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Abstract: We study the optimal reinsurance policy and dividends distribution of an insur-
ance company under excess of loss reinsurance. The insurer gives part of its premium stream to
another company in exchange of an obligation to support the difference between the amount
of the claim and some retention level. The objective of the insurer is to maximise the ex-
pected discounted dividends. We suppose that in the absence of dividend distribution, the
reserve process of the insurance company follows a compound Poisson process. We first prove
existence and uniqueness results for this optimisation problem by using singular stochastic
control methods and the theory of viscosity solutions. We then compute the optimal strategy
of reinsurance, the optimal strategy of dividends pay-out and the value function by solving the
associated integro-differential Hamilton-Jacobi-Bellman Variational Inequality numerically in
the case of a Poisson process with constant intensity.
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Controle de risque et distribution de dividendes dans le
cas d’un contrat de réassurance avec limitation d’excés de
pertes

Résumé : On étudie la politique optimale de réassurance et de distribution de dividendes
d’une compagnie d’assurance qui reverse une partie des primes qu’elle recoit a un réassureur
qui s’engage a payer la différence entre la taille de chaque sinistre qui survient et un certain
niveau de rétention donné. Ce contrat est connu sous le nom de réassurance d’excés de pertes.
L’objectif de ’assureur est de maximiser I’espérance du montant des dividendes actualisés. On
modélise les sinistres par un processus de Poisson composé. On prouve l'existence et 1'unicité
de la solution de viscosité de l'inéquation variationnelle associée en utilisant des méthodes
de controle stochastique singulier. Dans une seconde partie, on résoud numériquement le
probléme en utilisant un algorithme basé sur ’algorithme d’Howard dans le cas particulier
d’un processus de Poisson.

Mots-clés :  Controle stochastique singulier, diffusion avec sauts, principe de programma-
tion dynamique, solution de viscosité, algorithme de Howard, assurance, réassurance.
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1 Introduction

A basic problem in insurance is the problem of optimal risk control and dividends distribution.
Indeed the surplus process of the insurer consists of a premium stream which commits him
to pay the amount of the claims at their arrivals which is known to be a risky activity. To
reduce the risk, the insurer gives part of the premium stream to another company in exchange
of an obligation to cover a part of the claim. The insurer has also to pay a flow of dividends
to shareholders. To make an optimal choice of the amount to insure and the dividends to pay
out, stochastic control methods arise naturally.

In the literature, various criteria are used to formulate the problem of optimal risk control
and/or dividends distribution such that (i) maximising expected utility of terminal surplus-
process, (ii) minimising the ruin probability of the insurer or (iii) maximising the cumulative
expected discounted dividend pay-outs.

Touzi (2000) studied the problem of maximising the expected utility of the terminal reserve in
the case of a proportional reinsurance contract. He modelled the reserve process by a Doléans-
Dade exponential of jump process and characterised the optimal strategy of reinsurance via
a dual formulation. The criterion of maximising the expected utility of the terminal reserve
is not relevant here since the insurer who is invited to cover a large risk wants to be risk
neutral (see Aase (2002)). The second criterion is useful for consumers and supervisors and
extremely conservative especially for rich companies. Schmidli (2001) studied the optimal
proportional reinsurance policy which minimises the ruin probability in infinite horizon. He
derived the associated Hamilton-Jacobi-Bellman equation, proved the existence of a solution
and a verification theorem in the diffusion case. He proved that the ruin probability decreases
exponentially and the optimal proportion to insure is constant. Moreover, he gave some
conjecture in the Cramér-Lundberg case. The third criterion is preferable for shareholders.
Jeanblanc and Shirayev (1995) studied the problem of optimal dividend distribution policy
without optimal risk control. They modelled the evolution of the capital X = (X;);>o of
a company by dX; = pdt + cdW, — dZ; where p and o are constants, W = (W;);>¢ is a
standard Brownian motion and Z = (Z;);>¢is a nonnegative, nondecreasing right-continuous
and adapted process. The process Z represents the strategy of payment of dividends by the
company. They showed that there exists a threshold u; such that every excess of the reserve
above u; is distributed as dividend instantaneously. Hgjgaard and Taksar (1999) studied the
problem of risk control and dividends pay-out. They modelled the evolution of the process X
of the company by dX; = a;(udt +ocdW;) — dZ;, where a = (a;):>o represents the risk exposure
with 0 < a; < 1 for all £ > 0. They found the optimal strategy which maximises the expected
total discounted dividends when there is no restriction on the rate of dividend pay-out. They
showed that there exists ug and u; with uy < u; such that every excess of the reserve above w4
is distributed as dividend and the optimal risk exposure is given by a(z) = “ A1 where z is the
current reserve. Asmussen, Hgjgaard and Taksar (2000) considered the issue of optimal risk
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4 Mohamed Mnif, Agnés Sulem

