
unlinked threads can be run in real parallelism, on distinct processors.
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4 F. Boussinot

e It allows users to stay in a purely cooperative context by linking all the threads to the
same scheduler. In this case, systems are completely deterministic and have a simple
and clear semantics.

e Blocking I/Os can be implemented in a very simple way, using unlinked threads.

e It defines instants shared by all the threads which are linked to the same scheduler.
Thus, all threads linked to the same scheduler execute at the same pace, and there is
an automatic synchronization at the end of each instant.

e It introduces events which are instantaneously broadcast to all the threads linked to
a scheduler; events are a modular and powerful mean for threads to synchronize and
communicate.

e It defines automata to deal with small, short-lived tasks, which do not need the full
power of native threads. Automata have lightweight implementation and are not
subject to some limitations of native threads.

This paper describes FairThreads in the context of C, implemented on top of the Pthreads
library [22]. The structure is as follows: section 2 presents the rationale for the design of
FairThreads. An overview of the APT of FairThreads is given in section 3. Several examples
showing various aspects of FairThreads are described in section 4. Related work is considered
in section 5. Finally, section 6 concludes the paper.

2 Rationale

In FairThreads, schedulers can be seen as synchronization servers, in which linked threads
automatically synchronize at the end of each instant. However, in order to synchronize,
linked threads must behave fairly and cooperate with the other threads by returning the
control to the scheduler (hence the name FairThreads; note however that the word “fair”
has a different meaning in the context of concurrency). Thus, linked threads are basically
cooperative threads. Schedulers can also be seen as event servers as they are in charge of
broadcasting generated events to all the linked threads. In this way, a scheduler defines
a kind of synchronized area made of cooperative threads running at the same pace, and
communicating through broadcast events.

2.1 Synchronized Areas

A synchronized area can quite naturally be defined to manage some shared data that has
to be accessed by several threads. In order to get access to the data, a thread first has to
link to the area, and then it becomes scheduled by the area and can thus get safe access
to the datal. Indeed, as the scheduling is cooperative, there is no risk for the thread to be

n this respect, schedulers are quite close to standard monitors (see the classification of [12]) except
that they need a dedicated thread of control.

INRIA



FairThreads in C 5

preempted during an access to the data. The use of a synchronized area is, in this case, an
alternative to the use of locks. A synchronized area can also play the role of a location that
threads can join when some kind of communication or synchronization is needed.

FairThreads allows programmers to decompose complex systems in several threads and
areas to which threads can link dynamically, following their needs. Moreover, a thread can
be unlinked, that is totally free from any synchronization provided by any schedulers. Of
course, unlinked threads cannot benefit from broadcast events. Unlinked threads are run
in the preemptive context of the OS, and are thus just standard preemptive threads. Data
shared by unlinked threads have to be protected by locks, in the standard way.

2.2 Cooperative Aspects

Basically, a linked fair thread is a cooperative thread which can synchronize with other fair
threads using events and which can communicate with them through values associated to
these events. The scheduler to which the fair thread is linked gives it the possibility to
get the processor. All threads linked to the scheduler get equal right to execute. More
precisely, a scheduler defines instants during which all threads linked to it run up to their
next cooperation point. There are two kinds of cooperation points:

e explicit ones which are calls to the cooperate function, used when the thread has
finished its execution for the current instant. In this case, the thread will only regain
the control at the next instant (except of course if it is suspended or stopped). The
cooperate function can thus be seen as a kind of “yield”, the primitive which is central
in co-routine based formalisms.

e implicit points where threads are waiting for events. Note that in this case, the execu-
tion can return to the thread during the same instant, if the awaited event is generated
later, by an other thread linked to the scheduler.

A fair scheduler actually broadcasts events to all the fair threads linked to it. Thus, all
the threads linked to the same scheduler “see” the presence and the absence of events in
exactly the same way. Moreover, values associated to events are also broadcast. Actually,
events are local to the scheduler in which they are created, and are non-persistent data
which are reset at the beginning of each new instant.

Modularity

Events are a powerful synchronization and communication mean which simplifies concurrent
programming while reducing risks of deadlocks. Events are used when one wants one or more
threads to wait for a condition, without polling a variable to determine when the condition is
fulfilled (from this point of view, events correspond to the condition variables of Pthreads).
Broadcast is a mean to get modularity, as the thread which generates an event has nothing
to know about potentially receivers of it. Fairness in event processing means that all threads
waiting for an event always receive it during the same very instant it is generated; thus, a
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6 F. Boussinot

thread leaving the control on a cooperation point does not risk to lose an event generated
later in the same instant, as the scheduler will necessary resume it.

Determinism

Cooperative frameworks are less indeterministic than preemptive ones, as in cooperative
frameworks preemption cannot occurs in an uncontrolled way. Actually, FairThreads puts
the situation to an extreme point, when considering linked threads: linked threads are chosen
for execution following a strict round-robin algorithm and the order is the one in which the
threads have been linked to the scheduler. This leads to deterministic systems and can be
a great help in programming and debugging.

