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Abstract:  This paper studies a communication model that aims at extending
the scope of computational grids by allowing the execution of parallel and/or dis-
tributed applications without imposing any programming constraints or the use of
a particular communication layer. Such model leads to the design of a communica-
tion framework for grids which allows the use of the appropriate middleware for the
application rather than the one dictated by the available resources. Such a frame-
work is able to handle any communication middleware —even several at the same
time— on any kind of networking technologies. Our proposed dual-abstraction (par-
allel and distributed) model is organized into three layers: arbitration, abstraction
and personalities which are highlighted in the paper. The performance obtained
with PadicoTM, our available open source implementation of the proposed frame-
work, show that such functionality can be obtained with still providing very high
performance.
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Communications sur les grilles de calcul:
au croisement des systémes paralléles et répartis

Résumé : Cet article étudie un modéle de communication dont le but est d’étendre
la portée des grilles de calcul en permettant 1’exécution d’application paralléles et/ou
réparties sans imposer de contraintes de programmation ou une couche de com-
munication particuliére. Un tel modéle nous améne & la conception d’une plate-
forme de communication pour les grilles qui autorise I'usage de l'intergiciel adapté a
I'application considérée plutot que celui qui serait dicté par les ressources disponibles.
Une telle plate-forme de communication supporte n’importe quel intergiciel commu-
nicant — éventuellement plusieurs en méme temps — sur n’importe quel type de
réseau. Le modéle que nous proposons, basé sur les deux abstractions paralléle et
répartie, est organisé en trois couches : arbitrage, abstraction et personnalités, qui
sont décrit dans cet article. La performance obtenue par PadicoTM, notre imple-
mentation de notre proposition de plate-forme de communication, montre qu’une
telle fonctionnalité peut étre obtenue tout en préservant de bonnes performances.

Mots-clé : Grille de calcul, PadicoTM, intergiciel, plate-forme de communication
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1 Introduction

The emergence of computational grids as new high-performance computing infras-
tructures gives the users access to computing resources at an unprecedented scale in
the history of computing. However, computational grids differ from previous comput-
ing infrastructure as they exhibit parallel and distributed aspects: a computational
grid is a set of various and widely distributed computing resources, which are often
parallel ranging from high-performance supercomputers to clusters of PCs. As a
consequence, a grid usually contains various networking technologies— from SAN in
a room through WAN at a continent scale.

As applications are deployed on grid resources, they ideally have to be able to
adapt to their environment in general and to the networking environment in partic-
ular. The current programming practices associated with computational grids were
strongly influenced by such adaptation capability. A common fashion is to see the
grid as a virtual parallel computer so that programmers can follow the usual tech-
niques of parallel programming, for example with MPI. Since MPI is available on
a large number of networking technologies, applications based on this communica-
tion middleware will be able to adapt to the networking environment. However such
adaptation is at the application programming interface level. Adaptation is also re-
quired at runtime. For example, an application linked with a MPI library configured
to used the GM driver of a Myrinet network seriously constrains the application
deployment only on those systems that provide such a network.

However, providing a single communication model (message-based), will not be
enough for most applications as it does not take into account any external inter-
actions such that visualization, steering, coupling of simulation codes or control
interactions. Therefore, in addition to a parallel middleware system such as MPI,
at least another middleware system is required to handle these new kind of interac-
tion. Such a middleware system should be distributed oriented to handle dynamic
connexion,/deconnexion.

The first contribution of this paper is to propose a communication framework that
decouple application middleware systems from the actual networking environment.
Hence, applications become able to transparently and efficiently utilize any kind of
communication middleware (either parallel or distributed-based) on any network that
they are deployed on, removing thus the aforementioned deployment constraints. As
a second contribution of this paper, the proposed model is able to concurrently sup-
port several communication middleware systems with very or no adaptation. Such
capability is very important when using modern programming practices such as dis-
tributed component programming for the design of HPC applications. Indeed, dis-
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tributed component models, such as CCA [2] or GridCCM |[20], require to use both
a communication middleware to let the components to communicate between each
other and a communication runtime within a component if it encapsulates a parallel
code. We have shown in [10], that even for standard networking technologies such
as Ethernet with TCP/IP, having two communication middleware sharing such a
network interface raises some serious technical concerns.