control and dividend distribution policies under excess of loss reinsurance which is the most
common in the reinsurance industry. The insurer gives part of the premium stream to another
company, in exchange of an obligation to support the difference between the amount of each
claim and some fixed level called retention level. The authors used a diffusion approximation
for the reserve process and reparametrized the problem by considering the drift term as the
basic control parameter, which leads to a mixed regular/singular stochastic control problem.
They derived an Hamilton Jacobi Bellman Variational Inequality (HJBVT in short) in the case
of unbounded rate of dividends and proved that the value function is a classical solution of
the associated HJBVI. They constructed the solution in the case of unbounded and bounded
support of the distribution of the claims. In this paper, we study the same problem but
we model the reserve process of the insurer by using a compound Poisson process. Due
to the Markovian context, our problem may be studied by a direct dynamic programming
approach leading to an integro-differential Hamilton Jacobi Bellman Variational Inequality.
In general, the value function of control problems is not smooth enough to be a strong solution
of the associated HJBVI. The notion of viscosity solution, first introduced by Crandall and
Lions (1983), is known to be a powerful tool for this type of problems. We prove here an
existence and uniqueness result for the associated HJIBVI and then solve it by using an efficient
numerical method, the convergence of which is ensured by the uniqueness result. The paper
is organised as follows. The problem is formulated in Section 2. In Section 3, we prove that
the value function is a viscosity solution of the associated HJBVI. In Section 4 we prove the
uniqueness of the viscosity solution. Section 5 is devoted to the numerical analysis of the
HJBVI in the case of a Poisson process with constant intensity: we perform a finite difference
approximation of the HJBVI and then solve the problem by using an algorithm based on the
“Howard algorithm”. Numerical results are presented. They provide the optimal policy of
reinsurance and the optimal strategy of dividends pay-out.

2 Formulation of the problem

Let (2, F, P) be a complete probability space. We assume that the claims are generated by
a compound Poisson process. More precisely, we consider an integer-valued random measure
p(dt,dy) with compensator 7(dy)dt. We assume that n(dy) = SG(dy) where G(dy) is a
probability distribution on B C IR, and (3 is a positive constant. In this case, the integral
with respect to the random measure p(dt, dy) is simply a compound Poisson process: we have
fot [z n(du,dy) = Zjﬁl Y;, where N = {N;,t > 0} is a Poisson process with intensity /4 and
{V;,i € IN} is a sequence of random variables with common distribution G which represent
the sizes of the claim. We suppose that N and {Y;,7 € IN} are independent.

We denote by IF' = (F;);>o the filtration generated by the random measure p(dt, dy).

A retention level process is an Fi-adapted process a = (a4, t > 0) representing an excess of
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Optimal risk control and dividend pay-outs under excess of loss reinsurance 5

loss treaty specifying that, of any claim of size y at time ¢, the direct insurer is to cover y A o4
and the reinsurer is to cover the excess amount (y — o).

Given a retention level ¢y at time ¢, we denote by p(«;) the difference between the premium
rate per unit of time received by the company and the premium rate per unit of time paid by
the company to the reinsurer at time t.

From now on, we consider a premium rate of the same form as in Asmussen, Hgjgaard and
Taksar (2000):

play) = (14+k)Bv— 1+ ko)BE[(Y; —ay)y] forallt >0, (2.1)

where k; and ky are proportional factors satisfying 0 < k; < ky. In Equation (2.1), the term
Bv represents the expectation of the amount of the claims during a unit of time. The second
term of the r.h.s of Equation (2.1) is the premium paid to the reinsurance company to support
the difference between the amount of the claims and the retention level «, during a unit of
time. Regulations lay down that premiums must be sufficient to cover expenditures, which
means that

p(aw) — BE[Y;i ANay) >0 for all t > 0. (2.2)
Condition (2.2) is equivalent to
ap > a for all (t,w) a.e (2.3)
where «, the lowest admissible retention, is the unique solution of
p(a) — BE[Y; Ao = 0.

Remark 2.1 When the mark space is reduced to B = {6} with 6 > 0, then we have an explicit
6(k2—Fk1)

expression of a which is o = T

We denote by L = (L, t > 0) the Fi-adapted process of the cumulative amount of dividends
paid out by the insurer. Given an initial reserve z and a policy («, L), the reserve of the
insurance company at time ¢ under this excess of loss contract is then given by :

t ¢ t
xXpel = g +/ p(ov,)du — / /(y A o) p(du, dy) — / dL,. (2.4)
0 0o /B 0
A strategy (a, L) is said to be admissible if a = (a4, ¢ > 0) satisfies (2.3) and
L is right-continuous, nondecreasing, Ly~ = 0 and L+ — L, < XP®" for (t,w) a.e . (2.5)

The last hypothesis means that the insurer is not allowed to pay out dividends at time ¢ which
exceed the level of his reserve at this time.
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6 Mohamed Mnif, Agnés Sulem

Given an initial reserve z, we denote by II(x) the set of all admissible policies. For (a, L) €
II(x), we define the return function as

J(z,a, L) = Ew/ e "dL,,

0

where 7 is a discount factor and 7 is the ruin time defined by
7 =inf{t > 0, X7*" < 0}.
The value function is defined as

v(z) = sup J(z,q,L). (2.6)
(a,L)EII(x)

3 Characterisation of the value function as a viscosity so-
lution of a HIBVI

In this section, we prove that the value function defined in (2.6) is a viscosity solution of the
integro-differential Hamilton Jacobi Bellman Variational Inequality

max{H(z,v,vl),l —v’(x)} =0in RY, (3.1)
with Dirichlet boundary conditions
v(0) =0, (3.2)

where

H(z,v,v) = sup {—rv(x) + pla)v' (z) + /B(v(a: —yAa)— v(m))w(dy)}.

a>a

We begin by stating some useful properties for the value function.
Theorem 3.1 The value function v is nondecreasing in IRy and satisfies
v(z) <z + K,
where K is a positive constant.

