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Abstract: The need for more realistic network models led to the development of the dynamic
network flow theory. In dynamic flow models it takes time for the flow to pass an arc, the flow
can be delayed at nodes, and the network parameters, e.g., the arc capacities, can change in time.
Surprisingly perhaps, despite being closer to reality, dynamic flow models have been overshadowed
by the classical, static model. This is largely due to the fact that while very efficient solution methods
exist for static flow problems, dynamic flow problems have proved to be more difficult to solve. Our
purpose with this overview is to compensate for this eclipse and introduce dynamic flows to the
interested reader. To this end, we present the main flow problems that can appear in a dynamic
network, and review the literature for existing results about them. Our approach is solution oriented,
as opposed to dealing with modelling issues. We intend to provide a survey that can be a first step for
readers wondering whether a given dynamic network flow problem has been solved or not. Besides
restating the problems, we also describe the main proposed solution methods. An additional feature
of this paper is an annotated list of the most important references about the subject.
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Un état de l’art commenté sur les réseaux de flots dynamiques

Résumé : Un réseau de flots est dit dynamique si la traversée des arcs prend du temps, si le flot
peut être retenu dans les nœuds, ou encore si les paramètres du réseau, par example, la capacité des
arcs, peut évoluer au cours du temps. Dans ce rapport nous proposons un état de l’art des principaux
problèmes liés aux réseaux de flots dynamiques, qui se veut une introduction au domaine. Nous y
présentons les problèmes, les principales méthodes proposées pour les résoudre et nous fournissons
une liste annotée des principales références bibliographiques sur le sujet.

Mots-clés : Flots, résaux dynamiques, flots dynamiques, algorithmes, complexité
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1 Introduction

Imagine that we take on the difficult task of determining how many cars the streets of a town can
serve. We model the street system as a network, and assign capacities to the edges representing
the number of lanes on the streets. Then we can apply a network flow algorithm to determine the
maximum traffic between any given pair of points. Did we answer the question? No, what we have
found is the maximum number of cars that can pass the streets in a single wave, i.e., if the cars all
leave at the same time and get to any point with no delay. We would rather need a more realistic
model in which it takes time to travel and cars can delay their departure. It would also be desirable to
include the effect of traffic jams by changing the capacity of streets that become blocked. Answering
such questions is the goal of the dynamic network flow problems.

Static network flow problems have been in the focus of interest for many years and they represent
a very successful area of combinatorial optimization. Deep theorems and efficient algorithms have
been developed. Not surprisingly, dynamic flow problems are significantly more difficult to tackle.
First of all, there is a wider range of possible problems that do not appear in static networks. For
example, one can minimize the time needed for sending a given amount of flow between two points.
Furthermore, dynamic problems are more difficult to solve than the static ones. Several of the arising
problems are NP-hard. The differences from the classical problems made it necessary to devise new
techniques, although most of the solution methods eventually reduce the dynamic problem to a static
one and then employ existing algorithms.

The purpose of this survey paper is to give a description of problems and methods in dynamic
networks. It is intended to be a starting point for readers who are new to the area and would like
to find out what has been done, which questions are settled and which are not, or where to look for
further references. To this end, we briefly review the basic concepts of static and dynamic networks
(in Section 2 and 3), list the important problems that can be addressed in a dynamic model (Section
4), and then point out the main solution approaches (Section 5). We do not describe the solution
methods in detail but we always give references where the interested reader can find the points not
expounded here. In Section 6 we give a short description of the papers used to compile this survey,
which can help the readers to find the reference relevant to their problem. We close the paper by
pointing out a possibility for further research.

Dynamic networks were introduced in 1958 by Ford and Fulkerson [16, 17]. They dealt with the
maximum flow problem in discrete time and developed a technique that is still widely used. Since
then, several further problems have been analyzed, such as, for example, the quickest, minimum cost
or earliest arrival flows, continuous-time settings, or models where the parameters change with time.
Previous surveys on general dynamic flow problems include those by Aronson [4], Lovetskii and
Melamed [28], and Powell, Jaillet and Odoni [38]. The earliest of these three, [28], provides a good
description of several problems and techniques in both discrete and continuous time. Aronson [4]
concentrates on the maximum flow and transshipment problems in discrete time. Its main advantage
is the extensive coverage of applications. The focus of [38] is on modelling issues, like for example
that of the time horizon. It deals only with discrete-time settings but mentions problems where the
parameters are not fixed.
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4 Balázs Kotnyek

Some words about terminology should be added here. A few authors (e.g., Fleischer in [10])
argue that the word ‘dynamic’ is more consistently used for a problem with input that changes over
time. In a dynamic flow problem it is the solution that changes, the network is fixed or its changes are
known in advance. Therefore these authors prefer to use the terms flow over time or time-dependent
flow. On the other hand, it is widely accepted (as expressed, e.g., in [38]) that a problem is called
dynamic if one or more of its parameters is a function of time. This can involve problems where the
input is constantly changing or where the input is time-dependent but known in advance. We also
subscribe to this opinion and use the more compact ‘dynamic flow’ term in this paper.