Absence of Priorities

Priorities are meaningless for linked threads which always have equal rights to execute.
Absence of priorities also contributes to simplify programming.

2.3 Automata

FairThreads proposes automata to deal with auxiliary tasks, such as waiting for an event
to stop a thread, that do not need the full power of a dedicated native thread to execute.
An automaton is a special fair thread which is always linked to a scheduler and which
executes using its native thread. Thus, an automaton does not have its own execution stack
to store its execution state or local variables. As a consequence, it can be implemented
more efficiently than threads are but its expressive power is limited (for example, recursive
functions that are not tail-recursive cannot be coded using automata).

Basically, automata are lists of states which are elementary pieces of sequential code.
The current state is stored by the automaton and execution starts from it at the beginning
of the instant. Execution leaves the current state when an explicit jump to another state
is executed. When the state terminates without any explicit jump, execution automatically
proceeds to the next state. Execution of the automaton terminates when the last state is
exited. Thus, the fine-grain sequentiality of execution inside states is not memorized by
automata, only the coarse-grain sequentiality of states execution is.

2.4 Mapping to Native Threads

In FairThreads all fair threads, except automata, are mapped onto native threads. Fair
threads which are linked to a scheduler are under the control of it, while unlinked threads
behave as standard native preemptive threads. Unlinked threads are present in FairThreads
for two main reasons. First, using unlinked threads, users can program non-blocking I/Os
in a very simple way. Without this kind of I/Os, programming would become problematic.
Second, unlinked threads can be run by distinct processors. The use of unlinked threads is
a plus in multiprocessor contexts.

INRIA



FairThreads in C 7

2.5 Use for Simulations

Simulation of physical entities is used in many distinct areas, ranging from surgery training
to games. The standard approach consists in discretization of time, and then integration
using some stepwise method (e.g. Runge-Kutta algorithms).

The use of threads to simulate separate and independent objects of the real world ap-
pears quite natural when the focus is put on objects behaviors and interactions between
them. However, using threads in this context is not so easy: for example, complex interac-
tions between objects may demand complex threads synchronizations, and the number of
components to simulate may exceed the number of available threads.

FairThreads can be helpful in several aspects:

e Simulation of large numbers of components is possible using automata. Automata do
not need private stacks and the consumption of memory can thus stay low.

e Interactions can be expressed with broadcast events, which gives a very modular way
to deal with them.

e Instants provide a common discrete time that can be used by the simulation.

e Interacting components can be naturally grouped into synchronized areas. The pres-
ence of several synchronized areas can be a plus for multiprocessing.

As example, considers the simulation on screen of moving particles. A fair thread should
be quite naturally associated to each particle for executing its behavior. An example of
behavior could be to call at each instant two functions, one for inertia and one for bouncing
on the borders of the screen. As the number of particles can be large, each particle should
actually be implemented as an automaton. Particles that are close have to synchronize
for collision processing. The needed synchronization is actually automatically provided by
common instants shared by fair threads linked to the same scheduler. Collision processing
should use a broadcast event generated by each particle and processed by all of them. To
avoid considering distant particles during collision processing, the global simulation should
be divided into several sub-regions which can be quite naturally mapped to distinct sched-
ulers to which particles dynamically link according to their moves. In this way, each region
gets its own collision event, only processed by particles present in the region.

Using standard threads, the coding would be very different. First, a pool of processing
threads should be defined, in order to benefit from multiprocessing. Then, particles should
be placed in a common place (list or array), in which the processing threads pick them up.
The shared common place should be protected for concurrent accesses. Particles should
also be protected to avoid concurrent accesses of two threads processing simultaneously two
colliding particles. Moreover, in order to avoid the quadratic processing of collisions, particles
should actually be grouped into several areas corresponding to proximity considerations.

A new approach has been recently proposed for modelling and simulation of physical
systems, based on reactive programming (considered in section 5). This approach is specially
useful for modeling mixed continuous/discrete behaviors [8]. FairThreads can certainly be
used with profit in this context.
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8 F. Boussinot

3 Overview of the API

The API of FairThreads is overviewed in this section. All functions are presented, but some
details, such as error codes, are for simplicity not considered here. The APT is summarized
in the annex.

3.1 Schedulers and Threads

FairThreads explicitly introduces schedulers, of type ft_scheduler_t, which are created
with the function ft_scheduler_create. Once started by a call to ft_scheduler_start,
a scheduler is run by a dedicated native thread which cyclically gives the control in turn
to the threads linked to it. Several schedulers can be used simultaneously in the same
program. Using the ft_scheduler_react function, it is possible to execute only one instant
of a scheduler. With this function, users can get control over schedulers execution and for
example synchronize several of them, according to the needs.

Fair threads are of type ft_thread_t and are created with one of the two functions
ft_thread_create or ft_thread_create_unlinked. A thread run by a dedicated native
thread is created by ft_thread_create(s,r,c,a); the thread is linked to the scheduler s.
The creation is not immediate but becomes actual at the beginning of the next instant of s.
The thread is automatically started and it executes the function r with a as parameter. If
stopped (by ft_scheduler_stop), the thread switches execution to the function ¢ to which
a is also transmitted.