Proof. The first statement is obvious. Let K = w and define ¢ on IR by ¢(z) =+ K.
Since ¢ is non decreasing and p(«) is bounded by (1 + k;)Bv, we have

H(z,6,6) <sup{—r(z+ K)+p(a)} <0 for all z € R. (3.3)

aza
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Optimal risk control and dividend pay-outs under excess of loss reinsurance 7

Moreover
1—¢ (z) =0 for all z € IR". (3.4)

Let (a, L) € II be given and = € IR%,. We denote by 7 the first exit time of IR’ of the process
X% and define

. {s >0, / e (BXTF — y A o) - X)) ()| 2 n} .
B
Applying Ito’s formula to e (X", we get
e T G(XEN) (3:5)
IATATR ,
— )+ / _reTIG(XTO) 4 e p(a)d (XEOH)ds
IAT ATy ‘
+ / / e " ((;S(Xf_’a’L —yAag) — qﬁ(Xfia’L)) w(ds, dy)
0 B

AT ATy ,
—rs z,o,L c
- / € (b (X57 ’ )dLs
0
tATATR

o 8 e ozt -z

s=0

where L¢ is the continuous part of Ly and ALy = Ly — Ls-. Taking the expectation in (3.5),
using (3.3), (3.4) and the martingale property of

tAT ATy L L
/ / e (qs(Xs"”:“’ —yAag) — H(X77 )> filds, dy),
0 B

we obtain
tATATY
s 2B |[ 7 eran 4 B [errsort )]
0

Sending n to infinity and using ¢(X %% ) > 0, we get

6(z) > E [ /0 " e”dLs] .

Taking the supremum over all policies («, L) € TI(x), we obtain v(z) < z + K. O

We define now the upper and the lower semicontinuous envelope of the function v.

RR n® 5010



8 Mohamed Mnif, Agnés Sulem

Definition 3.1 (i) The upper semicontinuous envelope of the function v is

v*(z) = limsupwv(z'), forallx € R,. (3.6)

' -z

(i) The lower semi-continuous envelope of the function v is

vi(z) =liminfo(z'), for all z € R,. (3.7)

' —x

Since the continuity of the Hamiltonian H in his arguments is not obvious, we define the

upper and the lower semi-continuous envelope of H by H*(z,v,v") = limsup H(z', v, v') and
>z

H,(z,v,0) = lim inf H(z', v, v).
Extending the definition of viscosity solutions introduced by Crandall and Lions (1983) and
then by Soner (1986) and Sayah (1991) to first integro-differential operators, we define the

viscosity solution as follows:

Definition 3.2 (i)A function v is a viscosity super-solution of (3.1) in IR% if

max {H*(:U,¢, ¥, 1 - wl(a:)} <0 (3.8)
whenever 1 € C*'(N,), N, is a neighbourhood of x and v, — 9 has a global strict minimum at
z € IR
(ii)A function v is a viscosity sub-solution of (3.1) in IR if

max { H'(z,,%),1 - ¢'(z) } > 0 (3.9)
whenever ¥ € C'(N,), N, is a neighbourhood of x and v* — 1 has a global strict mazimum at
z € IRY.

(iii) A function v is a viscosity solution of (3.1) in IRY if it is both a super and a sub-solution
in IRY.

We define

Ci(Ry) ={f: R, — IR, f is nondecreasing and sup v(@) < 00}.
T€ER 1 +x
Remark 3.1 It is easy to check that v* and v, are in C1(R).

We assume that the dynamic programming principle holds, see e.g. Fleming-Soner (1993).
For any stopping time 7 and ¢ > 0,

tAT
v(z) = sup F [e‘T(MT)v (Xf,{f’L> —I—/ e_”dLu] , (3.10)
0

(a,L)€Il

where a A b = min(a, b).

INRIA
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Theorem 3.2 The value function v is a viscosity solution of (3.1) in IR, .

Proof. We first prove that v is a viscosity super-solution of (3.1) in /R . Let v € IR’ and
¢ € C'(IR%) such that without loss of generality

0= (v. = ¢)() = min(v, — ).

I

From the definition of v,, there exists a sequence (z,), € IR’ such that z, — 2z and
v(xn) — vi(x) when n — oo.

