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Abstract: This paper surveys some techniques and tools for achieving reachability analysis
over term rewriting systems. The core of those techniques is a generic tree automata comple-
tion algorithm used to compute in an exact or approximated way the set of descendants (or
reachable terms). This algorithm has been implemented in the Timbuk tool. Furthermore,
we show that classes with regular sets of descendants of the literature corresponds to specific
instances of the tree automata completion algorithm and can thus be efficiently computed
by Timbuk. An extension of the completion algorithm to conditional term rewriting systems
and some applications are also presented.
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Analyse d’atteignabilité sur les systémes de réécriture

Résumé: Cet article regroupe un ensemble de techniques destinées & ’analyse d’atteignabilité
sur les systémes de réécriture. La technique principale est un algorithme générique de com-
plétion des automates d’arbre qui permet de calculer de fagcon exacte ou approchée ’ensemble
des descendants (ou termes accessibles). Cet algorithme est implanté dans outil Timbuk.
Nous montrons également que les classes ayant des ensembles de descendants réguliers, que
I’on trouve dans la littérature, correspondent & des instances spécifiques de l’algorithme
de complétion d’automates. En conséquence, ces classes réguliéres peuvent étre calculées
de fagon efficace par Timbuk. Nous proposons également une extension de 1’algorithme de
complétion au cas des systémes de réécriture conditionnels ainsi que des applications.

Mots-clé : Systémes de réécriture, Atteignabilité, Automates d’arbres



Reachability Analysis over Term Rewriting Systems 3

Introduction

Given a term rewriting system R and two ground terms s and ¢, we focus on proving au-
tomatically that s =™ t or s /g™ t. This problem has several applications in equational

proofs used in theorem proving or in proof assistants as well as in verification where term
rewriting systems can be used to model programs. The reachability problem is known to
be decidable for Term Rewriting Systems (TRS for short) which are terminating. Howev-
er, in automated deduction and in verification, systems considered in practice are rarely
terminating and, even when they are, automatically proving their termination is difficult.
On the other hand, reachability is known to be decidable on several syntactic classes of
term rewriting systems (not necessarily terminating nor confluent). On those classes, the
technique used to prove reachability is rather different and is based on the computation of
the set R*(E) of R-descendants (or R-reachable terms) of an initial set of terms E. For
those classes, R*(F) is a regular tree language and can thus be represented using a tree
automaton. Tree automata offer a finite way to represent infinite (regular) sets of reachable
terms when a non terminating term rewriting system is under concern.

In this paper, our aim is to propose a common, simple, efficient and implemented algorith-
m for computing known decidable regular classes as well as to construct some approximation
when it is not decidable. This algorithm is essentially a completion of a tree automata, thus
taking advantage of an algorithm similar to the Knuth-Bendix completion [20] in order not
to restrict to a specific syntactic class of term rewriting systems and tree automata in order
to deal efficiently with infinite sets of reachable terms produced by non-terminating term
rewriting systems.

This algorithm is implemented in the Timbuk tool [14]. However, as we will see in the
following, our implementation does not cover every decidable class since this would have led
to an inefficient tool. As an example, for dealing with non left-linear TRSs, one can refine
the algorithm we propose by applying determinisation after each step of tree automata
completion. In this way, one may obtain a more general theorem covering the non left-linear
case without restriction. However, since determinisation is an exponential-time operation,
this would not be realistic in practice. Thus, we choose to stick to the basic completion
algorithm and give some conditions sufficient for covering the non left-linear case in many
practical cases.

The paper is organized as follows. In section 1 we recall the basic notations for term
rewriting systems and tree automata. Then, in section 2 we recall the known regular classes
for descendants. Section 3 presents the tree automata completion algorithm and the result
for over-approximation of R*(E) for any TRS R and any initial regular language E. In
section 4 we give some sufficient conditions for the tree automata completion to compute
exactly R*(E) for any TRS R and any initial regular language E. In this section we also
show how regular classes of the literature can be obtained using tree automata completion.
Then in section 5 we give some formal and practical tools for guiding the approximation
construction when R*(E) is not regular. In section 6, some applications of R*(E) are
presented: sufficient completeness, strong non-termination proof and reachability testing.
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4 G. Feuillade, T. Genet & V. Viet Triem Tong

In section 7, we present the algorithmic optimisation of matching in automata in Timbuk
and some indications on its efficiency. Finally, an extension of the tree automata completion
algorithm for conditional term rewriting systems is given in section 8.

1 Formal background

Comprehensive surveys can be found in [8, 1] for term rewriting systems, in [5, 17] for tree
automata and tree language theory.

Let F be a finite set of symbols, each associated with an arity function ar, and let X
be a countable set of variables. T(F,X) denotes the set of terms, and 7 (F) denotes the
set of ground terms (terms without variables). The set of variables of a term ¢ is denoted
by Var(t). The domain and range of a mapping will be denoted respectively by Dom and
Ran. A substitution is a mapping o from X into 7 (F, X), which can uniquely be extended
to an endomorphism of 7 (F, X). Its domain Dom(c) is {z € X | zo # z}. A position p for
a term t is a word over N. The empty sequence ¢ denotes the top-most position. The set
Pos(t) of positions of a term ¢ is inductively defined by:

o Pos(t) ={e}ifte X
o Pos(f(t1,...,tn)) ={e}U{ip|1 <i<nandpe€ Pos(t)}

If p € Pos(t), then t|, denotes the subterm of ¢ at position p and #[s], denotes the term
obtained by replacement of the subterm t|, at position p by the term s. For any term
s € T(F, X), we denote by Posz(s) the set of functional positionsin s, i.e. {p € Pos(s) | p #
e and Root(s|,) € F} where Root(t) denotes the symbol at position € in t. Conversely, we
denote by Posx(s) the set of variable positions in s, i.e. Posx(s) = Pos(s) \ Posx(s).

A term rewriting system R is a set of rewrite rules | — r, where l,r € T(F,X),l ¢ X,
and Var(l) D Var(r). A rewrite rule I — r is left-linear (resp. right-linear) if each variable
of [ (resp. r) occurs only once. A rule is linear if it is both left and right-linear. A TRS R
is linear (resp. left-linear, right-linear) if every rewrite rule I — r of R is linear (resp. left-
linear, right-linear). The TRS R induce a rewriting relation —% on terms whose reflexive
transitive closure is denoted by —7%. The set of R-descendants of a set of ground terms E
is R*(E) = {t € T(F) | 3s € E s.t. s =% t}. We extend this notation to terms in the
following way: R*(s) = R*({s}). We denote by IRR(R) the set of terms irreducible by R
and by R'(E) the set of R-normal forms of E, i.e. R'(E) = R*(E) N IRR(R).

Let Q be a finite set of symbols, with arity 0, called states. T (F U Q) is called the set
of configurations. A transition is a rewrite rule ¢ — ¢, where c € T(FUQ) and g € Q. A
normalized transition is a transition ¢ — ¢ where c = ¢' € Q or ¢ = f(q1,... ,qn), f € F,
ar(f) = n, and ¢1,...,q, € Q. A bottom-up non-deterministic finite tree automaton
(tree automaton for short) is a quadruple A = (F,Q,Qy,A), where Qy C Q and A is
a set of normalized transitions. A tree automaton is deterministic if there are no two
rules with the same left-hand side. The rewriting relation induced by the transitions of
A (the set A) is denoted by — 4. The tree language recognized by a state ¢ in A is

INRIA



Reachability Analysis over Term Rewriting Systems 5

L(A,q) = {t € T(F) | t =7 q}. The language recognized by A is L(A) = U,eq, L(A4,q)- A
tree language is regular if and only if it can be recognized by a tree automaton. By notation
abuse, we will often note ¢ € A and t — ¢ € A respectively for ¢ € Q and t — q € A.

2 Existing solutions

The basic reachability problem we are going to consider is the following: given a term
rewriting system R and two terms s and ¢ can we decide whether s —% t or not? In this
part, we focus on the existing solutions designed for particular cases.

The simplest case is when R is terminating: to decide whether s —z* ¢ or not it is

enough to see if t € R*(s) since R*(s) is finite and computable.

When R is not terminating, deciding reachability needs some additional formal tools,
namely tree automata, in order to finitely represent the infinite set R*(s) and then check if
t € R*(s). Many works are devoted to the construction of R*(FE) for a regular language E
and a term rewriting system R fulfilling some restrictions:

e R is either a ground TRS [7, 3].

e a right-linear and monadic TRS [28], i.e. right-hand sides of the rules are either
variables or terms of the form f(z1,...,z,) where f € F and z1,... ,z, are variables.

e a linear and semi-monadic TRS [6], i.e. rules are linear and their right-hand sides are
of the form f(t1,...,t,) where f € F and Vi = 1,... ,n, t; is either a variable or a
ground term.

o a “decreasing” TRS [18], where “decreasing” means that every right-hand side is either
a variable, or a term f(t1,...,t,) where f € F, ar(f) =n,andVi=1,... ,n,t; is a
variable, a ground term, or a term whose variables do not occur in the left-hand side.

On the other hand, for a given regular language E, R*(E) is not necessarily regular, even
if R is a confluent and terminating linear TRS [17]. If R is not “decreasing”, then R*(E) is
not necessarily regular [18].

Another regular class was found by P. Réty [27] where restrictions are weaker on the
TRS and stronger on the regular language E. The alphabet F is separated into a set of
defined symbols D = {f |3l - r € R s.t. Root(l) = f} and constructor symbols C = F\ D.
The restriction on E is the following: F is the set of ground constructor instances of a linear
term t, i.e. E = {to} where t € T(F,X) is linear and o : X — T(C). The restrictions on R
are the following: for each rule I — r

1. r is linear

2. for each position p € Posz(r) such that r|, = f(t1,...,t,) and f € D we have that
for all i =1...n, t; is a variable or a ground term

3. there is no nested function symbols in r

RR n~4970



6 G. Feuillade, T. Genet & V. Viet Triem Tong

3 Tree Automata completion

In [11], we proposed a tree automaton completion algorithm for over-approximating R*(E)
for left-linear term rewriting systems and a regular language E. The completion is parametrized
by an abstraction function a mapping terms to states of the automaton.

Let us first recall the tree automata completion algorithm. Starting from a tree automa-
ton Ao = (F, Q, Qy,Ao) and a left-linear’ TRS R, the aim of the approximation algorithm
is to compute a tree automaton A’ such that £(A") D R*(£L(Ap)). Approximations are used
to show that terms recognized by a tree automaton Ap,q are not reachable by rewriting
terms of £(Ap) with R, i.e. Vs € L(Ag) Vt € L(Apag) : s /r™ t. For this, it is enough

to show that £L(A') N L(Apeq) = 0 i.e., compute the automaton recognizing the intersection
and show that the recognized language is empty.

