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Abstract: We investigate solutions of the two-dimensional Koiter model and of the three-dimensional
linear shell model in the case where the shell is clamped and its mean surface is elliptic. For smooth
data, these solutions admit multiscale expansions in powers of /2 where ¢ denotes the (half-
)thickness of the shell. Both expansions contain terms independent of € and boundary layer terms
exponentially decreasing with respect to r//e, with r the distance to the boundary of the mean
surface. The expansion of the three-dimensional displacement contains supplementary boundary
layers, exponentially decreasing with respect to r/e like for plates. Using these expansions we
obtain sharp estimates between the two models in various norms.
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Développements multi-échelles dans les coques elliptiques
linéaires encastrées

Résumé : Nous étudions les solutions du modéle de Koiter et du probléme de 1’élasticité tridi-
mensionnelle linéaire, dans le cas d’une coque encastrée dont la surface moyenne est elliptique.
Pour des données réguliéres, ces solutions admettent des développements multi-échelles en puis-
sances de /2, ou € est ’épaisseur de la coque. Ces deux développements contiennent des termes
indépendants de ¢ et des termes de couches limites exponentiellement décroissants en r/+/z, ou r
est la distance au bord de la surface moyenne. De plus le déplacement tridimensionnel contient des
termes de couches limites exponentiellement décroissants en r/e, comme dans les plaques. Grace
4 ces développements, nous obtenons des estimations optimales entre les deux modéles.

Mots-clés : Développements multi-échelles, Elasticité linéaire, Théorie des coques, Couches
limites
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1 INTRODUCTION

The goal of the shell theory is to find an approximation of the three-dimensional linear elas-
tic shell problem by a two-dimensional problem posed on the mean surface. A shell is a three-
dimensional object defined by a compact oriented smooth surface S embedded in R? and a thickness
parameter e. For ¢ < ¢, sufficiently small, the shell is the image Q° of the manifold S x (—¢,¢) via
the application

®°: S x (—¢,6) 2 (P,a3) — P+ x3n(P) € R?, (1.1)

where n(P) is a unit normal vector field on S. Starting from the three-dimensional equations of
standard linear elasticity for a homogeneous and isotropic material, different models have been
derived between 1959 and 1971: see in particular KOITER [19, 20, 21], NAGHDI [25], JOHN [18],
NovozHILOV [27]. Most of the shell models rely on a 3 x 3 system of intrinsic equations on S
depending on ¢, and write

K(e) := M +¢?B (1.2)

where M is the membrane operator on S and B is a bending operator. If all above authors agree
with the definition of the membrane operator M, different expressions of B can be found in the
literature. For general shell geometry, the most popular and natural model is the one proposed
by KoOITER. This model describes the displacement of the shell by two tensors representing the
change of metric and change of curvature of the surface submitted to a displacement. Moreover
this model is elliptic for € > 0 (see [2]). However, for ¢ = 0, the nature of the membrane operator
depends on the geometry of the surface. In particular, M is elliptic only at the points where S
is elliptic. The Koiter model relies partly upon computations made by JOHN in [18]. But the
question of determining the best model was very controversial (see in particular the introduction
in [3] and discussions in [20, 25]).

In [15] we give the expression of the most general bending operator appearing in the 3D
equations, and we show how the Koiter bending operator is linked with this operator and turns to
be the most natural and simple bending operator among the others. In [9] we also give a general
estimate between the 3D solution and a displacement reconstructed from the Koiter model solution.
The result of [15] reduces the 3D problem to a formal series 2D problem very similar to the Koiter
model.

In the case of plates, the Koiter model splits into the membrane operator acting on the surfacic
components of the displacement and the bending operator acting on the transverse displacement.
On the other hand, the work in [10, 11, 8] shows the existence of an asymptotic expansion of the
3D displacement for plates containing boundary layer terms of scale e. When such an asymptotic
expansion is available, we can estimate the difference between the solution of the Koiter model and
the 3D solution in every norm.

In this work, we focus our attention to the special case where the mean surface S of the shell
is elliptic, that is when the Gaussian curvature of S is strictly positive or equivalently when the
principal curvatures are everywhere of the same sign. In this case, the membrane operator M is
elliptic (see [16, 29, 4]). As the bending operator B is of order 4 while the membrane operator
M is of order 2, the Koiter operator K(¢) = M + 2B is a singular perturbation of the membrane
operator. The framework of VISHIK & LYUSTERNIK [30] for scalar equations can be adapted to
this situation, where the equation is a system. Combining these techniques with the formal series
reduction of [15] giving the structure of the 3D boundary layers, we obtain the following results:

1. We show that the 2D displacement solution of the Koiter equation admits a complete mul-
tiscale expansion including boundary layer terms of scale £'/? using a singular perturbation
theory close to [30].

RR n° 4956
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2. Using the result in [15], we then show that the 3D displacement admits a complete multiscale
expansions with 2D boundary layers of scale ¢!/2 like for the 2D displacement, and 3D
boundary layers of scale ¢ like for plates.

3. We use these expansions to bound the difference between the 3D displacement and 2D re-
constructed displacements as in [20] or [4, 23]. These estimates are sharp in the sense that
the error term has the same order than the first neglected term in the asymptotic.

In the following we always take as K(e) the Koiter model. We now present the 3D and 2D
problems, and give the main theorems. We then recall the basic results of [15] and give the plan
of the paper.

1.A THREE-DIMENSIONAL PROBLEM

The boundary of the shell Q¢ defined in (1.1) has three components: A lateral boundary I'§ image
of dS x (—¢,¢) by the application ®¢, and upper and lower faces Si. images of S x {fec}. We
suppose that the material constituting the shell is homogeneous and isotropic, characterized by its
two Lamé coefficients A and p. The loading forces applied to the shell are represented by a smooth
vector field f defined on Q°. We suppose that the shell is clamped along I'j and we impose the
traction free condition on S, . and S_.. The displacement of the shell is represented by the 1-form
field . In Cartesian coordinates {t'} the problem then writes

fainjMekg(u) = f' in Q°,
Ti(u) = 0 on Sie, (1.3)
u = 0 on I,

with AUKE = \§¥§FE + (5% §7¢ 4 §2€57%), where 0 is the partial derivative with respect to ¢’ and
eij(u) = 1(8;u; 4+ O;u;) with w = u;dt’ in Cartesian coordinates. On the same way f* denote the
components of the vector field in the basis %. The operator T?(u) is the natural traction operator
on the faces Si. appearing after integration by parts in the associated bilinear form:

(u,v) — AR e (w)epe(w) At dt? dt®. (1.4)
Qe
This is the classical problem of linear elasticity set in Cartesian coordinates on a shell-shaped
domain of R3. Korn inequality [13] implies that this problem has a unique solution in H*(¢)3.
On QF, we call “normal coordinate system” a system of the form (z,,z3) induced by the
mapping (1.1), where z, is a coordinate system on S and z3 the transverse coordinate (see [15]
for details). Note that the domain Q¢ is foliated by the surfaces S., images of S x {z3} by
the diffeomorphism (1.1). In the following, we will always identify the mean surface Sy with the
abstract manifold S.

1. THE KOITER MODEL

On the mean surface Sy, a 2D displacement is represented by the couple of a 1-form field z, and a
function z3. We denote by z = (24, 23) € I'(T1.S9) X €°°(Sp) such a couple. Here, I'(T1Sp) denotes
the space of 1-form field on Sy. As it will be of constant use, we set

Z(So) = F(T1S0) X CgOO(SO)

the space of (smooth) 2D displacements. More generally, we denote by H"(Sy) the space of 1-forms
whose both components belong to the Sobolev space H*(Sy). We keep the notation H¥(S) for
functions. Typical spaces for 2D displacements are H' x L2(Sy) and H' x H?(S;). We set a5 the

INRIA



Multiscale expansions for elliptic shells 5

metric tensor on S, and b,g the curvature tensor. The Greek indices are two-dimensional varying
indices. The contraction by the metric tensor yields isomorphisms between tensor spaces on Sg.
We have for example b3 = a““b, 3.

The Koiter operator is the operator K(g) : 3(Sy) — 3(Sp) written
K(e) = M + £”B.

Here, M is the membrane operator defined by

Mz = =2y —2ublng,

(03

{ My = —ADg7 —2uDane,

where A and u are the Lamé coefficients of the material, = 22u(X + 2u) 71, Dy, is the covariant
derivative on Sy, and

'yag(z) = %(DQZQ + Dgza) — bagzg (1.5)
is the change of metric tensor on Sp.

The operator M is associated with the bilinear form defined for any z and 7 in H* x L?(Sp)
by

(2,1) > am(z,7m) = [5 MO (2)05(1) dSo, (L6)

where M°376 = Xq®Bq70 4 (a7 aP% 4 q20qP7).
The operator B is the bending operator defined by

By, = —iMgDapl — $ADabS Y — 2ub3D,pl — 2uD, b3k,
Bs = $AD®Dapl + 2uDDypl, — $ACepY — Fuclpf,

where ¢ = b%b% and

pap(2) = DaDpzs — capzz + b5Dpze + Dbz, (1.7)
is the change of curvature tensor. This operator is associated with the bilinear form defined for
any z and n in H' x H?(S)) by

(2,) > as(z,7) = /S M%7 5(2)ps() dS. (18)

For a given g € X(S)), we consider the solution z € 3(Sj) of the problem

{K(E)Zzg in S,

z’asoz() and 6T23(5)1850:0.

The existence of z is proved in [2].

1.c MAIN RESULTS

We set (r,s) a coordinate system in the vicinity of 9Sp such that r is the geodesic distance to
the boundary, and s is the arclength along 9Sy. We denote by bss(r, s), bys(r,s) and b,..(r, s) the
components of the curvature tensor in this coordinate system. The fact that Sy is elliptic implies
that we can choose the orientation of Sy such that bss and b, are positive along Sy. We denote
by x(r) a € cut-off function near 9.y.

RR n° 4956
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To construct the expansion of the 2D displacement, we suppose that the right-hand side g = g°©
depends on ¢ and admits the expansion

g°~ Y ", (1.10)

k>0

where for all k, g¥ € ¥(Sp). This means that for any Sobolev norm on Sy and any N, we have

N
lg* = > *g"|| < Cne™,
k=0

where C'y is independent on .

Theorem 1.1 Let z° be the solution of the problem (1.9) with a right-hand side g° satisfying
(1.10). Then z° admits an asymptotic expansion in powers of ¢'/?:

2€ ~ K2 (92 (20) + x () 292 (L2 ) ) (1.11)
2 ( Wz 7))

where for all k, = 3(So) is independent on € and Zk/Q(T, s) is exponentially decreasing in T,
uniformly in s and smooth on R™ x9Sy. Moreover, for each fized s, the function T — e"TZk/Q(T, s)
is bounded on R for all n < 1y where

~ 1/4
m = (M> Vbss(0, 5). (1.12)

(A +202)2

The first term ¢ is the solution of the membrane problem

{ ME® = g% in S,

_ o (1.13)

Fo ‘asa

where g is the first term of the asymptotic expansion of g°. The fact that the membrane cannot
solve for the boundary conditions on z3 is the reason for the presence of the 2D boundary layer
terms. Indeed, the third component M3 is an operator of order 0 in z3, while B3 is of order 4 in
z3. The first boundary layer terms satisfies Z2 = 0 but Z # 0 in general.

Using the expansion (1.11) we obtain estimates between z° and ¢°. For example we get

125 = ¢l g1 g5y < O™ (1.14)

where C'is independent on e. This estimate implies in particular the convergence result of [4] and
improves the result in [24].