For « > o and 6 > 0, we set L, = 6 and a, = « for all s > 0. Then X(”)”}:’a’L =z, — 6. The
dynamic programming principle (3.10) yields

tAT
V(@) +m > E [e_T(MT)Q/) (Xf,(i"L> + / e_”dLu] : (3.11)
0

where the sequence 7, := v.(x,) — ¥(x,) is deterministic and converges to zero when n tends
to infinity. Sending n — oo and ¢ — 07 in (3.11), we get

w(x) > Pz — 6) + 6.
Sending now 6 — 0%, we obtain
11— (z) <0. (3.12)
It remains to prove
H,(z,,9) <0. (3.13)
We choose Ly, = 0 and a, = « for all s > 0. We set

0, = inf{t > O,Xfma’L ¢ B(.In, 77)}’

where 7 is a positive constant and B(z,,n) = {z, |z — z,| < n}. Applying It6’s formula to

e*T(t/\an)zb(Xf/(”é:/’\L) and using (3.11), we get

1 tAOy, )
B ety e (Kt

0
1 tAOy n
+ F [;/0 /Bem (qp(X;”_"’a,L —yAa,) — ¢(Xff=a,L)> ;/J(ds,dy):| < 77 (3.14)

From the definition of +,, two cases are possible:
Case 1: 7, = 0. Using the martingale property of

tAGy L L
/ e (B(XEF —y A ay) = w(XEh) ) flds, dy)
0

RR n® 5010
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and sending n to infinity and ¢ to zero, by dominated convergence theorem and mean value
theorem, (3.14) implies

1) + ple)d (&) + /B (@ —y A ) — (@) 7(dy) < 0

and so (3.13) is proved .

Case 2: vy, > 0. We take ¢t = /7,. By sending n to infinity we obtain also inequality (3.13).

Combining (3.13) and (3.12), we conclude that v is a viscosity super-solution.

Let ¢ € C'(Ny,), xo € IR% such that (v* —)(zo) = r%@x(v* — ). For sub-solution inequality
+

(3.9), we have to show
max {H* (mo, zp,w’) 11— (a:o)} > 0. (3.15)

Suppose that (3.15) does not hold. Hence the left-hand side of (3.15) is negative. By smooth-
ness of ¢ and since H* is upper semi-continuous, there exists ¢ satisfying:

max {H* (m,v,b,d)’) ,1— d)'(x)} <0 (3.16)

for all z € B(xo, 6). By changing §, we may assume that B(zo,6) C IR}

From the definition of v*, there exists a sequence (z,), € IR% such that z, — ¢ and
v(x,) — v*(x9) when n — oo. We suppose that x, € B(xg,6) for all n € IN. Let
(o, L) € II(x) be given and define the stopping time 7,, as

T, = inf{t > 0, X/~*" ¢ B(zo,6)}.

We truncate this stopping time by a constant 7" in order to make the stopping time 7;,, bounded.
We set 7* = 7, A T. Applying It6’s formula to e " )ep( X7 *%) and using (3.11), we get
(with L{ denoting the continuous part of L;)

B ) .
tAT*
= Vo) +E [ /0 (=re (X7 E) + e plas)y) (Xgma’L))ds]
r pEIAT™
+ FE /0 /Bers (w(XffaavL —yAay) — Qp(X;Uf,a,L)) u(ds, dy)]

tAT™ ,
- E / e " (X;‘"’“’L)dLg]
LJ 0
[tAT*

+ E|Y e (zp(X:f’”"L—ALs)—w(XZI"“’L))],
Ls=0

INRIA
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where ALy = L; — Ls-. For 0 < s <tA7* (3.16) implies
—rp(XOT) + plag)y (Xt + / (WX —y A a) = (X7 *E))m(dy) <0 (3.18)
B

and
1— (X2l) <. (3.19)

Using (3.19), we have

tAT™

E |} e ($(Xm™ — AL — p(xzh)
s=0

tAT™
<-F [ / e‘”ALS] . (3.20)
0

Substituting (3.18), (3.19) and (3.20) into (3.17) and using the martingale property of

tAT™
/ e (BIXTF — y A ay) = w(XE") ) fds, dy),
0

we obtain
. tAOy, ,
Wl 2 B |0zt + [ ey (metyas). (3.21)
0

Since zy is a strict global maximiser of v* — ¢ (we can assume without any loss of generality
(v* — ¥)(x9) = 0), there exists & > 0 such that

max (v" —¢)(z) = ¢,

2¢ B(20,9)
which implies v*(z) < =€ + ¥(x) for all x §é]§’ (z0,0) and so inequality (3.21) implies
. tAT* ,
v(zp)+ 6, > FE [e‘T(t/\T (X Emeh) +/ e " (Xf”’”"L)dLS} +EP(r, <T), (3.22)
0

where 6, := ¥(z,) — v(z,). Since 6, = Y(x,) — ¥(xo) + v*(x9) — v(x,), there exists ny € IV
such that for all n > ng, 6, < $P(r, < T) and so inequality (3.22) implies

tAT*
v(z,) > sup E [e‘r(tm*)v(Xf,(”T’i’"L) +/ e "o (Xf"""’L)dLs] + §P(Tn <T),
(aaL)EH 0 2
which is a contradiction with the dynamic programming principle. O

We need now to specify the boundary conditions for the usc and Isc envelopes of v. Since the
continuity of v is not obvious, we need to characterise v*(0) and v,(0).