2 Static flows

In this section we give an overview of the most important results about static flows, which are
relevant in the further discussion about dynamic flows. We assume that the reader is familiar with the
subject, therefore we let ourselves be succinct. A comprehensive description of static flow problems
and solution methods can be found in [1].

A static flow is defined on a directed graph ���������
	�� . The capacity of an arc 
 is denoted by��� , the cost (if any) per unit flow on 
 is � � . The set of arcs entering and leaving node � are denoted
by ��������� and ��������� , respectively. There is a source � and a sink � in the graph. In the maximum
flow problem the aim is to find the maximum flow between the source and the sink:

maximize �
subject to �� �"!
#%$'&)(+* �-, �� �"!).%$'&)( * � � , � (1)

�� �"! # $'/0( * � , �� �"! . $'/0( * � �21 34�657�98;: �<�=�?> (2)

�� �"!
#%$A@B( * �-, ��C�"!).%$A@D( * � �9� (3)

1FE * � E ��� 3�
65G	 (4)

A set of non-negative arc values *6H 	JILK � is a flow if it satisfies the flow conservation rule
(2). A flow is feasible if it complies with the capacity constraints (4). A value � that is conform with
constraints (1) and (3) is the value of the flow, usually denoted as M * M . A flow with value 0, i.e. a flow
that satisfies the flow conservation rules at every node, is called a circulation. A flow with value �
can be easily transformed to a circulation by adding an extra arc from � to � carrying a flow of � .

An alternative formulation is when the flow is decomposed to chains. Let N be the set of directed
paths (called chains) from � to � . A flow OP��QR� on a chain Q�5GN has a positive value M OP��QR�SM on the
arcs of Q (these arcs are denoted as 
T57Q ), and 0 elsewhere. In chain flows the flow conservation at
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An annotated overview of dynamic network flows 5

the nodes is satisfied by the construction. The maximum flow problem is then formulated as follows.

maximize �
subject to �

� ��� M OP��QR�)M"�2�
�� � � M OP��QR�)M E ��� 34
657	

Circulations can be decomposed to chain flows and flows on cycles. Obviously, there is no need
for cycles in a flow from � to � .

In the minimum cost flow problem the flow value � is fixed, and we are looking for a flow that
has this value and achieves it with minimal cost:

minimize �� ��� � � * � subject to (1) , (4)

2.1 Variations of the basic model

In a version of the basic network flow problem there are multiple sources and multiple sinks, and one,
for example, tries to maximize the total flow from the sources to the sinks. It can be easily reduced
to a single-source single-sink problem by introducing a supersource, a supersink, and artificial arcs
with infinite capacity to connect them to the sources and the sinks, respectively. Now the flow
conservation rule must hold at the original source and sink nodes, therefore the total amount of flow
that leaves the original sources equals the flow that leaves the supersource.

A modification of this is when fixed supplies at the sources and demands at the sinks are given,
and we ask for a feasible flow that empties the supplies and satisfies the demands. This problem is
called the transshipment problem. It can also be reduced to a single-source single-sink problem by
introducing a supersource and a supersink and connecting them to the original sources and sinks,
but now with arcs whose capacities equal the supply or demand of the node they are connected to.
There exists a feasible transshipment if and only if the value of the maximum flow in the transformed
network is the sum of the supplies (which should be the same as the sum of the demands).

The flow problems so far were single-commodity flows. Multicommodity problems arise when
several flows use the same network. They may have different sources and sinks, they satisfy the
flow conservation rule separately, but are bound together by the common capacity constraints. Mul-
ticommodity problems are much harder to solve than single-commodity problems. For example, the
integral multicommodity problem, where we look for integral flows, is NP-hard.

2.2 Complexity

As a summary of this section, we remind the reader of the complexity of the basic static flow prob-
lems. A thorough description can be found in [1].

The maximum flow problem and the problems that can be easily reduced to it, are polynomially
solvable. Thus there is a polynomial algorithm to find the maximum flow with single or multiple
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6 Balázs Kotnyek

sources and sinks, or to find a feasible transshipment. Similarly, the minimum cost flow or circulation
can be found in polynomial time for linear or convex cost functions. The same holds for the problem
of finding integer solutions. The fractional multicommodity problem is polynomially solvable, while
the integer version is NP-hard.

3 The basic dynamic network flow models

In a dynamic network flow model there is an additional parameter � � assigned to each arc 
 measur-
ing the time a unit flow takes to get from the tail of arc 
 to its head. In other words, a flow unit that
leaves the tail of 
 at time

�
arrives at the head at time

��� � � . We will call � � the traversal time or
transit time of arc 
 .