The call ft_thread_create_unlinked(r,c,a) creates an unlinked thread which exe-
cutes the function r with a as parameter. As previously, the thread switches execution
to c if it is stopped (which supposes that the thread has been linked to a scheduler, by
ft_thread_link described later).

Here is a typical program main function which creates a scheduler and a fair thread in
it, and then starts the scheduler (the call to ft_exit prevents the immediate termination
of the whole program; it is considered later):

int main (void)

{
ft_scheduler_t sched = ft_scheduler_create ();
ft_thread_create (sched,t,NULL,NULL);
ft_scheduler_start (sched);
ft_exit ();
return 0;

Orders can be given to a scheduler to stop, suspend, or resume a thread linked to it (an er-
ror is returned if the thread is actually unlinked). For example, the call ft_scheduler_stop(t)
gives to the scheduler s which executes the thread t the order to stop it. The stop will be-
come actual at the beginning of the next instant of the scheduler, in order to assure that t

INRIA
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is in a stable state when stopped. In a similar way, a thread can be suspended and resumed
with the functions ft_scheduler_suspend and ft_scheduler_resume.

The executing thread is returned by ft_thread_self () and the scheduler of the execut-
ing thread is returned by ft_thread_scheduler() (an error code is returned if the thread
is unlinked).

For example, the following call is a way for a thread to stop itself:

ft_thread_stop (ft_thread_self ());

Note that this call does not prevent the executing thread to continue execution during the
current instant, as the stop become effective only at the beginning of the next instant. In the
terminology of synchronous languages [16], the preemption resulting from ft_thread_stop
is a “weak” one, not a “strong” one.

3.2 Cooperation and Termination

The call ft_thread_cooperate () is the explicit way for the calling thread to return control
to the scheduler running it. An error code is returned if the executing thread is unlinked.
For example, the following function gives a way to trace the instants of a scheduler:

void trace_instants (void *n)
{
int i = 0;
while (1) {
printf ("\ninstant %d: ", i++);
ft_thread_cooperate();
}
}

The call ft_thread_cooperate_n(i) is equivalent to i calls ft_thread_cooperate().
Actually, ft_thread_cooperate_n is present in the APT only for optimization purposes.

The call ft_thread_join(t) suspends the execution of the executing thread until the
thread t terminates (either normally or because it is stopped). Note that t needs not to be
linked to the scheduler of the calling thread. With ft_thread_join_n(t,i) the suspension
is limited to i instants.

The following loop, for example, waits for the termination of all the components of an
array of threads:

for (i = 0; i < MAX; i++)
ft_thread_join (thread_array [i]);

RR n° 5039



10 F. Boussinot

3.3 Events

An event has type ft_event_t and is created with the function ft_event_create which
receives as parameter the scheduler s in charge of it. Only threads linked to s will be able
to generate the event, to await it, or to get its associated values. Nevertheless, one always
has the possibility to generate the event from outside s, with ft_scheduler_broadcast.

The call ft_thread_generate(e) immediately generates the event e in the scheduler s
in charge of it. An error code is returned if the executing thread is not linked to s. The call
ft_thread_generate_value(e,v) adds v to the list of values associated to e during the
current instant (these values can be read using ft_thread_get_value considered later).

For example, the following instruction generates the event presence and associates the
executing thread to it:

ft_thread_generate_value (presence,ft_thread_self ());

The call ft_scheduler_broadcast(e) gives to the scheduler s of the event e the order
to broadcast it to all the linked threads. In this case it is not mandatory that the executing
thread is linked to s and it can even be unlinked. ft_scheduler_broadcast_value(e,v)
associates the value v to e (as previously, v can be read using ft_thread_get_value).

Awaiting Events

Events can be awaited using ft_thread_await (case of one single event) or ft_thread_select
(case of several events). In all cases, the executing thread must be linked to the scheduler
of awaited events, in order to get safe information about their presence or absence. Thus,
an error code is returned if the executing thread is not linked to the scheduler of awaited
events.

The call ft_thread_await(e) suspends the execution of the calling thread until the
event e becomes generated. Execution resumes as soon as e is generated.

Here is for example a function that waits for an event to be present and then stops a
thread (preempt_t is a pointer type on a structure made of an event and a thread):

void killer (void *p)
{
preempt_t p = p;
await (p->event);
stop (p->thread);
}

With ft_thread_await_n(e,i), the waiting is limited to at most i instants: the exe-
cuting thread is automatically resumed at the beginning of the ith next instant if e was not
previously generated.

INRIA
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For example, the following code tests if event is present during the current instant (the
executing thread is supposed to be correctly linked to the scheduler of the event):

if (0K == ft_thread_await_n (event,1)) printf ("present!");
else printf ("was absent!");

Note that “was absent!” is printed only at next instant because to determine the absence
of event takes the whole current instant. This is a major difference with Esterel [9]: in
FairThreads instantaneous reaction to the absence of an event is impossible; only delayed
reaction to absence is possible.