RR n® 5010
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Theorem 3.3 The upper and the lower semi-continuous envelope of v satisfy the following
equalities

v*(0) = v.(0) = 0. (3.23)

Proof. Since v(z) > 0 for all z € IRY, we have from the definition of the lower semi-continuous
envelope of the function v, v,(x) > 0 and so v,(0) > 0. The opposite inequality is true since
v.(0) < v(0) =0.

It remains to prove v*(0) = 0. The first inequality is obvious since we have v*(0) > v(0) = 0.
We need to show v*(0) < 0. Suppose it is not true: there exists 7 > 0 such that v*(0) >
2n. From the definition of v*, there exists a sequence (z,), € IR’ such that z,, — 0 and
v(x,) — v*(0) when n — oo, which implies that there exists ny € IV such that for all
n > ng, we have v(x,) > n. Let (o, L) € II be given and define the stopping time 7, as

T, = inf{t > 0, X**" < 0}.

Since x,, — 0 when n — oo, we have 7, — 0%. From hypothesis (2.5), we have Lo+ — Ly <
XS”’“’L =1z, — Lo and so Lo+ — 0 when n — o0. Let € > 0, there exists n; € IN such that
for all n > nq, we have fOT" e "dLs < e. Taking the expectation and then the supremum over
all admissible strategies we obtain v(z,) < e. Sending € to 0T, we obtain a contradiction. O

4 Uniqueness of the viscosity solution

Some uniqueness proofs for viscosity solutions of first-order integro-differential operators are
given in Soner (1986) for bounded viscosity solutions and in Sayah (1991) and in Pham (1998)
for unbounded viscosity solutions. As in Soner (1986) Lemma 2.1 or in Sayah (1991) Propo-
sition 2.1, we give an equivalent formulation for viscosity solutions which is needed to prove a
comparison theorem.

Proposition 4.1 Let v be a function defined on IR, , then
i) v is a viscosity super-solution of (3.1) in IRY if and only if

max{H*(xo,v*,w'), 1— wl(aco)} <0 (4.1)

whenever ¥ € C'(Ny,), v«—1 has a global strict minimum at xo € IR, Ny, is a neighbourhood
of xo and

H, (g, vy, ) = lim inf sup {—TU*(Q:) +p(a)y (z) + / (vu(z —yNa)— v*(a:))w(dy)}.

T7=T0 a>a B

i) v is a viscosity sub-solution of (3.1) in IR’ if and only if

max {H*(JJO, v, ), 1 — wl(xo)} >0 (4.2)

INRIA
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whenever 1 € C'(Ny,), v*—1 has a global strict mazimum at Ty € IR, Ny, is a neighbourhood
of xo and

H*(zg,v ) ) = lim sup sup {—TU*(Q:) +p(o¢)1b’ (z) + /B(v*(ac —yAa)-— v*(m))%(dy)}.

T—T) a>a

Proof. We prove the statement for sub-solutions only, the other statement is proved similarly.
Let v such that

max { H* (z0,0",0'),1 = '(w0) } >0,
whenever ¢ and z, are as above. Since v*(z) — v*(x0) < ¥(x) — ¥ (xo) for all z € IRY, then
H*(an U*a ¢’) < H*(.T(), wa 77/),)

Hence v is a viscosity sub-solution of (3.1) in IR.
Conversely, let ¢ € C'(N,,) and zy € IR* such that

(0" = 9)(@0) = max(v” — ¢)(z) = 0.

+
For each €, 6 > 0 , we define

_ P(z) if € B(zo,¢€)
(1)6,6(513) - { v*(LE) +6if x ¢ B(ﬂCO,G)-

We have v*(29) = @ s(20) and v*(z) — . 5(x) < 0 for all x € IR} — {zo}. Hence

(07 = ®cp)(20) = max (v* — Deg)(2).

IR*

Thus the hypothesis of the Proposition yields

!

maX{H*(.’Iio,(DE’ﬁ,(D;ﬁ), 1—1 (xo)} > 0.

From the definition of H, we have the following estimation
H*(l‘07©€,67¢’) _H*(x07v*>¢l) S G*($()), (43)

where G*(xg) := limsup G(z) and

T—x0

!

G() = sup{ =1 (Ds(e) = v*(@)) +p(0) (®.s(2) — ¥/ (@)

az>a

+ /B (®es(z —y A ) — vl — y A @) w(dy) — /B (Bes(z) — 0.(x)) w(dy)} .

