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Abstract: We present a method for isotropic remeshing of arbitrary genus surfaces. The method
is based on a mesh adaptation process, namely, a sequence of local modifications performed on a
copy of the original mesh, while referring to the original mesh geometry. The algorithm has three
stages. In the first stage the required number or vertices are generated by iterative simplification
or refinement. The second stage performs an initial vertex partition using an area-based relaxation
method. The third stage achieves precise isotropic vertex sampling prescribed by a given density
function on the mesh. We use a modification of Lloyd’s relaxation method to construct a weighted
centroidal Voronoi tessellation of the mesh. We apply these iterations locally on small patches of the
mesh that are parameterized into the 2D plane. This allows us to handle arbitrary complex meshes
with any genus and any number of boundaries. The efficiency and the accuracy of the remeshing
process is achieved using a patch-wise parameterization technique.

Key-words: Surface mesh generation, isotropic triangle meshing, centroidal Voronoi tessellation,
local parameterization.
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Remaillage isotrope de surfaces
utilisant une paramétrisation locale

Résumé : Cet article décrit une méthode de remaillage isotrope de surfaces triangulées. L’approche
repose sur une technique d’adaptation locale du maillage. L’idée consiste à opérer une séquence
d’opérations élémentaires sur une copie du maillage original, tout en faisant référence au maillage
original pour la géométrie. L’algorithme comporte trois étapes. La première étape ramène la com-
plexité du maillage au nombre de sommets désiré par raffinement ou décimation itérative. La se-
conde étape opère une première répartition des sommets via une technique de relaxation optimisant
un équilibrage local des aires sur les triangles. La troisième étape opère un placement isotrope des
sommets via une relaxation de Lloyd pour construire une tessellation de Voronoi centrée. Les itéra-
tions de relaxation de Lloyd sont appliquées localement dans un espace paramétrique 2D calculé à
la volée sur un sous-ensemble de la triangulation originale de telle que sorte que les triangulations
de complexité et de genre arbitraire puissent être efficacement remaillées.

Mots-clés : Maillage de surfaces, maillage triangulaire isotrope, diagrammes de Voronoi centrés,
paramétrisation locale.



Isotropic Remeshing of Surfaces

1 Introduction

Mesh generation has received a great deal of attention by researchers in various areas ranging from
computer graphics through numerical analysis to computational geometry. Quality mesh generation
amounts to finding a partition of a domain by elements—typically, triangles or quads. The shape,
angles or size of these elements must match certain criteria (see [1, 2]). In most cases the boundary
of the domain is given, as well as an importance map that must be discretized. The problem of sur-
face remeshing, being of particular interest for reverse engineering, is different in the sense that the
input domain is itself discrete. The mesh is often highly irregular and non-uniform, since it generally
comes as the output of a surface reconstruction algorithm applied to a point cloud obtained from a
scanning device.

Isotropic sampling leads to well-shaped triangles, and thus high-quality meshes when the notion
of quality is related to the shape of the triangles. Such meshes are important for simulations where
the quality of the mesh elements is critical. For digital geometry processing [3], most scanned models
must undergo complete remeshing before processing. Many geometry processing algorithms (e.g.,
smoothing, compression) benefit from isotropic remeshing, combined with uniform or curvature-
adapted sampling.

1.1 Related Work

Parameterization-based remeshing techniques [4,5,6] have benefited from recent renewed interest in
efficient parameterization methods for surface meshes [7, 8, 9, 10]. Here, the key is to parameterize
the original mesh to obtain a bijective mapping and minimize the distortion due to the flattening
process. The sampling and meshing stages are then considerably simpler on the (planar) parameter
space. This allows both undersampling and oversampling with a high level of control by the user.
Despite their recent popularity, these remeshing techniques (so-called “global approaches”) have
many drawbacks:

• surface cutting: each patch should be homeomorphic to a disk, therefore, closed or genus> 0
models have to be either cut along a cut graph to extract the polygonal schema [11], or de-
composed into an atlas [7]. Finding a “smart” cut graph is not only known to be a delicate
procedure [12, 13, 5], but also introduces a set of artificial boundary curves, associated pair-
wise. These boundaries, sampled as a set of curves (i.e., 1-manifolds, while the surface has to
be sampled as a 2-manifold), generate a visually displeasing seam tree. Some authors propose
to apply a local mesh adaptation process to hide the seam a posteriori [6] but this solution
is not fully satisfactory. Another solution to reducing the influence of the seam [10] consists
of computing a globally smooth parameterization by decomposing the surface into patches
and minimizing the distortion simultaneously across all patches. Although elegant, the latter
solution does not remove the need for handling the patch boundaries during a global sample
partitioning process.
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• parameterization and overlapping: instead of constraining the user to fix the boundary
onto a predetermined convex polygon, two recent methods minimize the distortion due to the
parameterization by letting the solver find the “best” boundary while solving a linear sys-
tem [8, 7]. Even though the gain in term of distortion is obvious, this approach does not solve
the overlapping issues, contrary to other methods that may introduce additional seams [13] or
generate an atlas [14].

