N

N

Hybrid Checkpointing for Parallel Applications in
Cluster Federations

Sébastien Monnet, Christine Morin, Ramamurthy Badrinath

» To cite this version:

Sébastien Monnet, Christine Morin, Ramamurthy Badrinath. Hybrid Checkpointing for Parallel Ap-
plications in Cluster Federations. [Research Report] RR-5007, INRIA. 2003. inria-00071577

HAL Id: inria-00071577
https://inria.hal.science/inria-00071577
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00071577
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5007--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Hybrid Checkpointing for Parallel Applications
in Cluster Federations

Sébastien Monnet, Christine Morin , Ramamurthy Badrinath

N°5007
Novembre 2003

THEME 1

apport
derecherche

% I N RIA

RENNEsS

Hybrid Checkpointing for Parallel Applications in Cluster
Federations

Sébastien Monnet*, Christine Morin f, Ramamurthy Badrinath *

Théme 1 — Réseaux et systémes
Projet PARIS

Rapport de recherche n°5007 — Novembre 2003 — 15 pages

Abstract: Cluster federations are very useful for applications like large scale code coupling. Faults
may appear very frequently, so we want to use checkpoints to be able to restart applications. To take
into account the constraints introduced by clusters federation architecture, we propose a hierarchical
checkpointing protocol. It uses synchronization inside clusters but only quasi-synchronous methods
between clusters. Our protocol has been evaluate by simulation and fits well for applications that
can be divided in modules with a lot of communications inside modules but few between them.

Key-words: hybrid checkpointing, parallel applications, quasi-synchronous, code coupling, fault
tolerance

(Résumé : tsvp)

* sebastien.monnet@irisa.fr
T Christine.Morin@irisa.fr

1 badrinar@india.hp.com - This work was done when R. Badrinath was a visiting researcher at IRISA, on leave from IIT
Kharagpur

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 71 71

Protocole hybride de points de reprise d’applications paralleles
pour les federations de grappes de calculateurs

Résumé : Les fédérations de grappes de calculateurs sont tres utiles pour des applications comme
le couplage de codes a tres grande échelle. Toutefois, dans ce type d’achitecture, les fautes peu-
vent survenir trés fréquemment. 1l est donc souhaitable d’établir des points de reprise permettant
de redémarrer I’application. Peu de protocoles prennent en compte les contraintes introduites par
I’architecture de fédération de grappes de calculateurs, nous proposons donc un protocole de points
de reprises hiérarchique. Il utilise une méthode de points de reprise coordonnée au seins des grappes,
et une méthode quasi-synchrone entre les grappes. Notre protocole a été évalué par simulation et
se comporte bien avec des applications qui peuvent étre divisées en modules, avec de nombreuses
communications au sein de chaque module, mais peu entre modules.

Mots-clé : points de reprise hybrides, applications paralléles, quasi-synchrone, couplage de code,
tolérance aux fautes

Hybrid Checkpointing 3

1 Introduction

We are working with cluster federations. These kinds of architectures are used when some parts
of the code of a parallel application are running in different clusters. This can be due to security
(a module of an application may need to run into its laboratory), to the hardware (a module may
use sensors or specific hardware to display results), or simply for large scale needs. An example
of a code coupling application running in a cluster federation could be different parallel simulation
modules that sometimes need to communicate with each other.

There are lots of papers describing checkpoint / restart protocols inside a cluster in the literature. We
want to take advantage of the high performance network (SAN) in the clusters and to take into ac-
count inter-cluster links which can be LANs or WANSs. Considering the architecture, we want to use
different mechanisms inside and between clusters. Our protocol is hierarchical : it uses coordinated
checkpointing techniques inside clusters and communication-induced checkpointing between them.
By simulating the protocol, we’ve seen that it works well with “code coupling” like applications.
The continuation of this document is made up as follows. The second Section shows the design
principles, then Section 3 describes the hierarchical protocol combining coordinated and communi-
cation induced checkpointing (called HC31 checkpointing protocol thereafter). Section 4 shows a
sample execution with the HC?1 checkpointing protocol, Section 5 presents the evaluation. Before
concluding, Section 6 is about related work.

2 Design Principles

This section presents the model considered in our work and the design principles of the HC?1 check-
pointing protocol.