The technique consists in successively computing tree automata A;, As, ... such that
Vi > 0: L(A;) C L(Ai4+1) and if s € L(A;), such that s —g t then t € L£(A;41), until

we get an automaton Ay with k € N such that £(Ax) = L(Ag+1). Thus, A is a fixpoint
and A also verifies £L(Ar) D R*(L(Ao)). More precisely, to construct 4;+1 from A;, we
achieve a completion step which consists in finding critical pairs between - and — 4,. For
a substitution ¢ : X — Q and a rule ] — r € R, a critical pair is an instance lo of | such
that there exists ¢ € Q satisfying lo —%_ g and ro /7% ¢. For ro to be recognized as the
same state and thus model the rewriting of lo into ro, it is enough to join the critical pair:

lo—>ro

g <--° A
and add the new transition r¢ — ¢ to A;+1. However, the transition r¢ — ¢ is not
necessarily of the form f(q1,...,¢,) — ¢’ and so has to be normalized first. For example, to

normalize a transition of the form f(g(a),h(q’)) — ¢, we need to find some states g1, ¢2, g3
and replace the previous transition by a set of normalized transitions: {a — ¢1,9(q1) —
g2, h(q') = a3, f(g2,93) — q}-

Assume that g1, g2, g3 are new states, then adding the transition itself or its normalized
form does not make any difference. Now, assume that ¢; = ¢s, the normalized form becomes
{a = q1,9(q1) = q1,h(qd") — g3, f(q1,493) = q}. This set of normalized transitions repre-
sents the regular set of non normalized transitions of the form f(g*(a),h(q')) — g which
contains the transition we wanted to add initially but also many others. Hence, this is an
approximation. We could have made an even more drastic approximation by identifying
q1, 92, q3 with g, for instance.

For every transition, there exists an equivalent set of normalized transitions. Normal-
ization consists in decomposing a transition s — ¢, into a set Norm(s — ¢q) of normalized

1This restriction will be weakened in the following.
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Reachability Analysis over Term Rewriting Systems 7

transitions. The method consists in abstracting subterms s’ of s s.t. s’ € Q by states of Q.
We first define the abstraction function as follows:

Definition 1 (Abstraction function) Let F be a set of symbols, and Q a set of states. An
abstraction function o maps every normalized configuration to a state:

a:{f(q,- . sqn) | fE€F,ar(f) =n and q1,...qn € Q} = Q

In the following, for completed automata, we assume that Q is a set of states containing
states of transitions A as well as states of the range of a. In particular, if the range of « is
infinite (for instance, if completion does not terminate) then so is Q.

Definition 2 (Abstraction state) Let F be a set of symbols, and Q a set of states. For a
given abstraction function a and for all configuration t € T(F U Q) the abstraction state of
t, denoted by top,(t), is defined by:

1. if t € Q, then top,(t) =1t,
2. ift = f(t1,... ,ts) then tops(t) = a(f(topa(ti), .- - topa(tn)))-

Definition 3 (Normalization function) Let F be a set of symbols, Q a set of states, s —
q a transition s.t. s € T(FUQ) and q € Q, and a an abstraction function. The set
Norm,(s — q) of normalized transitions is inductively defined by:

1. if s=q, then Norm,(s — q) = 0, and
2. if s € Q and s # q, then Normy(s = q) = {s = q}, and

3. if s= f(t1,...,tn), then Normy(s — q) =
{f(topa(ti),-.. ,topa(ty)) = q} U U?=1 Normg (t; = topa(t;)).

Example 1 Let F = {f7g7a} andA: (‘7:7 Q: Qf7A>7 where Q = {q07QI7q27q37 CI4}; Qf =

{0}, and A ={f(q1) = q0,9(q1,01) = q1,a > a1}

e The languages recognized by q1 and qo are the following: L(A,q1) is the set of terms
built on {g,a}, i.e. L(A,q1) = T({g,a}), and L(A,q0) = L(A) = {f(2) |z € L(A, q1)}.

o Let s = f(g(q1, f(a))), and a1 be the abstraction function {a — q4, f(qs) — a3,9(q1,q3) —
g2}. The normalization of transition f(g(q1, f(a))) — qo with abstraction oy is the following:

Normg, (f(g(q1, f(a))) = o) = {f(g2) = 90,9(q1,93) = g2, f(qs) = g3,a = qu}.

Definition 4 A regular language substitution (or a Q-substitution) over an automaton A
with a set of states Q is an application o : X — Q. We can extend this definition to a
morphism o : T(F,X) —» T(F,Q). We denote by X(Q,X) the set of regular language
substitutions built over Q and X.

RR n~°4970



8 G. Feuillade, T. Genet & V. Viet Triem Tong

Definition 5 (One step of automaton completion) Let A = (F,Q, Qy, A) be a tree automa-
ton, R a TRS and o an abstraction function. The one step completed automaton Co,r(A)
is a tree automaton (F,Q, Qp, A') such that:

A'=AuU U Normy(ro = q)
l—reR, q€Q, D’EE(Q,X), lcr—»*Aq

Definition 6 (Automaton completion) Let A be a tree automaton, R a TRS and o an
abstraction function.

L Ag,R - A
) AZ% =Cor(AL ) forn €N
A= lm A

Note that even if A}  cannot be finitely computed in general, in many cases there
exists a natural ¥ € N such that A’;’R is a fixpoint, i.e. CQ,R(AZ’R) = AQ,R. In the
following proposition, we give some sufficient conditions for building an over-approximation
automaton B of the set of R-descendants of a regular language recognized by .A.

Definition 7 Let A be an automaton and R a TRS, R and A satisfy the left-linearity
condition if:

Vie T(F),Ir: X = T(F),A>reR st. t=Ilr->x84q
=
do € X(Q,X) st. toAlo—-Aq

Note that for every left-linear TRS R trivially satisfy the left-linearity condition with any
tree automaton. This condition is, in fact, necessary for non left-linear TRS. Roughly, the
problem with non left-linear rules is the following: let f(z,z) — g(z) be a rule of R and let
A be a tree automaton whose set of transitions contains f(q1,41) — go and f(gs2,q3) — qo-
Although we can construct a valid substitution o = { — ¢; } for matching the rewrite rule
on the first transition, it is not the case for the second one. The semantics of a completion
between rule f(z,z) — g(z) and transition f(g2,q3) — go would be to find the common
language of terms recognized both by g2 and ¢3. This can be obtained by computing a new
tree automaton A’ with a set of states @' such that Q' is disjoint from states of 4 and
dg e Q : L(A',q) = L(A,q2) N L(A,q3). Then, to end the completion step it would be
enough to add transitions of A’ to A with the new transition g(q) — go-

On the other hand, one can remark that the non-linearity problem would disappear with
deterministic automata since for any deterministic automaton Ag.; and for all states ¢, q" of

INRIA



Reachability Analysis over Term Rewriting Systems 9

Adet we trivially have £(A, )N L(A, ¢’ ) = 0. However, determinization of a tree automaton
may result in an exponential blow-up of the number of states [5].

A solution, in between the two previous ones, is to use the left-linearity condition defined
above by ensuring determinism for a subset of states ¢ € Q which are to be matched by the
non linear variables of the non linear rules 2. For instance, on the last example, it is enough
to build the first critical pair, add the transition g(¢1) — go, and keep g2, g3 deterministic,
i.e. such that L(A} 5,q2) N L(A} z,q3) = 0. We now define this condition called simple
left-linearity which implies the left-linearity condition. Let .4 be an automaton, I — r a
rewrite rule over T(F,X), {z1,...,2r} the set of variables non linear in [ and Y a set of
variables distinct from X. Let Ren(l) be the pair (I, E) where I’ denotes the term where
non linear variables are renamed and E is a set of constraint.

Ren(l) = (1,0) if  is either a constant or a
variable that does not
appear in {z1,... ,z}
= (y,{z=1v}) if [ is a variable z € {z1,... ,zx}

and y if a fresh variable of )

= (f(tr,---,t), U  Bi) ifl=f(t,... ,ta) and
Ren(t;) = (t,, E;) foralli=1...n.

Definition 8 (Simple left-linearity condition) An automaton A and a TRS R satisfy sim-
plified left-linearity condition if for all rule I — r € R such that Ren(l) = (I', E):

V(z=y) € E,Vo € £(Q,X), Vq,qz,qy € Q: l'c 5A qA0(z) =¢p # qy = 0(y)

L(A,q:)NL(A,qy) =0

Proposition 1 Simple left-linearity implies left-linearity.

Proof 1 If A does not verify the linearity condition induced by | — r, there is at least a
ground term t recognized by a state q of A, a substitution 7 : X — T(F) such thatt = It
and t =% g, and there is no Q-substitution o € X(Q,X) such that t =% lo ANlo =% q.
However, if t is an instance of | then t is also instance of I, let t =1'p where p: Y — T (F).
The problem 1is solved by case reasoning on t: t cannot be a variable a otherwise | = a and
A respects the linearity condition, then t is of the form f(t1,... ,t,). Let t =1U'p' such that

2This is what is called locally deterministic tree automata in [15].

RR n~4970



10 G. Feuillade, T. Genet & V. Viet Triem Tong

P Ay, yk} > T(F), we denotes p'(y;) = t;. If t =K% ¢ than all subterm of t are
recognized by A and there are k states qi,...,qr such that t; = q; for 1 < j < k. We
construct a Q-substitution o’ : {y1,... ,yx} = Q define by o' (y;) = q;. We have t =} U'o’
then l'c’ —7% q, however by hypothesis, there is no Q-substitution o € X(Q,X) such that
t =4 lo Nlo =4 q, necessarily there are at least two variables y; and y; such that

1. 0'(yi) = qi and o'(y;) = q; with ¢; # gj
2. y;i =y; is a constraint of £
3. ti =t

The condition 1. and 2. hold true for at least a pair of variables (y;,y;) otherwise we
could construct a Q-substitution o such that lo = l'c’. The condition 3. holds true because
t is an instance of I. This leads to a contradiction.

Proposition 2 Let R be a TRS, A = (F,Q,Qy,A), and B = (F,Q',Qs, A") two tree
automata such that R and B satisfy the left-linearity condition. We have R*(L(A)) C L(B)

if
1. ACA', and
2.Vl —sreR,Vqge Q,VoeX(Q,X), lo =>4 q implies ro =%, q.

Proof 2 By definition, any term t of R*(L(A)) is such that 3s € L(A) s.t. s =% t. By
induction on the size of the derivation s =% t, we prove that if s =%, t and s =X, q with
q € Qf thent =%, q, which implies that t € L(B).

1. if t = s then, since s € L(A), we have that 3¢ € Qy s.t. t = s =% ¢q. Moreover,
A C A, hence 3qg € Qf s.t. t =4, q,

2. if s =L t, then 3s' € T(F) s.t. s =% s' —x t. By induction hypothesis applied to
s =% s, we obtain that g € Qf s.t. s' =X, q. Moreover, since s’ = t, there exists
a rulel - r € R, a substitution 7, and a position p in s’ such that It = §'|, and
t = s'[r7]p. By construction of bottom-up tree automata with normalized transitions,
if s =% q, then any subterm of s’ is reducible by A" into o state of Q'. Hence, since
It =§'|,, we get that 3¢’ € Q' s.t. It =%, ¢ and s'[¢'], =A, q. Now, let us show that
rT =% ¢'. Let Var(l) = {z1,... ,zr} be the variables of l. Since R and B satisfy the
left-linearity condition, we get that there exists o € £(Q, X) such that It =%, lo =%,
q'. Hence, there exists some states ¢ € Q such that o = {x; — ¢; | i =1...k} and
T =A@ fori=1...k. From x;71 =%, q; we get that r7 =X, ro. Finally, since
ro =h, ¢, we get that r7 =%, ¢’ and thus t = §'[r7], =% ¢

In this first theorem, we show that completion always over-approximate the set of de-
scendants for TRSs and tree automata satisfying the left-linearity condition.

INRIA



Reachability Analysis over Term Rewriting Systems 11

Theorem 1 Given a tree automaton A and a TRS R satisfying the left-linearity condition,
for any abstraction function «,

L(A% r) 2 R*(L(A))

Proof 3 For proving L(A} ) 2 R*L(A), it is enough to prove that the approzimation
automata verifies Conditions 1 and 2 of Proposition 2, for all abstraction function a. By
Definition 6, A} r trivially verifies Condition 1. Now, to prove that A}  also verifies
Condition 2 of Proposition 2, it is enough to prove that Normg(ro — q) C A’ implies
ro = q.