3.1 Time horizon

We differentiate between models with finite and infinite time horizons. In the finite horizon models
everything must happen before a given stop time � . The stop time is chosen so that the relevant
flow units can arrive before it, in other words, no flow can enter an arc that will not arrive before � .
Most of the theoretical and practical models use finite time horizon. Infinite time horizon, however,
appears in a number of practical problems. For example, traffic assignment problems can be modeled
with a rolling horizon, where activities are initiated endlessly but the optimization focuses on given
periods, say days. Another infinite horizon model is where the activities happen periodically, like
for example in inventory problems. If the cost of the flow is concerned, then one can discount future
costs and calculate the present value. More about modelling questions for infinite time horizon can
be found in [38]. Orlin [34, 35] introduced the concept of ‘throughput’ in dynamic networks with
infinite time horizons (basically, the flow circulating in the network) and provided theoretical and
practical results for the maximum throughput and the minimum cost fixed throughput problems. In
this paper we deal with models with finite time horizon.

Time can pass in discrete increments or continuously. In discrete-time models we can assume
without loss of generality, by choosing a suitable unit, that we look at the network at times

� �1����"��� �
	�	
	S��� and all time-related parameters are integers. We will see that this is the easier case; a
continuous-time problem, where

�
can take any value in � 1 �
��� , is a harder nut to crack. In practical

models time can be discretized, thus converting continuous flow models to discrete ones. Obviously,
the choice of the time unit has a great impact on the complexity of the problem, the shorter the
time limit is, the more complex the problem becomes. To be able to use general notations that
are valid for both discrete and continuous models, we will denote the time domain by � . Thus
��� : 1����?��� �
	�	�	)�
� > in a discrete model and ����� 1 �
��� in a continuous model.

In more general dynamic flow models the parameters of the arcs are not fixed but varying with
time. Thus, we have functions � � H � I K � , � � H �JI K , � � H �JI K � to denote the capacity, cost
and traversal time of an arc 
 at different times.

INRIA



An annotated overview of dynamic network flows 7

3.2 Load, flow and throughput

In static models the flow that enters an arc is indistinguishable of the flow that is on the arc, as
everything that enters will leave instantly. This is not the case in dynamic models, where the flow
spends time on an arc, so a flow unit that entered earlier might easily be still on the arc. Hence the
difference between the load, i.e., the flow on the arc; and the flow rate, the amount of flow that enters
the arc. It is the flow rate that is in the focus of interest, and its name is usually shortened to ‘flow’.
Both are functions of time. Let O � H ��I K � and * � H ��I K � denote the load and the flow rate on
arc 
 , so that O � � � � is the load on the arc at time

�
, * � � � � is the amount of flow that enters the arc at

time
�
. These functions are strongly related, loosely speaking the load is the integral of the flow rate

and the flow rate is the first derivative of the load. More formally, in continuous and discrete model,
respectively, we have:

O � � � �P�
�����
� * � � ,�� �	� � � and O � � � � �

� � ��
���
 � * � � ,�� �
Note that it is up to convention that the flow entering arc 
 at

� , � � has already arrived at the head
node by

�
or is still on the arc at that moment. As it is clear from the discrete formula above, we

assume that such a flow is already at the head node at time
�
.

Recall that in the street traffic system the capacity of a street was given by the number of the
lanes. That is, we gave a limit on the number of the cars that can enter the street at the same time. In
dynamic models it is usually the flow rate that is bounded by the capacity of an arc. A limit on the
load can be calculated from this capacity. For example, an arc with capacity 2 and traversal time 3
can have a load up to 6 at any time.

The most important measure of a dynamic network flow is its throughput, the amount of flow
that can be sent from the source to the sink in the given time interval. A simple, illustrative version
is the following: How much flow can arrive in time interval � 1 ��� �4� from the tail to the head of arc
 whose capacity is � and traversal time is � ? Obviously, any flow entering the arc after � will not
arrive before � � , so we ignore it. The maximum flow that can be sent is � , so let * � � � ��� � for� 5 � 1 �
�4� and 0 for

� 5 � � ��� �4� . The throughput in � 1 ��� �4� on arc 
 is the integral of the flow rate
over time: ��� �

� * � � � �	� � �
� �
� � � � � 1�� � � 	

If the time is discrete, so � is integer and we ask for the throughput in � 1���� � , � � , any flow entering
the arc later than � , � will not arrive in time. We can send at most � units at times 1 �
�?�
	�	�	S�
� , � ,
so the total throughput is � � again.