The call ft_thread_select (k,array,mask) suspends the execution of the calling thread
until the generation of one element of array which is an array of k events. Then, mask,
which is an array of k boolean values, is set accordingly.

With ft_thread_select_n(k,array,mask,i), the waiting is limited to i instants.

Getting Event Values

The call ft_thread_get_value(e,i,r) is an attempt to get the ith value associated to the
event e during the current instant (as previously, the executing thread must be linked to
the scheduler of e). If such a value exists, it is assigned to the location pointed by r and the
call terminates instantly. Otherwise, the special code ENEXT is returned at the next instant.

For example, the following instruction waits for event and then gets all the values asso-
ciated to it during the current instant:

await (event);

i=0;
while (0K == ft_thread_get_value (event,i++,res)) {
}

An important point is that the loop does not terminate at the instant in which event is
generated, but at the next one. Indeed, the fact that all values have been considered can
only be known at the end of the current instant. Thus ENEXT can only be returned at the
next instant.

3.4 Linking, Unlinking, and Pthreads

The call ft_thread_unlink() unlinks the executing thread t from the scheduler s in which
it is running (an error code is returned if the executing thread is already unlinked). Then,
t is completely removed from s and it will no longer synchronize, instant after instant, with
the other threads linked to s. Actually, after unlinking, t behaves as a standard native
thread, only under control of the operating system. Note that in the case where it will later
re-link to the scheduler, it does not keep its position and will be put, as every new incoming
threads, at the end of the list of linked threads.

RR n° 5039



12 F. Boussinot

The call ft_thread_link(s) links the calling thread to the scheduler s. The calling
thread must be unlinked when executing the call. The linkage becomes actual at the begin-
ning of the next instant of s.

For example, the following function implements a cooperative reading I/0, using the
standard blocking read function. The thread first unlinks from the scheduler, then performs
the read, and finally re-links to the scheduler:

ssize_t ft_thread_read (int fd,void #*buf,size_t count)
{

ft_scheduler_t sched = ft_thread_scheduler ();

ssize_t res;

ft_thread_unlink ();

res = read (fd,buf,count);

ft_thread_link (sched);

return res;

In presence of unlinked threads, locks can be needed to protect data shared between
unlinked and linked threads. Standard mutexes are used for this purpose. The call to the
function ft_thread_mutex_lock(p), where p is a mutex, suspends the calling thread until
p becomes locked. The lock is released using the function ft_thread_mutex_unlock. Locks
owned by a thread are automatically released when the thread terminates definitively or
when it is stopped.

The call ft_pthread(t) returns the native pthread which executes the fair thread t.
This function gives direct access to the Pthreads implementation of FairThreads.

The function ft_exit is equivalent to pthread_exit. The basic use of ft_exit is to
terminate the pthread which is running the function main, without exiting from the process
running the whole program.

3.5 Automata

Automata are fair threads of the type ft_thread_t which are created using the function
ft_automaton_create. The thread returned by ft_automaton_create(s,r,c,a) is exe-
cuted as an automaton by the scheduler s, which means that it is run by the native thread
of the scheduler and not by a dedicated native thread.

The automaton r is described as a list of numbered states coded using a set of macros
described in annex. States are numbered, starting from 0, and the numbers must be con-
secutive, without any hole in the numbering.

For example, here is an automaton equivalent to the function killer previously defined:

INRIA
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DEFINE_AUTOMATON (killer)
{
preempt_p p = ARGS;
BEGIN_AUTOMATON
STATE_AWAIT (0,p->event)
STATE (1) {
ft_scheduler_stop (p->thread);
}
END_AUTOMATON
}

The automaton is introduced by the macro DEFINE_AUTOMATON with the automaton name
as parameter. The macro ARGS gives access to the argument given at creation. The list of
states starts with BEGIN_AUTOMATON and ends with END_AUTOMATON and the state numbered
by 0 is always the initial state. States are either standard states (introduced by STATE) or
special states corresponding to some API functions. For example, the special state 0 of the
previous automaton corresponds to a call of ft_thread_await. Actually, the control will
stay in this state while the event is not present, and it will flow to the next state as soon as
the event is generated. Passing from one state to an other one can be made explicit using
the macros GOTO, GOTO_NEXT, or IMMEDIATE. With GOTO and GOTO_NEXT, the execution of
the target state will occur only at next instant, while it is immediate when IMMEDIATE is
used.

A fair thread instance of killer is created by:

ft_thread_t a = ft_automaton_create (sched,killer,NULL,args);

In opposition to a creation by ft_thread_create, no new pthread is created when the
fuction ft_automaton_create is used, and the automaton is simply run by the pthread of
the scheduler to which it is linked. Thus, no supplementary thread context switch appears
which is a good point for efficiency. Moreover, limitations on the number of native threads
that can be simultaneously running do not apply to automata.