Let s' be any subterm of ro (possibly non-strict) and q¢' € Q'. By induction on the size
of §', we show that Normy(s' — ¢') C A’ implies that s =%, ¢':

o if s' = ¢, then we trivially have s" =%, ¢'.

e ifs =¢q" € Q st ¢ # ¢ then, by case 2 of definition of Norm, we get that
Norma(s' = ¢') = {s' = ¢'}. Since Normq(s' — ¢') C A, we have s' =%, ¢.

o if ' =g(t1,... ,tm) € T(FUQ'), by applying case 8 of definition of Norm, we get
that
(a) {g(topa(t1), ... stopa(tm)) = ¢'} C A/, and
(b) Uiy Normq(t; — topa(t:)) C A,
where Vi = 1...n, topa(t;) € Q'. By applying induction hypothesis to (b), we get that
Vi=1...n,t; >k topa(t;). On the other hand, (a) implies that g(tops(t1), ... ,topa(tm)) = Ar
q. As a result, g(t1,... ,tm) =h 9(topa(ti), ... ,topa(tm)) =ar ¢'.

Hence Normg(ro — q) C A’ implies ro =%, q, and Condition 2 of Proposition 2 is satisfied
by A% .

4 The exact case

The aim of this part is to refine the previous result and show that known regular classes
of descendants can be computed using the tree automata completion algorithm and some
particular abstraction functions. In a first part, we give some sufficient conditions on the
abstraction function « so that completion is exact w.r.t. R*(E). Then we will see how all
regular classes of the literature can be expressed using abstraction functions satisfying those
conditions.

Definition 9 (Right-linearity condition) A TRS R and tree automaton A = (F,Q,Qs, A)
satisfy the right-linearity condition if

1. R is right-linear, or
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2.Vqe A:FteT(F): L(A,q) CR*{¢)

Let us show that those two conditions are necessary for exactness of completed automata
on a counterexample.

Example 2 Let R = {f(z) — g(z,z)} be a non right-linear TRS and let A be the tree
automaton such that Qf = {q} and A = {f(q1) = qv,a = ¢qi1,b = q1}. Note that A
is deterministic and that L(A) = {f(a), f(b)} is finite. However, the completed automaton
A(II’R (for any abstraction function a) has a new transition g(¢1,q1) — qo and the recognized
language becomes L(Ay ) = {f(a),g(a,a),g(a,b),g(b,a),g(b,b)} which is a superset of
R*(L(A)) = {f(a),g9(a,a),g(b,b)}. However, if R was linear or if there was no transition
b— a1 in A then A} xn would have been different and would have been computed ezactly.
Similarly, if we add a rule a — b to R then A}x,R recognize ezxactly R*(L(A)) and right-
linearity condition is satisfied since for g1 € A there exists the term a such that L(A,q1) C

R*({a}) = {a, b}.

Note that this condition focuses only on the initial automaton and not on the completed
one. Hence, this condition is trivially satisfied (using the second case) by any deterministic
tree automaton recognizing a finite language. This will be useful in the following theorems
for defining regular classes of R*(E) for finite sets E.

Lemma 1 Let R be a TRS, I — r € R be a rewrite rule with r ¢ X and A = (F,Q,Qs, A)
a tree automaton without dead states. Let o : X — Q be a Q-substitution, such that lo — ro
and lo =% q with g € Q.

For allt € T(F) s.t. t =% ro there exists 6 : X = T(F) s.t. 16 € T(F), 16 =4™ q and

16 =% rd =t, if R and A satisfy the right-linearity condition.

Proof 4 Let {p1,... ,pn} = Posx(r) and Vi = 1...n : z; = r|p,. Note that if there
exists p; and pj s.t. r|p, = r|p;, then x; = x;. Let {y1,... ,ym} = Var(l) \ Var(r) be
the set of wvariables of l that do mot occur in r. Note that for | it is not necessary to
distinguish the multiple occurrences of non linear variables. Let q1,... ,qn,q},--- ,qm € Q
be the states such that o = {x1 — q1,...Tn = gn, 2} = q1,... T, = q),} and g; = g; for
alli,j € {1,...,n} such that z; = x;. Thusr = r[z1,...,2,] and ro = r[g1,... ,¢n]. On
the other hand, by construction of tree automata t =% ro = r[q1, ... ,qn] tmplies that there
exists t1, ... ,tn € T(F) such that t =rlty,... ,tp] and t1 =% q1,... ,tn =% ¢n-

Let 6, be the relation {x; —,... ,z, — t,}. Note that 6, is a substitution (i.e. a
function) if and only if there is no i,j € {1,...,n} such that x; = z; and t; # t;. This
is of course trivially the case if r is linear. Otherwise, we may have t; =% q;, t; =% q;,
g = q; but t; # t; and thus 6, would not be a function. However, if condition 2. of
definition 9 is satisfied then every term which is recognized into g; is either t} or one of its
descendants (i.e. t;,t; € R*(t})). In this case, if we replace t; and tj by t} in 6, (and proceed
similarly for every other occurrence of a non linear variable), we obtain a valid substitution
0- such that r6, —gr* r[t1,...,tn]). Thus, using case 1. or case 2. of definition 9 leads
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to the same property: we have built a substitution 8, such that ré, —=r* r[t1,... ,tn] and
rlty, ... ta] 2% ro.

Now, let § = 6, U where 6 = |J,_; . {yi = u; | Fu; € T(F) s.t. uj =% ¢} and ¢} =
o(y:)}. Note that the existence of uj s.t. w; =% ¢, is guaranteed by the fact that g is
a state of A and there is no dead state in A. The relation &; is a substitution and so is

0r. Furthermore, since Dom(d,) N Dom(d;) = O then & is a substitution. Finally. we have
16 €T(F), 16 =% 1lo and § =5 16 = r[t,... ,tn] =t.

We now introduce coherent abstraction function which define some subclasses of com-
pletion algorithms for which the automaton completion algorithm is exact. Informally, an
abstraction function is coherent with regards to a tree automaton A and a term rewriting
system R if for every configuration ¢ and every state ¢ such that a maps t to g, either ¢
is not a state of A (it is a new state) or terms recognized by ¢ in A are either a term ¢
recognized by t (i.e. t' —4* t) or R-descendants of ¢'.

Definition 10 (Coherent abstraction function) Let R be a TRS, A = (F,Q,Qy,A) be a
tree automaton and a be an abstraction function. The function o is said to be coherent with
R and A if for all t € Dom(a), for all ¢ € QN Ran(a) if a(t) = q thent — ¢ € A and
3t s.t. L(A,q) CR*{t' |t —4™ t}).

Lemma 2 Let R be a TRS, A= (F,Q, Qf,A) be a tree automaton and o be an abstraction
function. If R and A satisfy the right-linearity condition and if a is injective and coherent
with regards to R and A then:

Vte T(F),Vge Q:t e L(Car(A),q) = teR*"(L(A Q)

Proof 5 For terms t such that t € L(A,q), we trivially have that t € R*(L(A,q)). So,
we can restrict the proof to terms t such that t € L(A,q). Similarly, we can distinguish
another particular case where t € L(A,q'), t & L(A,q) and ¢ — ¢q € Co,z. In that case,
the completion step producing Co r(A) from A necessarily builds o critical pair of the form
lo g ro = ¢ andlo —4* q where l — r € R. In that case, we necessarily have | = C[z]
and r = x where x € Var() and o = {z — q} Uc’. Hence, we have lo = C[¢'lo’ = 4* q and
since t € L(A,q"), we have C[t] =4* C[q'] =4* q and thus C[t] € L(A,q). Finally since the
rule | — r is of the form Clz] — x we get that t € R*(L(A,q)).
Now for other cases, we proceed by induction over the height of t.

o If height of t is O then t = a where a is a constant. Since a € L(Cor(A),q) we have
a — q € Car(A). Since a & A then the completion step producing Co =(A) from A
necessarily builds o critical pair of the form lo = a and lo —4* q where l - a € R.

By lemma 1, we obtain that there exists a substitution § such thatlé € T(F), 16 -4™ q
and 16 = a, hence a € R*(L(A,q)).
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e Now, we assume that the property is true for terms of height n. Let us prove that the
property also holds for terms of height n+ 1. Let t be a term of height n+ 1 such that
t € L(Car(A),q). Let f € F and t1,... ,tn € T(F) terms of height lesser or equal to
n such thatt = f(t1,... ,tn). By construction of tree automata, t € L(Cor(A),q) tm-
plies that there exists states qu, - - . ,qn such that f(t1,... ,t,) _%(,,R(A) flar,--- ,aqn) _%Q,R(A)

q. Then by case on f(q,...,qn) = q € A, we obtain:

— Assume that f(q1,... ,qn) = g € A. Then q,... ,q, € A and by induction hy-
pothesis we get that t; € R*(L(A,q;)) fori=1...n. Hence, there exists terms t}
such that t; —4* qi and t; —r ti. Hence f(t],... fl) =4 flq1,-.-,qn) —4
q and f(t),...fl) =r* f(t1,... ,tn), t.e. f(#,..., fl) € L(A,q) and t €
R*(L(A,q)).

— Now, assume that f(q1,...,qn) = q¢ € A. Thus, transition f(q1,... ,qn) — ¢
has been added to A by the completion step: there is either a critical pair of the
form (a) lo =g C[f(t],... ,t0)] and lo —4* ¢’ or (b) lo = f(t],...,tl) and
lo —4* q. Let us continue the proof on those two cases:

(a) Assume that there is a critical pair of the form lo —g C[f(t],...,t))] and
lo =4 ¢'. In order to produce the new transition f(qi,-..,qn) — q i.e. to
have f(q1,...,qn) = ¢ € Normo(C[f(t],... ,t!)] — ¢'), it is necessary to
have topa (f(t],... ,th)) =q and Vi =1...n: tops(t]) = q;. However, since
g € A and « is coherent with R and A, we get that Norm(f(t],... ,tl) =
q) C A, hence f(q1,---,qn) = q € A which contradicts f(q1,-.- ,qn) = q¢ &
A

(b) Assume that there is a critical pair of the form lo =g ro = f(t{,...,t])
and lo —4* q. First, let us prove that Vi = 1...n : t; _%QR(A) t!. We
already now that t; _%Q,R(A) q;- By cases on q; € A, we obtain:

x if q; occurs in A (there is at least one transition ¢ — q; in A) then since

a is coherent with R and A and top,(t]) = qi, we get that L(A,q;) C
R*({s | s =a* t{'}). Hence, since t; —4™ q; we get that there exists a
term s; such that s; —»A* t and s; =™ t;.

x if q; does mot occur in A then the only rewriting path from t; to q; is
necessarily t; _)EQ,R(A) t _%Q,R(A) q;, hence t; _%Q,R(A) t!. In that
case let s; = t;.