There is a natural transformation of discrete flows to continuous ones. Let * � � � � be a feasible
discrete flow entering arc 
 59	 at time

�
(
� � 1 ���"��	
	�	S��� , � ) and set the continuous flow rate��� � � � to * � � � � for � 5 � � � � � ��� . If we assume that the arc capacities do not change, then we

get a feasible continuous flow with this transformation, and the throughput in any integral interval
� � � � ��� � , � � 1 �
�?��	
	�	0�
� , � , � 5�� will be the same for both * and � . Fleischer and Tardos
[15] showed that for many problems this natural transformation preserves optimality. Thus, the
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8 Balázs Kotnyek

continuous version of these problems is not harder than the discrete one: an optimal discrete solution
yields an optimal continuous solution via the natural transformation.

3.3 An example

We give an example of dynamic flows. Consider the network in Figure 1. The arc labels are the
traversal times, every arc has capacity 2. In Figure 2 we give a flow that has a throughput of 8 in
� � : 1 �
�?�
	�	�	S��� > . The diagrams give snapshots for the unit periods. The values given are the
amounts of flow sent, the bold parts of the arcs represent the portion these flow units take during
the time steps. For example, 2 units of flow enters the two arcs starting from � at

� � 1 . One of
them accomplishes the third of the arc in one unit time, the other arrives at � at

� � � , and then it is
divided up to two unit flows going towards � and � .

3.4 Storage at nodes

It may be necessary that the flow waits at a node until it can continue on an arc. In other words,
nodes have a storage (or holdover) capability. Let � / denote the fixed capacity of storage at node� , or � / H � I K � if the capacity is a function of time. In some important cases the storage at
intermedial nodes is assumed but not used, so in this case � / can be set to 0 for all � 5 � 8 :+�<�)�?> .
There are problems (e.g., in [14]), where storage is explicitly not allowed in nodes other than the
source and the sink. The default assumption is that storage is not limited, we point out only the
models where this is not true.

If storage at nodes is constrained, then unexpected things may happen. For example, a maximum
flow may use cycles. To see why, imagine a network where a bottleneck arc is temporally unavail-
able, so it makes sense for the flow to spend time by cycling until the arc becomes passable again.
If the storage is not restricted then this does not happen, as flow can wait at nodes instead of cycling
around.

Storage means that the flow conservation is not satisfied at each time instance because the amount
of flow arriving at a node at a given time can be different from the amount of flow that leaves the
node at that time. To overcome this, two techniques are known. The first, which works only in
discrete-time models, introduces artificial loops at the nodes with unit traversal time, and the storage
is imagined as flow circulating on the loops. The other technique notices that for each possible time
instance � , the amount of flow that has arrived at a node by � cannot be more than the amount of
flow that has left the node before � . Thus the flow conservation constraints are summed over time
and satisfied with inequality instead of equality. It is usually also assumed that there is no flow left
in the network at � , so the flow conservation constraints are satisfied with equality for � � � .

INRIA
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10 Balázs Kotnyek

3.5 Formulations

Assuming fixed parameters and discrete time, the following constraints define the set of feasible
dynamic flows.�

� � 
 � ��
��C�"!B#%$A&=( * � � � , � � � , ��C�"!).%$'&)( * � � � ���� � , � (5)�

� � 
 � ��
��C�"! # $A/0( * � � � , � � � , �� �"! . $A/0( * � � � � ���� 1 3 �65 �98;: �<�=�?>"�3 � �91 ��� 	�	�	 ��� , �

(6)�
� � 
 � ��

��C�"!B#%$A/0( * � � � , � � � , �� �"!). $A/0( * � � � ���� � 1 3 �65 �98;: �<�=�?> (7)�
� � 
 � ��

��C�"! # $ @D( * � � � , � � � , �� �"! . $A@D( * � � � � �� �2� (8)

1RE * � � � � E � � 34
T5 	 � 3 � �21���� 	
	�	0�
� (9)

In continuous time the sums over time are replaced by integrals. For example, in the continuous
time model with varying arc and storage capacities the constraints are the following:

� �� 
 � ��
�� �"! # $'&=( * � � � , � � � , �� �"! . $'&)( * � � � �	�� � � � , �

1FE
� �� 
 � ��

�� �"! # $'/0( * � � � , � � � , �� �"! . $'/0( * � � � � �� � � E � / � � � 3 �657� 8;:+�<�)�?>"�3 � 5 � 1 �
� �� �� 
 � ��
�� �"! # $'/0( * � � � , � � � , �� �"! . $'/0( * � � � �	�� � � � 1 3 �657� 8;:+�<�)�?>

� �� 
 � ��
�� �"! # $A@D( * � � � , � � � , ��C�"! . $A@D( * � � � � �� � � �2�
1RE * � � � � E � � � � � 34
65 	��D3 � 5 � 1 �
���

Note that these formulations are not polynomial in the size of the input. The continuous time
model has infinite number of constraints, the discrete one has more than � . The size of the input
in this latter case is in the order of 
���
 � ��� , and with respect to this the size of the linear program
is exponential. Thus, solving dynamic flow problems with linear programming is not a polynomial
method.