The remainder of this paper is divided as follows. Section 2 presents an analysis
of grid communication based on some examples of typical grid usage. In section 3,
we propose a communication framework model that supports both parallelism and
distributed computing. Section 4 describes and evaluates the implementation of this
model in the PadicoTM platform. Section 5 presents some related works. Finally,
we conclude in Section 6.

2 Grid Communication Model Analysis

This section introduces some important features we think that actual and forthcom-
ing grid-enabled applications should require. Then, it defines the communication
paradigms and analyzes communication abstraction so as to draw the main direc-
tions for a communication framework for grids.

2.1 Grid Network Use Analysis

A grid application can be deployed on different resource configurations. For instance,
one deployment may be a set of nodes within a single Pc cluster equipped with a
high-performance network, while another deployment may be a set of nodes in two
separate PcC clusters interconnected through a high-bandwidth WAN. Another ex-
ample of grid use is given by parallel component based applications [2, 20] where a
component embeds a parallel code. The component framework uses its own paradigm
to interconnect components. This paradigm should be independent from the com-
munication paradigms used internally by parallel components. Hence, a MPI-based
component could be connected to a PvM-based component.

A last example is a grid application which support connexion and deconnexion
from user to visualize and/or monitor the ongoing computation. Hence, the grid
application is likely to used at least two middleware systems: one or more for man-
aging its computation and another to manage the dynamic connexion/deconnexion
of users.

INRIA
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These scenarios introduce some important features grid enabled middleware sys-
tems should support:

Transparency — The middleware systems used by an application should be able to
transparently and efficiently use the available resources. For example, a MPI,
PvM, Java or CORBA communication should be able to utilize high speed net-
works (SAN) as well as local area networks (LAN) and wide area networks
(WAN). Moreover, they should adapt their security requirements to the char-
acteristics of the underlying network, eg. if the network is secure, it is useless
to cipher data.

Flexibility — There is a diversity of middleware systems, and we can assume there
will always be. It seems important not to tie grid applications to a specific grid
framework but instead to ease the “gridification” of middleware systems.

Interoperability — Grids are not a closed world. Grid applications will need to be
accessible using standard protocols. So, there is a high need to keep protocol
interoperability.

Support Multiple Communication Paradigms — Some programming models
like parallel components (CcA [2], GridCCM [20]), or situations like a SOAP-
based monitoring system of a MPI application, require several middleware sys-
tems. Thus, it is important to allow different middleware systems to be used
simultaneously.

2.2 Communication Paradigm Analysis

If we define a communication paradigm as a family of middleware systems which are
built on the same model, we can distinguish two important kinds of communication
paradigms: the parallel paradigm and the distributed paradigm.

Parallel paradigm — The constraint is without no doubt high performance. Com-
munications take place inside a definite and usually static set of nodes known
by each other (mostly SPMD-oriented), messages have well-defined boundaries,
the API is optimized for zero-copy implementations, there are collective opera-
tions which involves several nodes of the set. A typical example is MP1. We can
distinguish distributed-memory parallelism and shared-memory parallelism; in
this network-centric paper, we focus on distributed-memory parallelism.
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Distributed paradigm — The constraint is interoperability. Connections are dy-
namic, managed on a per-link basis in a client/server way; interoperability is
brought across architectures, operating systems and software vendors; commu-
nication primitives may use streaming. Some typical examples are T'cp/IP,
CORBA or SOAP.

These are our definitions and will be used in the remaining of this paper. They
should be understood as a classification with soft boundaries, not as absolute rules;
for example MPI 2 allows dynamic connections, a DSM system (Distributed Shared
Memory) is not message-based, but we still consider them as parallel. In this pa-
per, we consider Tcp/Ip and Upp, CORBA-IIOP [18], SOAP [4], HLA-RTI [15] and
Java RMI as distributed-oriented; MPI, PvM, DsM, FastMessage, Madeleine [3] or
Panda [22] as parallel-oriented.

2.3 Abstraction Level Analysis

The last step of our analysis deals with the different levels of communication ab-
straction found in a grid application.