• numerical issues: despite recent efforts for efficient computation of global parameteriza-
tions [7], the latter remains a time-consuming process for large models. Moreover, models
with bad isoperimetric properties (e.g., sock-like shapes) are numerically intractable for most
state-of-the-art techniques.

• lack of guarantees: the conformal parameterization [15, 16, 8, 7] has often been the method
of choice for irregular surface remeshing, isotropic [4, 6] or anisotropic [17]. Unfortunately,
there exist triangulations for which this parameterization is not valid (see [18]), even when the
boundary is fixed to be convex. Although the triangulation can be enriched by vertex insertion
to produce a valid embedding, it is still unclear how many additional vertices are needed and
what the guarantees are when using a scheme with a free, possibly concave, boundary.

The main alternative to global parameterization is known as the mesh adaptation process. It
consists of performing a series of local modifications directly on the mesh, in embedding space.
Remeshing algorithms using this approach [19, 20, 21, 22, 23, 24] usually involve computationally
expensive optimizations in 3D. To improve efficiency, Frey and Borouchaki [22] use a less accurate
optimization in the tangent plane. In a subsequent work, Frey [23] uses a paraboloid to obtain better
approximation. The main issue of this approach is the fact that the mesh vertices must remain on
the original mesh during the adaptation process. Otherwise, fidelity is quickly lost because of error
accumulation. To solve this problem, the new optimal vertex positions are projected back to the
original surface. Projecting the vertex involves a complex, computationally expensive and inaccurate
computation that may even lead to topological errors during the remeshing process.

2 Main Contributions and Overview

In light of the drawbacks listed in the previous section, our main contribution is to combine the mesh
adaptation process with a set of local, overlapping parameterizations. This allows us to handle large
meshes of arbitrary genus. Another motivation of this paper is to formulate the issue of isotropic
surface sampling using the concept of centroidal Voronoi tessellation. This way we shift from the
so-called unit length paradigm used for numerical analysis [25] to the unit cell tiling paradigm,
well suited for our application, i.e., sampling of 2-manifolds. The first technique aims at generat-
ing meshes with unit edge length measured in a control space metric, while our algorithm aims to
partition the surface with unit density integrated over the cells of a centroidal Voronoi tessellation.
In particular, we show how the latter property is directly related to the notion of isotropic surface
sampling.

INRIA



Isotropic Remeshing of Surfaces

Our technique uses two meshes: one is the piecewise smooth geometric reference, which we call
the geometric mesh MO (see Section 3). The second mesh M is initialized with a copy of the orig-
inal mesh and evolves during the remeshing process until the desired mesh properties are achieved.
Our technique falls into the category of local adaptation methods since remeshing is performed by a
series of well-known local modifications: edge-flip, edge-collapse, edge-split and vertex relocation.
The modifications are always applied sequentially to achieve desirable mesh characteristics.

The technique has three main stages: complexity adjustment, vertex partitioning and precise
vertex placement. The first stage achieves the required number of vertices by applying iterative
mesh simplification or refinement on the evolving mesh (see Section 4). The second stage uses a
novel area-based remeshing technique to approximately partition the vertices in accordance with a
density function specified on the original mesh (see Section 4). The second stage performs a precise
isotropic placement of the vertices by constructing a weighted centroidal Voronoi tessellation (see
Section 5). Section 7 shows some experimental results and Section 8 concludes.

3 Geometric Background

The input to our remeshing scheme is a 2-manifold triangle mesh MO of arbitrary genus, possibly
with boundaries. We consider MO to be a piecewise linear approximation of a smooth surface,
which is C

1-continuous except at boundaries and a set of curves specified by feature edges. These
feature edges can be provided by the user or computed automatically by feature detection tech-
niques [26].