RR n® 5010
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From the definition of G*, there exists a sequence (z,), € IR’ such that z, — 1z, and
G(z,) — G*(xp) when n — oo. We suppose that x,, € B(zo,¢€) for all n € IN. From the
definition of ®.s we have Qéé(x)(:cn) =9’ (z,) and v* () — P s(x,) < 0 and so

G(zn) < sup {/B (Pes(wn —y A a) = vulzn —y A ) w(dy) — / (Pe6(2n) — va(@n)) 7T(dy)}-

a>a B
We choose o« > «, and consider the two cases: o« > 0 and o« = 0. If &« > 0, then o > 0.
We set B = {y € Bz, —y A« € B(xg,€)} and BY = {y € B,x, —y AN a ¢ B(xg,¢€)}.
Observe that for (z, —y A ) ¢ B(x,€), we have @, 5(x, —y Aa) —v*(x, —y Aa) = 6 and for
(zn—yAa) € B(z,,€), we have &0 (zg—yAa) —v* (2o —yAa) = (T, —yAa) —v* (T, —yAc).
Since v*(z,,) — @cs(xn) < 0 we get

/B (8 (e — y A ) — 0" (n — y A @) (dy) / (Bes(n) — v () 7(dy)

B

< 5 /B r(dy) + Kn(B2)

5
< (5/ m(dy) + K7 ([0, €) (4.4)
B
where K is a constant independent of o and the last inequality is derived for e sufficiently

small (e < §).
Ifa=0,thena=0o0r a>0. If =0, we have

/B (Pes(xn —yANa)—v(x, —yAa)n(dy) — | (Pes(zn) —vi(xy)) m(dy) =0.  (4.5)

B

The case a > 0 is similar to the first one. From (4.4) and (4.5) we deduce that

sup { [ (@san =y h @) = 0@ =y A ()} — 0

aza
when € and é tend to 0. Sending n to infinity, inequality (4.3) implies
H(:EOa U*a ¢I) Z 0)

and so (4.2) is proved. O
Uniqueness of the solution of the HIBVI (3.1) with boundary conditions (3.2) is a consequence
of the following theorem.

Theorem 4.1 (Comparison theorem) Let v; and vy in Cy(IR,) be a viscosity sub-solution
and a super-solution respectively of (3.1) in IR% such that v7(0) = v2,(0) = 0. Then

v (2) < vau(x) for all x € IR (4.6)

INRIA
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Proof.

Due to the linear growth of the viscosity sub-solution v; (resp. super-solution vs), the function
uy (resp up) defined by ui(z) = vi(z)e ™ (resp ua(z) = va(x)e**) for A € IRY and z € IR,
is bounded. For € > 0, we define ® : R, x R, — IRU {—o0} as

1
O(r,2) = ui(x) — un(2) — —(z — 2)°.
€
Since u; and us are bounded and ® is upper semi-continuous, ¢ has a global maximum at
point (z*,2*) € R, x IR, . Using ®(0,0) < ®(z*, 2*) and that u; and uy are bounded, it
follows that
* *|2

2" — 2 e(ui(z”) — us.(2"))

C)\G, (47)

IN N

where C), is a constant depending only on A.
If z* = 0, then using ®(z,z) < ®(0, 2*) for all z € IR, and uj(0) = 0, we get

ul(z) —ug(z) < —ug(2"). (4.8)

From inequality (4.7) and since z* = 0, we deduce that z* — 0 when ¢ — 0 .
Since ug. is lower semi-continuous, it follows that lim ionf Ui (27) > u24(0).
€E—

Taking the limit when € — 07 in (4.8), we obtain u}(x) < ug.(z) and so
v} (x) < va.().
If 2 =0, then for all z € IR, we have
uy(z) — uge(z) < ui(z”). (4.9)

From inequality (4.7) and since z* = 0, we deduce that * — 0 when ¢ — 0.

Since v} is upper semi-continuous, it follows that lim sup v} (z*) < u}(0).
e—0

Taking the limit when ¢ — 0% in (4.9), we obtain u}(z) < us.(z) and so
v} (2) < vgu().

It remains to study the case when 2* # 0 and x* # 0. Writing the variational inequality for
the function u, we obtain

max {H'(x,u,u'), 1—eM(u () + )\u(x))} =0in IR},

where

H'(z,u,u) = sup {—ru(x) + p(a) (u' () + /\u(:r)) + / (u(z —y A a)e™ — u(x))w(dy)} Since
a>a B
u} is a subsolution and (u} — ;)(z) reaches its maximum in z* where
1
() = us(27) + —(z — 27,

RR n® 5010
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we have from Proposition (4.1)

max { B (2", uf, ¥1), 1 = " (4 (") + ui(2") } > 0,
which implies

max { ' (z", u}, 4), 1 — ¥ (4] (2") + ui(2")) } > 0.

Similarly (ug.« — 92)(2) reaches its minimum in z* where

¥a(z) = wi(e") - (2" — o)

Since uy, is a super-solution, we have

max {H;(z*, Ugey Pg), 1 — €M (1 (27) + uz*(z*))} <0,
which implies

max {H’(z*, Uy U0), 1 — " (hn(2*) + UQ*(Z*))} <o0.