We consider the abstraction of the resources as the definition of an abstract inter-
face which is not bound to any particular implementation. There may exist several
incarnations which implements the same abstract interface. Abstraction is a widely
used mechanism to cope with the differences between various kinds of networks; in
this case, it is called a portability mechanism. When an abstract interface is designed
for portability and also to be used by several middleware systems and /or applications
(and not only for the portability of one middleware system), it is a genericity mech-
anism. This results in a stack of software layers whose abstraction level increases
down-top:

System-level — implemented by a network driver such as Gwm, Bip [21], VIA,
Sisci [14] or other vendor-supplied communication library, or by the operating
system such as T'CP/IP sockets.

Generic-level — implemented by a communication framework, such as
Madeleine (3], Nezus [12] or Panda [22]. The API, independent from the
network, is likely to be used by a middleware system.

Application-level — implemented by a middleware system, such as COrRBA, MPI,
PvM or HLA-RTI. It implements a programming model. The API is designed
to be used by applications.

INRIA
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3 A Model for Grid Communication Frameworks

This section presents our proposed model of a communication framework for grids
that takes into account both parallel and distributed paradigms.

3.1 Abstraction Model Study

The commonly used abstraction model brings portability: the ability for a middleware
system to utilize several kinds of networks, according to what is available. It brings
also genericity: the ability to reuse the portability software infrastructure for several
middleware systems. However, the genericity as it is usually achieved is based on
the definition of a unique abstract interface. This choice is especially relevant for
portability, but is questionable regarding genericity: this approach is generic inside
a particular paradigm.

However, a lot of parallel middleware can utilize TcP/IP sockets that are a dis-
tributed abstract interface. This approach is well adapted for making a parallel
system to look like a distributed network infrastructure (eg. Ethernet), but seems
irrelevant to use a parallel-oriented network such as the internal network of a su-
percomputer or a cluster). As depicted in Figure 1 (a), the use of a single abstract
interface imposes unnecessary compromises, even when running a parallel applica-
tion on a parallel machine! For example, an MPI implementation built atop Tcp/Ip
is able to run on most networking resources, including supercomputers networks, but
is unable to utilize “parallel-specific” properties of these networks, such as optimized
collective operations. This is due to the lack of expressiveness of the distributed-
oriented T'cp/IP API. Symmetrically, it is quite common to use a unique parallel
interface on grids, for example MPICH-G2 [11]. It is possible to use it to imple-
ment distributed-oriented communication mechanisms, such as distributed objects.
However, the parallel-oriented MPI interface cannot express properties which are es-
sential for distributed computing, such as Ip addressing, dynamic connections in a
client/server fashion (not spawn as in MPI-2), or interoperability with other standard
implementations. For instance, it seems impossible to build a standard-conforming
CORBA implementation on top of MPICH-G2 (or more precisely, MPICH’s abstract
interface called “ADI-2”) alone.

In both cases, a unique abstract interface biased towards only parallelism or
distributed computing penalizes the middleware systems from the other paradigm
since some properties available at system-level cannot be expressed by the abstract
interface, so they are lost.
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Thus we should try to find a better abstract interface which would combine both
properties from parallelism and distributed computing, as depicted in Figure 1 (b);
this abstraction would “keep the best of both worlds”. In order to take into account
the interoperability constraint from distributed computing, a unified abstract inter-
face cannot be far from a distributed-oriented interface. More generally, it seems
unrealistic to weaken the strong constraints of distributed computing to make them
more look like the weaker hypothesis of parallelism which allow some optimizations:
giving up the streaming capability from distributed computing in order to optimize
a message-based communication system (a la MP1 or Madeleine) breaks the required
interoperability with Tcp/Ip; using topology and hardware configuration informa-
tions to optimize collective operations seems incompatible with the per-link connec-
tion management and interoperability with standard plain IP from the distributed
side. A unified abstract interface cannot give up the strong constraints required by
the distributed side, thus it uselessly imposes these strong constraints even to the
parallel side. A single abstract interface, be it distributed, parallel, or unified, does
not seems satisfactory.