INRIA



An annotated overview of dynamic network flows 11

4 Flow problems

The range of flow problems that can be defined on a dynamic network is obviously much wider than
that on static networks. Besides meaningful flow problems in static networks (such as multicom-
modity, minimum cost or transshipment problems), there are problems where time is in question. In
this section we deal with the main flow problems that can be addressed in a dynamic network, while
in Section 5 we describe the solution methods proposed to solve these problems.

4.1 Maximum flow

The first and simplest dynamic model was introduced by Ford and Fulkerson [16, 17]. In their model
the time is discrete and involved in only the traversal times of the arcs, as formulated by constraints
(5)-(9). They dealt with the maximum flow problem, i.e., they maximized � ; and gave a polynomial
algorithm to get an optimal solution.

4.2 Quickest flow

The quickest flow problem asks for a flow of value � that finishes in minimal time. More precisely, it
looks for the minimal � such that a flow with value � can be sent from the sink to the source in the
time interval � 1������ . In some sense the quickest flow problem is the converse of the maximum flow
problem, where we fix the time-span and maximize the flow. In discrete time the quickest flow can be
found by a binary search on the time. Burkard, Dlaska and Klinz [8] gave a more efficient, strongly
polynomial algorithm based on the discrete Newton’s method. For continuous time, Fleischer and
Tardos [15] proved that in case of integer � and integral traversal times, the time of the quickest flow
is a rational number with a denominator bounded by the size of a minimum cut in the network. Thus,
this time can also be found by binary search.

When we deal with the quickest dynamic flow, we have to differentiate between the earliest and
the fastest solution. The difference is better explained through an example: Imagine that there are
two bus lines that can take us to our destination. One runs frequently, but goes on a longer route.
The other is an express line, takes much less time to reach the destination, but comes only a few
times a day. We have two options, either we take the first bus, which will probably be the normal
line; or we wait until the first express bus arrives. We will most probably arrive to our destination
earlier if we take the first alternative, but the time we spend on the bus is less in the second case. The
first is the earliest solution, the second is the fastest. More generally, the earliest flow is the one that
accomplishes the task in minimum time, counting from zero. The fastest solution, on the other hand,
starts counting the time when the first action takes place. If there is a temporary obstacle, then it
might be worth beginning the task later, when the obstacle is lifted. If the network does not change,
then there is no point waiting with the first action, and the fastest solution is the same as the earliest
one.

One version of the quickest flow problem is to look for a minimum delay solution, which is a flow
with the time spent by waiting at the nodes is minimized. Trivially, in the case where all traversal
times are zero, the minimum delay flow is the quickest flow. The problem of minimum delay solution
in continuous-time models with zero traversal times appears, for example, in [20, 31, 32, 39].
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12 Balázs Kotnyek

4.3 Minimum cost flow

If costs on the arcs are given, then one can fix the flow value � and the time limit � , and ask for
the minimum cost dynamic flow that sends � amount of flow from the source to the sink in � time.
A subproblem of this is the minimum cost maximum dynamic flow problem in which � is fixed to
the maximum flow value in � 1 �
��� , and the minimum cost quickest flow problem where � is the
minimum time needed to send � flow. Klinz and Woeginger proved in [25] that both these minimum
cost problems are NP-hard. Fleischer and Skutella [14] gave approximation results and algorithms
for the minimum cost multicommodity flow problem.

4.4 Universally maximum flow

A flow that maximizes the throughput in time interval � 1 �
��� is not necessarily maximal for shorter
periods. The dynamic network of Figure 1 on page 9 provides an example. (It is a slightly modified
version of the example given by Ford and Fulkerson in [17].) The throughput up to

� ��� is 1 in
the flow given in Figure 2. In Section 5.2 we will give another flow on the network with the same
throughput in :C1 ���"��	
	�	S� � > but a throughput equal to zero up to

� ��� . We will also show that both
flows are maximal in :C1 �
�?��	
	�	S��� > , but obviously the second flow does not maximize the throughput
in :C1 �
�?��� ��� > .

A flow that maximizes the throughput for every interval � 1 � � � , 17E � E � is called the earliest
arrival flow. Note that the literature is not consistent in the terminology, and the earliest arrival flows
are often called universally maximum, as for example, in [11, 17, 18, 40]. Gale [18] showed the ex-
istence of such a flow for discrete time in a general dynamic network with time-varying parameters.
Minieka [29] and Wilkinson [40] gave algorithms that find the discrete-time earliest arrival flow in a
dynamic network with fixed parameters. Minieka’s algorithms calls Ford and Fulkerson’s algorithm
for the maximum flow � times, while Wilkinson constructs a minimal cut. Neither algorithms are
polynomial. There is no known polynomial algorithm for finding the earliest arrival flow. Hoppe
and Tardos [23] gave a polynomial approximation. In continuous time, a theorem of Philpott [36]
relates the earliest arrival flow to a minimum cost flow with a cost function that penalizes delays,
thus proving the existence of an earliest arrival flow. Orda and Rom [33] give a construction for the
earliest arrival flow in continuous time with piecewise continuous network parameters.