Thus, we have f(s1,...,8n) =A* f),... ,t0) 24" qand f(s1,-.. ,8,) =R
f(t1,... ,tn). Finally, applying lemma 1 on term f(s1,...,8n), we obtain
that for f(s1...,sn) such that f(s1,...,sn) =¢_ (4 o there exists § such
thatrd = f(s1,...,8,), 10 € T(F), 16 54" lo =4* q and 1§ —r* r6. Hence,
we have a term 1§ such that 1§ —4* q and 1§ =™ rd =™ f(t1,--- ,tn)-

*
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Theorem 2 Let R be a TRS, A = (F,Q,Qf,A) a tree automaton and o an injective
abstraction function coherent with R and A. If R and A satisfy the right-linearity condition
then

Vi € N: £(A%r) C RH(L(A))

Proof 6 We proceed by induction on n. If n = 0 we have Ag"n = A and thus L(A) C
R*(L(A)). Then, we assume that the property holds for n and we prove that it holds for
n + 1. Let us denote by B the tree automaton .A(II’R. Then, the proof is done by using the
induction hypothesis on B since we have Az‘% = Co,r(By =) By lemma 2, we know that for
every state ¢ € Q, and for every term t € L(B,q) we have t € R*(L(A,q)). This property
is true in particular for final states, thus we have: L£L(B) C R*(L(A)). Now, in order to use
the induction hypothesis, we need to prove that (a) « is coherent with R and B and that

(b) R and B satisfy the right-linearity condition.

(a) For every normalized configuration t € T(F U Q) such that a(t) = ¢,

o if ¢ € A then we had alreadyt — q € A sot — q € B. Since a is coherent
with R and A, we know that L(A,q) C R*({t' | t' —4* t}). By applying the R*
operator to both sides of the previous inequality, we obtain that R*(L(A,q)) C
R*(R*({t' | t' —=4* t})). On the other hand, by lemma 2, we get that L(B,q) C
R*(L(A,q)). Note that R*(R*(E)) = R*(E) for any set E, hence we have:
L(B,q) C R*({t' | t' —4* t}). Moreover, since {t' | t' —4* t} C {t' | t' =} t}
we have R*({t' |t »4™ t}) CR*({t' |t =% t}) and by transitivity of C, we get
that L(B,q) CR*({t' | t' =% t}).

o if g & A but q € B then q is a state that has been introduced in the last completion

step and since a is injective we know that t is the unique normalized configuration
s.t. t —»g* q. Hence, L(B,q) = {t' |t =" t} CR*({t' | t' =p* t}).

(b) We know initially that R and A satisfy the right-linearity condition. If R and A satisfy
the condition because R is right-linear then it will clearly be the case for R and B.
Otherwise, we know that Vg € A:3t € T(F) : L(A,q) C R*(t) and we have to prove
that it is also the case for B.

o if ¢ € A then we know that 3t € T(F) : L(A,q) C R*(t). From lemma 2 we
get that every term recognized by q in B has an ancestor in the terms recognized

by q in A, i.e. Vig € L(B,q) : Ita € L(A,q) s.t. t4 >r* tg. Since, every
term recognized by q in A has a common ancestor t, it is also the case for terms
recognized by q in B (and it is the same ancestor t), i.e. t -R* t4 —R* t5.

Hence, Vg€ B:3t € T(F) : L(B,q) C R*(t).
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o if g & A but q € B then q is a state that has been introduced in the last completion
step. Let s — ¢’ be the new transition whose normalization has led to construction
of state q, i.e. s = Clu] and top,(u) = q. By induction on the height of u we
show that 3t € T(F) : L(B,q) C R*(t):

— if u is a constant, since ¢ € A and « is injective we know that u — q is the
unique transition with q on the right-hand side, hence L(B, q) = {u} C R*(u).

—ifu = f(t1,...,t,) then since a is injective we know that there is a u-
nique normalized configuration f(qi,-..,qn) such that f(q,-..,qn) =5 g
and t; =g~ q; for i = 1...n. For every state q;, ¢ = 1...n, it is possible
to find a unique term t; such that L(B,q;) C R*(t}). If ¢; ¢ A then we use
the induction hypothesis on transition t; — q;. Otherwise, if q; € A, then
the proof is similar to the first case of the proof: by hypothesis we know that
L(A,q;) C R*(t;) and from Lemma 2, we can lift this property to B, i.e.
L(B,q;) CR*(t}). Finally L(B,q) C R*(f(t],--.,t,))

Finally, applying the induction hypothesis to B, we get that AZ‘% =By r CR*(L(B)) C
R(R*(L(A))) = R*(L(A)).

Theorem 3 Let R be a TRS, A be a tree automaton, o be an injective abstraction function
coherent with R and A.

L(ALR) = R*(L(A))

if R and A fulfill the right-linearity condition and if R and A} r fulfill the left-linearity
condition.

Proof 7 Direct consequence of theorems 2 and 1.

This theorem states the general properties of A, 7 but it says nothing about the existence
of a finite A} , i.e. of termination of the completion. In the following, we give some
interesting instances of this theorem as corollaries and some conditions for completion to
terminate. The two first corollaries permits to use automata completion as a rewriting
tool: for any given finite initial language, tree automata completion produces every possible
reachable term. We will show in section 7.3 that using tree automata completion in this
setting provide an efficient alternative to breadth-first search for a particular descendant.

Corollary 1 Let R be a TRS, A = (F,Q, Qy,A) be a tree automaton such that Vg € Q :
Card(L(A,q)) = 1, a an injective abstraction such that Ran(a) N Q = 0.

L(AL ) = R*(L(A))

if Ay r and A satisfy the left-linearity condition.
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Proof 8 Consequence of Theorem 3. Since, A satisfy Vg € Q : Card(L(A,q)) = 1, the
right-linearity condition is trivially fulfilled. Similarly, since Ran(a) N Q = 0, « is trivially
coherent with R and A.

A direct consequence of this corollary is that applying completion to a tree automaton
recognizing one term models exactly rewriting if «a is injective and R is left-linear. Now, let
us show that if any of the above restriction is not satisfied then the completed automaton
no longer recognizes exactly the set of reachable terms.

Example 3 (Left-linearity condition is necessary) Let R = {f(z,z) — g(z), a — b}, let A
be the tree automaton with Q = {qo,q1,¢2} and set of transitions A = {f(q1,¢2) = qo, a —
q1, b = ¢2}. Note that A is deterministic, it recognize a finite language L(A) = {f(a,b)}
and it satisfies Vg € Q : Card(L(A,q)) = 1. However, tree automata completion produces
a unique new transition: b — ¢q1 and the completed automaton does not recognize term g(b)
which is a descendant of f(a,b).

Note that, using determinisation after each step of completion would solve this problem
and would led to a stronger corollary with no restriction on R and no left-linearity condition
checking. However, as it was pointed out above, we also focus here on efficiency of algo-
rithms and this is solution is not usable in practice since it adds an exponential overhead.
Verifying the left-linearity condition (in particular simple left-linearity condition) is easier
and is sufficient in many practical cases (see section 6.3).

Example 4 (Unicity of initial recognized language is necessary) Let R = {f(z) = g(z, )},
let A be the tree automaton with Q = {qo,q1} and set of transitions A = {f(q1) —
do, a — q1, b > q1}. Note that A is deterministic and recognize a finite language L(A) =
{f(a), f(b)}. However, completion produces a new transition g(qi1,q1) — qgo and thus the
completed automaton recognizes terms g(a,b) and g(b,a) which are not valid descendants of

f(a) nor of f(b).

Example 5 (Abstraction function needs to be injective) Let R = {f(a) — g(a,b)}, let A
be the tree automaton with Q = {qo,q1} and set of transitions A = {f(q1) = g0, & = q1}.
Note that A is deterministic, it recognizes a finite language L(A) = {f(a)} and it satisfies
Vg € Q: Card(L(A,q)) = 1. However, tree automata completion produces a new transition
g(a,b) — qo which has to be normalized. Now assume that o = {a — ¢z, b — g2}, then
Normg(g(a,b) = qo) = {a = g2, b = q2, 9(g2,92) — qo}. Thus, the completed automaton
recognizes terms g(a,a), g(b,b) and g(b,a) which are not valid descendants of f(a).

As we will see in section 5 with non regular sets of descendants, using non injective
abstraction functions is a very convenient way to force completion to terminate and build
over-approximations.

The following corollary will be used to give alternative proofs of results for ground
TRSs [7, 3], linear and semi-monadic [6], linear and “decreasing” TRSs [18].
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Corollary 2 Let R be a linear TRS, A be a tree automaton, o an injective abstraction such

that Ran(a) N Q =0
L(ALR) = R*(L(A))
Proof 9 Left-linearity, right-linearity and coherence of Theorem 3 are trivially satisfied.

Lemma 3 (Termination of tree automata completion) If Ran(ca) is finite then completion
terminates and the tree automaton A}, » is finite.

Proof 10 If Ran(«) is finite then the number of new states introduced by completion is
finite. If the number of new states is finite then so is the number of states of A} 5. Since
one can only build a finite number of transitions on a finite set of states (and a finite alphabet
F), the set of transitions in A%, 1 is finite.

Note that for injective abstraction function, proving that the range is finite is equivalent
to proving that the domain is, i.e. that completion produce a finite number of distinct
configurations to be normalized.

Now we give alternative algorithms and proofs of regularity of R*(E) for the classes
described in section 2. For a regular language £ and

R ground [7, 3]: we use corollary 2 (ground TRSs are linear) and an injective abstraction
a with a finite domain {r|, | | = r € R and p € Pos(r) \ {e}}. We can restrict «
to this finite domain since in every new transition f(¢1,...,t,) — ¢ added by the
completion, f(t1,...,tn) is necessarily ground and is a right-hand side of a rule of
R. So it is enough to normalize t1,...,t, and all their subterms to normalize the
transition. Hence, in « for every rule [ — r, every strict subterm of r is mapped to a
new state. Since the domain is finite, so is the range and completion terminates.

R right-linear and monadic [28]: we use theorem 3 and an abstraction function o with
an empty domain which trivially satisfy the injectivity and coherence property w.r.t.
R and A. The domain of a is empty since every new transition produced by the
completion is of the form f(q,...,q,) — g where ¢, ... ,q, are states and do not
need to be normalized. Assume that after each completion step, we determinize the
completed automaton AQ,R. Since the domain of «a is empty, completion ends on
.AZ’R which is determinized. Thanks to determinisation of the last completion step
left-linearity condition is trivially satisfied and since the TRS is right linear, this is
also the case for right-linearity condition.

R linear and semi-monadic [6]: as in the ground case we define « as an injective func-
tion on the finite domain: {r|, |l —» r € R and p € Posz(r) \ {e}}. Similarly, we can
restrict to this finite domain since in every new transition f(t1,...,t,) — ¢ added by
the completion, t; is either a ground term (and can be normalized by a single state)
or is itself a state and thus does not need normalization.
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R linear and “decreasing” [18]: Recall that “decreasing” means that every right-hand
side is either a variable, or a term f(¢1,...,t,) where f € F, ar(f) = n, and Vi =
1,...,n, t; is a variable, a ground term, or a term whose variables do not occur
in the left-hand side. For this class, the proof and abstraction function is similar
to the linear and semi-monadic case except for variables occurring in the right-hand
side but not in the left-hand side. For those variables, it is enough to substitute
them by a specific state gz (7) (which recognize 7 (F)) and add the set of transitions
{flarFy---ar7) = arF | f € F, ar(f) = n} to the transitions of A. As in
the linear and semi-monadic case, we define « as an injective function on the finite
domain: {r|, | I = r and p € Posx(r) \ {e}} where variables in r not occurring in !
are substituted by g7 (7).