2.1 Model

Application. We look after parallel applications like code coupling. Processes of these kinds of
application can be divided into groups (modules). Processes inside a same group communicate a
lot while communications between processes belonging to different groups are limited. Commu-
nications can be pipelined as in Figure 1 or they can consist of exchanges between two simulation
modules for example.

Architecture. A cluster federation is a set of clusters linked by a WAN (Wide Area Network).
Inter-cluster links can be dedicated ones or even Internet. It fits well with the kinds of application
described above. Indeed each group of processes may run in a cluster where network links have
small latencies and large bandwidths (System Area Network). We assume that a sent message will
be received in an arbitrary but finite laps of time. This means that the network doesn’t lose messages.
This assumption implies that the fault tolerance mechanism should take care of messages in transit,
they should not be lost.

RR n°5007

4 Monnet, Morin & Badrinath

(e N e 7 (N h
Simulation Treatment Display
N J U J U J
Cluster 1 Cluster 2 Cluster 3
N J

Cluster Federation
Figure 1: Application Model

Failure Assumptions. We assume that only one fault occurs at a time. However, the protocol can
be extended to tolerate simultaneous faults as explain in the Future Work Section. The failure model
is fail-stop. It means that when a node fails it won’t send messages anymore. The protocol does not
take into account neither omission nor byzantine faults.

2.2 Checkpointing Large Scale Applications in Cluster Federations

The basic principle of all checkpoint / rollback methods is to periodically store an application con-
sistent state to be able to restart from there in case of failure in the future. A parallel application
state is composed by the set of the states of all its processes. Consistent means that there is neither in
transit message (sent but not received) nor ghost message (received but not sent) in the set of process
states stored.
A message generates a dependency. For example, Figure 2 presents the execution of two processes
which both store their local state (S1 and S2). A message m is sent from process 2 to process 1. If the
execution is restarted from the set of states S1/S2 the message m will have been received by process
1 but not sent by process 2 (ghost message). Process 2 will send m again which is not consistent
because S1 happens before S2. The happen before relation is described in details in [4].

The last recorded consistent state is called the recovery line. [6] provides detailed information
about the different checkpointing methods.
Inside a cluster we use a coordinated checkpointing method. This means there is a two phase commit
protocol during which application messages are frozen. It ensures that the stored state (the cluster
checkpoint) is consistent. Coordinated checkpointing is possible inside a cluster thanks to the high
performance network (low latency and large bandwidth). It has already been done [8], [5],[11],[1]
and is relatively easy to implement.
The large number of nodes and network performance between clusters don’t allow a global synchro-
nization. An independent checkpointing mechanism in which each cluster takes its Cluster Level
Checkpoints (called CLC thereafter) won’t fit. Tracking dependencies to compute the recovery line
would be very hard at rollback time and clusters may rollback to very old CLCs (domino effect).

INRIA

Hybrid Checkpointing 5

S1
P1 [] -
L] /
S2
"2] -
—_—
Time

Figure 2: Dependency between two states

If we intend to log inter-cluster communications (to avoid dependencies), we need the piecewise
deterministic (PWD) assumption. PWD assumption means that we are able to replay a parallel
execution in a cluster that produces exactly the same messages as the first execution. This assump-
tion is very strong. Replaying a parallel execution means detecting, logging and replaying all non-
deterministic events. It is not always possible.

The assumption that inter-clusters communications are limited leads us to use a communication-
induced method between clusters. This means each cluster takes CLC independently, but informa-
tion is added to each inter-cluster communication. It may lead the receiver to take a CLC (called
forced CLC) to ensure the recovery line progress. Communication-induced checkpointing seems to
keep enough synchronization and can be efficient.

So our proposition is an hybrid protocol combining coordinated and communication-induced check-
pointing (HC?1).

3 Description of the HC?I Checkpointing Protocol

In this section we first present the checkpointing mechanism inside a cluster. Then we describe
mechanisms used to track inter-cluster dependencies and to decide when a CLC should be forced.
Finally, we describe the rollback protocol and the garbage collector needed to eliminate CLC that
are no longer useful.

3.1 Cluster Level Checkpointing

In each cluster, a traditional two phase commit protocol is used. An initiator node broadcasts (in
its cluster) a CLC request. All the cluster nodes acknowledge the request, then the initiator node
broadcasts a commit. Between the request and the commit messages, application messages are
queued to prevent intra-cluster dependencies.