A close relative of the earliest arrival flow is the latest departure flow that maximizes the amount
of flow leaving the source in every interval � � �
��� , 1FE � E � . A flow that is earliest arrival and latest
departure at the same time is sometimes (e.g., in [15, 33]) called universally maximum. This causes
an unfortunate confusion because, as noted above, the earliest arrival flow is sometimes also called
universally maximum. We will differentiate between earliest arrival and universally maximum flows,
keeping the latter for flows that are also latest departure. The algorithm of Minieka [29] gives the
universally maximum flow in discrete time, while Fleischer and Tardos [15] shows that such a flow
exists in continuous time. In both cases the network parameters are fixed.
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4.5 Multiple terminals

Let us suppose that some nodes of the network are designated as terminals. A terminal can be either a
source or a sink. We assume a priority order of the terminals and ask for a flow that lexicographically
maximizes the amount of flow leaving each terminal in the given order. This is the lexicographically
maximum flow. Note that it may happen that low priority terminals have negative or zero outgoing
flow. A negative flow leaving a terminal means that positive flow enters it, so the terminal is in effect
a sink.

We redefine the transshipment problem from Section 2.1. The network contains a set of terminals
with supplies (positive if source, negative if sink). The aim is to find a flow that zeroes all supplies
during the time horizon. It can be reduced to a lexicographically maximum flow problem both in
discrete (Minieka [29] and Hoppe and Tardos [24]) and continuous time (Fleischer and Tardos [15]).
Note that unlike in the static setting, the dynamic transshipment problem cannot be reduced to a
single-source single-sink maximum flow problem. This is because the arc capacities in dynamic
networks limit the flow rate and not the throughput. Therefore the capacity of the arcs connecting
the supersource and supersink to the terminals cannot be set so that the total amounts of flow that
pass through these arcs during the time horizon equal the supplies of the terminals.

The quickest transshipment, not surprisingly, is a transshipment that does the job in the shortest
possible time. The special case where there is a single sink in the network is called the evacuation
problem. The name comes from building evacuation, where one has to find the fastest way to transfer
everyone from a building to the street. In telecommunications, a similar problem is to clear the
network after a breakdown. Note that building evacuation is a good example for the need of an
earliest arrival solution, because we want as few people to stay in the building as possible at every
moment.

Hoppe and Tardos [23] provided a polynomial algorithm for the evacuation problem with fixed
number of sources. They also gave the only known polynomial algorithm for the discrete quick-
est transshipment problem with arbitrary number of terminals in [24]. Fleischer and Tardos [15]
extended this result for continuous time.

When the network graph is bipartite and all arcs connect a source with a sink, then we speak about
the transportation problem. Bookbinder and Sethi reviewed the dynamic transportation problems in
[6]. A shorter but more recent survey can be found in [28].

The universally quickest transshipment is a flow that minimizes the amount of excess left at the
terminals at every moment in time. Hajek and Ogier [20] solve this problem polynomially when
there is only one sink and all traversal times are zero. Fleischer [10] provides a two-source two-sink
example for which a universally quickest transshipment does not exist, and presents a more efficient
algorithm than that of [20] for the single-sink case.

4.6 Zero traversal times

One might ask the importance of dealing with dynamic networks with zero traversal times, as the
main difference from static networks is that it takes time for a flow to traverse an arc. There is,
however, an important additional feature of dynamic networks: the flow can be stored at nodes.
Therefore it is possible to send more flow in a dynamic network with zero traversal times than the
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maximum flow in the corresponding static network, by delaying some part of the flow at the source
or at intermedial nodes. A typical question asked about a dynamic network with zero traversal times
is that how much time is needed to send a given amount of flow that exceeds the static network
capacity. Such questions were examined in [10, 11, 12, 20, 32]. Hajek and Ogier [20] gave the
first polynomial algorithm for the quickest transshipment problem in a network with a single sink,
zero traversal times and fixed arc capacities. Ogier [32] generalized this for piecewise constant
arc capacities. Fleischer provides a faster algorithm for Hajek and Ogier’s problem in [10], and
for Ogier’s problem in [11]. In the latter paper Fleischer formulates the problem as a parametric
maximum flow problem (i.e., a static flow problem in which the arc capacities are functions of a
parameter); and then modify the existing algorithms for parametric flows to solve the dynamic flow
problem.

4.7 Varying parameters

Things get more complex when the parameters of the network, such as capacities or traversal times,
are not fixed but they can change during the time horizon. For example, this is the case when the
network models a real-world transportation system. Two main approaches are known to analyze
these time-varying dynamic problems. The first assumes that the capacities are constant but the
traversal times of the arcs change. Among the papers listed in the references, [26] and [27] follow
this way. The other approach is when traversal times are fixed but the capacities vary, as in [2, 3, 22,
30, 36]. Orda and Rom [33] combine the two approaches and give theoretical results for continuous-
time dynamic flows in networks where the capacities and traversal times change over time.