R constructor based [27]: in this particular case, there is also a restriction on the initial
language E = {to} where t € T(F,X) is linear and o : X — T(C). Let A =
(F,Q,Qy¢, A) be the tree automaton recognizing E. In this particular case, our aim is
more to give an alternative algorithm rather than a proof of regularity. As in [27], we
focus on the algorithm for left and right-linear TRSs since the left-linearity restriction
can be discarded using determinization of tree automata (as in the right-linear and
monadic case). We use theorem 3 (R is linear) and an injective abstraction function
a such that Ran(a) N Q@ = @, thus left-linearity, right-linearity and coherence are
satisfied. Now, let us prove that the domain of « is finite. Let ();, be the finite
set of states necessary to normalize deterministically to, Qar, be the set of states
necessary to normalize the ground subterms of the right-hand sides of the rules and
Agrg the related set of transitions. In [27], it is shown that for every defined symbol
of t, for every substitution ¢ : X — T(F), for every rewriting l6 —x rd, there exists
a substitution o : X = Qi U Qarg such that 6 —aua,,, lo and r6 —aua,,, T0.
Hence, every critical pair encountered during the completion is of the form: lo — 4 ¢
and lo = ro with 0 : X = Qs U Qarg. Since the number of defined symbols of ¢ is
finite, since Q¢y U Qqrg is finite, then so is the set of every possible critical pair and so
is the domain of a.

In this last case, we did not give an explicit definition of . The good news, and this
is one of the main interest of tree automata completion algorithm in practice, is that it is
useless to define « since it can be constructed automatically during completion. For all the
above classes, since the domain of « is finite and since « is injective, we can construct an
injective a function “on-the-fly” by associating a new state to every new configuration to
normalize during completion. This lead to a fully automatic and terminating completion
algorithm covering all the decidable classes we summed up here.

For building a on the fly, it is enough to start a completion with an empty abstraction
function « and to create a new state ¢ ¢ Ran(a) and a new association ¢ — ¢ in « for
every new configuration ¢ to normalize. If completion terminates (and it is necessarily
the case for all decidable decidable classes we saw) then the completed automaton A »
recognizes R*(E) if R is linear (or if R is right-linear and R and A} 5 satisfy the left-
linearity condition). Note that this algorithm even covers some decidable cases that are not
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included in the above decidable classes. A very simple example is TRS R = {f(s(z)) —
9(s(x)), g(s(z)) — h(s(z))} and initial language E = {f(s*(a))}. The set R*(E) is clearly
regular but this example is outside of the decidable classes we saw. However, this TRS is
linear and completion terminates with an injective abstraction function built on the fly so

we have a proof of regularity of R*(E) and it is recognized by the completed automaton
*
a,R*
Here is a first example showing how this result can be used with the Timbuk tool imple-

menting usual operations on the tree automata and the completion algorithm.

Example 6 Let us consider the following example given in Timbuk syntax:

Ops 0:0 s:1 plus:2 even:1 odd:1 true:0 false:0
Vars x y z
TRS R
plus(0, x) -> x
plus(s(x), y)-> s(plus(x, y))
even(0) -> true
even(s(0)) -> false
even(s(x)) -> odd(x)
odd(0) -> false
odd(s(0)) -> true
odd(s(x)) -> even(x)

Automaton A
States gf qodd geven gpo gpe
Final States qf

Transitions
even(gpo) -> qf even(qgpe) -> qf
plus(qodd, qodd) -> gpo s(qeven) -> qodd s(qodd) -> qeven
plus(qgeven, qeven) -> gpe 0 -> geven

Automaton Reach
States qf
Final States qf
Transitions

false -> qf

Where R defines the plus’ function and the ‘even’ and ‘odd’ predicates on the naturals,
and the tree automaton A defines the language E = {even(plus(ti,t2))} where t1,t2 are
either two even or two odd naturals. This example is in Réty’s class. The language R*(E)
is reqular and can be automatically computed by Timbuk within some milliseconds:

Automaton current
States gnew3:0 gqnew2:0 gqnewl:0 gnew0:0 qf:0 qodd:0 geven:0 gpo:0 gpe:0
Final States qf

Prior
plus(qodd,qodd) -> gnew3 plus(qeven,qeven) -> gnew2
plus(qodd,qeven) -> gnew0 plus(qeven,qodd) -> gnewl

Transitions
even(gpo) -> qf even(gpe) -> qf plus(qodd,qodd) -> qpo
s(qeven) -> qodd s(qodd) -> qeven plus(qeven,qeven) -> gpe
0 -> geven s(qnewl) -> gpo plus(qgeven,qodd) -> qnewl
s(qodd) -> qpe 0 -> gpe s(qnew0) -> gpe
plus(qodd,qeven) -> gnew0 s(qeven) -> qnewl s(qnew3) -> gnewl
plus(qodd,qodd) -> gnew3 s(qnew2) -> gnew0 plus(qeven,qgeven) -> gnew2
true -> qf odd(qnewl) -> qf odd(qodd) -> qf
odd(gnew0) -> qf s(gnewl) -> gnew3 0 -> gnew2
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s(qodd) -> qnew2 s(qnew0) -> gqnew2 even(qeven) -> qf
even(qnew2) -> qf even(qnew3) -> qf
Note that the specific subset of transitions denoted by Prior represents in this case the

injective abstraction function a that has been built automatically. If we compute the inter-
section between R*(E) and the Reach automaton recognizing the term true, we obtain an
empty automaton:
Intersection with Reach gives (the empty automaton):
States
Final States

Transitions

which means that false is not reachable. Thus we have proved that even(plus(ti,ts))
where t1 and t2 are either both even or both odd numbers cannot rewrite to false. However,
we are still not sure that it always rewrites to true. This can be done in the following way:
Timbuk can compute the tree automaton recognizing IRR(R) which is:

Automaton Nf
States q3:0 q2:0 q1:0 q0:0
Final States q0 ql q2 q3

Transitions
false -> q3 true -> q3 odd(q3) -> q3
even(q3) -> q3 plus(q3,q3) -> q3 0 -> q2
plus(q3,q2) -> g3 s(q3) -> ql s(q2) -> q0
s(q0) -> q1 s(ql) -> ql plus(q3,q0) -> q3

plus(q3,q1) -> q3
and the intersection between R*(E) and IRR(R) gives R'(E):

Intersection with Nf gives (not empty):
States q0:0

Final States qO

Transitions

true -> q0

which means that R'(E) = {true}. Hence, every term of E necessarily rewrites to true®.

5 From exactness to approximation

One of the main interest of this algorithm is the ability to switch on the fly from exact
to approximate computations. Using approximation may be necessary in several contexts.
When the construction of R*(E) does not converge (because it is not regular) approxima-
tions force completion to terminate on an automaton over-approximating R*(E). When the
completion is too long (R*(E) is regular but too big) approximations permit to accelerate
completion. In general completion diverges because it produces an infinite set of transitions
used to recognize an infinite set of new distinct reachable terms. The idea behind approx-
imation is to explicitly merge together (or to identify) some terms in order to limit the set
of new transitions necessary to recognize them.

3Since R is terminating, every term of E has a normal form
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Merging terms together is similar to defining an equivalence class on terms. In order to
merge together two terms s and ¢ in a common equivalence class, an usual way is to use
an equation s = t. For instance, in order to build an approximation where terms 0 and
s(0) are equivalent, it is enough to achieve a completion with an additional approzimation
equation 0 = s(0)*. Similarly, to build an approximation where every natural number
is abstracted by its parity (even or odd) it is enough to perform a completion with an
additional approximation equation s(s(z)) = z.

In Timbuk, for applying an approximation equation [ = r to an automaton 4, we simply
search for Q-substitutions o : X — Q and states ¢ € Q such that lc —4* gq. Then, for

every state ¢’ different from ¢ and such that ro —4* ¢', we merge together ¢ and ¢/, i.e.

every occurrence of state ¢ in A is renamed by ¢’ (or ¢’ is renamed by ¢ since the recognized
language will be the same). Now, let us give a small example of what can be done using
such approximations.

Example 7 Let us consider the following Timbuk specification:

Ops 0:0 s:1 plus:2 times:2 square:1 true:0 false:0 even:1 odd:1
Vars x y z
TRS R

plus(0, x) -> x

plus(s(x), y)-> s(plus(x, y))

times(0, x) -> 0

times(s(x), y) -> plus(y, times(x, y))

square(x) -> times(x, x)

even(0) -> true
even(s(0)) -> false
even(s(x)) -> odd(x)
odd(0) -> false
odd(s(0)) -> true
odd(s(x)) -> even(x)

even(square(x)) -> odd(square(s(x)))
odd(square(x)) -> even(square(s(x)))

Automaton AO
States q0 ql q2 q3 qfl
Final States gfl
Transitions
0 -> q0 square(q0) -> g2 even(q2) -> gfl

Automaton Reach
States q0
Final States q0
Transitions
false -> q0

where E = {even(square(O))}. Note that even(square(O)) may be rewritten by R
into odd(square(s(0))) and into even(square(s(s(0)))) and so on. Moreover each of these
terms may be rewritten by the definition of ’square’, even’ and ‘odd’. If we try to build the
abstraction function o on the fly using new states, the completion diverges. After the 9-th
step of completion, Ag,n has 201 transitions and completion is still not over. In order to
force completion to terminate, it is possible to add an approximation equation:

4This in fact will have an even stronger effect since it will collapse together all the natural numbers.
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Type additional equations and end by a dot *.7:

s(s(x))=x.

and this merges together 23 states of Ag,R and it now have only 104 transitions. Then
completion continues and approximation equation is applied after every step until we reach
step 12 where A2, = AL’n and thus A?p = A% . This last automaton has only 25
transitions but it 1s complete w.r.t. R. Then if we compute the intersection between A7
and the automaton Reach recognizing only the term ’false’ we obtain an empty automaton.
Thus, we have proved that for all natural number n, if n is even (resp. odd) then so is n>.

Timbuk also provide another tool to describe approximations: approximation rules which
are more related to automata structure and thus more precise. Approximation rules are nec-
essary when approximation equations are not expressive or precise enough to build adequate
approximations. Approximation rules also offer more control on the domain and the range
of the abstraction function « and thus let the user ensure termination of the completion
anytime he needs to.

The general form for approximation rules is the following: [s — z] = [l = z1,... ,l, —
x,] where [s — z] with s € T(F U Q,X) and z € XU Q is a pattern to be matched over the
new transitions ¢ — ¢’ obtained by completion and [l; — z1,...,l, = z,] are rules used
to normalize t. The syntactical constraint for those rules is the following: I; € T(FU Q, X)
and either z; € Q or z; € Var(l;) U Var(s) U {z}. To normalize a transition of the form
t — ¢', we match s on t and x on ¢, obtain a given substitution ¢ and then we normalize
t with the rewrite system {lyc — mo0,...,l,0 = r,0} where ri0,... ,r,0 are necessarily
states. For example, normalizing a transition f(h(q1),g(g2)) — g3 with approximation rule
[f(z,9(y)) = 2] = [g(u) = 2] will give a substitution ¢ = {z — h(q1),y — g2,z — ¢3}, an
instantiated set of rewrite rules [g(u) — g3]. Thus, f(h(q1),9(¢2)) — g3 will be normalized
into a normalized transition g(¢g2) — ¢3 and a partially normalized transition f(h(q1),q3) —
q3. Some examples of the use of approximation rules in practice are given in section 6.3.

6 Application examples

In this section, we present three examples of application for R*(E) and R'(E).

6.1 Sufficient completeness

This property has already been much investigated [4, 21, 23, 19], in the context of algebraic
specifications. We give here a definition of sufficient completeness of a TRS on a subset of
the set of ground terms E C T (F).