To construct the expansion of the 3D displacements we suppose that the right-hand side
f = f° depends on ¢ in the following regular way: If (x,,x3) is a normal coordinate system on
Q° we set X3 = ¢ lz3, and define the vector field f(¢)(wa, X3) = f°(za,z3) on the manifold
Q:=5x (—1,1). We suppose that f(c) admits the expansion

fle) =) s, (1.15)

k>0

where for all k, f* is independent of ¢ in Q. This hypothesis is satisfied in the case where f is
independent of ¢ in the physical cartesian coordinates. In this case the Taylor expansion of f at
23 = 0 around the mid-surface yields the coefficients of the expansion (1.15).

INRIA
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Theorem 1.2 Let u® be the solution of (1.3) with the right-hand side f¢ satisfying (1.15). Then
u® admits the following asymptotic expansion in powers of e'/2:

~ k)2 [ o,k/2 3 kj2¢ T T8 k/2/" T8
ug—%f (v (0, =) + X()W (\/E,S,E)er(r)so (25 2) (1.16)

where for all k, v*/? is a € 1-form field on QF and Wk/Q(T, s, X3) is uniformly exponentially
decreasing in T with the same bound 0y as in (1.12). The terms v*/? and W2 are polynomial in
X3 = e '3 and smooth. The term @*/%(R, s, X3) is uniformly exponentially decreasing in R and
has singularities near the edges of the shell.

Under the assumption (1.15), the 2D right-hand side defined by g° = % ffe f°dz3 admits an

expansion of the form (1.10) with g* = % f_ll fk(Xg)ng. In this case, the precise comparison of
the first terms of z° and u® allows to write sharp estimates between the 3D displacement and the
2D Koiter and membrane models. We define UX"z the Kirchhoff-Love displacement associated

with z as
UKLz = 2, — 23(0,(2) + 0% 24) + 22020, (2) and UKLz = 23

where 0, (z) = Dyz3 + b225 and p = A(\ + 2u) L. This displacement satisfies e;3(UXY2) = 0 for
all z.

Proposition 1.3 Suppose that f° satisfies the hypothesis (1.15), and let u(e) be the three-dimensional
displacement on the scaled domain Q). We set g° = % ffa fedxs. Let ¢° be the solution of the
membrane problem (1.13) with right-hand side g%, and z° be the solution of the Koiter model (1.9)
with the right-hand side g°. Then we have the estimates

< Cel/4,

||u(€) - C8||H1(Q)2XL2(Q) S 061/47 ||u(€) - zg||H1(Q)2XL2(Q)
) < Ced/4,

() = 2l yugqys < OV and  [lu(e) — UKV=°|

(1.17)
H1(Q)2xL2(Q

These estimates imply the convergence results of [5, 6]. Note that ¢° does not converge towards
u(¢) in the H!(Q)? norm. In the membrane norm H!(Q)? x L2(2), the convergence rate obtained
with the Kirchhoff-Love displacement UXY2¢ associated with z¢ is the best possible using 2D
objects: the leading error terms is governed by pure 3D effects due to the presence of boundary
layer near the edges.

In energy norm, we need more terms to get an optimal estimate with the same z°: Following
Koiter [20] we define the three-dimensional reconstructed displacement in normal coordinates Uz
by

KL Comp Comp a ﬁ o

Uz=U"z+U z where U;°"Pz =0 and Usz= —x3py5(z)+ Fppa(z). (1.18)

On the physical shell ¢, we define the energy E5[v] by the equation

Esplv] = / AR e (v)ege(v) dV, (1.19)

and we write a = O(eP) if we have ceP < a < CeP for ¢ and C non zero constants independent on
€. With these notations, we have the result:

Theorem 1.4 Suppose that f° satisfies the hypothesis (1.15). Let u® be the solution of the three-
dimensional equations (1.3) and z° be the solution of the Koiter equations (1.9) with the right-hand

RR n° 4956
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side g¢ = % ffe fedxs. Suppose that the solution of the membrane problem ¢° given in (1.13) is
not zero, then we have the estimates:

splu’] = O0(e) and E5plu® — Uzf] < CeESpluf], (1.20)
where C is independent of c.

This estimates can be compared to the one initially given by KOITER in [20]. The leading error
term is governed by the 3D boundary layers. It improves the result in [22] for elliptic shells.

For ease of use, the standard change of unknown w® = p~!(z3)u® is made (see [25]), where
p(xs3) is defined by

Uy = Wo — xgbgwg and

u = pxs)w = { (1.21)

uz = ws.

Theorem 1.2 is equivalent for u® and for the shifted displacement we.

1.0 FORMAL SERIES SOLUTION

The proof of Theorem 1.2 is based on the results in [15] for the formal series solution of the 3D
problem. We recall here this general framework.

The first step in [15] discards the lateral boundary conditions, and studies the inner 3D
equations written in terms of the shifted displacement w:

{L(xa,ws;Daﬁs)w = —f in Q (1.22)

T(l‘a,mg;Da,ag)wa = 0 on Sié‘

where 03 is the partial derivative with respect to x3. The scaling X3 = ¢ x5 allows to state the
problem (1.22) on the manifold 2 = S x (—1,1) with operators L(¢) and T(e) having the following
power series expansions:

L(e) =¢2 Z efLl® and T(e)=¢! Z ek Tk, (1.23)
k=0 k=0

with which are associated the formal series L[] and T[e] with the same coefficients (see Theorem

3.3 of [15]).

Recall that if £ and F are two function spaces, if a[t] = Y, t"a" is a formal series in ¢
with coefficients o* € L(E, F) and b[t] = Y, t*b" is a formal series with coefficients b* € E,
then the formal series c[t] = at]b[t] is defined by the equation c[t] = >, tFck where for all n,
¢ =3 p_,afb" ", This is the classical Cauchy product for formal series.

Considering the formal series fle] = 3, e f¥ induced by (1.15), the 3D formal series
problem writes: Find a formal series wle] = 3=, - e*w* with 1-form field coefficients, such that

LleJwle] = —fle] in 9
{T[Elw[«i] =0 . on T., (1.24)

where I+ are the upper and lower faces of €.

Theorems 4.1 and 4.3 of [15] reduce this problem to a 2D formal series problem on Sy. There

exist formal series operators V[e], Q[e], Ale] and G[e] such that if z[e] = Y, ,e"2" is a formal
series with coefficients in X(5) satisfying the equation B
Ale)z[e] = Gle|fle] in So, (1.25)

INRIA



Multiscale expansions for elliptic shells 9

then wle] defined by the equation
wle] = V[e|z[e] + Qle] fle] in (1.26)
is solution of (1.24). The formal series Ale] writes
Ale] =M+ %A% 4 ... |

where M is the membrane operator. The exact expression of A? is given in Theorem 4.4 of [15],
and Proposition 4.5 gives an estimate of the difference between A? and the bending operator B of
the Koiter model. Moreover these operators coincide on the space of inextensional displacements
(the 2D displacements z such that vy,z(z) = 0).

In the following, we will use the fact that the formal series V[e], Ale], Q[e] and Gle] satisfy the
functional equations

LEVIE)z = ~ToAlz, LEQES = ZoGEf— f,
{TéW§h o, and {TQQQf _ o0 (1:27)

for all z € X(Sp) and f € €>(1,X(So)). Here T is the canonical embedding 7 : X(Sy) —
€ (1,%2(S0))-

The second step in [15] (Theorem 5.3) deals with boundary layer formal series. In general,
if z[e] is a solution of (1.25), the reconstructed displacement (1.26) cannot satisfy the condition
wle] = 0 on the lateral boundary. Similarly to plates (see [26, 10, 8]), the change of variable R = r /e
allows to state the formal series problem: Find ¢[e] with coefficients @*(R, s, X3) ezponentially
decreasing with respect to R, such that

(Zel, Tl plel =0 and  wle] [, +¢le 0, (1.28)

] ’R:O =
where the formal series Z[¢] and Z[¢] are induced by Taylor expansions in R = 0 and X5 = 0
of the operators L and T in coordinates (R, s, X3), and where the formal series wl[e] is given by
(1.26). Note that R = 0 coincides with the lateral boundary T'y.

Theorem 5.3 in [15] shows that the existence of a formal series ¢[e] solution of (1.28) relies
upon compatibility conditions on z[e] on the boundary 9Sj. There exist formal series operators
dle] and hle] whose coefficients define four trace operators on the boundary 95y, such that if z[e]
satisfies the equation

d[e]z[e] = hle]fle] on 9So, (1.29)

then we can construct a formal series [e] solution of the problem (1.28). Moreover, the first term
of the formal series d[e] writes

d’2z = (2, 2, 23, Op 23 (1.30)

)‘BSO :

This operator is the natural Dirichlet operator associated with the Koiter model K(¢) for £ > 0.
As before, the formal series [¢] is constructed using formal series operator satisfying functional
equations of the type (1.27) in 3D boundary layer spaces (see equations (5.14) and (5.16) in [15]).

Definition 1.5 The equations

AElzle] = GElfl]  in S w1)
dglzle] = h[e]f[e] on 058y, ’
define the reduced problem associated with the 3D formal series problem. [ ]

RR n° 4956
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1. OUTLINE OF THE PAPER

The proof of Theorem 1.1 is given in sections 2-5. Section 2 studies the inner equations based on
an inverse of the membrane operator, while Section 3 deals with the two-dimensional boundary
layer terms. In Section 4 we define and solve a formal series problem in powers of £'/? and show
sharp estimates in Section 5.

The proof of Theorem 1.2 is given in sections 6-8. We note that the Koiter problem (1.9)
and the reduced problem (1.31) have the same first terms. In Section 6, starting from the reduced
problem (1.31) posed on the mid-surface, we define a 2D formal series problem in powers of /2
including 2D boundary layers, similar to the one obtained in Section 4 for the Koiter model. The
solution of this problem allows to construct the terms of the 3D expansion in Section 7. The final
error estimates are given in Section 8.

The proof of Theorem 1.4 is given in Appendix B while Appendix A is devoted to a technical
result needed in section 6.

2 KOITER MODEL INNER EQUATIONS

We consider the solution z € 3(S) of the problem

{K(s)zg in S, (2.1)

z|630:c* and 6Tz3|630:cn,

where g € ¥(Sp), ¢. = (¢, cs,¢3) € €°°(0S0)% and ¢,, € €>°(Sy). This is the problem (1.9) with
non homogeneous boundary conditions. In the following we set ¢ = (c.,c3) € €>(0Sp)*. The
existence of z is a consequence of the inequality

o sy 100 sy 2 Ol g s (2:2)

for all z € Hp x H3(Sp), see [2].

The operators M and K(e) split into surfacic and transverse parts, which have the following

block degrees:
2 1 2 3
degM = (1 0) and degK(e) = (3 4) .

According to [1], we say that M is of multidegree (2,0) and K(¢) of multidegree (2,4). The following
result gives the ellipticity property of M in the case where Sy is elliptic. This result can be found
in [16] and [29].

Theorem 2.1 Suppose that Sy is elliptic. The membrane operator M = (Mg, M3) acting on
z = (2a,23) € X(So) is strongly elliptic of multidegree (2,0) in the sense of Agmon, Douglis
and Nirenberg. The Dirichlet operator z — (zr,zs) ‘ 95, satisfies the complementing boundary
condition. Moreover, the kernel of M with these boundary conditions is reduced to {0}, and we

have for z € ¥(So):

120 g0 ct1m sy < C (M2l 1 eqimgsyy + 1 260l gsraosoye ) (2.3)

where p > f% is a fized regularity index and C o constant depending on Sy and p.