In order to be able to retrieve CLC data in case of a node failure, CLCs are recorded in the node
own memory, and in the memory of one other node in the cluster. Because of this stable storage
implementation, only one simultaneous fault in a cluster is tolerated.

Each CLC is numbered. Each node in a cluster maintains a sequence number (SN). SN is incremented

RR n°5007

6 Monnet, Morin & Badrinath

each time a CLC is committed. This ensures that the sequence number is the same on all the nodes
of a cluster (outside the two phase commit protocol). The SN is used for inter-cluster dependency
tracking. Indeed, each cluster takes its CLC periodically, independently from the others.

3.2 Federation Level Checkpointing

If we look at our application model, communications between two processes in different clusters
may appear. It implies dependencies between CLCs taken in different clusters. Dependencies need
to be tracked to be able to restart the application from a consistent state.

Forcing a CLC in the receiver’s cluster for each inter-cluster application message would work but
the overhead would be huge as it would force useless checkpoints. In Figure 3, cluster 2 takes two
forced CLCs (the filled ones) at message reception, and the application takes message into account
only when the forced CLC is committed. CLC2 is useful: in the event of a failure, a rollback to
CLC1/CLC2 will be consistent (m1 would be sent and received again). On the other hand, forcing
CLC3 is useless: cluster 1 has not stored any CLC between its two message sending. In the event of a
failure it will have to rollback to CLC1 which will force cluster 2 to rollback to CLC2. CLC3 would
have been useful only if cluster 1 would have stored a CLC after sending m1 and before sending m2.

CLC1

c1_ [.
] 2
ml\ CLC2 CLC3
@
—_—
Time

Figure 3: Limitation of the number of forced CLCs

Thus, a CLC is forced in the receiver’s cluster only when a CLC has been stored in the sender’s
cluster since the last communication from the sender’s cluster to the receiver’s cluster. To do this,
CLCs are numbered in each cluster with a SN (as described in previous section). The current clus-
ter’s sequence number is piggy-backed on each inter-cluster application message. To be able to
decide if a CLC needs to be initiated, all the processes in each cluster need to keep the last received
sequence number from each other cluster. All these sequence numbers are stored in a DDV (Direct
Dependencies Vector, [2]).

DDV, [i] is the it* DDV entry of cluster j, and SN; is the sequence number of cluster i.

For a cluster j:

If i=j, DDV;[i]=SN;

If i#j, DDV;[i]= last received SN; (0 if none).

Note that the size of the DDV is the number of clusters in the federation, not the number of nodes.
In order to have the same DDV and SN on each node inside a cluster, we use the synchronization in-

INRIA

Hybrid Checkpointing 7

duced by the CLC two phase commit protocol to synchronize them. Each time the DDV is updated,
a forced CLC is initiated which ensures that all the nodes in the cluster which takes a CLC will have
the same DDV at commit time. The current DDV is stored with each CLC.

3.3 Logs to Avoid Huge Rollbacks

In order to limit the number of clusters that rollback, if the sender’s cluster of a message doesn’t fail
while the cluster in which there’s the receiver does, we don’t want the sender’s cluster to rollback.
When a message is sent outside a cluster, the sender logs it optimistically in its volatile memory
(logged messages are used only if the sender doesn’t rollback). The message is acknowledged with
the receiver’s SN which is logged along with the message itself (inter-cluster messages are num-
bered). Next section explains which messages are replayed in the event of a failure.

3.4 Rollback

If a node fails inside a cluster, it is detected and the cluster rolls back to its last stored CLC (the
description of the failure detector is out of the scope of this paper). One node in each other cluster
in the federation receives a rollback alert. It contains the faulty cluster’s SN that corresponds to the
CLC to which it rolls back.

When a node receives such a rollback alert from another cluster with its new SN, it checks if its
cluster needs to rollback by comparing its DDV entry corresponding to the faulty cluster to the
received SN. If the former is greater or equal than the latter its cluster needs to rollback to the first
(the older) CLC which has its DDV entry corresponding to the faulty cluster greater or equal than
the received SN. The node that has received the alert initiates the rollback.

If a cluster needs to rollback due to a received alert, it will send a rollback alert containing its new
SN to alert all the other clusters. This is how the recovery line is computed.

Even if its cluster doesn’t need to rollback a node receiving a rollback alert broadcasts it in its cluster.
The nodes which have logged messages sent to a node in the faulty cluster acknowledged with a SN
greater than the alert one or not acknowledged at all, re-send them.