Definition 11 A TRS R is sufficiently complete on E C T(F) if Vs € E, 3t € T(C) s.t.
s =% t, where C is the set of constructors in F.
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Usual methods for checking this property on algebraic specifications are either based on
enumeration and testing techniques [21, 23, 19] or on disunification [4]. We propose, here,
to check this property thanks to the set R'(E).

Proposition 3 If the TRS R is weakly normalizing on E C T(F), and R'(E) C T(C),
then R is sufficiently complete on E.

This comes from the fact that since R is weakly normalizing on E, for all terms s € E,
3t € IRR(R) s.t. s =% t. Moreover, t € R'(E). Since R'(E) C T(C), we have t € T(C).

Example 8 Looking back to the ezample 6, one can remark that R'(E) = {true} C T(C)
hence, the TRS R is sufficiently complete on E.

On the other hand, sufficient completeness on E does not necessarily imply that R'(E) C
T(C). For example, let R = {f(a) — a, f(a) = f(b)}, C = {a,b} and let E = {f(a)}. Then
R is sufficiently complete on E, since f(a) = a, but R'(E) = {a, f(b)} € T(C). Note that
using tree automata permits to give a very precise description of the domain on which a
function is complete, more precise that what can be done with simple types for instance.

6.2 Strong non-termination

Definition 12 (Strong non-termination) Let E be a set of terms and R be a TRS. The
TRS R is said to be strongly non-terminating if there exists no finite R-rewrite chains from
terms of E.

Theorem 4 A TRS R is non-terminating on E is R'(E) = 0.

Proof 11 Obvious, since R'(E) = () means that every term of E is reducible, and so are
every terms R-reachable from E.

When the TRS represents some parallel processes, the non-termination property is close
to the deadlock-free property. Let us show a very simple example of this aspect.

Example 9 Assume that we have two processes each one having a list of elements to count.
Assume that the counter is a shared variable that should not be accessed by the two processes
at the same time. Fach process has two possible states busy’ if it accesses to the shared
counter or ’free’ otherwise. A similar flag is associated to the shared counter in order to
protect it from a concurrent access. The behavior of this system is described by the following
TRS R where z,y, z,u are variables, Proc represents a process, cons and null are used to
build the lists and S represents a configuration of the system:

Proc(free,cons(z,y)), z, free,u)
Proc(busy, cons(z,y)), z, busy, u) Proc(free,y), z, free, s(u)
)

S( S(Proc(busy, cons(z,v)), z, busy, u)
S( S(
S(z, Proc(free,cons(z,y)), free,u S(z, Proc(busy, cons(z,y)),
S( S(
S(

u
)

busy,u)
z, Proc(busy, cons(z,y)), busy, z, Proc(free,y), free, s(u))

_)
%
_)
u) =

Proc(z,null), Proc(y,null), z,u) = S(Proc(z, null), Proc(y, null), z,u)
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The initial language E is recognized by the following tree automaton A whose final state
is go and set of transitions is:

S(q1,41,92,93) > q0  free—¢q  0—g3
Proc(ge,q4) = q1 null — q4 cons(qs,qs) — qa

The set E contains terms of the form S(Proc(free,ly), Proc(free,ls), free,0) where l; and
ly are lists of 0. Using an ezxact abstraction function o the completion does not terminate. On
the 7-th completion step the completed tree automaton AL,R contains 41 transitions. In order
to make the completion terminate, we choose to add an approximation equation s(z) = x
which merge some states and transition of A;R together so that the tree automaton contains
only 19 transitions. Finally Ai,R = A;R, hence A% p = AL,R. The automaton Ay,  over
approzimating R*(E) is the following:

Ops S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 0:0

Automaton current

States qnew10:0 qnew9:0 qnew8:0 gnew7:0 gnew6:0 gnew5:0 gnew4:0
qnew3:0 gqnew2:0 gqnewl:0 gnew0:0 q0:0 q1:0 q2:0 q3:0 q4:0

Final States qO

Prior

s(qnewl0) -> gnewl0 Proc(qnewb,q4) -> gnew4 free -> gnewb

Proc(qnewl,gnew3) -> qnewO cons(qnew10,q4) -> gnew3 busy -> gnewl
Transitions

S(ql,q1,92,qnewl0) -> q0 free -> q2

o -> gnewl0 Proc(q2,q4) -> qi

null -> q4 cons(qnew10,q4) -> g4

busy -> qnewl cons(qnew10,q4) -> gnew3

Proc(qnewl,qnew3) -> gnew0 free -> gnewb

Proc(gnew5,q4) -> qnewd S(qnew0,qnew4,qnewl,qnew10) -> q0

S(qnew0,ql1,qnewl,qnewl10) -> q0  S(gnew4,qnew0,qnewl,qnewl0) -> qO0
S(ql,qnew0,qnewl,qnewl0) -> q0  S(qnew4,ql,qnew5,gnewl0) -> qO0
S(ql,qnew4,qnew5,qnewl0) -> q0  S(qnew4,qnew4,qnew5,qnewl0) -> qO0
s(qnew10) -> gnewlO

Now, if we compute the intersection with [ RR(R) we obtain an automaton over-approximating
R'(E). The automaton obtained by intersection recognizes an empty language. Hence, we
also have R'(E) = 0 and thus R is strongly non-terminating on E.

6.3 Reachability testing

In this part, we focus on the applications of negative reachability testing, i.e. using over-
approximations of R*(E) to show that s Ar* t. The positive result (i.e. the exact cases for
R*(E) which permits to show properties of the form s —z* t) of section 4 is more recent

but it should quickly find some applications in theorem proving on equational theories and
in verification.
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Several experiments have been done on negative reachability testing for proving prop-
erties over functional programs [11], communicating parallel processes [15], but the most
significant experiment has been done on cryptographic protocol. First, Timbuk has been
used to prove secrecy and authentication properties on the Needham-Schroder Public Key
Protocol which is a typical case study for verification methods [12]. More recently it was
used to prove an anti-replay property on a protocol of the SmartRight system designed by
Thomson Multimedia for digital rights management [13].

In this setting, the used TRSs are highly non-terminating and user defined approximation
reveals to be a very powerful and flexible way to over-approximate the set of reachable
terms. In those works, using over-approximations have led to semi-automatic proof of some
properties that require induction, lemmas and user expertise when they are proved in a
proof assistant.

Let us show some particular aspects of the TRSs and approximation rules used for ver-
ifying cryptographic protocols. Those protocols are supposed to be secure in an hostile
environment where an intruder stores every message and every key he sees, decrypts some
parts, forges new messages with the parts he has and sends every possible message in it-
s store in order to attack some agents. We can model the intruder store using a term
built with an Associative Commutative (AC) symbol store, where for example the term
store(a, store(store(b, a), c)) represents the multiset {a,a,b,c}. The terms pubkey(x),
privkey(x), encr(k, c), and cons(x, y) represent respectively the public and private key of
an agent x, the encryption of ¢ using the key k and a message composed of two parts x and
y. We can model some of the message constructions that an intruder can do on its store,
like it is done for example in [26]:

(* The intruder can encrypt any stored component with any stored key *)
store(z, pubkey(x)) -> store(encr(pubkey(x), z), store(z, pubkey(x)))
store(z, privkey(x)) -> store(encr(privkey(x), z), store(z, privkey(x)))

(* The intruder can decompose or compose any component he has *)
store(cons(x,y), m) -> store(store(cons(x,y), m),store(x, y))
store(x, y) -> store(cons(x, y), store(x,y))

(* The intruder can decrypt a message if he has the related key *)
store(encr (pubkey(x), z), privkey(x)) ->

store (encr(pubkey(x), z), store(privkey(x), z))
store(encr(privkey(x), z), pubkey(x)) ->

store(encr(privkey(x), z), store(pubkey(x), z))

The rules encoding the AC behavior of the store symbol are also necessary:

store(x, y) -> store(y, x)
store(store(x, y), z) -> store(x, store(y, z))

store(x, store(y, z)) -> store(store(x, y), z)

There are two particular things to remark on those rules. First, they are all non termi-
nating, we thus have to define strong approximation rules in order to restrain divergence
of the completion. Second, rules for decryption are non left-linear and we must check the
left-linearity condition on the TRS and the completed tree automaton.

Now, let us show some of the approximation rules we use in this particular case. When AC
symbols are simply used for representing sets of objects, a quite natural approximation rule
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for the store symbol is the following: [store(x, y) -> z] -> [x -> z y -> z]. This
rule normalizes every new configuration of the form store(s, t) -> q (where s and t are
not states) into configurations s -> q, t -> q and store(q, q) -> q- The intuition behind
this rule is that every ’subset’ x and y of the store store(x, y) should be recognized by the
same state as store(x, y). Similarly the approximation rule dealing with the decryption
rules is of the form: [encr(pubkey(qA), y) -> z] -> [y -> qAsecret] where qA is the state
recognizing the agent A and gAsecret is a state used to recognize the language of terms
protected by the public key of A and thus that should remain secret during the protocol
execution.

Those simple approximation rules permit to restrain the divergence of rewriting into
a finite (and approximated) set of reachable terms recognized by a finite tree automaton.
Then, what remains to be proved is that the completed automaton and the TRS fulfills
the left-linearity condition. This can easily and automatically be checked using the simple
left-linearity condition (see definition 8). During completion, ensuring this property is easy
since every non left-linear variables of the TRS match agent names (like in the above rules).
Hence, it is enough to build an approximation such that agent names are deterministically
recognized® in order to ensure the simple left-linearity condition.

7 Implementing tree automata completion

In this section, we briefly present the Timbuk tool [14] in which the tree automata completion
is implemented. We also discuss the efficiency of the matching algorithm over tree automata
used to find critical pairs during completion. Timbuk is a tree automata library providing
basic primitives on non deterministic tree automata like intersection, union, complement of
languages, determinisation of tree automata, construction of ITRR(R) for left-linear TRS,
as well as the tree automata completion algorithm with some tools for building abstraction
function by hand or automatically. The current distributed Timbuk 1.1 library is written
in Ocaml [22], contains nearly no specific optimisation, can only build over-approximations
and provide only approximation rules (see section 5) to construct abstraction functions by
hand. Now, we are finishing version 2.0 which includes some improvements on the matching
algorithm described in the next sections, some new automatic normalization strategies (in
particular an exact one corresponding to the results of section 4) and the approximation
equation facility described in section 5. Timbuk 2.0 is still written in Ocaml and will soon
be available.

Let us now present the basic matching algorithm and the optimised one. Recall that the
matching problem, for a given rewriting rule I — r and a tree automaton A = (F, Q, Qy, A),
consists in computing all the Q-substitutions ¢ such that there is a state ¢ € Q and lo =} q.

5For instance by fixing a(X) = gx for every agent X.
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7.1 Basic matching algorithm

This algorithm proposed in [16] is close to a standard matching algorithm on terms. It
is defined using deduction rules over specific formulas called matching problems. In the
following, a matching problem is a quantifier-free first order formula build on literals L, s<¢
where s € T(F,X), ¢ € T(FUQ), and closed by the connectives V and A. An empty
conjunction A, is a trivially true matching problem.

Definition 13 Let ¢, ¢1, 2 be matching problems, s € T(F,X) be a term, ¢ € T(F U Q),
and A = (F,Q,Q,A) a tree automaton. A solution to the matching problem ¢ is a Q-
substitution o € X£(Q, X) such that

o if p=sdc, then so = ¢, or
o if o = P1 A ¢po, then o is a solution of ¢1 and a solution of ¢o, or

o if ¢ = P1 V @2, then o is a solution of ¢1 or a solution of ¢=.