4 Examples

One considers several examples which show various aspects of FairThreads. The example
of section 4.1 illustrates the determinism of linked threads. A producer/consumer example
which can benefit from multiprocessor machines is described in section 4.2. Section 4.3 shows
the interest to have precise semantics. Finally, several uses of automata are considered in
section 4.4.

4.1 Determinism

The following code is a complete example, made of two threads linked to the same scheduler.
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14 F. Boussinot

#include "fthread.h"
#include <stdio.h>

void print (void *txt)

{
while (1) {
printf ("%s", (char*)txt);
ft_thread_cooperate ();
}
}

int main(void)

{
ft_scheduler_t sched = ft_scheduler_create ();
ft_thread_create (sched,print,NULL,"Hello");
ft_thread_create (sched,print,NULL," World!\n");
ft_scheduler_start (sched);
ft_exit ();
return 0;

}

The program outputs Hello World! cyclically. Note the call of ft_exit to prevent the
program to terminate before executing the two threads. Execution of linked fair threads is
round-robin and deterministic: the two messages Hello and World! are always printed in
this order because the thread printing Hello is created and linked to sched before the one
printing World.

4.2 Producer/Consumer

One implements a producer/consumer example. There are 2 files, in and out of type
file_t, and a pool of threads that take data from in, process them, and then put results
in out. Processing a value is supposed to be time-consuming. A scheduler and an event are
associated to each file; the event is generated to indicate that a new value is produced in
the associated file.

file_t in = NULL, out = NULL;

ft_scheduler_t in_sched, out_sched;
ft_event_t new_input, new_output;

Processing Values

Each cycle of the processing thread consists in the following steps: first the thread links to
in_sched to get a value; then, it unlinks to process the value and when this is terminated, it
links to out_shed to deliver the result; finally, the thread unlinks. The code is the following;:
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void process (void *args)

{
int v;
while (1) {
ft_thread_link (in_sched);
while (size(in) == 0) {
ft_thread_await (new_input);
if (size (in) == 0) ft_thread_cooperate ()
}
v = get (&in);
ft_thread_unlink ();
< time consuming processing of v >
ft_thread_link (out_sched);
put (v,&out);
ft_thread_generate (new_output);
ft_thread_unlink ();
}
}

The event new_input is used to prevent polling when no value is available from in. However,
to test it as present does not implies that a value is available: it could happen that the value
has already been consumed by another thread. This is the reason why in is tested again, in
sequence of ft_thread_await. Note the call to ft_thread_cooperate to avoid an infinite
loop during the same instant, if new_input is tested as present while no value is actually
available?.

Main Function

Two schedulers are created: one for values to be processed, and the other for results. Then,
several unlinked processing threads are created. The main function is the following:

int main (void)

{
int i;
in_sched = ft_scheduler_create ();
out_sched = ft_scheduler_create ();
new_input = ft_event_create (in_sched);

new_output = ft_event_create (out_sched);

for (i = 0; i < MAX_THREADS; i++)
ft_thread_create_unlinked (process,NULL,NULL);

ft_thread_create (in_sched,produce,NULL,NULL);

ft_thread_create (out_sched,consume,NULL,NULL);

ft_scheduler_start (in_sched);

ft_scheduler_start (out_sched);

2Using as many events as processing threads, one could also design a different solution in which only one
thread would be awaken at a time.
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}

ft_exit ();
return 0;

Here are some important points:

While processing values, the processing threads are unlinked and can thus be run
by distinct processors; the producer/consumer system can in this way benefit from
multiprocessor machines.

The use of two synchronized areas defined by the two schedulers is an alternative to the
use of locks: no explicit lock is indeed needed despite the fact that all the processing
threads share the two files in and out.

It is possible, for processing values, to use a non-cooperative procedure provided it
is thread-safe (and thus, reentrant). As the executing thread is unlinked, calling
the procedure does not penalize the other threads which do not have to wait for its
termination to start running.

4.3 Using Events

One considers two threads t1 and t2, and two events el and e2. The thread t1 awaits
el and t2 awaits e2. When a thread receives the event it is waiting for, it stops the other

thread and starts running.

ft_scheduler_t sched;
ft_thread_t t1,t2;
ft_event_t el,e2;

void runl (void *args)

{
ft_thread_await (el);
ft_scheduler_stop (t2);
< bodyl >

}

void run2 (void *args)

{
ft_thread_await (e2);
ft_scheduler_stop (t1);
< body2 >

}
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sched = ft_scheduler_create ();

t1 = ft_thread_create (sched,runi,NULL,NULL);
t2 = ft_thread_create (sched,run2,NULL,NULL);
el = ft_event_create (sched);
e2 = ft_event_create (sched);

The question is: what happens when el and e2 are simultaneously present (perhaps,
because el and e2 are the same event)? The answer is clear and precise, according to
the semantics of FairThreads: bodyl and body2 are executed during only one instant, and
then t1 and t2 both terminate at the next instant. Note that, if, in the same situation,
one prefers body1l and body2 not to be executed at all, it is sufficient to insert a call to
ft_thread_cooperate just after the call to ft_scheduler_stop, in both runl and run2.