Our communication induced mechanism implies that clusters need to keep multiple CLC and logged
messages. They need to be garbage collected.

3.5 Garbage Collection

Our protocol needs to store multiple CLCs in each cluster in order to compute the recovery line
at rollback time. The memory cost may become important. Periodically, or when a node memory
saturates, a garbage collection is initiated. Our garbage collector is centralized. A node initiates a
garbage collection, it asks one node in each cluster to send back its list of all the DDVs associated
with the stored CLCs. Then it simulates a failure in each cluster and keep for each ones the worst
SN to which they might rollback. It sends a vector containing all the worst SNs to one node in each
cluster which broadcasts it in its cluster.

Each node removes the CLCs which have its cluster DDV entry smaller than the worst SN associated
to its cluster.

RR n°5007

8 Monnet, Morin & Badrinath

They also remove logged messages that are acknowledged with a SN smaller than the receiver’s
cluster worst SN.

4 Example

Figure 4 shows a sample execution on three clusters. It is composed of three parts. Each part is a
snapshot of the execution. On each part, the execution time goes from left to right, each horizontal
line represents a parallel execution on a cluster. The boxes are for the CLCs, the darker ones are
forced CLCs. The corresponding DDVs are embedded in the CLC’s boxes.

The first part shows a normal execution until a failure appears in cluster 2. Notice that each cluster
stores a first CLC which is the beginning of the application. Cluster 1 sends message m1 to cluster
2, it sends its SN (1) along with m1. When receiving m1, cluster 2 compares the received SN with
cluster 1 DDV entry (0). 1 is greater than 0, this forces cluster 2 to take a CLC before delivering
m1 to the application level. When receiving m2 from cluster 1, cluster 2 doesn’t have to initiate a
CLC, the received SN (1) is equal to cluster 1 DDV entry in cluster 2. As for m1, we see that m3,
m4 and m5 force CLCs respectively on clusters 3,3 and 1. Notice that inter cluster messages are
acknowledged with the local SN + 1 (the inter-cluster message will be delivered after the CLC is
committed). Logged messages are not represented to keep the figure easy to read.

When a fault is detected in cluster 2, the whole cluster rolls back to its last stored CLC, its new SN
is 3. So it sends a rollback alert with the SN 3 (second part of the figure). Cluster 1 doesn’t have
any cluster 2 DDV entry greater or equal to the received SN in its DDVs stored with the CLCs, it
doesn’t need to rollback. On the over hand, cluster 3 has to rollback to the first CLC that has its
associated DDV containing cluster 2 entry greater or equal (equal in the sample) than the received
SN. So cluster 3 has to rollback (third part of the figure) and sends an alert with its new SN (3).
Cluster 2 has never received messages from cluster 3 so its DDVs entries corresponding to cluster 3
are all equal to 0. It does not need to rollback. Cluster 1 has to rollback to its last CLC which has 4
as cluster 3 entry. It sends a rollback alert with its new SN (3) but no cluster has to rollback (due to
the DDV lists).

Furthermore, the node in cluster 1 receiving the rollback alert from cluster 3, broadcasts it in its
cluster. The node which has sent m4 has to re-send it. It is acknowledged with SN=4, and the alert
contains SN=3.

5 Evaluation

To evaluate the protocol, a discrete event simulator has been implemented. We have evaluated the
overhead of the protocol in terms of network and storage cost first, then we observe what happen-
s with different communication patterns. At last the garbage collector effectiveness and cost are
evaluated.