We assume that matching is applied on automata without epsilon-transitions. An epsilon
transition is a transition of the form ¢ — ¢’ where ¢ and ¢’ are states. Any set of transition
A U{q — ¢'} can be equivalently replaced by AU {c = ¢’ | ¢ = g € A}. Now let us give
the matching algorithm.

Definition 14 Let A = (F,Q,Qyf,A) be a tree automaton, f € F, ar(f) = n, g € F,
ar(g) = m, ¢,q1,---,qn € Q, ¢i,.-.,q¢, € 9O, ¢1,...,¢qa € T(FUQ), $,51,...,5n €
T(F,X) and ¢1, d2, 3 be non-empty matching problems. The matching algorithm consists
in normalizing any matching problem of the form s < q by the following set of rules.

f(sla"' ,Sn)ﬂf(th,,%)

Decompose
s1dguAN...Aspdgn
S1,...,80)g(d},...,q
. Florseev50) D9(ahs- - di)
. sdq
Configuration

s<dcyV...Vs<dcgV L
ifsg X, forallc; e T(FUQ)i=1...d such that ¢; = q € A.

Moreover, after each application of any of these rules, matching problems are normalized by
the following set of rules &:

¢1 A ($2V ¢3) o1V L $iA L
(1 A d2) V (1 A b3) o1 1
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Correction, completeness and termination of the algorithm comes from the following theorem
of [16].

Theorem 5 Given s € T(F,X), and q € Q, every matching problem s < q has a normal
form such that

o if it is L then there is no Q-substitution o s.t. so =, q,

o if it is empty, then for all Q-substitution o, soc =4, q,

je1 25 94;, where zj €

Xandgie Q andoy ={zj —»qj|j=1...m},...,0n ={zf > g} [j=1...n4}
are the only Q-substitutions s.t. so; =} q.

e otherwise, the normal form is a disjunction szl i s.t. ¢i = N\

Thanks to this algorithm, for a given rule I — r and a given state ¢, it is possible to find
every O-substitution o s.t. lo =} q.

Example 10 Let A = (F,Q, Qf7A>) where F = {f,g,a}, Q = {qo0,q1}, Q,f = {qo}
and A = {f(¢1) = qo,9(¢1) = qi,a = qi}. The language L(A) = {f(9*(a))}. Let
R = {f(9(z)) = g(f(z))}. If we apply matching on f(g(z)) < qo, we obtain the follow-
ing deductions, where the name of the applied rule is given on the right, and normalization
with simplification rules are omitted:

f(g9(z)) Qo rule Configuration
fg(z)) < fla1) rule Decompose
g(z) dqs rule Configuration
g(z) Jg(q) V g(z) Qa rule Clash
9(z) <g(q1) rule Decompose
zdq

Let o be the Q-substitution 0 = {x > ¢1}. Thus, we deduced that lo = f(g(q1)) =4 .

7.2 An optimised algorithm

We propose here a more efficient algorithm: we represent a rewriting system R with a tree
automaton A, which will permit us to compute all the critical pairs between R and a
regular language A thanks to A N Ag. First, for every term ¢t € T(F,X), we define a
tree automaton which language is exactly {¢} using abstraction and normalization functions
defined in section 3.

Definition 15 Term automaton Lett € T(F,X), and consider S the set of all the subterms
of t, Q; a set of state, and o : S — Qy an injective abstraction function. The term automaton
for t is defined by Aai = (F, Qs, Qis, As) where Qpy = {topa(t)} and Ay = Norma(t —
topa (t))
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Proposition 4 Consider t € T(F,X), a an injective abstraction and A, its term au-
tomaton,

L(Aaz) = {t}

Proof 12 The proof is an inductive reasoning over the depth of t:

o If depth(t) = 1 then Aqt = (F, {topa(t)}, {topa(t)}, {t = topa(t)}), and L(Aat) =
{t}
o Let us assume that for all terms t such that depth(t) < n then L(Aq:) = {t}.

Now, if depth(t) = n+ 1 and Aoy = (F,U;,csitopa(ti)}, {topa(t)}, Norma(t —
topa (t))), necessarily t is of the form f(t1,...,tn). Thanks to induction hypoth-
esis, all subterms t; are recognized by states top,(t;) then t = f(t1,...,tn) —a

f(topa(ti), ... ,topa(tn)) —>a topa(t), and L(Aq,:) = {t}.

Let us now define the automaton A = Ay + N A which recognizes the solutions of the
matching of ¢ on A.

Definition 16 Substitution automaton Let A = (F, Q, Qf,A) be an automaton, a an in-
jective abstraction function and An; = (F, Q¢, Qpt, A¢) the automaton of t € T(F,X), we
define An = (F, On, Qf,n, An) the substitution automaton of t in A by:

e On=09;xQ
e Qpn={a(®)} xQ

[ ] Aﬂ =
{far,d1),--- (a0, q)) = (Gnt1,@nqa) | @i € Q1 43 € Q,
f(qla"' 7QTL) _)q”.—l—l S At; f(qll7 7Q;L) _)q;L-‘rl € A}
U{(:Eu(I) = (42,9) | T—qr €Ay, q€ Q}

The set, of substitution solution for An is defined in the following way.

Definition 17 Let A = (F, Q, Qf,A) be an automaton, t a term, A; o its automaton and
An the substitution automaton of t in A. Let s € T(F,X x Q), if s is recognized by a state
of An then s defines a set of Q-substitutions o:

e if s=(x,q), then s defines the Q-substitution {x — q}
e if s=(a,a) then s defines the empty substitution

o if s = f(s1,...,8n), then if {0;;}ic1; are the substitutions associated to sj, s define
the set of substitutions T = 01,4, 0...0 0, .
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Example 11 Let A; be the automaton for term f(x,g(y)). Let As be the automaton rec-
ognizing the language {f(a, g*(b)), f(g*(b),a). Let As be the intersection automaton (An).
This last automaton recognize a unique term f((qx,ql),9((qy,q3)) which defines the Q-
substitution o = {x — q1, y — ¢3}

A1 U)ith A2 ’U)ith A3 with

Q= {qz,qy,qf,q9} Q ={q1,42,43, ¢4} Q = {qz,qu,qf,q9} x {41, 42,3, ¢4}

if ={qf} Q5 = {¢4} if ={qf} x {41,492, 43, ¢4}
y = q a — ql (y,42) — (gy,92)
gley) — aqg b — q2 (y,43) — (gy,93)
r — qx 9(@2) — 4¢3 (z,q1) — (qz,q1)
flax,q9) — qf 9(@3) — q3 (z,¢3) — (q2,93)
flal,¢3) — ¢4 9((ay,q2)) — (g9,42)
f(g3,q1) — ¢4 9((qy,q3)) — (g9,43)
f((gz,q1),(q9,93)) — (qf,q4)
f((gz,¢3),(q9,91)) — (qf,q4)

Theorem 6 Let A = (F,Q,Qf,A) be an automaton, | — r a rewriting rule, and An =
AN Ay, if A respects the left-linearity condition induced by | — r then the set of Q-
substitutions defined by all the states (a(l),q) in An is exactly the set of Q-substitutions
{oi}ier such that lo; =% q in A.

Proof 13 1. First assume that {o;} is a set of Q-substitutions defined by a term s such
that s =* (a(l),q) in An we prove that lo —* q with an inductive reasoning over the
derivation s =" (a(l),q):

o If s — (a(l),q) then depth(s) =1 and
— either s = (a,a) where a is a constant, we have (a,a) — 4, (a(a),q) then
l=a andl —Aa q, s defines the substitution of empty domain.
— or s = (z,a) we have also (z,a) =4, (a(a),q) then | = z, and s defines
o ={z~ q}, we havelo =a and a — q

o Assume now that for all set {o;}icr defined by a term s of An verifying s —*
(a(l),q) for every k <n thenlo; =* q in A.

e Consider now {7;}icr defined by a term s such that s =™ (a(l),q). Clearly s is
a term on the form f(s1,...,sn), where s; = (l;,q;) is associated to {T;}icr such
that 7; = 01,4, © ... 0 0n, where o;;, Tange over the set of substitutions defined
by the term s;.
f(s1,-..,8n) 24, (a(l),q) thenl is of the form f(ly,...,l,) and there exist-
s some states q; verifying s; =4, (a(lj),q;). We use the inductive hypothesis
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s; —F (a(lj,qj) with k < n, then ljo; —* g; in A and for all 7; there exists a
combination of o;; verifying lr; = f(lio1s,, ... ,In0ni,) = flq1,--- ,qn) 2A ¢

2. We use now a structural induction over l to prove that if lo =% q then o correspond
to a term s in L(An):

()

(b)

(c)

if l is a constant a

On one hand a — 4, a(a) and on an other hand there exists a state q in Q such
that a = 4 q then (a,a) =4, (a(a),q) and (a(a),q) is a final state of An, An
recognized (a,a), that defines the empty substitution.

If | is a variable x

x — 4, a(z) and dll the terms recognized by A may be an instance of x, we have
{(z,q) = (a(z),q)lqg € Q} C An and Oy = {a(x)} x Q we have defined all the
Q-substitution {{x — q}|q € Q}.

If 1 is on the form f(l1,...,1,)

A recognized lo then there exist some states q,q1, - - . qn in A such that f(qu, ... ,qn) =%

q, lic =4 q;- Assume that s = f((a(l1),q1),---,(a(ln), qn)), there exists ¢; in A
and q; recognized t;o then thanks to induction hypothesis there are some terms s;
in An that define some substitutions o; verifying c =o10...0,. Ifoy0...0, is
not defined then lo is not recognized by A, contradiction ; else o1 o ...0, exists
and An recognized s = f(s1,...,8,) and s define o.

7.3 Matching in practice

Using the optimized matching algorithm in Timbuk divided by 6 the computation times
for completion without increasing memory usage. In this part, we want to give an idea of
the efficiency of the completion procedure with an optimized matching algorithm. Since as
far as we know, there exists no other implementation of a similar algorithm, we chose to
compare with a rewriting tool. Elan. Elan [2] is a very fast implementation of rewriting
where rewrite rules are directly compiled into C code. Given a term rewriting system R, we
chose to use Elan and Timbuk for proving s —x* t by breadth-first search. The breadth-first

search strategy for Elan was given by P.-E. Moreau. For using Timbuk to prove reachability
starting on a single term s, we use the exact case (and Corollary 1) and automatic abstraction
function construction.

Example 12 Let R be the following TRS:
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plus(0,z) — x

plus(s(z),y) = s(plus(z,y))
mult(0,z) — x

mult(s(z),y) — plus(y, mult(z,y))
fact(O) — s(0)

fact(s(z)) = mult(s(x), fact(z))

To check if fact(s*(0)) =r* s2*(O) Elan takes only some milliseconds where Timbuk takes
more than 6 seconds. Similarly, to check if fact(s®(0)) —-r* s120(0) Elan takes less than

a second and Timbuk takes more than 11 minutes.

The above example and computation time are clearly not in favor of Timbuk. However,
the above TRS is terminating and confluent and thus the rewriting tree is narrow. Now
let us consider another example where R is neither terminating nor confluent TRS and the
rewriting tree is wider.

Example 13 Let R be the following TRS:
f(z) = f(s(x))
s(s(z)) = f(z)
f(s(@)) = f(f(2))

To check if f(a) -r™ f®(a) Elan takes more than 18 seconds where Timbuk takes only 1
second for the same task. Similarly, to check if f(a) —-r* f%(a) Elan takes more than 10

minutes, where Timbuk takes only 2 seconds.