As corollary we will mainly use the following result:

INRIA



Multiscale expansions for elliptic shells 11

Theorem 2.2 Suppose that Sy is elliptic. Let g € X(So) and let ¢, and cs two functions of
€>°(0S0). Then there exists a unique { € X(So) such that

{Mg =g in So,

§r|650:cr and §5|630:cs.

Suppose that the right-hand side g = g° in (2.1) expands in powers series of ¢ (see (1.10)).

We first seek the solution z° of (1.9) under the form z = Y, ., 2. This yields the formal series
problem

Klelzle] = gle] (2.4)

where K|e] is the finite formal series M + 2B and g[e] is induced by the expansion of g°. This
problem is equivalent to the collection of equations:

VE>0, MzF=-BzF?+g" (2.5)

where we set z* = 0 for k£ < 0. The previous Theorem shows by induction the existence of solutions
of these equations. However we cannot satisfy in general the whole boundary conditions d°z° = ¢
by a power series representation of the solution.

3 TWO-DIMENSIONAL BOUNDARY LAYERS
As the mean surface Sy is elliptic, we have for all coordinate system and all (¢,) = (&1,&2) € R?
bP¢ats > (67 +€5) with ¢ > 0.

Using the fact that r is the geodesic distance to the boundary of Sy, it is easy to show that we
have a,-(r,s) = 1 and a,s(r,s) = 0 for all (r,s). As s is the arc-length on 95j, we also have

ass(0,s) = 1 for all s. We thus compute that the Christoffel symbols satisfy I', =T =TT, =0
for all (r,s). Similarly we have I'S (r,s) = 3a*(r,s)0rass(r,s), It (r,s) = —10ya.s(r,s) and
Is,(r,s) = 10sa4s(r, s). In particular we have I, (0, s) = 0.

In order to construct the boundary layers, we have to match the operators M and B. The
transverse component B3 of the bending operator B is an operator of order 4 in z3 while M3 is an
operator of order 0 in z3. Following [30], we hence set (see also [28]):

T =12 and thus 0, = e Y297 (3.1)
Setting K(e)(r, s; 9y, 0s) the operator K(g) in coordinates (r, s), we define the operator IC(¢) as
K(e)(T, s;0r,8) := K(e) (YT, s;e /20y, 85). (3.2)
The operator () acts on the manifold

§ := [0, +00 [xDSo. (3.3)

Using the Taylor expansion in 7' = 0 of the coefficients of the operator IC(g), we can associate with
this operator a formal series in €'/2, written KC[e/2]. As M is of order 2, we have

Kt = Z ek/21ck/?, (3.4)

k>—2

where IC¥/2 . 32(8) — %(S) are operators in 87 and 9, polynomials in 7.
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Here, as the formal series (3.4) involves powers of £/2, it is natural to consider the general

formal series problem
K[e'/?) Z[e'?] = G['/?), (3.5)
where Z[e1/?] =3, ek/2ZF/% and G[e1/?] = >0 ek/2GF/2 are formal series with coefficients

in X(9).

The first non-zero term in the formal series }C[¢'/?] is the operator IC™:

KN Z)= -\ +2u)02Zr, K'Y (Z)=-pdrZ, and K3'(Z)=0. (3.6)

S

In the operator K 2 the component Ky 1/2 depends only on the operator M3:
K3'%(Z) = ~2(AH + pby) 07 Zr — 2pbys 01 Zs, (3.7)
where b,.., b.s and by, are the components of the second fundamental form b,..(0, s), b,5(0, s) and

bss(0, s) on the boundary and H = %(bw + bss) is the mean curvature along 9.Sy.

The influence of the operator B; after the homogenization only appears in the operator K9.
That is why we make a scaling in the problem (3.5) in order to obtain a formal series problem with
a first operator term having all non-zero components, and taking into account the influence of the
operator Bs. We set

{Za[él/Q] = Zo[e'/?, ] {éa[gl/Q] = e Gale'/?,

23[51/2] _ 51/223 [51/2]7 s

3.8
G3[€1/2] — 81/2G3[€1/2]. ( )

These relations read

Zf/Q _ szoc/z GF? — Gk+2)/2
Vk >0, o and . o ’ 3.9
2 {Z§/2 _ ng+1)/27 G§/2 _ ng+1)/2. (3.9)

1/2

If the formal series Z[e!/2] starts with a power 0 of £1/2, this implies that the corresponding formal

series Z[e!/?] starts with a power —1/2 of .
We define the formal series K[¢'/2] by the formal series equation
K[ Z[eV?) = (e Ko [eV/%] Z[1/?] , e'/2K5[e"/?) Z[1/7)). (3.10)
The problem (3.5) is thus equivalent to the problem
K[e'/? Z[eY%) = G\, (3.11)

The formal series
k[€1/2] _ Zsk/Qka/Q

k>0

has then for first term the operator K° whose components write, for Z € %(S):

0

T

20/ 3 9 5 .
(Z)=—porZs + 2pubrs OrZs,
0( ) Hor 1% T43 (3.12)
3

(Z) = — 2(\H + pb,..) O Zyp — 2pbys 1 Zs
+ LN+ 200) 04 Z3 + A((\+ 20) H? — pK) Zs,
where K = b,..bss — b2, is the Gaussian curvature of Sy along 9.S.

Note that the variable s only appears in the coefficients of the operator K° and thus can
be considered as a parameter. For fixed s, the operator K° is a system of ordinary differential
equations in 7" on the interval [0, +o0 .

INRIA



Multiscale expansions for elliptic shells 13

Proposition 3.1 Let s € 05y fized, and let c3,c, € R . There exists a unique function ¢ €
> (R*)3 exponentially decreasing, solution of the system

{k0(¢)20 in [0, +o0|

) 5 (3.13)
3 =c3 and Orgs

Cn.-

T=0 ‘T:O =

Moreover, for all n < 1, where 1y is given in (1.12), e"'p is bounded as T — cc.

Proof. Let us write the symbol of the operator K0 by replacing formally dr by it where 7 is a
complex number. This symbol writes

(A4 2u)72 0 2(NH + pibyy )T
0 ur? 2ipbysT , (3.14)
—2i(AH + pby)T  —2ipbpst 5 (A +2u)7 + b

where b = 4((A + 2u) H? — pK). The determinant of this matrix is

1 ~ ~
urt (50\ +2u)2 7t 4+ dp(\ + u)b?s) . (3.15)
This polynomial in 7 has 0 as root of order 4, and 4 complex roots
ix ix iz iz 124(X
et a, e T ¥a, e’ Ya and e i /a, where a= Ml)gs > 0.
(A +2p)?

Among these roots, only two have positive imaginary parts: eT a and e’T a. These roots are
ml+i), ml—i4), -m@+i) and —mn(l-1d).

For fixed s, consider now the equation K°(@) = 0 in R*. As (AH + ub,,) # 0, we can transform
this system in a triangular system written

2(NH + pibyr) Or@r + 2ubrs 7,
— 2N+ 2p) g3 — A((A+ 20 H? — pK) ¢35 =
M a%()bs — 2pbys OrP3 s
(%(A +24)%07 + 4p(\ + u)bis)aﬂfw =
We deduce from the last equation that @3 writes
P3 = A+ Age_Tm(H_i) + Age_Tm(l_i) + A46T771(1+i) + A56T771(1+i),

(3.16)

oo

where A;, Ay, As, Ay and Aj are complex numbers. As we seek ¢ exponentially decreasing in T,
we deduce that A; = Ay = A5 = 0. Using the boundary conditions in (3.13) we deduce that

1
@3(T) = e~ mT (U_cn sin(mT) + cs(cos(mT) + sin(an))) . (3.17)
1
The second equation in (3.16) then shows that
+oo
R (3.18)
T

is the unique solution @, exponentially decreasing. Finally the equation
or(T) = —pbrs(AH + Nbrr)71¢s (T)

- . N 3.19
+ (AH + pbyr) ! /T (%(A +24) 9703(T) +2((A + 2u) H? — pK) ¢3(T))dT (349)

yields the unique solution exponentially decreasing of the first equation in (3.16). ]
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In order to solve the system (3.13) with non-zero right-hand sides, we define the space
TRY):={fcE°R") | Vi,keN, Vnp<mn, 7oLfcL*R")}. (3.20)
To this function space we associate the displacement space
T(RY) == { = (¢r, ¢s,3) € T(RT)* ). (3.21)

IfG e T(RT), we can construct on the interval [0, +o0o [ a solution exponentially decreasing of the
system

K%Z)=G in [0,+0],
23:6T23:O for TZO,

using explicit integral representation: see the formulae page 48 in [1]. This particular solution
is then exponentially decreasing with an exponent smaller than 7;. Hence we have the following
result:

Theorem 3.2 Let s € 0S5y fized. Let G e T(RY), and let c3,c, € R. There ezists a unique
Z € T(R™) solution of the system

(3.22)

Cn.

{ch(Z) =G in R*,

Zg |T:O = C3 and 8T23 ‘T:O =

Moreover, if the right-hand side G € €> (080, T(RY)) and if c5(s) and c,(s) are € functions
on 0S5y, then the solution Z of (3.22) defines an element of € (050, T(RT)).

4 CONSTRUCTION OF THE KOITER MODEL EXPANSION

4.A FORMAL SERIES PROBLEM

The operator K(g) induces in a natural way a formal series in £'/2? by setting

Ke?:=M+e’B =) "?KM?,
E>0

with K® = M, K? = B and K*/2 = 0 for k = 1,2,3 and k > 5. Hence if ¢[e'/%] = 37, ek/2¢k/?
and g[e'/?] = 3, €"/?g*/? are formal series with coefficients in %(.5;), the equation

K[e'/?]¢[e"?) = gle'/?] (4.1)

makes sense.

Let g[c'/?] and G[e'/?] be formal series with coefficients in the spaces ¥(Sp) and 6> (9Sy, T(RT))

respectively. The equations (4.1) and (3.5) yield the equations to be satisfied by ¢[¢/?] and Z[¢!/?]
in the interior of the domains. The goal is now to match these formal series along the boundary.

On the boundary 0.5y, which correspond to the set 7' = 0 in §, we can define the following
formal series, with coefficients in €>°(9.5p):

¢l }aso = ZEk/QCk/Q |6So and Z[e'/?] }aso = Zsk/zzkm |T:0'
= k>0
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Moreover, we can define the reentrant normal derivative of the formal series ¢[¢!/?] in the
vicinity of 0.5 by the formula
aT 1/2 — ng/Qa Ck/Q

k>0

But the relation 7' = ¢~ '/?r allows to define the action of 9, on the formal series Z[¢!/?] by the
formula

0, Z[e'?) =207 Z[cV/?) = Z e2opZ D2 (T ).

E>—1

If we set (5 /2 — 0, we thus can consider the sum

0rCale"? | g, + O Zale ] [y = D 2 (0, ke los, + orz{ VR ). (4.2)
E>—1

Suppose given formal series in ¢!/2

c. 1/2 Zsk/z k/2 and cple 1/2 Zsk/z k/2 (4.3)
k>0 k>0

where for all k, ¢t/% = (/2 5% E/?) € €°(850)2, and ¢/? € €>(0S,). We write ¢c[c1/2] =
Zk>0 ck/2ck/2 with ck/2 :( 15/2 ci“/?).

The formal series problem states as follows: Find (¢[e!/?], Z[!/?]) solution of the equations

Hag - g
IC 1/2 VA 1/2 — G€1 2 ,
Cle 1/2] |aS +Z[e 1/2 |T 0o C*[El/Q]v (4.4)

8rGale'?] | pg, + OrZsle cnle!/?).