INRIA

Hybrid Checkpointing 9

af 2 ()
H ml mz\/ g 7 /\u
K B E i

LR ALY A
sl 0 VA [-
1 N VAN ¥
af] E (7
d mv mz\/ d 4 |
9 B E ™

c2 B @ EQIMG) N
0 E [
i LN ¥
ld 3 E
d mv mz\/ d |
/4 F E

FEEN: JAF

ng @ EQIB”@

Figure 4: HC3I checkpointing protocol sample

5.1 Simulator

C++SIM library (http://cxxsim.ncl.ac.uk) has been used to write the simulator. This library pro-
vides generic threads, a scheduler, random flows and classes for statistical analysis. Our simulator
is configurable. The user has to provide 3 files: a topology file, an application file and a timer file.
In the topology file, there is the number of clusters, the number of nodes in each cluster, the band-
width and latency in each cluster and between clusters (represented as a triangular matrix) and the
federation MTBF (Mean Time Between Failures). The application file contains, for each cluster,
the nodes mean computation times, communication patterns between computations (represented by
sends probabilities between nodes) and the application total time. At last, the timers file contains the
delays for the protocol timers for each cluster (delays between two CLCs, garbage collection,...).
The simulator is composed of four main threads. The thread Nodes takes the identity of all the nodes,
one by one. The thread Network stores the messages and computes their arrival time. There is also
a thread Timers to simulate all the different timers, and a thread Controler that controls the other
threads (launches them, displays results at the end,...). Communication between threads is done by
shared variables.

RR n°5007

10 Monnet, Morin & Badrinath

The simulator can be compiled with different trace levels. In the higher, we can observe each n-
ode action time-stamped (sends, receives, timer interruptions, log searches...). The lowest simulator
output is statistical data, as messages count in clusters and between each cluster, number of stored
CLCs, number of protocol messages,...

5.2 Network Traffic and Storage Cost

Evaluating network traffic and storage cost is very hard. It depends on how the protocol is tuned.
If the frequency of unforced CLCs is low in a cluster, the SNs won’t grow too fast so inter-cluster
messages from this cluster would have a low probability to force CLCs. Reducing the protocol over-
head becomes easy. If no CLC is initiated, the only protocol cost consists in logging optimistically
in volatile memory inter-cluster messages and transmitting an integer (SN) with them. There is also
a little overhead due to message interception (between the network interface and the application).
To take advantage of the protocol, the timer that regulates the frequency of unforced CLCs in a clus-
ter should be set to a value that is much smaller than the MTBF of this cluster.

To illustrate this, the simulator simulates 2 clusters of 100 nodes. In both clusters the network is
"Myrinet like" (10us latency and 80MB/sec bandwidth). The clusters are linked by "Ethernet like"
links (150us latency and 100MB/sec bandwidth). The application total execution time is 10 hours.
There are lots of communications inside each cluster and few between them. It can be a simulation
running on cluster 0 and a trace processor on cluster 1 for example. The table below displays the
number of messages (intra and inter-cluster).

Sender’s | Receiver’s | Message
Cluster Cluster Count
Cluster 0 | Cluster 0 2920
Cluster 1 | Cluster 1 2497
Cluster 0 | Cluster 1 145
Cluster 1 | Cluster 0 11

Graph 5 and 6 show the number of forced and unforced committed CLCs in each cluster accord-

ing to the delay between unforced CLCs in cluster 0 (x axis, in minutes). Cluster 1 delay between
CLGCs is set to infinite. Cluster O stores some forced CLCs (8) because of the communications from
cluster 1. This number of forced CLCs is constant - there are few messages from cluster 1. Notice
that the total number of stored CLCs is smaller than ‘ogaicomputalionline + number of forced CLCs
because the timer is reseted when a forced CLC is established. Clusters store few more CLCs, but
they are placed better (in time). Cluster 1 doesn’t store any unforced CLCs as its timer is set to
infinite, but it stores some forced CLCs induced by incoming communications from cluster 0. The
number of these forced CLCs is proportional to the number of CLCs stored in cluster O - numerous
messages come from cluster 0.
One may want to store more CLCs in cluster 1, if this cluster is intensively used and computation
time is expensive for example. Graph 7 shows that cluster 0 (which "delay between CLCs" timer is
set to 30 minutes) won’t store more CLCs even if cluster 1 timer is set to 15 minutes. This is thanks
to the low number of messages from cluster 1 to cluster O.

INRIA

Hybrid Checkpointing 11

Interval Between CLCs Influencein Cluster O
120 T T T

T
Unforced CLCs

Forced CLCs -~~~
B 100 B
E
£
8 8o 1
>
i
g or]
pu]
O
S 4 i
o]
o
§
z 201 -
0 | | | 1
0 20 40 60 80 100 120

Delay Between CLCs (timer) in Cluster 0

Figure 5: Number of CLCs in Cluster 0

Interval Between CLCs Influencein Cluster 1

9 ‘ ‘ ‘ :
Unforced CLCs

wl Forced CLCs -+~ B
B
g 70 - i
£ .
8 e0[)
> Y
B soF i
8)
o 40 |
0 g
S 30)
T
Qo
% 20 |
= e

ok e .