Rather than trying to unify contrary things, we propose a dual-abstraction inter-
face, with both a parallel- and distributed-oriented interface. Each middleware sys-
tem is either parallel or distributed not both at the same time. For example CORBA,
HLA and SoAP are distributed when MPI and PvM need a parallel abstract interface.
There is no need to find an interface which would be both; it is sufficient to pro-
vide each middleware system with the appropriate abstract interface, and to supply
each abstract interface on both kinds of networks. This dual-abstraction approach is
depicted in Figure 1 (c). Each middleware system utilizes the required abstracted in-
terface. Each abstract interface is instantiated on each network through an adapter:
an adapter may be either straight, or cross-paradigm. Consequently, compromises for
cross-paradigm translation are performed only when they are required. With such a
dual-abstraction model, there always exists an abstract-level interface able to express
the properties for each kind of hardware. Bending all system-level interfaces towards
a unique abstraction does not seem appropriate because it loses some key features:
a communication framework for grids cannot be parallel- nor distributed-only. We
chose to build our grid communication framework on this dual-abstraction model.

3.2 Resource Virtualization for Seamless Swapping of Communica-
tion Methods

The middleware systems likely to be used by grid-enabled applications are various:
Mpi, CORBA, SOAP, HLA, JVvM, PvM, etc. Moreover, for each kind of middleware,
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there are several implementations which have their own specific properties. Devel-
oping a middleware system is a heavy task —for example, MPICH contains 200,000
lines of C— and requires very specific skills. Moreover, the standards —and thus,
the middleware systems themselves— are ever-changing. It does not seem reasonable
to re-develop an implementation of each one of these middleware systems specifically
for a given communication framework. Instead, we chose to re-use existing imple-
mentations. Thus it is easy to follow the new versions and to use specific features of
a given implementation.

To seamlessly re-use existing implementations of middleware systems, we choose
to virtualize networking resources. It consists in giving the middleware system the
illusion that it is using the usual resource it knows, even if the real underlying
resource is completely different. For example, we show a “socket” API to a CORBA
implementation so as to make it believe it is using T'cP/IP, even if it is actually
using another protocol/network behind the scene. This is performed through the
use of thin wrappers on top of the appropriate abstract interface to make it look like
the required Apri. We call these small wrappers personalities. It is possible to give
several personalities to an abstract interface.

Virtualization and abstraction mechanisms with cross-paradigm adapters allows
any middleware system to seamlessly utilize any network. However, even if a straight
adapter is available, it is not always the better method, especially on distributed-
oriented networks. The other methods are for example:

Parallel streams on WAN — Over a high-bandwidth high-latency WAN with
Tcp/Ip, each single packet loss can dramatically lower the bandwidth. A
solution consists in utilizing multiple sockets in parallel for a single logical link,
so as to reduce the influence of each isolated loss. This principle of parallel
streams is already used for example in GridF'TP [1].

Online compression — On slow networks, it may be worth compressing data to
speed-up the transfers. AdOC [16] implements an adaptive online compression
mechanism.

Encryption and authentication — When a connection lays between two differ-
ent sites, it is likely that the user wants authentication and/or encryption. This
may be achieved through the use of a protocol plug-in. It raises a whole set of
new problems, such as certificate management and credential delegation. We
investigate the use of the Grid Security Infrastructure (GsI) [13] or IPsec.

Loss-tolerant protocol — On slow WAN which suffer from high loss-rate, appli-
cations may prefer to give up reliability against a better bandwidth, but not

INRIA
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accept totally uncontrollable losses. Such a tunable tradeoff is implemented in
VRP [6], a protocol with a tunable loss tolerance.

These various communication methods may be supplied as alternate adapters beside
straight and cross-paradigm adapters. They must exhibit the right abstract interface
according to their respective paradigm. Their use is thus seamless from the point
of view of the middleware systems. Thanks to these virtualization mechanisms, the
hardware resources do not curb the programming model to be used in applications.
The possible deployments schemes are more advanced than just parallel applications
on a parallel machine or distributed applications on a distributed system. Each mid-
dleware system is able to use every available resources —parallel and distributed—
with the most appropriate method — eg. CORBA as well as MPI are able to efficiently
use Myrinet if available, or use WAN-specific methods if necessary. The virtualization
enables the use of a communication paradigm not dictated by the hardware.

3.3 A Hybrid Parallel 4+ Distributed Model

In this section, we propose a model of communication framework for grids, based on a
3-layer approach, with both parallel- and distributed-oriented abstract interfaces. An
implementation of this model is depicted in Figure 2. Our proposed dual-abstraction
model is organized in 3 layers: arbitration, abstraction, and personalities. Paral-
lel and distributed paradigms are present at each level. Therefore, cross-paradigm
translation is performed only when required (ie. distributed middleware atop parallel
hardware or parallel middleware atop distributed networks) with no bottleneck of
features.