Surface reconstruction requires normal information at the mesh vertices. If the normals at the
mesh vertices are not given, we use a method similar to [27, 24] to generate them: Every vertex is
assigned a normal which is the weighted average of the normals of the faces adjacent to it. The
weights are proportional to the angles of the corresponding faces at the vertex and sum to unity.
Normals of a vertex lying on feature edges are not the same within all its adjacent faces. They are
also defined by the weighted average of the face normals but as if the mesh was cut along the feature
edges at the vertex.

3.1 Surface Approximation

Similarly to [28], we perform an estimate of the smooth surface in the vicinity of a mesh triangle.
This may be obtained by reconstructing an approximation of the surface using triangular cubic Bézier
patches for every face of MO. Vlachos et al. [29] presented a simple and efficient, yet robust and
accurate, method to construct such curved patches called PN triangles. The triangle vertex normals
together with vertex coordinates are used to construct a PN triangle. PN triangles usually (but not
always) maintain a G

1-continuous surface along adjacent triangles when their common vertices
have identical normals. The normal of any point within a PN triangle is defined as a quadratic
interpolation of the normals at the triangle vertices. Although Walton and Meek [30] presented a
more complex and computationally expensive method to create triangular patches that guarantees
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G
1-continuity on the patch boundaries, we use PN triangles as a good tradeoff between accuracy

and efficiency. Given a point q inside a triangular face f = (q1, q2, q3), the corresponding point on
the surface of the PN triangle of f , as well as the normal at this point, can be uniquely defined by
the barycentric coordinates of q with respect to f .

3.2 Controlling Fidelity

Our remeshing scheme performs a series of local mesh modifications. To ensure fidelity of the new
mesh to the geometry of the original mesh, two measures are used to evaluate the distance between
the two meshes. These measures are evaluated for every local modification on the region of the mesh
affected by the modification. The modification is applied only if it does not violate the error condi-
tions defined by the measures. The measures we use are conceptually similar to those of Frey and
Borouchaki [22] are defined for a face instead of an edge. These measures were formulated in [28].
We briefly describe the measures and discuss their advantages.

Let f = (v1, v2, v3) be a face whose error is to be estimated. The first measure Esmth captures
the degree of smoothness and should not exceed some threshold angle θsmth:

Esmth(f) = max
i∈{1,2,3}

〈Nf , Nvi
〉 < cos θsmth. (1)

where Nf and Nv are unit normals of f and its vertex v, respectively; 〈·, ·〉 denotes the dot product.
Nv is taken from the original surface. Intuitively, Esmth describes how well f coincides with tangent
planes of the surface at the vertices of f . The second measure Edist captures the distance between
f and the surface:

Edist(f) = max
i∈{1,2,3}

〈Nvi
, Nvi+1

〉 < cos θdist. (2)

Vertex indices are modulo 3; θdist is a threshold angle. A larger value of the maximal angle between
the normals of two face vertices corresponds to a more curved surface above face f , and thus, to a
greater distance. The beauty of these two measures is that they involve only normal directions. In
addition to their computational efficiency, when used together, these two measures are also robust
and accurate.

4 Initial Vertex Partition

To achieve the target mesh complexity, we apply local refinement or simplification operations. We
perform a series of edge-collapse or vertex-split operations until the required number of vertices is
achieved. Edges whose faces have minimal/maximal error metrics are simplified/refined first.

The heart of our remeshing scheme is the construction of the weighted centroidal Voronoi tessel-
lation on the 3D mesh to achieve precise vertex placement (see Section 5). However, being optimal
both in terms of sampling and isotropy, generating the weighted centroidal Voronoi tessellation is
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an extremely slow iterative process. This process first brings the mesh to the required sampling pre-
scribed by a density function, then the mesh isotropy is optimized. It turns out that the first stage of
the process is even slower than the second one, in contrast to many other iterative processes. The
reason is that the process inherently maintains the local isotropy during resampling. To accelerate
this process we first generate a coarse, initial sample partition by using a novel efficient area-based
relaxation technique.

Alliez et al. [6] introduced an algorithm based on error diffusion that efficiently finds a good
initial sampling. Unfortunately, this algorithm cannot guarantee fidelity of the resulting mesh to the
original. Features that are not specified explicitly may be easily lost by this algorithm. In order
to guarantee the mesh fidelity of the initial sampling we use an “area-based remeshing” technique,
which is based on a series of local mesh modifications, while validating the mesh fidelity by the error
measure described in Section 3.2.

The area-based remeshing technique was first introduced by Surazhsky and Gotsman [31, 28].
It is based on the idea of locally equalizing the area of triangles or bringing the areas to the ra-
tios specified by the density function. After this, it remains to achieve a precise isotropic vertex
placement.