0 ‘ : . ‘ ‘

0 20 40 60 80 100 120

Delay Between CLCs (timer) in Cluster 0

Figure 6: Number of CLCs in Cluster 1

5.3 Communication Patterns

To better understand the influence of the communications patterns on the checkpointing protocol,
Graph 8 shows what happens when the number of messages from cluster 1 to cluster O increases.
Both cluster "delay between CLCs" timers are set to 30 minutes. The application is the same as in
previous section except for the number of messages from cluster 1 to cluster O that is represented on
the x axis.

The number of forced CLCs increases fast with the number of messages from cluster 1 to cluster
0. If the two clusters communicate a lot in both ways, SNs will grow very fast and most of the
messages will induce a forced CLC.

RR n°5007

12 Monnet, Morin & Badrinath

Increasing the Number of CLCsin Cluster 1

50 T T T T T T T
. Cluster 0 Total ——
Cluster 1 Total o
E sE Cluster 1 Forced B
E
£
8 40 i
>
8
8 35 *
-
(@] N
5 i
g 0
o
:
z 25 _
207777777\””77\”7777T’77777\77777;Tiiiiiw\iii777\777'7777\777777
15 20 25 30 35 40 45 50 55 60

Delay Between CLCs (timer) in Cluster 1

Figure 7: Impact of the Number of CLCs in Cluster 1

Communication Patterns
70 T T T

T T T
Cluster 0 Total ——
Cluster 1 Total ="~

Cluster 0 =

60

Number of committed CLCs

0 | | | | | | | | |
10 20 30 40 50 60 70 80 90 100 110
Number of Messages from Cluster 1 to Cluster 0

Figure 8: Increasing Communications from Cluster 1 to Cluster O

5.4 Garbage Collection

A garbage collection has got a non negligible overhead. If N is the number of clusters in the federa-
tion, each garbage collection implies:

e N-1 inter-cluster requests

e N-1 inter-cluster responses which contains the list of all the DDVs associated to the stored
CLCs in a cluster

e N-1 inter cluster collect requests

INRIA

Hybrid Checkpointing 13

e A broadcast in each cluster

However, our hybrid checkpointing protocol may store multiple CLCs in each cluster. They can
become very numerous. It also logs every inter-cluster application message. For the sample above,
in the case of 103 messages sent from cluster 1 to cluster 0, without any garbage collection, there’s
63 CLCs in each cluster. It means that each node in the federation stores 126 local states (its own 63
local states and the ones of one of its neighbor, because of the stable storage implementation).

If a garbage collection is launched every 2 hours, the maximum number of stored CLCs just after
a garbage collection is 2 per cluster in this sample. Only oldest CLCs are removed, as explain in
Section 3.5, so rollbacks won’t be too big. The maximum number of logged messages during the
execution in the sample above is 4 in both clusters.

The table below shows for each garbage collection the number of CLCs stored just before and just
after the collection.

Cluster 0 | Cluster 0 | Cluster 1 | Cluster 1
Before After Before After
10 2 11 2
18 2 18 2
15 2 14 2
14 2 15 2

A second experimentation simulates an application that runs on three clusters. Clusters 0 and 1
have the same configuration as above. Cluster 2 is a clone of cluster 1. There’s approximately 200
messages that leave and arrive in each cluster. The table below shows for each garbage collection
the number of CLCs stored just before and just after the collection.

Cluster 0 (before) | 30 | 48 | 54 | 38
Cluster 0 (after) 2 |22]2
Cluster 1 (before) | 50 | 80 | 78 | 64
Cluster1 (after) | 2 | 2 | 2 | 2
Cluster 2 (before) | 50 | 80 | 78 | 64
Cluster 2 (after) 2 |22]2

A tradeoff has to be found between the frequency of garbage collection and the number of CLCs
stored.

6 Related Work

A lot of papers about checkpointing methods can be found in the literature. However, most of the
previous works are related to clusters, or small scale architectures. A lot of systems are implemented
at the application level, partitioning the application processes into steps. Our protocol is implement-
ed at system level so that programmers don’t need to write specific code. Moreover the protocol
in this paper takes clusters federation architecture into account. This section presents several works
that are close to ours.