Pllr—y

Using the previous equations and the relations (3.9), the system (4.4) is equivalent to the following
problem: Find formal series ¢[e'/?] = 3,5, */2¢*? and Z[e'/?] = Y, €/ Z*/? solutions of
the following equations, for all k > 0, - -

VI\/I(uCk/Z) = _B(C(kfil)/z)_L_gk/2 v . S:O,
k/2 ’gZEQZkﬂ) = —k/%:’g:lICé/2(Z(k_e)/2)+Gk/2 in 3,
" ‘65 +ZT ‘T:O = Ty
5/2} T Zvlsc/2 }T: _ C/;/z, (45)
0.2 o Or |

In the following, we always set the terms with negative indices to zero. We will see now how the
properties of the operators M and K° yield a solution of the system (4.5).

4.B EXISTENCE THEOREM
The goal of this section is to prove the following result:

Theorem 4.1 Suppose that Sy is elliptic. Let gle*/?] =3",-,c"/2g"/? a formal series with coef-
ficients in (Sy), G[e'/?] = Y40 /2G*? a formal series with coefficients in € (9So, T(RT)),
and cle'/?) = 3, e¥/2ck/2 a formal series with coefficients in €>(0S0)*. Then there ezists a
unique couple (C[E_l/Q], Z[Y2]) of formal series with coefficients in $(S) and € (0Sy, T(R))
respectively, solution of the system (4.4).
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Proof. We show the result by induction. The relations (3.9) show that the first terms of the
formal series Gc'/?] write
G'=0 and GY?=(0,GY).

We divide the equations (4.5) into two parts:

9

,”CO(Zk/z) _ _Zif:l,“cem(Z(k—e)/z)_i_ékp in S,

Vk >0 Zk/2 _ (k—l)/2 (k—1)/2 4.6
T %?c/z 7m0 = (k 2)/2 % (k=2 ’/350 o
aTZ3 ’T:O = 6 C ‘BS ’
for the boundary layer terms, and
M/(C’“/2> - ’“7?/2) +g"? in S,

k/2 k/2 k/2
vk >0, ‘asa Cr |l7—0 (4.7)

/ } _ Ck/2 k/2 }

a5, s T=0"

for the terms in X(Sy). Note that these two groups of equations are linked by terms on the
boundary 9.5s.

For k = 0, these equations write

ch(ZO) = 0 in 5’7 M(CO) = g’ in Sy,

5 0 — N _ 0

ZV(B)|T:0 = 0 and Gr ’asu = & ZT’T 0° (4.8)
aTZ(3)|T:o =0 <g|650 = (s)*ZO‘T 0°

Using Theorem 3.2, the first group of equations implies that ZY = 0. Theorem 2.2 shows that
there exists ¢° € %(Sy) solution of the second group.

For k = 1, the equations (4.6) and (4.7) write, using Z° = 0

K9(ZzY/?) = GY2 in &, MY = g2 in S,
1;2‘T 0o = Cg*g?ﬂas’ and ’ii‘asn = ci;z leT 0’ (4.9)
aTZ ‘T:O = 0, Gs ‘asa = o' =7 |T:0'

Theorem 3.2 shows the existence of Z1/2 € € (850, T (R*)) satisfying the first group of equations
(the term ¢° being determined), and Theorem 2.2 shows the existence of ¢ 12 ¢ 3(Sp) satisfying
the second group of equations.

Let us suppose that ¢/ € %(S) and Z%/? € €>(9Sy, T(R*)) are determined for £ =0,...,k — 1
where k is an integer, such that the equations (4.6) and (4.7) are satisfied up to the order k. Thanks
to the structure of the operators K!/2 for £ > 0 and using the definition of the space T(RT), we see
that the right-hand side of the inner equation of (4.6) is an element of €>°(9Sy, T(R")). Theorem

3.2 then shows the existence of Z*/? in the space € (9S,, T(R')).

Theorem 2.2 then shows the existence of a solution ¢*/2 € £(S) of the equations (4.7) This shows
the induction hypothesis at the rank k£ and concludes the proof. [ ]

In the previous proof, the fact that Z° = 0 implies using (3.9) that Z; */* = 0 and Z° = 0.
The first boundary layer term is hence Z° = (0, Z3). Thus we have

Ce? = ¢+ ST and 2V = (0,29) + 3 222, (410)

k>1 k>1
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4.c INFLUENCE OF THE RIGHT-HAND SIDES

We study now 6 generic cases mentioned in Table 1 for the formal series right-hand sides in the
problem (4.4). For certain cases we can show that some first terms vanish and the structure of the
formal series ({[e'/?], Z[c'/?]) is not the same as (4.10).

Using the linearity of the problem, we only consider right-hand sides formal series of the form
gle'?] = ¢°, G[e'/?] = G° and c[e'/?] = c® = (&, 2,3, %) and we study successively the cases
where only one component does not vanish in these formal series.

Note that in all cases, the proof of Theorem 4.1 shows that Z° is zero. We summarize the
results by the following table. The first three columns give the expression of the right-hand sides
formal series, and the last two give the expression of the first terms in the expansions of ¢[¢!/?]
and Z[¢'/?] of the solution.

gle'/?] GJe'/?] cle'/?] Z[e1/?] ¢lel/?)
g° 0 0 (Ong)Jr"' O
o | (6% 0 0,622 %) 1o | eci g
0 0,G9) 0 0,29) + - - el/2¢1/2 4.
0 0 (5,0,0) 0,29) +--- Ot
0 0 (0,¢%,0) 0,29) +--- el/2¢1/2 4 ..
0 0 0,0,¢9) || (0,6v225/%) + - e¢l 4o

Table 1. Structure of the solution with respect to the right-hand sides.

For example in the case where g° = 0, G° = (G2,0) and ¢® = 0, we have G° = G/2 = 0.
Studying successively the equations (4.8) and (4.9), we easily see that ¢" = 0, Z'/2 = 0 and
¢ /2 = 0. In general we have Z' # 0 because this latter term satisfies

K (ZYHY=G'=(G°%0) in S and Zil| . =o0pZi 0.

|as ‘as =

This implies that in general ¢ # 0. Thus the expansion is of the form
Clet? =gt +Z€k/2Ck/2 and Z['/?] = (0,61/2Z§)+Zsk/2zk/2.
k>3 E>2

The other cases are studied similarly (see [14] for details).

5 ESTIMATES FOR THE KOITER MODEL ASYMPTOTICS

We consider the solution z° of the equations (1.9) in the case where g = g°¢ satisfies (1.10).
Using the results of the previous section, there exist two formal series ¢[¢'/?] and Z[¢'/?] satisfying
the equations (4.4) with formal series right-hand sides c[¢!/?] = 0, G[¢/?] = 0 and g[¢'/?] the
formal series induced by the expansion (1.10).

Note that for £ > 0, the sum Ck/Q + Z"? does not make sense, because the terms Ck/2 and
Z"? are not of the same nature and lives on different manifolds. However the sum ¢*/%+ y(r) Z*/?

RR n° 4956



18 Faou

makes sense and defines an element of ¥(Sy). In this section we prove that the expansion

DR 4+ x(r) 24?) (5.1)
k>0
is an asymptotic expansion of the solution z° of the problem. Notice that we could also make the
more general assumption
ga ~ ngﬂ (gk/2 + X(’I‘)Gk/Q),
k>0

and similarly the data on the boundary may expand in powers of £/2.

For N € N we define the 2D displacement
N
2N(e) =Y "2 (¢M? + x(r)27?) € £(S). (5.2)
k=0
We thus have 2V (¢) = 8V () + x(r)AY (¢) with
N N
0" (¢) := Zsk/QCk/Q and AV (e) := Zsk/Qka.
k=0 k=0
Using the estimate (2.2) we see that we have
2
KMy g, = Ol s (53)

for all n € 3(Sy) satisfying the boundary conditions n ‘ 95, = 0 and 9,73 ] 0y = 0. In the following
C denotes always a constant independent of €. Using this estimate we show the following result:

Proposition 5.1 For all N € N, we have the estimate

12 — 2 )l sy < C 27 (5.4)

Proof. Using the proof of Theorem 4.1, we see that the term 2%V () satisfies
N/2
zN(E)‘aso =0 et 8TZ§V(€)]650 :5N/28TC3/

We thus define the following element of ¥(.Sy):

N ._ 0
£ = ((&C;V/Q |6S0 )TX(T)) '

It is clear that the term ZV () := 2V (g) 4+ eV/?t" satisfies the homogeneous Dirichlet boundary
conditions 2" (¢)|,5 = 0 and 9,2z} (¢) |5 = 0. We thus can apply estimate (5.3) to the term

los,

z° —z"(e) and we have to estimate the term K(g)(2° — 2V (e)).
The formal series ¢[¢'/?] satisfies the equation K[e'/2] ¢[e'/?] = g[¢'/?]. Thus for N € N we have
K(2)8" (e) — g° = O(eNTD/2),

where O(¢(N+1)/2) denotes an element of ¥(Sy) bounded in any functional norm on Sy by Cne(N+1)/2
where Cy is independent of €. We deduce that we have

K(e) (0N () + eN/2tY) — g° = O(eN/?). (5.5)
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Moreover, for y € X(Sy) satisfying the homogeneous boundary conditions, we have the relation

|(Ke) AT )):9) 25,0 — KENAT €)) X8 2

where 71 > 3 > 0. This relation is due to the fact that the support of 9, x(r) lies in an open set
(p1, p2) X 0Sp of Sp with 0 < p; < po. As this domain is at a distance of 95y independent of ¢ and

as the terms Z (%, s) are uniformly exponentially decreasing with respect to 7' = ﬁ, we get the

exponential term in (5.6).

< Ce PIVE|y|| (5.6)

H! xH2(Sp) ’

Using the scaling (3.8) and the definition (3.2), we have in coordinates (T, s) for all y satisfying
the homogeneous boundary conditions,
1 o

KE AV )Xy g, 0 = —= K (AN (E), 8)

7 (5.7)

L2(8)%”
where we set
Y(T,s) = x(e"°T) (yr, ys, £ *y3) (€'/°T, s),
and where N
AN(E) _ ng/zzkm i E(N+1)/2(O7Z:())N+1)/2)-
k=0
Note that the scalar product in (5.7) makes sense since ¢ has compact support.

It is clear that the Taylor expansion in 7" = 0 of the operator k(s) corresponds to the formal series
K[e'/?]. As the formal series Z[c!/?] satisfies the equation K[¢!/?] Z[¢'/?] = 0. We thus deduce
that

(K (AN ) x8), 2y = OB g

By doing the change of coordinates, we easily see that

H’yHHle?(ﬁ) S 0671/4Hy||H1><H2(So) .
Finally, we have
KEAYE) W)y 250 = Ol g s, - (5.8)

Grouping together the equations (5.5), (5.6) and (5.8), we obtain that for y € ¥(S;), we have
K(e) (2~ 2¥(),w), o = OV

=0and 9, (2°—2" (¢))

(50)3 ||y||H1><H2(SU) :

As (222N (9)) ‘65‘0 ‘65‘0 = 0, we can apply this estimate to y = 25—z (¢).