5 Precise Vertex Placement

Our goal is to isotropically sample a density function specified on the original surface mesh MO.
There are, thus, two terms (sampling and isotropy) to be defined:

• Sampling: to partition a density function among a set of samples. The density function is
defined over a bounded domain, which must be partitioned so that we obtain a tiling, or tessel-
lation, where each tile corresponds to exactly one sample, without overlapping or holes. The
density partition must be done so that we obtain the so-called equal-mass enclosing property,
namely, each tile contains the same amount of density.

• Isotropy: the shape of each tile is not biased with respect to any particular direction. In other
words, each cell is as compact (i.e., as “round”) as possible. In the uniform case the ideal
tile is a disk, which maximizes the compactness, but does not produce a tiling of the domain.
The hexagonal lattice better conforms with uniform tiling along with optimal compactness.
The non-uniform case leads to a tradeoff between compactness and partition of the density
function.

5.1 Centroidal Voronoi Tessellation

The initial triangulation gives us a vertex partition, which defines a tiling of a 2D parameter space.
Each triangular tile corresponds to three samples (the vertices of the triangle) instead of one as de-
sired. We, therefore, use the dual of the triangulation, i.e., the tessellation in which each tile is now
associated with exactly one sample. We aim at obtaining a special class of Voronoi tessellations, the
so-called centroidal Voronoi tessellation, with the two properties mentioned above, i.e., equal-mass
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enclosing and isotropy.

Given a density function defined over a bounded domain Ω, a weighted centroidal Voronoi tes-
sellation [32] (denoted WCVT) of Ω is a class of Voronoi tessellations, where each site coincides
with the centroid (i.e., center of mass) of its Voronoi region. The centroid ci of a Voronoi region Vi

is calculated as:

ci =

∫
Vi

xρ(x)dx∫
Vi

ρ(x)dx
(3)

where ρ(x) is the density function. This structure turns out to have a surprisingly broad range
of applications for numerical analysis, location optimization, optimal partition of resources, cell
growth, vector quantization, etc. (see [32]). This follows from the mathematical importance of its
relationship with the energy function

E(z, V ) =

n∑
i=1

∫
Vi

ρ(x)|x − zi|
2dx (4)

where V ∈ Ω and z ∈ V . It is proven in [33] that (i) the energy function is minimized at the mass
centroid of a given region, and (ii) for a given set of centers Z = {zi}, the energy function E(Z, V )
is minimized when V is a Voronoi tessellation.

Figure 1: Left: Ordinary Voronoi tessellation of a point set sampled from some density function.
Right: Point set and its corresponding weighted centroidal Voronoi tessellation for the same density
function . Each site coincides with the center of mass of its Voronoi cell. The sample set on the right
was generated by Lloyd iterations applied to the sample set on the left.
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5.2 Building a WCVT on a 3D Mesh

One way to build a weighted centroidal Voronoi tessellation is to use Lloyd’s relaxation method.
The Lloyd algorithm is a deterministic, fixed point iteration [34]. Given a density function and an
initial set of n sites, it consists of the following three steps:

1. Construct the Voronoi tessellation corresponding to the n sites;
2. Compute the centroids of the n Voronoi regions with respect to the density function expressed

in local parameter space, and move the n sites to their respective centroids;
3. Repeat steps 1 and 2 until satisfactory convergence is achieved.

Since a Delaunay triangulation and its corresponding Voronoi tessellation are dual, we do not
need to work explicitly with a Voronoi tessellation but rather with its dual triangulation. We adapt
the Lloyd algorithm in the following manner. Instead of constructing the Voronoi tessellation for
the point set of the current mesh, we modify the mesh by a series of Delaunay edge flips in order to
maintain the local Delaunay property of the mesh. For every vertex, we then compute its Voronoi
cell in a local parametric domain, and move the vertex to the new 3D location corresponding to the
centroid of the cell. We now describe these steps in detail.

Updating the local Delaunay property Notice that the usual definition of the Voronoi tessella-
tion holds for a set of sites in Euclidean space, i.e., in the 2D plane for partitioning a 2-manifold. As
demonstrated in [35], Voronoi diagrams can also be constructed in Riemannian manifolds for suffi-
ciently dense sets of points. In our algorithm, the current 3D triangulation is the result of a series of
local mesh adaptations performed for initial vertex partition. Each local mesh adaptation has been
performed while maintaining a “local” 2D Delaunay property. Instead of building a new Voronoi
tessellation at each step of the Lloyd relaxation process, we restore the local Delaunay property by
performing a series of edge flips in 3D. This maximizes the smallest angle property. This task is
performed efficiently by updating a priority queue sorted by the angles.