Now, suppose that the same example is coded using standard pthreads instead of fair
threads, replacing events by condition variables, and the function ft_scheduler_stop by
pthread_cancel. The resulting program is deeply non-deterministic. Actually, one of the
two threads could cancel the other and run its body up to completion. But the situation
where both threads cancel the other one is also possible; in this case, both bodies can execute
while the threads are not canceled, which produces unpredictable results.

4.4 Automata Examples

One considers three examples using automata. The first example is a recoding of the previous
“Hello World!” program. The second example is a 3-state automaton which runs two threads
in turn. The context of simulations, as presented in section 2.5, is considered in the third
example.

Hello World with Automata

Three native threads are actually run by the program of 4.1: one for the scheduler and
two instances of print. Using automata, one gets an equivalent program which needs only
one native thread (the one of the scheduler). The use of automata, which clearly improves
efficiency, is possible because the threads are never unlinked. The program becomes:

#include "fthread.h"
#include <stdio.h>

DEFINE_AUTOMATON (print)

{
BEGIN_AUTOMATON
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STATE (0) {
printf ("%s", (char*)ARGS);
GOT0(0);
}
END_AUTOMATON
}
int main(void)
{
ft_scheduler_t sched = ft_scheduler_create ();
ft_automaton_create (sched,print,NULL,"Hello");
ft_automaton_create (sched,print,NULL," World!\n");
ft_scheduler_start (sched);
ft_exit ();
return 0;
}

Two Threads Run in Turn

The following automaton switches control between two threads, according to the presence
of an event. The automaton switch_aut has three states. State 0 resumes the first thread
(initially, one assumes that both threads are suspended). The switching event is awaited in
the state 1, and the threads are switched when the event becomes present. State 2 is similar
to state 1, except that the threads are exchanged.

DEFINE_AUTOMATON (switch_aut)

{
void **args = ARGS;
ft_event_t event args[0]
ft_thread_t threadl = args[1]
ft_thread_t thread2 = args[2]
BEGIN_AUTOMATON

STATE (0) {ft_scheduler_resume (threadil);}

STATE_AWAIT (1,event) {
ft_scheduler_suspend (threadl);
ft_scheduler_resume (thread2);
GOTO(2) ;

}

STATE_AWAIT (2,event) {
ft_scheduler_suspend (thread?2);
ft_scheduler_resume (threadl);
GOTO(1);

}

END_AUTOMATON

}

If a standard thread were used instead of an automaton, one supplementary pthread
would be needed to perform the same task.
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Simulation

One considers a simulation of colliding balls based on a matrix of schedulers to which the
balls are linked. Each scheduler is in charge of a part of the global simulation and the balls
dynamically link to the schedulers according to their coordinates. A special event is defined
in each scheduler which is generated by balls linked to it to signal their presence for collision
processing.

Each ball is implemented as an automaton which at each instant moves and performs
collisions with the other balls linked to the same scheduler.

A specific scheduler is dedicated to graphics, and each ball broadcasts the draw event for
being drawn on screen.

Balls have local variables of pointer type ball_locals with the following fields: current
is the current part of the simulation in which the ball is; presence is the event which signals
the presence of the ball, used for collision processing; i, area and other are auxiliary
variables.

DEFINE_AUTOMATON (ball_fun)
{
ball_locals ball = (ball_locals)ARGS;
BEGIN_AUTOMATON
STATE (0) {initialize (ball);}
STATE (1) {
move (ball);
ball->area = where_is (ball);

}

STATE (2) {
if (ball->area == ball->current) { IMMEDIATE (4); }
else { ball->current = ball->area; }

}

STATE_LINK (3,scheduler_array[ball->current]);

STATE (4) {
ball->presence = collide_event_array[ball—>current] ;
ft_thread_generate_value (ball->presence,ball);
ball->i = 0;

}

STATE_GET_VALUE (5, ball->presence, ball->i, (void*#*)&ball->other) {
if (RETURN_CODE != OK) {
ft_scheduler_broadcast_value (draw,ball);
GOTO (1);
}
if (ball != ball->other) collision (ball,ball->other);
ball->i++;
IMMEDIATE (5);
}
END_AUTOMATON
}
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One thus gets a simulation which can benefit from the presence of several processors
as schedulers can then run in parallel. Note however that the simulation described is only
partial as collisions between balls belonging to distinct schedulers are not considered.

5 Related Work

Thread Libraries in C

Several thread libraries exist for C. Among them, the Pthreads library [22] implements
the POSIX standard for preemptive threads. LinuxThreads [5] is an implementation of
Pthreads for Linux; it is based on native (kernel-level) threads. Quick Threads [18] provides
programmers with a minimal support for multithreading at user-space level. Basically, it
implements context-switching in assembly code, and is thus a low-level solution to multi-
threading.