Timbuk is clearly not as fast as Elan for rewriting but Timbuk takes advantage of tree
automata structure (which provide some kind of sharing). Thus, for achieving reachability
testing, when finite sets of very similar terms are rewritten, and when systems are neither
confluent nor terminating, Timbuk obtains some results close or even better than those
of Elan. This shows that for, reachability testing over non-terminating or non confluent
term rewriting systems, the data structure used to represent sets of terms and the related
matching algorithm over this structure plays a central role in the efficiency of the search
algorithm. Note that the above well represent the kind of TRSs that can be encountered
when using reachability testing on cryptographic protocols, for instance, where rewrite rules
are highly non terminating (see section 6.3).

8 Extensions

In this section, we propose an extension of the completion algorithm for dealing with con-
ditional term rewriting systems (CTRS for short). A natural way to compute the set of
reachable terms for CTRSs is to encode CTRSs into TRS and use the tree automata com-
pletion algorithm for TRS. However, as shown in [10], a completion algorithm adapted to
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the specific case of CTRS is likely to give some better results in practice. This algorithm
specific to the conditional case is described in this section.

A conditional term rewriting system (CTRS) over a set of ground terms 7 (F) is a set
R of conditional rules (r)t; — t, if cond, where t;,t. € T(F,X) and cond designates a
conjunction of conditions that must be checked before rewriting. In this paper, conditions
are pairs of terms denoted by ¢; | ¢3 where ¢1,¢3 € T(F, X), (Var(c1)UVar(er)) C Var(t);
these are join conditions. Such a condition is said to be true for a substitution o if there
exists a term u € T (F) such that ¢;0 and coo can be both rewritten by the CTRS R into
u in a finite number of steps. Then, the rule ¢; — ¢, can be applied to the term t € T(F)
at position p as for a TRS. —% also defines a rewriting relation on 7(F) and thus the set
of reachable terms R*(E) is defined as in the non-conditional case.

For recognizing conditions in the tree automata and compute separately their value, we
will need separate states as well as the following lemma ensuring that completion builds
automata where every states (not only final ones) are closed by rewriting.

Lemma 4 [16] Let R be a left-linear TRS, A’ be the result of computation of the completion
algorithm applied to a set E = L(A), then A’ is closed by rewriting w.r.t R, i.e: if l =% r
and 3q € Q4,1 € L(A,q) thenr € L(A,q).

8.1 Completion over regular set of terms for a CTRS

We first define a rewriting relation ¢ ﬂ)n s meaning that to rewrite ¢ into s, it is necessary
to evaluate at most n recursive conditions (n is called the depth of the derivation in [9]).

Definition 18 For a CTRS R with a subset R,. of non conditional rules, we note ﬂ)n
the relation defined by:

10
L) —)R:—)Rnc

ea b a S bordo substitution,p € Pos(a) and (I = r if s L t) € R such
* *

that a|p, = lo,b = a[ro], and Ju € T(F) such that so %R u and to ﬂ*n u.

*
Note that | —% r means that 3n € N s.t. | ﬂ*n r.

Let Ap be the tree automaton whose language E is the entry set of terms for the left-
linear CTRS R. Let us consider the following algorithm, where we complete at each step the
automaton A; = (F, Q;, @y, A;) to an automaton A; ;. The set of state Q; is partitioned
into three set of states: Qo U Qs new U Qi cond- Qo is the set of states of Ay, Qi new is a set
of states produced by transition normalization and indexed by naturals, Q; conq is a set of
conditional states indexed by terms of 7 (F,®;). Let a be an abstraction function. We use
the following algorithm :

1. from A; = (F,Q;, Qf, A;), the ith step of completion, we compute the automaton
Air1 =(F, Qit1, Qf, A1) with the initialization: Q;y1 = Q;, Ajy1 = A;.
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2. Let us consider each critical pair without considering the condition of the rule. A pair
(¢,7) of Q x T(F) is said to be critical for a rule («) either non conditional I — r,
or conditional [ — 7 if ¢; | co where o € £(Q, X) is a regular language substitution
o ={T1 = i;, T2 = iy, -+ ,Tn = Gi, }, Where {x1,22,... x5} =var(l), if lo =} ¢
and ro A}, ¢

3. for all of these critical pairs, (@) is either:

e a conditional rule: I — 7 if ¢; | ¢3. There are two possibilities

— there are no state indexed by ¢;0 or cy0 in the conditional subset of states of
Qi (gero & Qi,cond OF Geso & Dicond), then we create these two states (or the
one missing) and we add to the automaton A;; the following transitions :

Normg (16 = qeyo) U Normy(c20 = geyo)

— there exists two states ., , and q.,, in Q;. We have to calculate £L(A;, ge,0)N
L(Ai,qer0)- If this set is empty, the condition is, for this completion step,
considered as false. If it is not empty, then the condition is true and we go
on processing the critical pair as if the rule were not conditional.

e a non conditional one (or it is conditional and the condition has been found true
in the previous step), then we add to the automaton the transitions Norm,(re —

q)-

4. the new automaton A; 1 = (F, Qit1, Qf,i+1, Ait1) is the result of one step of com-
pletion of A;.

If there exists ¢ € N such that A; = A;4+1, then A; is the result. Remember that each time
we add a transition to the automaton, we have to normalize it with new states (indexed by
naturals and added in Q; new) and then the opportunity to make an approximation in order
to limit the number of new states created for the normalization. As in the non conditional
case, this completion may not have a fixed point: we may produce infinitely many new
states. However, approximation techniques similar to those of section 5 apply: let Q.onq be
the set of new states g.,, and g.,, produced by conditions, Q.. the set of new states used
to normalize the transitions, one may restrict in any way the set Q¢ to force completion
to terminate. Note that there is no need to limit the number of states of Q.ong, since the
number of possible conditions ¢y, ¢ is finite and the number of possible o is finite if Qe
is.

Theorem 7 Let Ay be a tree automaton such that L(Ag) D E and R a left linear CTRS.
If A’ is the result of the completion of Ay w.r.t R, then L(A') is closed with respect to R
and R*(E) C R*(£L(Ao)) C L(A)

Proof 14 Let A' = (F,Q',Qs,A’). We prove that Vt € T(F) s.t. 3¢ € Q',t € L(A',q),
Yu € T(F) s.t. t =% u, we have u € L(A',q). We prove by induction that Vn € N,q €

o' te LA ,q), u st t ﬂ)R u, then u € L(A,q)
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e Ifge Q' te L(A,q), and t &R u then we trivially have u € L(A', q). Indeed, ﬂ’n
means that we consider the subset of non conditional rules of R and then the proof
follows from lemma 4.

. k*
e now suppose that for a given n: Vk < n,t l—>R uandt =%, ¢ = u —x q. We want
to show that:

*

1
tln—+>nu andt —n ¢ = u A ¢
1t .
t M—+>R u means that exists {t1,ts,... ,t;} C T(F) such that
In+1 In+1 In+1 In+1 In+1
to=1 sr 1 > to >R...—>Rtj_1—>ntj=u

Now we show that for every t;, if t; =\, q then ti1 —A, q, this leads to two cases:

—t; ﬁ)n tiy1, then using the induction hypothesis, t;11 = q.

-t 717372 tiy1 and t; ﬂ)n tir1, so there exists a rule (k)I — r ifc; L co €ER a
closed context C[|, and a substitution o such that:

t; = C[lo] - Clro]l =ty if c1o | ca0
in* in*
and 3c s.t. c1o0 —x ¢, and ca0 — 5 C

Since no critical pair between R and A’ exists, the automaton is a fixed point for
the completion and we necessarily have that 3q;,0,qc,0 € Q'- Thus, we have:

In *
1o —pc andci A Qoo
&

In
0 —pc andci A Qeoo

The induction hypothesis leads to c € L(A',qc,5) and

c € L(A,Gey0). Consequently, since t; =%, g, since the condition L(A',ge, o) N
L(A,qey0) # O is true, and since A is a fized point for the completion for
automaton A, we necessarily have tiy1 =% q.

We have t = tg € L(A,q), so by induction Vi <n,t; € L(A,q), in particular u = t;.

*
We get the result that t ﬂ)R u and t = q implies u =} q

So ¥n € N,t ﬂ>R u and t =}, q implies u =%, q, then t =5 u and t =74, q implies
u =%, q. This leads us to Vg € Q',L(A’,q) is closed under rewriting by R, in particular
for q € Qy, thus L(A') is closed under rewriting by R. Since completion is incremental, we
have the inequalities A C A’ and thus E C L(A) C L(A'), and finally R*(E) C L(A").
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9 Conclusion

In this paper, we have presented some tools for dealing in practice with the reachability and
the unreachability problem, i.e. given two terms s and ¢ and a term rewriting system R
show that s =% t or on the opposite show that s A% t.

The proposed algorithm, called tree automata completion, constructs a tree automaton
recognizing R*(E): the set of terms reachable by rewriting terms of the initial regular set
FE with a TRS R. The proposed algorithm is parametrized by an abstraction function and
can be adapted to several purposes.

By choosing an injective abstraction function, exactness of the algorithm is guaranteed
if it terminates. This result provides a new decidable class that includes (and is strictly
greater) to all the decidable classes of the literature. A first result is that we thus have an
alternative proof of regularity and an alternative algorithm for the known decidable cases.
In some cases, like for the constructor system case, the resulting algorithm seems to be
simpler to the initial algorithm.

A second result is that all those regular classes can uniformly be implemented by a single
uniform algorithm that covers all of them at the same time. As far as we know this is the
only implementation for those decidable classes.

Thirdly, outside of those decidable classes when completion does not terminate, using
the abstraction function as an approximation tool permits to force completion to terminate
on an automaton recognizing an over-approximation of R*(E).

To sum up, the same completion algorithm is able to build exactly R*(E) when it is pos-
sible and build an over-approximation otherwise. Those techniques have been implemented
in the Timbuk tool which thus permits to compute R*(E) in the decidable classes as well
as an over-approximation otherwise. Using this prototype on practical examples has shown
that efficiency of the tree automata completion algorithm strongly depend on the efficiency
of the matching of left-hand side of rules on tree automata. So, we proposed an optimised
algorithm for matching making it possible to Timbuk to handle completion on large TRSs
or large tree automata. We also showed that resulting performances makes Timbuk usable
and even more relevant than usual rewriting tools to check reachability even on finite sets
of terms when dealing with non-terminating TRSs. This may be of interest for proof search
in theorem provers or proof assistant when the used equational theories cannot be oriented
into confluent and terminating TRSs.

Note also that since approximations are only sets of first order terms, it is also possible
to use approximations to perform abstract interpretation over the theories manipulated by
a proof assistant and make proof more automatic. This is what is done in [25] for proving
automatically some lemmas in Isabelle/HOL [24] by approximation.

The construction of a tree automaton recognizing exactly or not the set of reachable terms
turns out to have several practical applications: reachability testing, sufficient completeness,
strong non-termination proofs, etc. Among all those applications, reachability testing has
been successfully used for cryptographic protocol verification on some real cases.

Finally, the tree automata completion algorithm can be extended to tackle the problem of
approximating reachable terms for any join conditional term rewriting system. As far as we
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know, this is the first time that this problem is addressed. This extension is rather natural
w.r.t. the existing algorithm and uses similar techniques, in particular for approximation
construction. These results suggest that some syntactic classes of CTRSs having regular
sets of descendants can certainly be defined by imposing the same syntactic constraints on
the right-hand side of the rules for TRS than on every right-hand side of rules and left
and right-hand side of every condition for CTRS. Like in the non conditional case, those
regular classes are likely to be built using the tree automata completion algorithm for the
conditional case.
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