Computing the centroid Every relaxation step in the sequence of Lloyd iterations moves a vertex
v from the newly generated mesh to the centroid of its “Voronoi” cell (we abuse the word Voronoi
here, since the cell is not planar or even convex). To proceed we first need to define a planar
Voronoi cell for v. Denote the vertices incident to v as v1, . . . , vk, where k is the degree of v. Let
S(v) be a sub-mesh of M containing only v, v1, . . . , vk and faces incident on v. We reduce the
problem in 2D by mapping S(v) onto the plane using a natural and simple method approximating
the geodesic polar map [36], described by Welch and Witkin [37] and later by Floater [38]. The
method preserves the lengths of edges incident to v, and the relative angles of S(v) at v. This
method is an efficient and precise approximation of a conformal mapping of S(v) onto the plane.
Let p, p1, . . . , pk be the positions of vertices v, v1, . . . , vk within the resulting mapping SP (v).
p is mapped to the original. Then we construct a Voronoi cell of v in SP (v) with respect to the
circumcenters of the triangles built from p and p1, . . . , pk, and compute the centroid pnew of this cell
with respect to an approximation of the density function specified over the original mesh. The latter
approximation consists of evaluating the density function at the new mesh vertices and piecewise
linearly interpolating the resulting density over the new mesh triangles.
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5.3 Vertex Relocation

Knowing the new vertex position of v (pnew), we need to bring it back to the original surface of the
given mesh, namely, to find the position of v denoted by xnew(v) on MO that corresponds to pnew.
Existing remeshing methods, e.g., [20,22,24] solve this problem by computing the vertex projection
onto the original surface. As stated in Section 1.1, projecting the vertex involves an expensive and
possibly inaccurate computation that may even lead to topological errors. We solve this problem
using a mesh parameterization with low distortion and guarantee of bijective mapping. This way we
can deduce xnew(v) precisely and efficiently.

We now briefly describe how to find xnew(v) using mesh parameterization. For every vertex of
M we maintain its exact position on the original surface using barycentric coordinates of the vertex
within a specific face of MO. Note that this gives us a unique point on the reconstructed surface
defined by PN triangles over MO; see Section 3.1. The central idea in using parameterization to
locate xnew(v) is to use barycentric coordinates of pnew with respect to a face of S(v) that contains
it. Using these barycentric coordinates together with the barycentric coordinates of the face vertices,
we locate a point in the parametric domain of MO. This point is then elevated to the original surface.

However, this simple scheme is only applicable when we have a well-defined parametric domain
embedded in the 2D plane. Since not all 3D meshes are isomorphic to a disk, such a 2D parametric
domain may not exist. To solve this problem we use a novel dynamic patch-wise parameterization
technique introduced independently by Vorsatz et al. [39] and Surazhsky and Gotsman [28]. This
technique aims to overcome the problems of global parameterization (see Section 1.1) and allows the
handling of meshes of arbitrary genus and boundaries. It maintains a set of small (usually manifold)
overlapping patches and their corresponding conformal parameterization. Every patch is constructed
on demand depending on a specific local modification and contains the region required to locate a
new vertex position in the 2D parametric domain. Reuse of the patches already parameterized guar-
antees the efficiency of this technique both in terms of computational cost and memory consumption.
See Figure 2 which demonstrates how this technique is used for vertex relocation.

6 Preserving Features

Note that near feature creases and boundaries, the computation of the centroid must be more sophis-
ticated. To proceed we clip the Voronoi cells with the set of feature edges [40]. This allows us to
disconnect two smooth regions separated by a feature crease during the computation of the centroid.
It leads to a nice sampling quality in the vicinity of the features, obtained through the non-symmetric
behavior of the algorithm (the feature edges influence the surface samples but the surface samples
do not influence the samples on a feature edge). At the intuitive level, two samples adjacent in the
Voronoi tessellation and separated by a feature do not influence each other, and the samples close
to a feature edge are repulsed by the constraints (see Figure 3). Geometrically, clipping a cell by
the set of constraints removes some regions from the computation of the centroid, making the Lloyd
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(a) (d) (e)

(b) (c) (f)