Arbitration layer. Concurrent access to network hardware by multiple middle-
ware systems at the same time is not straightforward. There is a high risk of access
conflicts. We propose that arbitration should be dealt for at the lowest possible level,
so as to build more advanced abstractions atop a fully reentrant system. Arbitration
is performed by a layer which provides a consistent, reentrant and multiplexed access
to every networking resources, each resource is utilized with the most appropriate
driver and method. The arbitrated interfaces are designed for efficiency and reen-
trance. Thus, we propose these API to be callback-based (a la Active Message). For
true arbitration, this layer is the only client of the system-level resources: all accesses
to the network should be performed through the arbitration layer. It provides also
arbitration between different networks (eg. Myrinet against Ethernet) so that they
do not bother each other, and between different adapters (as defined in Section 3.1)
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Figure 2: Implementation of the model in PadicoTM.

on the same network (eg. both CORBA and MPI on Myrinet) even if the communi-
cation library does not provide multiplexing. More details about cooperative access
rather than competitive are given in [9].

Abstraction Layer. On top of the arbitration layer, we propose an abstraction
layer which provides higher level services, independent from the hardware. Its goal is
to provide abstract interfaces well suited for their use by various middleware systems.
The abstract layer should be fully transparent: the interfaces are the same what-
ever the underlying network is. The abstraction layer supplies both parallel- and
distributed-oriented abstract interfaces on top of every method from the arbitration
layer, through modules called adapters. This layer is responsible for automatically
and dynamically choosing the best available interface from the arbitration layer ac-
cording to the available hardware; then it should map it onto the right abstract
interface through the right adapter. As shown on Figure 2, adapters may be straight
(same paradigm at system- and abstract-level, eg. parallel abstract interface on par-
allel hardware) or cross-paradigm — eg. distributed abstract interface on parallel
hardware.

Personalities. In order to provide virtualized communication API, we propose
a personality layer able to supply various standard APIs on top of the abstract
interfaces. Personalities are thin wrappers which adapt a generic API to make it
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look like another API. They do no protocol adaptation nor paradigm translation;
they only adapt the syntax.

4 Implementation of the Communication Model

Padico [7] is our software infrastructure for Grid Computing. The communica-
tion model described in the previous section has been implemented in the high-
performance runtime system of Padico called PadicoTM [9, 10] as depicted in Fig-
ure 2. The PadicoTM framework is used for parallel CORBA objects [8] and compo-
nents [20]. This paper focuses only on the novel network model proposed in Padi-
coTM. However, PadicoTM addresses other issues for integrating different middle-
ware systems, such as dynamic code loading and configuration, arbitration for multi-
threading, memory management and Unix signals. These other issues are purposely
not discussed in this paper.

4.1 Network Access Arbitration: NetAccess

The arbitration layer in PadicoTM is called NetAccess, which contains two subsys-
tems: SysIO for access to system I/O (sockets, files), and MadIO for multiplexed
access to high-performance networks. A core handles a consistent interleaving among
the concurrent polling loops. NetAccess is open enough so as to allow the integration
of other subsystems beside MadIO and SysIO for other paradigms such as Shmem
on SMP for example.

NetAccess MadIO: API for Accessing Parallel-oriented Hardware. For
good I/0 reactivity and portability over high performance networks, we have chosen
the high-performance network library Madeleine [3]| as a foundation. Madeleine is
used for high-performance networks such as Myrinet, SCI, VIA. Madeleine provides
no more multiplexing channels than what is allowed by the hardware (eg. 2 over
Myrinet, 1 over Sci). MadIO adds a logical multiplexing/demultiplexing facility
which allows an arbitrary number of communication channels. Multiplexing on top
of Madeleine adds a header to all messages. This can significantly increase the
latency if not done properly. We implement headers combining to aggregate headers
from several layers into a single packet. Thus, multiplexing on top of Madeleine
adds virtually no overhead to middleware systems which send headers anyway. We
actually measure that the overhead of MadIO over plain Madeleine is less than 0.1 us
which is imperceptible on most current networks.
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NetAccess SyslIO: AP1 for Accessing Distributed-oriented Hardware.
Contrary to a widespread belief, using directly the socket API from the OS does
not bring full reentrance, multiplexing and cooperation. Several middleware systems
not designed to work together may get into troubles when used simultaneously, even
with only plain Tcp/Ip. There are reentrance issues for signal-based I/O (used by
middleware systems designed to deal with heavy load), which results in an incorrect
behavior or worst in a crash. If a middleware system uses blocking I/O and another
uses active polling, the one which does active polling holds near 100 % of the CpU
time; it will result in inequity or even deadlock. To solve these conflicts, Sys/O man-
ages a unique receipt loop that scans the opened sockets and calls user-registered
callback functions when a socket is ready. The callback-basedness guarantees that
there is no reentrance issue nor signals to mangle with.