Observing that max {a,b} — max {d,e} < 0 implies either a < d or b < e, we divide our
consideration into two cases:

(i) the case
Hl(z*a U2, 1/}12) - HI('T*’ fu’Ia wll) <0,

which implies

0 < sup{—r (uj(z") — uz(2")) + pla) (¥1(z") — ¥5(2") + A (ui(z") — uau(2")))  (4.10)

aza
+ / (ui(z* —y A a)e X —uy (2% — y A @)e ) — 3 (27) + ugu(27)) w(dy)} :
B
Since (x*, z*) is a maximum point of ® in IR, x IR, and ®(z*,2*) > ®(0,0) = 0, we have
O(z",2") > P(z" —yANa, 2" —y A oa)e_)‘(y/\a) for all y € B,

which implies

(uh (2" — Yy A ) — ug (2 — y A @) e XY — ¥ (2*) 4+ uy, (2*) < 0 for all y € B.
From inequality (4.10) and using the fact that ¢{(z*) = ¥}(2*) = 5 (z* — 2*), we have

sup {(—7 + Ap(@)) (ui(2") — uau(27))} > 0.

a>a

INRIA
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Since p(«) is bounded, choosing A sufficiently small, we obtain
uy(z") — ug(2") < 0.
Using that ®(x,z) < ®(x*, z*), we conclude that u}(z) < us(z) and
v} (x) < vg4().

(ii) the second case occurs if

k- 1 ok ].
e (%(x* —2") 4+ uj(z")) — eM? (%(aj* — 2%) 4 Augn(2%)) <0,

which implies

(eAz* _ e)\w*)(x* _ z*) < 0’

i

and so we obtain

v} (z) < va.(x).

5 Numerical study

Here we restrict ourselves to the case when the compound Poisson process is a Poisson process
with constant intensity 7. We assume that all the claims have the same size denoted by 6. As

6(k2—Fk1)
k2

seen in Remark (2.1), we have an explicit expression of a = . Given an initial reserve

x and a policy («, L), the reserve of the insurance company at time ¢ is then given by :

t t ¢
th,a,L — x-i—/ p(ozu)du—/ ozudNu—/ dL,,
0 0 0

where oy € [a, 6] for (t,w) a.e, L satisfies (2.5) and p(ay) = (k1 — k2)Bv + (1 + kaoy).
Our purpose is to solve the following equation

max{ Sup] {Aa(fﬁa Uavl)} 1= v'(x)} = inJ (5.1)

a€la,d

v(0) =0,

where
A%(z,v,v) = —rv(z) 4+ p(a)v (z) + 7(v(z — @) — v(z)).

RR n® 5010



18 Mohamed Mnif, Agnés Sulem

We proceed with a technical change of variable which brings IR, into [0, 1), namely

z=15
P(t,z) = v(t, z).
The function % is defined in [0, 1) and satisfies

a€la,d]

$(0) =0,

maX{ sup {f_la(z, 1/1,1/1’)} 1-(1- Z)2¢I(z)} =0 in (0,1) (5.2)

where
z—(1-2)

A%(z,1,9) = =r(2) +p(@) (1 = 2)"¥' (2) + 7 (% “(-2a

)= 0()).

In Sections 3 and 4, we have proved that the value function (2.6), within a change of variables,
is the unique viscosity solution of HJIBVI (5.2). This solution is approximated by performing
the following numerical method:

(i) approximate HJBVI (5.2) by using a consistent finite difference approximation which sat-
isfies the discrete maximum principle (DMP) ( see Lapeyre, Sulem and Talay),

(ii) solve the discrete equation by means of the Howard algorithm (policy iteration) (see
Howard (1960)). Finally a reverse change of variables is performed in order to display the
solution of Equation (5.1).

5.1 Finite difference approximation

Let p = i, (M € IN*) denote the finite difference step in the state coordinate. Let z; = ip
denote the points of the grid 2, = (0,1) N (pZ), 0 < i < M — 1. The variational inequality
(5.2) is approximated by using the following approximations

2 ((i +1)p) — ¥ (ip)
p

!

(1—2)% (z) ~ (1—ip)

for z; €

and

2% (ip) — ¥ ((i — 1)p)
p

—(1- zz)zzbl(zz) ~ —(1—ip)

for z; € Q.

For the boundary conditions, we set 1(0) = 0.
This finite difference approximation leads to a system of (M — 1) inequalities with (M — 1)
unknowns {¢(z;) , 2z € Qpp}:

max{ sup {A;“zﬁp} L — szp} =0 in Q,,

a€la,f]

$(0) =0

(5.3)

INRIA
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where 1, is the vector (¥(2;))i=1...m—1, AS is the (M — 1) x (M — 1) matrix associated to the
approximation of the operator A%, Bis a (M — 1) x (M — 1) matrix associated to the second
term of our variational inequality, which verifies

(i) = =2 forall 1 <i < M — 1
(i,i—1) =2 forall 1 <i < M —1
(4,5) =0if j & {4,7 — 1},

and L is the vector which satisfies L(i) = 1 for all 1 <4 < M — 1. HJBVI (5.3) can be solved
by using the Howard algorithm described below.

o o &

5.2 The Howard algorithm

To solve Equation (5.3), we use the Howard algorithm (see Lapeyre Sulem and Talay), also

named policy iteration. It consists of computing two sequences (" )n>1 and (¥} )>1, (starting
from ;) defined by:

e Step 2n — 1. Given ¢, compute a strategy " defined as
a" € argmax,er, 5 {ASYy } .
e Step 2n. Compute a partition (D} U D¥) such that

A"yt > L — Bypt! on DY,

A% ypptt < L — Bypp*' on Dy,
Define ¢;}+1 as the solution of the linear systems:
A¥ g+t =0 on DY,
and
L— Byt =0 on Dj.
o If Wg“ — 9y| < € stop, otherwise, go to step 2n + 1.