Figure 2: Vertex relocation. (a) A vertex v of the mesh to be relocated. The faces of the sub-mesh
S(v) are dark-grey. (b) S(v) is mapped onto the plane and the Voronoi cell of v is constructed. The
new vertex location is a weighted centroid of the cell. (c) The triangle containing the new location.
(d) The corresponding triangle in the mesh M. (e) The highlighted vertices in (d) correspond to
three faces of the original mesh MO. (d) A patch containing all these faces of MO is constructed
and then parameterized. The new location of v in the patch is computed using the corresponding
barycentric coordinates of the 2D mapping (c).
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relaxation consistent with respect to the features. Once the centroid has been computed, it remains
to relocate the vertex v to the centroid.

without clipping
 clipping


centroid

constrained edges

Figure 3: Left: A Voronoi tessellation in parameter space with a feature skeleton. All the cells
are drawn according to the circumcircle property. Computing the centroid without clipping by the
constraints makes the sampling inconsistent, while the effect of clipping is to repulse the samples
from the boundary or sharp edges, the centroid being computed on the truncated cell. A constrained
edge separating two samples thus acts as a barrier [40] annihilating their mutual influence.

Figure 4: Left: original. Middle: centroidal tessellation. Right: curvature-adapted remeshing.

7 Experimental Results

The algorithm described in this paper has been implemented in an interactive software package.
Similarly to [28], the user can control the remeshing via the definition of the density function, either
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Figure 5: Left: uniform remeshing. Right: curvature-adapted remeshing.

uniform, or adapted to the curvature. We also provide an option to smooth the density function and
therefore obtain a smoother mesh gradation.

We have run our technique on a variety of models of arbitrary genus and complexity. Figure 4
illustrates a curvature-adapted remeshing of the rocker-arm model with 10,000 vertices (the same
as the original model). The tessellation shown in the middle is drawn by tracing an edge between
the circumcenters of two incident triangles, every circumcenter located in the support plane of the
corresponding triangle. The genus 1 feline model is remeshed both uniformly and with a curvature-
based density. The original model of 50,000 vertices was first simplified to 20,629 vertices by local
mesh adaptation. The initial sampling using area-based remeshing required only 8 iterations. To
obtain the same resampling using just the lloyd procedure required 45 iterations. Note also that every
area-based iteration that relocates each of the mesh vertices is about twice as fast as a Lloyd iteration.
The polishing of the isotropy then took 15 Lloyd iterations. The entire remeshing was performed
in less than two minutes on a Pentium 4 2.4GHz machine with 512MB of memory. Figure 6 shows
a uniform remesh of the piecewise smooth model fandisk, containing 5,000 vertices. The helmet,
a genus 3 model, is remeshed with a curvature-related density function (see Figure 7). Figure 9
illustrates a uniform remeshing of the David model, part of the digital Michelangelo project [41].
The irregular and non-uniform input mesh contains 350,000 vertices, while the remeshed model has
100,000 vertices. The initial vertex partition stage runs for 5.5 minutes, and the vertex placement
runs for 4 minutes. We chose this model for illustrating the scalability and the adaptability of our
technique to handle both complex models and arbitrary genus. Figure 8 shows a closeup of the same
model to emphasis the quality of sampling obtained by centroidal tessellation.
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Figure 6: Uniform remeshing of the fandisk model (piecewise smooth).

Figure 7: Curvature-adapted remeshing of the helmet model (genus 3).

8 Conclusion

This paper has introduced a technique for efficient and precise isotropic surface remeshing. Our
approach first performs efficient sampling of the mesh with respect to a density function using the
area-based remeshing technique. A Lloyd relaxation stage that constructs a weighted centroidal
Voronoi tessellation is then directly applied on the mesh to ensure precise isotropic placement of
the vertices. Using a patch-wise parameterization technique to apply a local 2D Lloyd relaxation on
the 3D mesh allows us to handle complex models with arbitrary genus and any number of bound-
aries. Thus, by combining state-of-the-art techniques we are able to efficiently produce high quality
isomorphic remeshings. One limitation of our method is the convergence behavior of the Lloyd re-
laxation process for precise isotropic vertex placement. As explained in [32], local convergence is
guaranteed in 2D when the density function is log concave. Since in our case the density function
is either uniform when requested, or a function of the curvature, this does not guarantee the local
convergence in all cases. Nevertheless, it was not an issue in our experiments. As future work we
plan to accelerate further the Lloyd relaxation.
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Figure 8: Closeup on the Digital Michelangelo David model: original, uniform sample tiling and
triangle remesh.
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Figure 9: Left: Digital Michelangelo David model (350k vertices). Right: uniform remeshing (100k
vertices).
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