Gnu Portable Threads [15] (GNU Pth) is a library of purely cooperative threads which
has portability as main objective. The Next Generation POSIX Threading project [6] pro-
poses to extend GNU Pth to the M:N model (M user threads, N native threads), with Linux
SMP machines as target. The M:N model is also at the basis of the Solaris OS of Sun, where
kernel objects of execution are called light weight processes. In Windows NT, threads are
used at kernel level but the unit of concurrency at user-level is not the thread but the fiber;
a comparison of Solaris and NT in the context of SMP is described in [25].

Java Threads

Java introduce threads at language level. Actually, threads are generally heavily used in
Java, for example when graphics or networking is involved. No assumption is made on the
way threads are scheduled (cooperative or preemptive schedulings are both possible) which
makes Java multi-threaded systems difficult to program and to port [17]. This difficulty is
pointed out by the suppression from the recent versions of the language of the primitives to
gain fine control over threads [4]. A first version of FairThreads has been proposed in the
context of the Java language [11] in order to simplify concurrent programming in Java; this
version was limited to cooperative threads.

Recently, a new standard, called Real-Time Specification for Java (RTSJ) has been
proposed [23]. The aim of this standard is to extend Java to support real-time threads
whose execution conforms to timing constraints. A central point adressed by RTSJ is the
garbage collection.

Threads in Functional Languages

Threads are used in several ML-based languages such as CML [24]. CML is preemptively
scheduled and threads communication is synchronous and based on channels. Threads are
also introduced in CAML [2]; they are implemented by time-sharing on a single processor,
and thus cannot benefit from multiprocessor machines.
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FairThreads has been recently introduced in the Bigloo [1] implementation of Scheme.
The present version only supports linked threads, and special “service threads” are introduced
to deal with non-blocking cooperative I/Os.

Reactive Approach

FairThreads actually comes out from the so-called reactive approach [7] which is itself a
ramification of synchronous languages [16]. Instants and broadcast events are issued from
Esterel [9], a synchronous language for the specification of harware and embedded systems.
However, there are two main differences between reactive programming and FairThreads on
one hand, and Esterel and the synchronous language on the other hand: first, in the reactive
approach the absence of an event during one instant cannot be decided before the end of
this very instant. As a consequence, reaction to absence is delayed to the next instant.
This is a way to solve the so-called “causality problems” which are raised by synchronous
languages and are obstacles to modularity. Second, dynamic creation of concurrent compo-
nents (of threads in the case of FairThreads) and of events is possible while it is forbidden
by synchronous languages in which the structure of programs is always static.

The Reactive-C [10] language was the first proposal for reactive programming in C; in
this respect, FairThreads can be considered as a descendant of it.

Chores and Filaments

Chores [14] and filaments [20] are small pieces of code that do not have private stack and are
never preempted. Chores and filaments are designed for fine-grain parallelism programming
on shared-memory machines. Chores and filaments are completely executed and cannot be
suspended nor resumed. Generally, a pool of threads is devoted to execute them. Chores
and chunk-based techniques are described in details in the context of the Java language
in [13] and [17]. Automata in FairThreads are close to chores and filaments, but give
programmers more freedom for direct coding of states-based algorithms. Automata are also
related to mode automata [21] in which states capture the notion of a running mode in the
context of the synchronous language Lustre [16].

Cohorts and Staged Computation

Cohort scheduling [19] dynamically reorganizes series of computations on items in an input
stream, so that similar computations on different items execute consecutively. Staged com-
putation intends to replace threads. In the staged model, a program is constructed from a
collection of stages and each stage has scheduling autonomy to control the order in which
operations are executed. Stages are thus very close to instants of FairThreads and cohort
scheduling looks very much like cooperative scheduling. In the staged model, emphasis is
put on the way to exploit program locality by grouping similar operations in cohorts that
are executed at the same stage; in this way, cohorts and staged computations fall in the
familly of data-flow models.
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6 Conclusion

Multiprocessing

In FairThreads, users have control on the way threads are scheduled. Fair threads which
are linked to a scheduler are scheduled in a cooperative way by it. When a fair thread
unlinks from a scheduler, it becomes an autonomous native thread which can be run in real
parallelism, on a distinct processor. An important point is that FairThreads provides users
with programming primitives allowing threads to dynamically link to schedulers and to
dynamically unlink from them.

Precise Semantics

Linked threads have a precise and clear semantics (the formal semantics of the cooperative
part of FairThreads is given in [3]). The point is that systems exclusively made of threads
linked to one unique scheduler are completely deterministic.

Simplicity

FairThreads offers a very simple framework for concurrent and parallel programming. Simple
cooperative systems can be coded without the need of locks to protect data. Instants give
automatic synchronizations that can also simplify programming in certain situations.

Compatibility with Pthreads

FairThreads is fully compatible with the standard Pthreads library. Indeed, unlinked fair
threads are actually just pthreads. In this respect, FairThreads is basically an extension of
Pthreads, which allows users to define cooperative contexts, with a clear and simple seman-
tics, in which threads execute at the same pace and events are instantaneously broadcast.