NetAccess core. The core of NetAccess manages the threads with the polling
loops. It enforces fairness between SysIO and MadIO. The interleaving policy be-
tween SysIO and MadlO is dynamically user-tunable through a configuration API
to give more priority to system sockets or high performance network depending of
the application.

4.2 Abstractions: VLink and Circuzt

The abstract interfaces in PadicoTM are called VLink for distributed computing,
and Clircuit for parallelism.

Distributed abstract interface: VLink. The VLink interface is designed for
distributed computing. It is client/server-oriented, supports dynamic connections,
and streaming. In order to easily allow several personalities, VLink is based on a
flexible asynchronous APi. This API consists in five primitive operations —read,
write, connect, accept, close. These functions are asynchronous: when they are
invoked, they initiate (post) the operation and may return before completion. Their
completion may be tested by polling the VLink descriptor; a handler may be set
which will be called upon operation completion. Such a set of functions is called
a VLink-driver. VLink drivers have been implemented on top of: MadIO, SyslO,
Parallel Streams for WAN, AdOC [16], loopback.

Abstract interface for parallelism: Circuit. The Circuit interface is designed
for parallelism. It manages communications on a definite set of nodes called a group.
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A group may be an arbitrary set of nodes, eg. a cluster, a subset of a cluster, may
span across multiple clusters or even multiple sites. Circuit allows communications
from every node to very other node through an interface optimized for parallel run-
times: it uses incremental packing with explicit semantics to allow on-the-fly packet
reordering, like in Madeleine [3]. Collective operations in Circuit still needs to be
investigated. Circuit adapters have been implemented on top of MadIO, SysIO, loop-
back and VLink (to use the alternates VLink adapters); a given instance of Circuit
can use different adapters for different links.

Selector. VLink and Circuit automatically choose which protocol to use according
to a knowledge base of the network topology managed by PadicoTM and user-defined
preferences. All protocols are available for both VLink and Circuit interfaces.

4.3 Personalities and Middleware Systems

PadicoTM provides several well-known API through simple “cosmetics” adapters over
the VLink and Circuit abstract interfaces. These thin APl wrappers are called per-
sonalities. The personalities for VLink are: Vio for an explicit use through a socket-
like Ap1; SysWrap supplies a 100 % socket-compliant API through wrapping at link
stage for direct use within C, C++ or FORTRAN legacy codes without even recompil-
ing. Thus, legacy applications are able to transparently use all PadicoTM communi-
cation methods without losing interoperability with PadicoTM-unaware applications
on plain sockets. We implement an Aio personality on top of VLink which provides a
plain Posix.2 Asynchronous I/O (A4io) API. Thin adapters on top of Circuit provides
a FastMessage 2.0 Ap1, and a (virtual) Madeleine AP1. Thanks to SysWrap, various
middleware systems have been seamlessly ported on PadicoTM with no change in
their code: CORBA implementations (omniORB 3, omniORB 4, ORBacus 4.0, all
Mico 2.3.x including CcM-enabled versions), an HLA implementation (Certi from
the Onera), and a SOAP implementation (gSOAP 2.2). A Java virtual machine
(Kaffe 1.0.7) has been slightly modified for use within PadicoTM, with some changes
in its multi-threading management code. Thanks to the Madeleine personality, the
existing MpPICH/Madeleine implementation can run in PadicoTM. The middleware
systems are dynamically loadable into PadicoTM. Arbitration guarantees that any
combination of them may be used at the same time.
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Figure 3: Bandwidth of various middleware systems in PadicoTM over Myrinet-2000.