Using (5.3) we obtain
e =N N/2-9/4
1 =2V )lg1 pngsy < O
But we have [|zVV(¢) — zN(s)||Hle2(SO) = O(e"V/?), and hence the previous estimate shows the
proposition. ]

This proposition gives a rough estimate for the difference 2¢ — 2V (). We deduce now the following
result:

Theorem 5.2 Let z¢ be the solution of (1.9) with a right-hand side satisfying (1.10), and let 2™ (¢)
defined by (5.2). For all N € N, we have the estimates:

125 = 2 Ol s aragsyy < CE2HE and 125 = 2@ g pageny < OV (59)
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This Theorem implies Theorem 1.1.

Proof. The estimate (5.4) shows that fo V € N, we have

e _ ZN+6( ) < CEN/2+3/4

= Mt regsy <

Thus we have

1 = 2 )l g erngsny

N+6
< Y P itz sy + N2 i asas,yy ) + CENPTE - (5.10)
k=N+1
k/2
For k > 0, the terms ||¢ ||Hle2(S0)
see that for a fixed component ¢ and for all £ > 0, we have the estimates

k/2 k/2 k/2 —
X2 sy < CEVY INZ Pl sy S et and X2 o, < Ce¥4 0 (5.10)

are bounded by constants independent of . Moreover we

Plugging these estimates into (5.10), we get

€

|25 — =z < OneN/2-1/4, (5.12)

( )||H1><H2(S )
where C'y is a constant independent of €. This shows the result.

Similarly we obtain inequalities of the form (5.10) for the norm H' x L(Sj) and conclude using
(5.11). n

Using the previous Theorem, we can compare z° with the solution of the membrane problem.

Proposition 5.3 Let g € X(Sy) independent of ¢, and let { € X(Sy) and z° € X(Sy) be the
solutions of the problems

{I\/I(C)zg in  So, and {K(E)Zazg in S,

Ca ’asa =0. z ’630 = On23 ‘650 =0,

then we have the estimate

125 = Cllggr o) < C ™ (5.13)

Proof. The previous Theorem for N = 0 and the H* x L2(Sy) norm yields

|25 — CO _ XZO||H1><L2(S ) < Cel/4,

As ¢ = ¢° we thus find

< IIxZs| + Ot

125 = C||H1><L2(SO) L2(So)

and the equation (5.11) shows the result. [ |

6 FORMAL SERIES SOLUTION OF THE REDUCED PROBLEM

We study now the problem (1.31). Note that this problem is close to the Koiter equations
(1.9). In particular, the first term (A", d°) in (1.31) is equal to the first term (K°,d°) of the Koiter
operator and is non invertible. As before, we introduce 2D boundary layers to solve the problem.
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6.A STATEMENT OF THE FORMAL SERIES EQUATIONS

In the following, we denote by f[e'/2] the formal series induced by the expansion (1.15). Notice
that every formal series in powers of ¢ is also a formal series in powers of £'/2. We denote for
example by A[!/?] the formal series Ale] viewed as a formal series in ¢'/2, and we use similar
notations for the formal series of the paragraph 1.D.

(i) INNER EQUATIONS. Let ¢['/?] =37, ., "/2¢*/? be a formal series with coefficients in %(.Sp).
We consider the equation (see (1.31)) -

Ale'?)¢[e"?] = GleV?) f[eV7] (6.1)

which means . .
Yn > 0’ ZAZ/Qc(n—f)/Q _ Z Gl/Qf(n—@)/Q7
£=0 £=0
where A“/2 = 0 when ¢ is odd.

In order to define the equations acting on 2D boundary layer terms, we make the change of
variable (r,s) +— (T,s) with T = £~'/?r in the formal series A[¢!/?]. In coordinates (7, s), the
operators AF change to operators depending on ¢ in the variable (T, s). We define A% (e) the
operator acting on S by the equation

V>0, AR ()T, s;0r,0,) = A¥ (2T, ;671 /20r,0,).

Note that these operators contains negative powers of £'/2, depending on the degree of A¥. The
Taylor expansions of the coeflicients of these operators in 7' = 0 yield formal series AF) [51/ 2] with
operator coefficients in variables (7', s). We then have the following result:

Lemma 6.1 The Taylor expansions in T = 0 of the coefficients of the operators AP (e) defines
operators AF£/2 acting on S, polynomials in T, such that

VE>0 AW = Y P ARE (6.2)
£>—(k+2)
The equation
A %)= ek AW /2] (6.3)
k>0

then defines a formal series

n+2
A[51/2] = Z "2 A2 with A™? = ZAk’("fzk)/Q. (6.4)
n>—2 k=0
Proof.  The equation (6.2) is a consequence of the estimate of the derivative orders of the

operators A* (see equation (4.25) of [15]): The components of the operators A¥ are at most of
degree k + 2.

The fact that (6.3) indeed defines a formal series is then easily seen by identifying the powers of
e/ in (6.3). u

The formal series .A[c'/?] corresponds to the the formal series /C[e!/2] for the Koiter model. We
thus consider the problem: Find a formal series Z [¢!/2] with coefficients in the space € (9.Sy, T(RT))
such that

Ale'/?) z[eY?) = 0. (6.5)
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As for the Koiter model, we make a change of unknown in order to obtain a new formal series
problem with a formal series operator having all its first components non zero: We define the
formal series A[c!/?] by the equation (see (3.10))

AV Z[eV?) = (e A, e/ Z[V/7), €'/2 A3 [1/2) Z[1/7). (6.6)
where Z[¢!/2] and Z[¢'/2] are linked by (3.8). The problem (6.5) is hence equivalent to the problem
Ale'/?) Z[eY?) = 0. (6.7)

Now we have:

Propositionuﬁ.z The operator A° s the same as the operator KO defined in (3.12). In particular
the operator A° satisfies Theorem 3.2.

Proof. The first terms of the formal series Ale] write
Ale] =eTA 4712472 L A o
with, using the fact that Al =0,

A= A%1 A7Y2 = A2 and A0 = AP0+ A%2 (6.8)
As A is the membrane operator, we have that A% ! = IC™! givenin (3.6). Similarly, the transverse
—1/2

component Ay is the same as 3 1/2 given by (3.7).

Moreover, from the expression of A? (see Equation (4.32) of [15]) we have
_ 1~
A37(2Z) = g()\ +2u) Orrrr Zs. (6.9)

©0 20
Using (6.6), we then compute directly the expression of A~ which is equal to IC . [ |

() BOUNDARY CONDITIONS. If ([e'/?] = 37, ., €"/2¢*/? is a formal series with coefficients in the

space X(Sp), we can consider the formal series (see (1.31))

n

d[51/2] C[El/Q] _ Z En/2(zd4/2c(n4)/2), (6.10)
n>0 =0
with coefficients in the space € (9Sp)*.

With the formal series d[c'/2] is associated a formal series D[c'/?] with operator coefficients
on Sp such that d[e'/?]z = (D['/?]z) | 4 for all z € %(Sp) (see Proposition 5.4 and Equation

(6.1) of [15]). As before we define the operators D*) () on § := RT x 85, by
ViE>0 DM ()T, s;0r,0,) := D¥ (2T, s;6720r,8,).
As in Lemma 6.1, we have the expansion

V>0, DW= Y DR (6.11)
£>—(k+1)
Hence we can define the formal series

n+1
D[El/Q] _ ZEkD(k) [51/2] _ Z En/21)n/2 with Dn/2 _ ZDk,(n—Qk)/Q.
k>0 k>-—1 k=0
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The formal series d[e'/2] = 3, . _, €"/2d"/? with operators coefficients d"/? : $(§) — €°(95,)%,
is then defined by a

de'/?| z = (D% Z) |,,_,, .
for Z € Z(S”) In the following we write d"? = (di/ 2,d’§/ 2,d§/ 2,df,/ 2) the components of the
operators dr?.

We have D’z = (z,, z,, 23, 0,23). Using the orders of derivative of the operators D*, we see
that the formal series d[s'/?] writes

d[€1/2] _ 671/2d—1/2 +d0 e

with

d71/2Z = (Oa 07 07 aTZ3 and dOZ = (ZTa Zsa Z35 d%(z)) ’T:O : (612)

M=o

The formal series boundary equation finally writes:

d[e'/?¢[e"/?] + d[e/?) Z[e'/?] = h[e'/?] fle/?). (6.13)

In order to obtain equations on Z[¢'/2], we define the formal series D[c'/2] and d[¢'/2] by

v

D[e'/?| Z[e'/?] := DI[e'/?| Z[¢'/?], and d['/? Z = (D['/?] Z)|,_, - (6.14)
Using the equations (3.9), we compute that we have

&[51/2] _ Z cki2gh/2 — —1g-1 +€71/2&71/2 + d° N
k>—2
with d;'Z = 0rZ3 d;'Z=0and d; '/*Z = Z4 Moreover we have

|T:O7 ‘T:O'

v v

0z =d;'z=d; Pz =d 2z =0, &Z =107, , and dZ=7,, .

Grouping together the equations (6.1), (6.5) and (6.13) we define the problem: Find a for-
mal series ([e'/?] = Y,- ek/2¢R? with coefficients in %(So) and a formal series Z[e!/2] =
>0 2Z*/? with coefficients in the space € (9S,, T(R')) satisfying the relations

A2ICE?] = GIEV?] flet/?,
Alet?) Z[eV?] = 0, (6.15)
dle2 ¢V + deV/A) 27 = hEV?) £,

6.B SOLUTION OF THE FORMAL SERIES PROBLEM

We now prove that the system (6.15) admits a solution. The method is close to the proof of
Theorem 4.1.

Theorem 6.3 Suppose that Sy is elliptic, and let f[e'/?] be a formal series with coefficients in
€ (I,5(S0)). Then there ezists a unique formal series {[e'/2] with coefficients in the space (So)
and a unique formal series Z[e'/?] with coefficients in the space €™ (050, T(RT)) satisfying the
equation (6.15).

RR n° 4956



24 Faou

Proof. We set g[c'/?] := G[e/?]f[¢'/?] and c[e'/?] := h[e'/?]f[¢'/?]. The coefficients g*/? and
c*/? are thus in ©(Sy) and € (0Sp)* respectively. Note that ¢’ = 0 because h® is the zero operator
(see Theorem 5.3 and Equation (6.1) of [15]).

The last equation of (6.15) is equivalent to
dle' ¢l ?] + d[eV/?) Z['?] = h[e'?] £[eV7).

This writes, for k > —2,
k k
Zdé/Q(C(kfl)/Q) i a—l(Z(IH—Q)/Q) i a—l/Q(Z(k-i-l)/Q) n ZaZ/Q(Z(k—é)/Q) — 2.
=0 £=0
Using the expressions of the first operators, we get:

k k
G2 gy + 2oAHCUTI) 4 232y 4 3B =
=1 =1
and
k k
C§/2 ’650 + de;ﬂ(c(k—f)/?) + ZE/Q ‘T:O + Z dﬁ/Q(Z(k*f)/Q) - 05/2,
=1 =1

for the surfacic components. For the transverse components we get

k 2 /2 k—¢ k+1)/2 0/2 2
/ lose *Zd/ (¢U=0/2) 4z +Zd/ ZU=0/2) = k2
=1 £=0
and similarly,

k/2 )2 (k—£)/2 (k+2)/2 7 2 k—0)/2 k/2
los, +Zd/ (¢*=972) 4 op 7 |l r—o +Zd/ Z*=072) = /2,
/=1 (=—1

Note that these last two equations express Z(kH /2 | and Or Z(k+2)/2 | ;o With respect to

terms of lower order in k. Moreover, these two terms correspond to the boundary conditions we
can impose when solving for the operator .A4°. Finally, the formal series ¢[¢!/2] and Z[¢'/2] solve
the reduced formal series problem (6.15) if for £ > 0 we have:

AO(Zkﬂ) _ _212214“4@/2(2@—4)/2) in S,
k/2‘T . = cgk_l)/Q—Z d(é 1)/2( (k— e)/z) Z’Z;&dép(d’“‘l‘“/?), (6.16)
02y |y = e AT (20N S TR (R,
and
M(Ck/2) _ _Z Ae/z( (k—e)/2)+gk/2 in S,
k/2|6s0 _ Cfu*Zf €/2(C(k e)/2) k/2‘ 726 . e/g( (k— 4)/2) (6.17)
Pos, = A= TiL a2 | - T &P (2000,

where we agree that ¢//2, CZ/Q and Z*/? are zero for ¢ < 0.