RR n°5007

14 Monnet, Morin & Badrinath

Integrating Fault-Tolerance Techniques in Grid Applications. [9] does not present a protocol
for fault tolerance but it describes a framework that provides hooks to help developers to incorporate
fault tolerance algorithms. They have implemented different known fault tolerance algorithms and
it seems to fit well with large scale. However, these algorithms are implemented at application level
and are made for object-based grid applications.

MPICH-V. [3] describes a fault tolerant implementation of MPI. It is made for large scale archi-
tectures. All the communications are logged and can be replayed. This avoids all dependencies
so that a faulty node will rollback, but not the others. But this means that strong assumptions up-
on determinism have to be taken. Our protocol doesn’t need any assumption upon the application
determinism, moreover it takes advantage of the fast network available in the clusters.

Hierarchical Coordinated Checkpointing Protocol. The work presented in [10] is the closest
from ours. It proposes a coordinated checkpointing method, based on the two phase commit proto-
col. The synchronization between two clusters (linked by slower links) is relaxed. In [10], it’s the
coordinated checkpointing mechanism that is relaxed between clusters. It is not an hybrid protocol
like ours. Our protocol is more relaxed, it is independent checkpointing if there are no inter-cluster
messages.

7 Conclusion and Future Work

This paper describes an hybrid protocol combining coordinated and communication induced check-
pointing methods. This approach is new and it works well with code-coupling like applications. It
needs to be tuned according to the network and the application communication patterns. This pro-
tocol needs some improvements. Adding some transitivity in the dependency tracking mechanism
by sending the whole DDV instead of the SN should allow to take less forced checkpoints. This
could allow to tolerate more communication patterns. The protocol should tolerate multiple faults
in a cluster, this implies more redundancy in the stable storage implementation. It should tolerate
simultaneous fault in different clusters, the garbage collector should take care of this. In the future
we want to manage dynamism in order to be able to provide support for grid architectures. At last,
the garbage collector should be more distributed.

A real implementation would be interesting to validate our protocol.

The algorithms and more details can be found in [7] (in French).

8 References

References

[1] A. Agbaria and R. Friedman. Starfish: Fault-Tolerant Dynamic MPI Programs on Clusters of Worksta-
tions. The Eighth IEEE International Symposium on High Performance Distributed Computing, pages
167-176, August 1999.

INRIA

Hybrid Checkpointing 15

[2] R. Badrinath and C. Morin. Common mechanisms for supporting fault tolerance in DSM and message
passing systems. Technical report, July 2003.

[3] G. Bosilca, A. Bouteiller, F. Cappello, S. Djailali, G. Fedak, C. Germain, T. Herault, P. Lemarinier,
O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. MPICH-V: Toward a Scalable Fault Tolerant
MPI for Volatile Nodes. In Proceedings of the IEEE/ACM SC2002 Conference, pages 29-47, Baltimore,
Maryland, November 2002.

[4] K. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of Distributed Systems.
ACM Trans. Computer Systems, 3(1):63-75, February 1985.

[5] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro. Lightweight Logging for Lazy Release
Consistent Distributed Shared Memory. In Operating Systems Design and I mplementation, pages 59-73,
October 1996.

[6] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Surveys (CSUR), 34:375-408, September 2002.

[7]1 S. Monnet. Conception et évaluation d’un protocole de reprise d’applications paralléles dans une fédéra-
tion de grappes de calculateurs. Rapport de stage de dea, IFSIC, Université de Rennes 1, France, June
2003. In French.

[8] C. Morin, A.-M. Kermarrec, M. Banatre, and A. Gefflaut. An Efficient and Scalable Approach for Im-
plementing Fault Tolerant DSM Architectures. |EEE Transactions on Computers, 49(5):414-430, May
2000.

[9] A. Nguyen-Tuong. Integrating Fault-Tolerance Techniquesin Grid Applications. PhD thesis, Faculty of
the School of Engineering and Applied Science at the University of Virginia, August 2000.

[10] H. Paul, A. Gupta, and R. Badrinath. Hierarchical Coordinated Checkpointing Protocol. In International
Conference on Parallel and Distributed Computing Systems, pages 240-245, Novenber 2002.

[11] J. Rough and A. Goscinski. Exploiting Operating System Services to Efficiently Checkpoint Parallel
Applications in GENESIS. Proceedings of the 5th IEEE International Conference on Algorithms and
Architectures for Parallel Processing, October 2002.

RR n°5007

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