4.4 Performance Evaluation

Our test platform is comprised of dual-Pentium III 1 GHz with 512MB RAM,
switched Ethernet-100, Myrinet-2000 and Linux 2.2. The raw bandwidth of various
middleware systems in PadicoTM over Myrinet-2000 is shown in Figure 3. For MPI,
omniORB and Java sockets, the peak bandwidth is excellent: roughly 240 MB/s,
which is 96 % of the maximum Myrinet-2000 hardware bandwidth. The latency is
11 ps for MPp1 and 20 ps for omniORB. We notice the excellent performance for om-
niORB; as far as we know, omniORB in PadicoTM is the fastest existing CORBA
implementation. Mico and ORBacus get lower performance because, unlike om-
niORB, they always copy data for marshalling and unmarshalling. Mico peaks at
55 MB/s with a latency of 63 us, and ORBacus gets 63 MB/s with a latency of 54 us.
However, these poor performance results are due to bad internal design of the mid-
dleware systems themselves and are consistent with theory [9].

We have run test on VTHD, a French experimental high-bandwidth WanN. All
middleware systems get roughly the same performance, namely a bandwidth of
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9MB/s and a 8ms latency, which is the typical performance on this kind of net-
work. When activating Parallel Streams, the bandwidth goes up to 12 MB/s which
is the maximum possible given the fact that each node is connected to VTHD through
Ethernet-100. On the WAN, every middleware systems get roughly the same perfor-
mance since software overhead is negligible compared to the network speed.

We have tested VRP on a slow trans-continental Internet link. The link exhibits
a typical loss-rate of 5-10%. With T'cp/Ip and plain sockets, we get 150 KB/s; if
we give up some reliability and allow up to 10 % loss with VRP, we get an average
of 500 KB/s on the same link, ie. three times more.

5 Related Works

Several middleware environments for managing network communications have
emerged. However, very few take both parallel and distributed paradigms into ac-
count and thus are not tailored for general grid applications. For example, Panda [22]
is a framework designed for parallel runtimes, namely PvM and MPI. ADAPTIVE
(AcE) [23] is a distributed-oriented generic communication environment Harness [17]
and Quarterware [24] allow the use of multiple middleware systems at the same time;
for the moment, they are limited respectively to MP1+PvM and Mpi1+ RMI and
published performance mention only plain T'cP—no Myrinet nor WAN-optimized
protocols. VI [19] deals with both paradigms; its is close to VIA, and targets large
clusters with SAN rather than WAN. Proteus [5] is a system for integrating multiple
message protocols such as SOAP and JMS within one system. It aims at decoupling
applications from protocols, which is an approach quite similar to ours, but at a
much higher level in the protocol stack. Nexus [12] used to be the communication
subsystem of Globus. Nowdays, it becomes accepted that MPICH-G2 [11] built on
Globus-10 is a popular communication mechanism for grids, but only supports one
API, namely MPI.

6 Conclusion

Grid applications can be largely leverage with in particularly an adequate support
of middleware systems.

This paper has introduced a novel communication model for grids based on a
crossroads of parallel and distributed worlds: both paradigms are present in the
supported infrastructures and middleware systems. Hence, middleware systems are
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decoupled from the actual network so that they can transparently and efficiently
utilize any network they are deployed on.

The second advantage of the proposed communication model is its ability to sup-
port several middleware systems from different paradigms at the same time. This fea-
ture is very important for parallel objects/components programming models though
traditional MPI application can also benefit from it.

The paper has also described the network-related aspects in the PadicoTM frame-
work which implements this model and supports various methods to utilize the net-
works: Bip, GM, Sisci, Via, Tcp/Ip, Parallel Streams, AdOC, VRP, and supports
various middleware systems seamlessly: MP1, various CORBA implementations, HLA,
SoAP, Java and a Dswm.

Security issues need further investigations as they bring new problems. Other
future works aim at bringing other communication methods for more flexibility to
the deployment: tunnels for full-connectivity through firewalls, global addressing
(without being tied to the IP system). PadicoTM is Open Source software and is
available for download at http://www.irisa.fr/paris/Padicotm/.
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