Automata

Auxiliary tasks can be implemented using automata instead of standard fair threads. Im-
plementation of an automaton is lightweight and does not require a dedicated native thread.
Automata are useful for short-lived small tasks or when a large number of tasks is needed.
Automata are an alternative to techniques such as “chunks” or “chores”, sometimes used in
thread-based programming.

Implementation

A first implementation of FairThreads in C is available (under the Gnu General Public
License) as a library called fthread [3] which must be used with the standard Pthreads
library.
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Annex: API Summary

Creation of Schedulers, Threads, and Events

ft_scheduler_t ft_scheduler_create (void) creation of a scheduler

ft_thread_t ft_thread_create (

ft_scheduler_t,

void (*runnable) (voidx), creation of a linked fair thread run by a native thread

void (*cleanup) (voidx*),
void *args)

ft_thread_t ft_thread_create_unlinked (

void (*runnable) (void*), . . .
void (*cleanup) (voids), creation of an unlinked fair thread

void *args)

ft_thread_t ft_automaton_create (

ft_scheduler_t,

void (*automaton) (ft_thread_t), creation of a fair thread run as an automaton
void (*cleanup) (void*),

void *args)

ft_event_t ft_event_create (ft_scheduler_t) creation of an event
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Control ove

r Schedulers

int ft_scheduler_start (ft_scheduler_t)

the scheduler is cyclically executed by a native thread

void ft_scheduler_react (ft_scheduler_t)

only one instant of the scheduler is executed

Control o

er Threads

int ft_scheduler_stop (ft_thread_t)

stops a thread linked to a scheduler

int ft_scheduler_suspend (ft_thread_t)

suspends a thread linked to a scheduler

int ft_scheduler_resume (ft_thread_t)

resumes a thread linked to a scheduler

Cooperation and Termination

int ft_thread_cooperate (void)

cooperation

int ft_thread_cooperate_n (int num)

cooperation during exactly num instants

int ft_thread_join (ft_thread_t)

joining a thread

int ft_thread_join_n (ft_thread_t,int timeout)

limited join

Link and Unlink

int ft_thread_link (ft_scheduler_t)

thread linking to a scheduler

int ft_thread_unlink (void)

thread unlinking
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Generating and Broadcasting Events

int ft_thread_generate (ft_event_t)

generation of an event

int ft_thread_generate_value (

ft_event_t,void *value)

generation of an event with an associated value

int ft_scheduler_broadcast (ft_event_t)

order to broadcast an event

ft_scheduler_broadcast_value (ft_event_t,
void *value)

int

order to broadcast an event with an associated value

Awaitin

> Events

>

int ft_thread_await (ft_event_t)

waiting for an event

int ft_thread_await_n (ft_event_t,int timeout)

limited waiting for an event

ft_thread_select (int len,
ft_event_t *array,int *mask)

int

waiting for several events

ft_thread_select_n (
int len,ft_event_t *array,
int *mask,int timeout)

int

limited waiting for several events

Getting Values of Events

int ft_thread_get_value (ft_event_t event,

int n,void **result)

attempt to get the nth value associated to an event

Automaton

Structure

AUTOMATON (aut)

declares the automaton aut

DEFINE_AUTOMATON (aut)

starts definition of the automaton aut

BEGIN_AUTOMATON

starts the list of states

END_AUTOMATON

ends the list of states
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States

STATE (num)

standard state

STATE_AWAIT (num,event)

state to await event

STATE_AWAIT_N(num,event,delay)

states to await event during at most delay instants

STATE_JOIN (num,thread)

state to join thread

STATE_JOIN_N(num, thread,delay)

state to join thread during at most delay instants

STATE_STAY (num,n)

state to sleep for n instants

STATE_GET_VALUE (num,event,n,result)

state to get the nth value associated to event

STATE_SELECT (num,n, array,mask)

generalizes STATE_AWAIT to an array of n events

STATE_SELECT_N (num,n,array,mask, delay)

generalizes STATE_AWAIT_N

STATE_LINK (num,sched)

re-links the automaton to sched

Explicit Control

GOTO (num) blocks execution for current instant; next state is state
num

GOTO_NEXT blocks execution for current instant and sets the next
state to be the successor of the current state

IMMEDIATE (num) execution jumps to state num which is immediately ex-
ecuted

RETURN

immediately terminates the automaton
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Special Automaton Variables

SELF

the automaton

LOCAL

local data of the automaton

SET_LOCAL(data)

sets the local data of the automaton

ARGS

argument which is passed at creation to the automaton

RETURN_CODE

error code set by macros during automaton execution

Miscelaneous

ft_thread_t ft_thread_self (void)

the executing fair thread

ft_scheduler_t ft_thread_scheduler (void);

the scheduler of the executing fair thread

void ft_exit (void)

the actual pthread is exited

int ft_thread_mutex_lock (
pthread_mutex_t *mutex)

mutex lock

int ft_thread_mutex_unlock (
pthread_mutex_t *mutex)

mutex unlock

pthread_t ft_pthread (ft_thread_t thread)

the underlying pthread
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