The end of the proof is similar to the proof of Theorem 4.1, using the theorems 2.2 and 3.2 and
the fact that A° = KC°. [ |
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6.c COMPARISON WITH THE KOITER MODEL

Proposition 6.4 Let (C[EUZ], Z[El/Q]) be the solution of the problem (6.15) given by Theorem 6.3
and (¢'[eY/?), Z'['/?]) the solution of the system

KEEV?)¢'[eV?] = GO fleV/?],
K[/ Z'[€V/2] = o, (6.18)
dO¢[e/2) + (d%, 40, dY, e =/2d, ) Z' (€12 = o,

given by Theorem 4.1. Then we have
C[El/Q] _ C/[EI/Q] —cel + ZEk/Qek/2,

k>3

and
Z[€1/2] . Z’[€1/2] _ (0,51/2E;/2) + Zsk/QEk/Z
E>2

where e/ € ¥(Sy) and E*? € €% (9Sy, T(RT)).

Proof. We set
gl = GV £l and V2] = h[V/?] £V/2)

We easily see that we have ¢ =0, ¢'/2 = 0 and g'/? = 0.

Comparing the proofs of Theorems 4.1 and 6.3, we see that the two solutions have the same first
terms Z° = 0 and ¢ solution of the system

e ,
M) =6 =5 [ s i S and Gy =Gelys, =0
-1

For k = 1, the equations (6.16) write:
A%ZY%) =0 in &, 1/2 <3|as , and <9TZ1/2 =0,

‘T =0 |T:O

and using IVCVO = A%, we see that this system is identical to the first system of (4.9) with the right-
hand sides G° = 0 and ¢ = 0. We deduce that the term Z'/2 solution of the previous system is
the same for both solutions of (6.15) and (6.18).

The equations (6.17) then write

M(Cl/z):() i Sp, 1/2 1/2

and (/2 ‘as -2, ‘T:O’

|BSO |T =0’

and we verify that the equations (4.7) for & = 1 are the same. The term ¢'/? solution of this
system is then common in both formal series ¢[¢'/?] and ¢'[¢'/2].
For k = 2, the equations (6.16) write A°(Z') = —A'/2(Z'/?) with

. 12 . N
— —dB(zV?) Y and OpZi = —dY2(ZY2) = 9,¢8 los, >

3o los, o

and the equation (4.6) associated with the problem (6.18) writes
KO(Z2") = K22, 2|, = los, and 0125 |;_, =

The proposition is a consequence of the following result, proved in Appendix A:

/1/2 0‘
3108,
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Lemma 6.5 The operators A2 and K2 are the same, the operator czg is the zero operator, and
the operator J; 1/2 writes 5 5 y
d,'*(Z) = exdrrZs

o - (6.19)

where co > 0 is a constant depending only on the Lamé coefficients A and p.

The operator (6.19) being not equal to the zero operator, the terms Z' and Z'! do differ in general.
This implies that the terms ¢! and ¢’! also differ. This proves the proposition. [ |

7 THREE-DIMENSIONAL FORMAL SERIES SOLUTION

We recall the definition of the three-dimensional boundary layer spaces ([11, 8, 15]): After the
change of coordinate R = ¢~ !r in a neighborhood of 'y, the coordinate system (R, X3, s) is defined
on the manifold % x 9Sy where ¥7 := RT x I 3 (R, X3) is a semi-strip. Let $(XT) be the space
of € functions ¢ on the semi-strip ¥ except in the non regular points (R = 0, X3 = 1), and
such that ¢ is exponentially decreasing with R in the following sense:

Vi,jkeN, B RFOLOL ¢ € L2(ET),

where § > 0 is a real strictly less than the smallest Papkovich-Fadle exponent (see [17]). In the
neighborhood of the two corners of the semi-strip, we impose the following: if p denote the distance
in ¥ to a point (R = 0, X3 = *1), we suppose that each ¢ in $§(31) satisfies

. S i+i—1 i aJ 2y
Vi,jeN, i+j=#0, P aRaxstpeL(E ).
We then define the corresponding displacement space

HEY) = {e = (¢r, vs: p3) € H(ET)}.

In this section, we construct three formal series:

A formal series v[e/2] = 37, -, e/2v*/? with coefficients
M2 (21,22, X3) € €% (1,2(S0)),
a formal series W [e/2] := 37, ., e*/2W*/? with coefficients
WH2(T, 5, X3) € € (I x S, T(RT)),
and a formal series ®['/?] = Y, ., eF/28*/2 with coefficients

*/2(R, 5, X3) € € (950, H(Z)),

solutions a the 3D formal series equations in the corresponding coordinates, and satisfying the
boundary condition:

v[e'/?] ’Fo + W[/ ’T:O + ®[c'/? 0.

] ‘R:O -

These three formal series are constructed using the formal series reduction of [15], and the
formal series obtained by Theorem 6.3. To this aim, we define the action of the operator formal
series V[e!'/?] and ¥[c'/?] (see Theorem 5.3 of [15]) on the 2D boundary layer formal series, taking
values in 6>°(I x 9Sp, T(RT)). From now on, ¢[e/?] and Z[c!/?] are the formal series given by
Theorem 6.3.
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7.4 CONSTRUCTION OF THE FORMAL SERIES
(i) CONSTRUCTION OF v[e'/2]. We define the formal series
ole/2) = VI () + QI )
with coefficients in the space € (I,%(5)). As ([e/?] is solution of the equation
Ale'2I¢[e?] = G2 fIE?),
we easily see using (1.27) that we have

L[€1/2] v[51/2] = —f[51/2] and T[El/Q] v[sl/Q] =0.

(i) CONSTRUCTION OF W [e!/?]. In order to define the formal series W [c'/2], we make the change
of variable in the operator formal series V[e'/?]. Recall that the operators V¥/2 vanish if k is odd.
If we denote by V¥(r,s, X3;0,,0s) the operator V¥, polynomial in X3, in the coordinate system
(r,s,X3), then we set for all &k > 0,

V) (e)Z = VF (YT, 5, X3;e7207,8,)(2),

where Z is a 1-form field on the manifold S. As in Lemma 6.1 the corresponding formal series
V#)[1/2] obtained by Taylor expansion in T' = 0 of the coefficients write

v(k)[El/Q] _ Z /2phit/?, (7.1)
>—k

where the operators V**/% are polynomial in T and X3 and act on %(S) (see [15]). We define the
formal series V[e!/?] by the equation

n

VIV =Y VW2 = Y e PYnE with W=y RO (1.g)

k>0 n>0 k=0

Using the definition of the space T(R™),, we see that the formal series V[¢'/?] has operator coeffi-

cients
V2 6% (9S0, T(RY)) — € (I x dSp, T(RT))

polynomial in T and X3. We have V’Z = Z. We now define the formal series
Wet/?) = V[el/?] z [/,
with coefficients in the space ¢ (I x Sy, T(RT)).

(#i) CONSTRUCTION OF ®[¢'/2]. Recall that Theorem 5.3 in [15] yields the existence of a formal
series W[e] mapping $(Sp) to the space of three-dimensional boundary layers €"> (95, $H(X7)).

We first note that we can consider the formal series W[e!/?]|¢[¢!/?] with boundary layer coeffi-
cients. We now define the action of the formal series ¥[¢'/?] on the formal series Z[¢'/?].

1/2

The formal series W[¢!/?] contains only terms in even powers of £!/2 and we have (see Propo-

sition 5.4 in [15])
V0, e Y (B o
JEF
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where F}, is a finite subset of N. The coefficients ¢* (R, s, z3) are in the space €>°(9So, H(XT))
and the operators Pf take values in ¥°°(Sy) and are of order at most & in 0,. As in the lemma

6.1, we define for all Z € %(S),
Pi(e)Z = Pf (T, s;e7'/%0r,0,)(2),

and the associated formal series Pj(k) [€1/?] after expansion of the coefficients around T' = 0. As Pf
is of order k in 9, we can define the formal series 1)[c'/?] with operator coefficients

PF2 60 (080, T(RT)) — €°°(0S0, H(ET)),

by the equation (recall that the F}, are finite sets)

1/2 ZE Z k 1/2 )’T:O(’okd

k>0 ]EFk
Zgnmz Z (=2k)/2 )’ B (Pk,(e—%)/z_
n>0 k=0 jEF), o

We then define the formal series ®[c1/2] with coefficients in € (9Sy, H(E)) by
B[e'/?) = W2 C[e?] 4 OV?] VP + W [e?) Z[T7).

where O[e] is the formal series given by Theorem 5.3 of [15].

7.B THREE DIMENSIONAL FORMAL SERIES EQUATION

In the coordinate system (7, s, X3), we define the operator (L(c), T (¢)) by:

{L(e)(T,s,Xg;aT,ﬁs,axs). L(e'/?T,s,eX5;e=/207, 05,6 10x,) and (73)

T(E)(T7 s, X3;0r, Os, axd) : T( 1/2T, s,eX3; 6_1/26'1“, Os, 5‘16X3).

where (L, T) is the 3D elasticity operator on Q°. We then define the two corresponding formal
series (L[e'/?], T[¢'/?]) in powers of !/2 by expanding the coefficients of this operator in 7' = 0
and X3 = 0. It is clear that we have operators of order 2, polynomial in 7" and X3

LF? (1 x 8Sp, T(RT)) — € (I x 0Sp, T(RT)),
and
TH2 . @ (I x 8So, T(RT)) — € (3Sn, T(RT)),

such that
L:[ 1/2 QZEk/2£k/2 and T[ 1/2 QZEk/QTk/Q
k>0 k>0

In the same way, the change of variable (r, s, 23) — (R, s,, X3) where R = ¢~ !r in the operator
(L, T) yields formal series (L[], 7[¢]) (see the equation (5.5) in [15]).

We thus have the 3 couples of formal series: (L[e'/2], T[!/?]), (L[e'/2], T[¢'/?]) and (L[/?], T[e1/¥])
corresponding to the expansion in powers of ¢'/2 of the operator (L, T) in the three coordinate
systems associated with the three kind of terms.
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Theorem 7.1 The formal series v[e'/?], W[e'/?] and ®['/?] constructed in the previous sub-
section from the solution (C[El/Q],Z[El/Q]) of the problem (6.15), are solutions of the following

equations: the formal series v(c'/?] satisfies
(L2, TEY2)w[e?] = = (F['/3],0) (7.4)
the formal series W [e'/?] satisfies
(L), Tl W) =, (7.5)
and the formal series ®[c'/?] satisfies
(23, 7)) @[] = 0. (7.6)
Moreover, we have the relation

v[gl/QHF + WY |, o T @l [1/2) Mg =0- (7.7)

Proof. The equation (7.4) is clearly satisfied.