When the matrix of the linear system satisfies the discrete maximum principle, the sequence
(¥ )nemv increases and is bounded and so converges to the viscosity solution of (5.3).

RR n® 5010
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k‘l k2 T ™
Test 1 | 0.2 {0.25]|0.07 |10 | 1
Test 2 | 0.15| 0.25 | 0.07 | 5

Table 1: The parameters of the numerical tests

5.3 Numerical results

Variational inequality (5.1) is solved by using the Howard algorithm. This algorithm is very
efficient and converges in five iterations. Two tests are performed with parameter values given
in Table 1.

The optimal policy has the following form: every excess of the reserve above some critical
threshold u is distributed as dividend. When the reserve process is below | = a = W,
it is optimal to distribute all the current reserve as dividends because of the constraint (2.3):

See Table 2.

Test 1| [=0.2 | ©=9.52
Test 2 | [=0.8 | ©u=14.38

Table 2: Lower and upper critical thresholds

When the reserve process is in ([, u), then the insurer doesn’t distribute any dividend. Figures
1 and 2 display the optimal retention level a(x) given in feedback form of the reserve level
for two different sizes of the claims 6 = 1 and 6 = 2. The optimal retention level satisfies:
afz) = zforl <z < § and afz) = §for 6 < z < u. A similar result was obtained by
Hgjgaard and Taksar (1999) in the case of a diffusion model and proportional reinsurance.
Figures 3 and 5 display the value function v in terms of the reserve level x. The value function
v is nondecreasing. It is linear when z € [0,] and x € [u, 00). Note that contrary to the paper
by Asmussen, Hgjgaard and Taksar (2000) where the reserve is modelled by a diffusion, our
value function is discontinuous in /. This justifies the use of generalised viscosity solutions.
Figures 4 and 6 enlarge the region of discontinuity.

Acknowledgements. We are very grateful to Knut Aase, Marianne Akian, Huyén Pham,
Mete Soner and the anonymous referee for helpful comments and advice.
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The optimal retention level
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Figure 1: The optimal retention level for k1 —=0.2, k,—0.25 and 6—1

The optimal retention level
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Figure 2: The optimal retention level for k1=0.15, k5=0.25 and 6=2
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The value function
24
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Figure 3: The value function for k;—0.2, k,—0.25 and 6—1

The value function
5

Figure 4: Enlargement of Figure 3 in the neighbourhood of [=0.2
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The value function
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Figure 5: The value function for k1—=0.15, ks—0.25 and 6—2

The value function
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Figure 6: Enlargement of figure 5 in the neighbourhood of [=0.8



24

Mohamed Mnif, Agnés Sulem

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

Aase, K.K: Perspective of Risk Sharing. Scandinavian Actuarial Journal 2,73-128 (2002)

Asmussen, S., Hgjgaard, B., Taksar, M.: Optimal risk control and dividend distribution policies.
Example of excess-of loss reinsurance for an insurance corporation. Finance and Stochastics 4,
299-324 (2000)

Benth, F.E., Karlsen, K.H., Reikvam K.: Optimal portfolio selection with consumption and nonlin-
ear integro-differential equations with gradient constraint: A viscosity solution approach. Finance
and Stochastics 5, 275-303 (2001)

Brémaud, P.: Point Processes and Queues: Springer-Verlag 1981

Crandall, M.G., Lions, P.L: On existence and uniqueness of solutions of Hamilton-Jacobi equations.
Nonlinear Analysis, Theory, Methods and Applications 4, 353-370 ( 1986)

Fleming, W.H., Soner, H.M: Controlled Markov Processes and Viscosity solutions: Springer-Verlag
1993

Jeanblanc-Piqué, M, Shiryaev, A.N: Optimization of the flow of dividends. Russian Mathematical
Surveys 50:2, 257-277 (1995)

Lapeyre, B., Sulem, A., Talay, D.: Understanding Numerical Analysis for Option Pricing, editor:
L.C.G.Rogers and D.Talay. Cambridge University Press. To appear.

Hgjgaard, B., Taksar, M.: Controlling risk exposure and dividends pay-out schemes: Insurance
company example. Mathematical Finance 9, 153-182 (1999)

Howard, R. A: Dynamic Programming and Markov Processes: MIT Press, Cambridge, MA 1960

Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach.
J. Math. Syst. Estim. Control 8, 27pp (1998)

Sayah, A.: Equation d’Hamilton-Jacobi du premier ordre avec terme integro-differentiel: Parties I
et II. Commun. in Partial Differential Equations 16, 1057-1074 (1991)

Schmidli, H.: Optimal Proportional Reinsurance Policies in a Dynamic Setting, Scandinavian
Actuarial Journal, 55-68 (2001)

Soner, H.M.: Optimal control with state-space constraint II. STAM J. Control and Optimization
24, 1110-1122 (1986)

Touzi, N. : Optimal insurance demand under marked point processes shocks. Annals of Applied
Probability 10, 283-312 (2000)

INRIA



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