If traversal times change, then it is usually assumed that they are determined by the load on the
arcs or by the flow rate at the time when the flow enters the arc. Köhler and Skutella [27, p. 2]
discusses the difficulties related to this approach:

The critical parameter for modeling temporal dynamics of time-dependent flows is the
presumed dependency of the actual transit time ��� on the current (and maybe also past)
flow situation on arc � . Unfortunately, there is a tradeoff between the need of modeling
this usually highly complex correlation as realistically as possible and the requirement
of retaining tractability of the resulting mathematical program.

Due to the latter condition, many models in the literature rely on relatively simple func-
tions. For example, the transit time of an arc is often treated as a function of only the
flow rate at time of entry to the arc. However, in many cases this assumption is unreal-
istic since it does, for example, not preserve the first-in-first-out property encountered
in most applications.

In contrast, a fully realistic model of flow-dependent transit times on arcs must take
density, speed, and flow rate evolving along the arc into consideration [19]. Unfortu-
nately, even the solution of mathematical programs relying on simplifying assumptions
is in general still impracticable, i.e., beyond the means of state-of-the-art computers, for
problem instances of realistic size (as those occurring in real-word applications such as
road traffic control).
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Köhler and Skutella [27] employ a model in which at each moment in time the uniform speed
on an arc depends only on the load which is currently on the arc. They claim that this assumption
captures the behavior of road traffic on short streets, and note that longer streets can be replaced by a
series of shorter streets. They also prove that the problem of finding the quickest flow in this setting
is strongly NP-hard, so cannot be approximated in polynomial time with arbitrary precision, unlessQ � � Q . Nevertheless, they give a � � ��� � -approximation. Köhler, Langkau and Skutella [26]
deal with a model in which the traversal time of a flow unit is fixed when it enters the arc (i.e., it is
inflow-dependent). They give a � � ��� � -approximation for the time of the quickest flow.

As for the approach where the arc and storage capacities vary, in the most general setting they
are assumed to be non-negative, bounded, Lebesgue-measurable functions. The papers [2, 3, 36, 33]
deal with this model in continuous time and provide mainly theoretical results, such as the existence
of the optimal solutions or the convergence of the algorithms that can eventually find them. Halpern
[22] gives an algorithm for the discrete-time version. The algorithms provided in these papers are
not efficient in practice and their implementations do not seem able to handle problems with more
than a few nodes (as noted in [10]).

There are papers [11, 32] (and also [22, 30]) where the capacities are piecewise constant func-
tions. As opposed to the general model, for piecewise constant capacities there are efficient algo-
rithms to find an optimal flow (see [11]). However, these algorithms assume that all traversal times
are zero.

4.8 Complexity

We summarize here the complexity results for the problems mentioned in this section. Polynomial
algorithms exist for the maximum flow, quickest flow and quickest transshipment problems in both
discrete and continuous time for fixed parameters. The minimum cost problem is NP-hard, a fully
polynomial approximation scheme was given in [14]. For the earliest arrival flow problem, there is
neither a polynomial algorithm known nor a proof of NP-hardness. The same applies for the uni-
versally maximum flow problem. As for multicommodity, Hall, Hippler and Skutella [21] recently
proved that even the fractional dynamic multicommodity flow problem is NP-hard.

In models where the traversal times vary, we have only approximative polynomial results. The
quickest flow problem with load-dependent traversal times is strongly NP-hard. The best known
approximation has a ratio of � � ��� � . The same ratio was given for inflow-dependent traversal times.

Finally, a polynomial algorithm for a special case: In networks with zero traversal time and
piecewise constant capacities, the quickest transshipment can be found in polynomial time.

5 Techniques

In this section we describe the main techniques developed for solving dynamic network flow prob-
lems. We focus on generic methods, that are applicable to a wide set of problems. Every specific
question, of course, needs a tailored solution but the techniques given here can provide a good
framework.
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Figure 3: The time-expanded version of the dynamic network of Figure 1 and the equivalent of the
flow given in Figure 2.

The methods used in discrete and continuous time are quite different. In general, there are more
practical solutions for discrete time, whereas for continuous-time problems one can often find only
theoretical results. The usual approach to give practical algorithms for continuous-time network
problems is to reduce it to discrete time. The two ways of doing this are via the natural transformation
or with discretization. In the natural transformation, described in more details in Section 3.2, we
solve the discrete version of the problem and then prove that the optimal continuous solution can be
achieved from the discrete solution by extending the flow values to the unit intervals separating the
discrete time instances. Discretization works by choosing a suitable time unit and considering the
continuous time as broken up to integer time periods. This approach loses on precision but gains on
applicability.