The formal series Z[c'/?] satisfies the equation (6.5). But by definition, the formal series Alc] and
V|e] satisfy the first group of equations in (1.27). By doing the change of variable (r,s,x3) —
(T, s, X3) and by expanding the coefficients in 7' = 0 and X3 = 0, we see that for all 1-form field
Z on the manifold S, we have

LV VeV Z = —-To Ale'/?)Z and TV VeV Z =0,
and this clearly shows the equation (7.5) using the relation W [e!/?] = V[e!/2] Z[1/?].

Recall that the formal series ¥[e] and ©[¢] satisfy the equations (see the equations (5.14) and (5.16)
of [15]),
(Ze]; ﬁ[é‘])‘l’[e] = 0,

{(\PHD ) |y + VEI [, = 0, (7.8)
and ( ) o
{ (O] + )IR 0+Q[s = 0. (7.9)

where the formal series d[¢] is a formal series with operator coefficients taking values in the four
dimensional space of rigid displacements on the semi-strip (see Theorem 5.3 of [15]). This formal
series is related to d[e] by the relations ?;[¢] = d;[¢] for i = 1,2,3 and d,,[e] = e 104[e] — bT01[e] —
b505[e] (see the equation (6.1) of [15]). A similar relation holds for h[e] and h[e].

By doing the change of variable (r,s) — (7T, s) in the equation (7.8), and using the definition of
the operator formal series ¥[¢!/?], we find that:

(), 7] = o, .

(1/)[61/2]7C[€1/2])‘R OJrv 1/2 |F — 0, ( . )

where the formal series ¢[¢!/?] is obtained by doing the change of variable (r,s) + (T, s) in the
coefficients of the formal series d[¢].

The formal series ¢[¢!/?] is thus related to the formal series d[¢!/?] in the same way as the formal
series 0[¢!/?] is related to the formal series d[¢!/?]. Tn particular the equations

de"?)¢[e"?) + dl"/?) Z[eV/?) = h[eV/?] £?),

and
Ole'/? ¢l 2] + e[e?] Z[e"?] = bl fleM2), (7.11)

RR n° 4956



30 Faou

are equivalent. This last equation is thus satisfied for the formal series ¢[¢'/2] and Z[¢'/?] solutions
of Theorem 6.3.

Applying the equation (7.8) to the formal series ¢[¢/?], the equation (7.9) to the formal series
fle'/?] and the equation (7.10) to the formal series Z[¢!/?], and summing the expressions so

obtained, we find
(Z["?), 7["*) @[] = 0,

and this shows (7.6). Similarly we obtain

B['?) }R:O +fe!/?] |F0 + W[ |F0
— o[ ?]¢[e"?] + bl £'/?) - c[£1/%] Z[e' ] = 0,

using the definition of v[¢/?] and W [e'/2]. The equation (7.11) then shows (7.7). This ends the
proof of the Theorem. ]

7.c COMPARISON WITH THE KOITER MODEL

We compare now the first terms of the formal series v[c'/?], W[¢!/?] and ®[¢'/?] with the first
terms in the expansion of the Koiter model.

Proposition 7.2 Let v[e'/?], W [e'/2] and ®['/?] be the formal series defined in the previous
subsection. The first terms of these series write

0[51/2] _ CO + 51/2C1/2 + 0(5)’ (7.12)
WT[€1/2] — 51/2(Z;,/2 — XBaTZi?) + 0(5),
W[51/2] _ Ws[51/2] _ 51/2251/2 +0(e), (7.13)
W) = 23+ el +00),
and
B[/ = B! + O(3?). (7.14)

Let ¢'[€/?] and Z'[c'/?] be the solution of the formal series problem (6.18). We have
CO _ C/O Cl/2 _ C/1/2 70 _ 7/0 Zl/2 _ Z/T1/2 and 7Y?% — 7/1/2
- ) - 9 - 9 T - s — g )
but Z§/2 + 7412 in general.
This Proposition is a consequence of Proposition 6.4 and the expression of the operators V*
in variables (T, s, X3). See [14] for further details.
8 ESTIMATES FOR THE THREE-DIMENSIONAL ASYMPTOTICS

We consider the shifted displacement w* solution of the equations (1.22). We denote by w(e)
the corresponding displacement in 2, solution of the equations (see (1.23)):

(L), T(e))w(e) =(=Ff(),0) in QxT+ and w(e) =0 on Ty. (8.1)
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8.A ANSATZ OF 3D EXPANSION
With the formal series defined in the previous section, we set for all NV € N,
wl] (e)(x1, 22, X3) :=
N
Zsk/Q (vk/Q(zl, X2, X3) + x(r)Wk/Q(sfl/Qr, s, X3) + x(r )(I>k/2( Lrs Xg)) (8.2)
k=0
This defines an element of H*(Q)3. We write it
wiN(e) = vN(e) + x (WM (e) + x(r)@™(e), (83)
with evident notations. Using (7.7) we see that

VN eN wE) | =0, or w™(e)evV(Q),

Ir,

where V(Q) = {u € HY(Q)? |u |r = 0} is the variational space associated with the 3D problem.
We set a5 the bilinear form defined by the formula

i (w, v) = /S ATy (w)es (v) AV, (8.4)

where &;;(v) = e (u’l(x3) ) with p(z3) the shifter defined in (1.21). This bilinear form cor-
responds to the energy (1.19) for shifted displacements. We denote by asp(e) the corresponding
bilinear form on V().

We have the following Korn estimate (see section 4 of [7]):

Vo e V(Q)’ ||v||H1(Q)3 <e ICHQU(,TO“EX?,, a € aXs)( )HLQ(Q)’ (85)

where C is independent on e. Moreover, the operator pu(e) acts on V() and is invertible with
bounded inverse in e: We have

Vo e HYQ), ol g < 1El 0y < Ol s - (8.6)
where ¢ and C are constants independent on ¢. Using (8.5) and (8.6) we find
Vv € V(Q)7 ||U||H1(Q)3 = _QCOd?)D(E)(’U?’U)’ (87)
where () is independent on ¢.
8.B VALIDATION
Similarly to the section 4 and Proposition 5.1, we first give the rough estimate:
Lemma 8.1 With the notations of the previous section, we have
lw(e) — w!] (e)]] < CeN/24, (8.8)

H(Q)3

We do not give the proof of this lemma, as it is very close to the proof of Proposition 5.1 and
very technical (see [10, 14] for similar calculations). We use the formal series equations satisfied
by the formal series and the Korn inequality to conclude.
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Let v[e!/?], W[e!/?] and ®[c'/?] be the formal series defined in the previous subsections. We
easily see that

Vk>0,  [v"? <C

HY(Q)

Similarly, using the exponential decay of the boundary layer terms, we have

k/2
W2

W2y < O,

< et I @2

< 1/2
an L) = cer

||X§k/2||H1(Q) S 05_1/2,

(8.9)
where the constants C are independent on ¢. Using the previous lemma, we get the following
result:

Theorem 8.2 Let w(e) be the shifted displacement solution of the three-dimensional equations,
and let wNl(¢) be the 1-form field defined in (8.3). Then we have:

VN >0, |w)—w? (5)||H1(Q)3 < CeN/2, (8.10)
Proof. Let N > 0. Using the estimate (8.8), we get
|w(e) — w!N+10] (5)||H1(Q)3 < CEN/2+1’
whence
() — ™) ]
N+10
< Z 5k/2(|‘vk/2”H1(Q)3 + ||XWk/2HH1(Q)3 + ||X(I>k/2HH1(Q)S ) + OgN/2+1'

k=N+1

The previous estimates of the terms in ¢ yields the result. [ ]

Recall that the 3D displacement u(e) and the shifted displacement w(e) are related by
Ug(€) = we(€) — e X3y (1, 22)wa(e) and  wus(e) = ws(e). (8.11)

We deduce that we have a similar asymptotic expansions for the 3D displacement. Moreover, as
the shifter differs from the identity by a term of order ¢ of order of derivation zero, we deduce that
the terms of order 0 and 1 in £!/? are equals for w(e) and u(e). Thus the proposition 7.2 is the
same for these displacements.

Note eventually that using Lemma 8.1 written in Q°, and using estimates of the terms of the
expansion in physical variables, we obtain the multiscale expansion for the shifted displacement in
Q¢. This shows Theorem 1.2.

Finally, using Theorem 8.2 and Proposition and 7.2, we easily show Proposition 1.3.

APPENDIX A: PROOF OF LEMMA 6.5

1. We first compare the operators A'/2 and K'/2. We have the following estimate (see
Proposition 4.2 of [15]):

. (45
degA® < (5 nE (8.12)

Moreover, the operators A* are of order at most k + 2 for k > 4.
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Using the definition (6.6) of the formal series A[¢'/2], we have, similarly to (6.3):

€17 = kAW, (8.13)
k>0
with y
A(k)[ 1/2] [ 1/2] _ (EAE,k)[El/Q]Z[El/Q] , 51/2A§k)[51/2] Z[El/Q]), (814)

where the formal series Z[¢'/2] and Z[¢!/2] are related by (3.8). Using (8.14) and (6.2), we see
that we have

kot kot
Vk >0, AW[!/?] = (X ety et2 Ayt ) 20> (kt2) P Ay /2)

Using (8.13) we see that

n+1
A, e = Z Z€(2k+£ k=1)/2 Jk,(e=k=1)/ Z cn/2 Z ki (n—2k)/2
k>0 £>0 n>—1 k=0
where we used the fact that A% 412 20 for ¢ < —(k+1). Similarly, for the transverse component
we see that
n+2
A3[€1/2] _ Z En/2 Z Alg,(n—Qk)/Q'
n>-2 k=0

In particular, we have that
QU2 = 011 4 L1/ 4 Je30% and AP 2 JOVE LoV | gy oS (g
Similarly, for the computation of the operator IC'/2, we have
KY? = MLY%+ B3 and Ky/* = My° + B, (8.16)

where the operators M¥/2 and B¥/2 are defined as before from the operators M and B. The
equations V(8.15) shows that for k > 4, the operators A¥ play no role in the computation of the
operator A!/2,

As A3} is only of order 4 in z3 (see (8.12)), we have A3’
zero operator, we have Ab12 = Aé’%ﬂ =
O12 — Y2 and Ag,uz M1/2.

Now using the expression of the operators A% (see Theorem 4.4 of [15]) and B2, we compute
directly that /ﬁ’fg/z = 3;3/2 =0 and

A375/2 = (. The operator Al being the

0. As A® is the membrane operator, it is clear that

vy _ o o o 2~ o
Ay z — B3Pz = SALL(0,5) Orrr Zs.

This eventually shows that K1/2 = 41/2,
2. We now compute the operator d} or equivalently the operator D} (see (6.14)). We have

that
1/2 Z Ek,D(k) 1/2
k>0

where the formal series D*)[¢1/2] are associated with the formal series D*)[¢!/2] by the formula
b(k) [61/2]2[51/2] — pk) [61/2]Z[51/2].
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As the operators D} are of order at most k in r, we have as in Lemma 6.1:

n+1
Dye?] = 3 2Dy with DY =3 Db
n>—1 k=0
We thus deduce that L—1/2
12 L/O7O ~ =
DY =Dy’ + Dy 7.

/

As D} is the zero operator, we deduce that 15:1,,’_1 > — 0. Moreover as D{z = z3, we have that

D0 = 0. This shows that dz = z.

3. We compute now the operator D;, /2 As the operators DF are of degree of derivative at
most k£ + 1 in r, we have with evident notations:

142
Dule/?) = 3 ?Dy? with DY2=3 Dyl
) k=0

We deduce that y 5 y
D;l/Q _ D%_l/Q n D};_?’/Q.

But it is clear that DY /% = 0, using D%z = 9,23. To compute the operator Dy~ 2, we only
need to know the terms with 2 derivatives in r acting on z3 in the expression of the operator 02
(see Theorem 5.3 in [15]).

We will show later the following equation, for z € X(Sy):

02z = (c20py23 + P2) (8.17)

los,
where ¢, is a non zero constant depending only on A and pu, and P is an operator taking values in
%*°(So) such that in coordinates (r, s), we have
Pz =Pz + Pz, + P32,
where P" and P? are operators of order 2 acting on z, and z, respectively, and where
P?z3 = p}(r, 8)0rs2s + p3 (7, 8)Dssz3 + Q% 2,

with Q3 and operator of order 1 in z3 and p$, p3 functions of the variables (r, s).
The equation (8.17) shows that

DW[eV)(Z) = e edrrZs + Y '1* DY (Z).
>—2
We deduce that 5 y y
D;’_3/2(Z) = CQ@TTZ?,.
and this yields the result.
Proof of (8.17). Using the proof of Theorem 5.3 of [15], the operators U2 and 9? are such that
if 2 € $(S0), ¢ := U2z — 02z is the unique solution of the problem
L0 = —LWlz in 08 x Tt
T% = —TWlz on 9Syxvy. x7_,
Plaot V2z |r0 0,
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with U2z € €°°(0Sp, $(XT)) (see the beginning of Section 6) and 92z in the space spanned by
the 4 rigid displacement in coordinates (R, s, X3) (see the equation (5.8) of [15]). Here, v+ denote
the two upper and lower lines {X3 = T1} of 7. The operator V? writes (see [15]):
X2 X2
Va(z) = SPDova(2) and V3(z) = SPp(ph(2) — pbavs(2) — 20075 (2)).-
As in the proof of Theorem 5.3 of [15] we split the solution ¢ of the previous system into the
solution of

L% = — LWz in 89S, x Tt
T% = —F"W'lz on 0S5y xv4 Xy, (8.18)
¢‘R:O = 0

and the solution of the system
L% = 0 in 0Syx X,
T% 0 in 0Sp X vy X 7—, (8.19)
2
bl po+V z|F0 0.

Using the expression of the operator ¥! (see the equation (5.13) of [15]), we see that the right-hand
side of (8.18) is a linear combination of elements of € (9Sy, &(XT)) whose coefficients are traces
on 0S, of operators acting on 3(Sy) with degrees of derivative at most equal to 2 in z, and 1 in
z3. Thus the corresponding parts of the operators U2 and 02 are only involved in the definition of
the operator P of the equation (8.17).

Similarly the solution of (8.19) splits into the sum of the solutions of systems with only one single
non vanishing component in the right-hand side, polynomial in X3. The expression of V2 show that
in the coordinate system (r,s), only Vi?z contains derivatives of order 2 in z3. The components
V?2z and V2z only enter into the expression of P. In the coordinate system (r,s), we have

Viz = X_§ 0. (0]
3 - 92 D TTZB+ p(Z)

where Op(z) denotes an operator of order 2 with derivative of order 1 in r on z3. We seek the
solution of the system of the form (8.19) with a polynomial right-hand side, and we use the splitting
of the operator (.£°, ) into the operators (£2, 7°) and (£p, %5, 72, 7)) (see the equation
(5.6) of [15]). We show (see section 6.1 of [12]) that there exist (p%,%%) € H(XT)? and two
constants ¢ and ¢’ such that

(L, L) (@5 73) = 0 in EF,
(79, 79)(%%,22) = 0 on i X7, (5.20)
5}%‘1}:0‘%)(3 = 0, :
il —¢ = X3

The coefficients ¢ and ¢’ are the coefficients of the rigid displacements Z* et Z* (see [12] and the
equation (5.8) of [15]). For parity reasons in X3, the coefficients of Z" is zero, and the displacement
22 is not involved. We can show that the coefficient ¢’ is non zero (see lemma 6.1 in [12]).

We construct the solution ¢ of (8.19) depending on the term pd,..z3 in the operator V2 by multi-
plying the solution of (8.20) with —1pd,,z3. We thus deduce that 0%z = —1c'pd,,23 + Pz, where
P satisfies the correct order conditions. We get the result by setting co = —%c’ p # 0. ]

APPENDIX B: PROOF OF THEOREM 1.4

1. We first compute the energy norm of u°. We define the energy for the shifted displacement:

Ejplw) = [ A7 (w)ens(w)a:
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where ¢é;;(w) is defined as é;;(w) = e;;(u~ ! (x3)w) is the strain tensor associated with the shifted
displacement. We have E5n[w®] = E5p[u®]. The expansion of the operator é;; on ¢ is given in
Proposition 3.2 of [15].

Using the positivity of the rigidity tensor, we have that

< E5p[we] < Ol (w®) (8.21)

~ 2 2
c||eij(w€)||L2(Qa) ||L2(S‘la) )

for constants ¢ and C independent on .
Recall (see Theorem 4.4 of [15]), that the operators V! and V? of the formal series V[e] write

) Xip, o
Viz = { X390((1Z) and V?z= {)?2 Dora(2) s (8.22)
—Xspy3(2) Sip(po(z) — pbovy(2) — 20875 (2))

where p = A(A + 2u)~ L. The following lemma precise the first part of Proposition 7.2.

Lemma 8.3 With the notations of Proposition 7.2, we have

1 0 a0
1 1 1,0 Co’ - X?’(DUCB + ba'Ca)7
v = —+ V = o 8.23
¢ ¢ { (3 — Xapy2(¢), (8.23)
and in the coordinate system (T, s, X3),
7y —Xs0p73"
wit=| z! —Xx30.,79 . (8.24)
Zd —XapdrZyl® + Xapb2(0,5)29  +22pdrr 23
Proof of Lemma 8.3. The equation (8.23) is clear using the definition of v[¢'/?] and the
expression of V1.
Now using the formal series (7.2), we have
Wl :vozl+v1/2zl/2+vlzo, (825)

with

VO — P00 P2 _P0l/2 L P12 g Pl POl L plo g 2l
But using the definition of the operators V", we easily see that V° = VY is the identity operator.
Similarly, using the expression of V! and V? we see that

—X30rZ3, %;paTTZTa
VL1257 _ 0, yv2-iz — .
—X3porZr, XTgpaTTZPn
and
—X3(b0(0,8) Zr + b2(0, 5) Zs),
VIZ = —X3(8,25 + b7(0, 5) Zp + b5(0, 8) Zs,),
—X3p(0sZs +T%,.(0,8) Zr + T9,(0,5)Zs — b%(0, 5)Zs3),
and this shows the result. [

We now give estimates corresponding to (8.9) on the physical shell.
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Lemma 8.4 Suppose that { € $(So) and Z € € (05, T(RT) are generic, independent of , non
zero 2D displacement and 2D boundary layer term respectively. Then we have

HCHLZ(QE) = 0(51/2)’ ||Z||L2(Qa 0(53/4)5

19Cll 2 ey = OE?), and (02| = O/,

L2(Q°)

Letv € € (1,%(5)), W € €°°(I x9S0, T(R)) and ® € > (05, H(XT)) be generic non zero
terms independent of € corresponding to the three types of terms present in the expansion of we.
Then we have

||U||L2(QE):O(51/2), [0 U||L2(QE =0(Y?), and ||83v|\L2QE O(e~1/?),
Wl o) = — O, 0. Wi g = — O@EYY),  and 105 W 2 ) = — O,
and
12l s ey = O) and |02, ., = O(1).

Using these two lemmas, Proposition 7.2 and Proposition 3.2 of [15] giving the expansions of
the operators €;;, it is not hard to prove that

leas(® + /2012 4 evl)| =0("?),

L2(QF)
where we use the fact that ¢ # 0. Moreover, for all k£ > 3,

Héaﬁ( k/2 k/?)”LZ o) < O(€<k+1)/2)

Similarly, writing the expansion of &;; in coordinates (T', s, X3) yields

€as(WO 4+ 2W1/2 4 eW | < O,

L2(Qf)
and for all k£ > 3,

leas (" 2WH2)] < OB,

L2(Q#)

Moreover, we have for all £ > 2

leas(c"/2@%/2)) < OE*?).

L2(Q¢)

Using the Kirchhoff-Love structure of the first terms of the formal series V[e], we see (see [14]
for further details) that under the condition ¢° # 0,

[€as(v® + /20! /2 4 o' + 63/2v3/2)||L2(QE) = 0(*?),
while for all k£ > 4,
||éa3(5k/2vk/2)||L2(Qs) < O(E(k_l)/Q),
Similarly, we compute that
HéaS(Wo +51/2W1/2 +€W1)|| < 0(55/4),

L2(QF)

and for all k > 3

He 3( k/2Wk/2)|| < O(E(Qk_l)/4).

L2 (Qz
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For the 3D boundary layer terms, we get for all £ > 2,

(222, ) < OEH).

Finally, for the transverse strain, we obtain the estimates

Hé33(’00 + 51/2’01/2 + Ev1)||L2(Qa) = 0(51/2)

and for all k > 3, ||é33(e"/2v*/2 < O(ek=1/2) Similarly, we have
) Y.

L2(Qe
||é33(W0 +51/2W1/2 +€W1)||L2(Qg) < 0(53/4)
and for k£ > 2,
Hé33(5k/2wk/2)”Lz(Qs) < O(E(Qk—l)ﬂl) and ||é33(€k/2(1>k/2)”L2(Q£) < O(Ek/Q).

Grouping together the previous estimates and using Theorem 8.2 for a sufficiently large N,
we see that

e (@) 2 ) = OEM2).

where the main contribution comes from the first term ¢° # 0. Similarly,
20 (@) | ey < OFC),

where the main contribution comes from the first 3D boundary layer term ®! (this term may vanish
even if ( # 0, as it depends only on traces of (°: see the equation (5.13) of [15]). Eventually,

1833 (W) 2 ey = O,
(@)

where the main contribution comes from ¢°. These estimates show the result.

2. We prove now the second estimate in (1.20). Let Wz be the operator corresponding to Uz
through the shifter, that is Wz = pu~!(23)Uz. We now prove that

Espw® — Wzf] < CeEsp[w?]

and this shows the result.

Recall that with 2z° we associate two formal series ¢'[¢'/?] and Z'[¢] given by Theorem 4.1.
Using Proposition 7.2, it is easy to prove that we have an asymptotic expansion

’LUE*WZE2ZEk/Q(ek/Q+X(Ek/2+¢k/2)),
k>0

where we have
e’ =e?=0 and e'=¢(",

where ¢! = ¢! — ¢!, and similarly

7%« - Z‘gaTE;/Q
and E'= Z;

Z3

E°=0, EY/*=

W{OO
]
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where Z5/% = 7Z8/> — 71%/2 for k =1 and 2. As before, we compute that

||éa,a(eo +el/2e1/2 4 5el)||Lz(Qg) < (9(53/2)
and
||éag(E0 1 l/2g1/2 +5E1)||L2(Qs) < (9(55/4).
Moreover we have
||éa3(eo 4 el/2e1/2 +561)||Lz(95) < 0(55/2)
and
|Eas(E° +'/2EY? + 5E1)||L2(QE)) < O,

Eventually, we have
é33(e’ + el/2el/? 4 ce') =0 and ég3(EO 1+ eV2EY? 4 eEY =0.
We conclude as before using Theorem 8.2 that
ESplw® —Wz°] < O(e?) = O(cEjp [w)),

where the mean contribution comes from the first 3D boundary layer term ®!. This shows the
Theorem.
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