5.1 Time-expanded graphs

The first solution technique for dynamic flow problems is due to Ford and Fulkerson [16]; later
reviewed in their seminal book on network flows [17]. The main discovery was the time-expanded
graphs. The time-expanded version of a dynamic network is a static network in which there is a copy
of the nodes for each time step in the time horizon :C1 ��	
	�	0�
� > and the arcs are redrawn between these
copies to express their traversal times. Figure 3 gives the time-expanded graph for the network of
Figure 1 for the time horizon : 1 �
	�	
	0� � > . The formal definition is the following. The time-expanded
version of network � is a digraph � �

with nodes �%� � � for all � 5 � and
� 5 :C1 �
�?��	
	�	S�
� > ; and for

every arc � � �B�%��5 	 with traversal time ��� / and capacity � the graph � � has arcs
� � � � �
�
�%� ��� �4���

with capacity � for
� � 1 �
	�	�	+��� , � � / . There are also arcs

� � � � �=�B� � � � ��� � with capacity � / for all� 57� and
� � 1 �
�?�
	�	�	S�
� , � to represent storage at � . Note that if we use loops to model storage,

we get these holdover arcs automatically from the general arc construction.
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It can be seen quite readily that a dynamic flow on � from the source � to sink � is equivalent to
a corresponding static flow on � �

from the source set � � � � to the sink set �?� � �
� � � 1 �
�?��	
	�	S�
� . For
example, the flow given in Figure 2 corresponds to the flow defined by the bold arcs in Figure 3. One
can, of course, transform the static flow in � �

to a single-source single-sink problem by introducing
a supersource and a supersink. Therefore, finding a flow in the dynamic network can be solved by
finding a static flow in the time-expanded graph. The size of the time-expanded graph, however, is
not polynomial in the size of the input, as there are � copies of the network. Consequently, any
algorithm based on � �

cannot be polynomial. Ford and Fulkerson devised an algorithm that does
not use the time-expanded graph to find a maximum flow in � , as explained below. They used � �
only to prove that the flow their algorithm finds is indeed optimal.

5.2 Temporally repeated flows

The basic idea of Ford and Fulkerson’s algorithm is to find the maximum flow among the temporally
repeated flows, defined as follows. Let O H 	 I K be a feasible static flow in � , and O 
<��	�	
	0�=O�� be
a chain decomposition of O , i.e., Q � is a chain, O � is the flow on it and

� ��

 
 O � � O . Let ����Q � �

denote the sum of the traversal times on the arcs belonging to Q � . Now for each � � �"��	
	�	 � � , sendM O � M units of flow along Q � at every time step from 0 to � , ����Q � � . By this we get a dynamic flowO � , the value of which is

M O � M?� ��
�

 


� � , ����Q � � � � � M O � M"� � � � ���SM O M , �� ��� � � O � 	 (10)

Thus the value of O � does not depend on the chain decomposition chosen. Furthermore, finding a
maximum temporally repeated flow amounts to finding a minimum cost circulation with arc costs
� � and an additional supersink-supersource arc with cost , � � � �?� and infinite capacity. Ford and
Fulkerson showed that there is always a maximum dynamic flow among the temporally repeated
flows. The crux of their proof is finding a cut in the time-expanded graph that has the same capacity
as the value of the maximum temporally repeated flow, and then evoking the max flow-min cut
theorem for static flows. As a consequence, the maximum flow in this model can be calculated by
solving a minimum cost circulation problem on the original network.

Take, for example, the network of Figure 1. For �9� � , the minimum cost circulation is given by
two cycle flows of value 2: one is on the cycle � I � I � I � , the second is on � I �TI � I � .
The corresponding flow on the time-expanded graph is shown with bold arcs in Figure 4. The
optimality of this flow (and that of the one given in Figure 3) can be checked by finding a cut of
value 8 in the time-expanded graph.

The relationship expressed in (10) can be extended to continuous time. Anderson and Philpott
showed in [3] that in case of fixed arc capacities the continuous maximum dynamic flow in time �
has value � M O M , � � ��� � � O � where O is a minimum cost static circulation in the network with an
additional sink-to-source arc with cost , � and infinite capacity.

Temporally repeated flows are very useful to get the maximum dynamic flow. For other prob-
lems, however, they do not necessarily provide an optimal solution. We have seen an example in
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Figure 4: The maximum dynamic flow on the network of Figure 1.

Section 4.4 when the temporally repeated maximum solution was not earliest arrival. Klinz and
Woeginger [25] gave an example of a network in which the set of temporally repeated flows does not
contain the minimum cost flow. Hoppe and Tardos [24] introduced the non-standard chain decom-
position, in which a chain flow may traverse an arc in opposite direction to the original flow. By this,
they managed to devise polynomial algorithms for the quickest transshipment problem in discrete
time.

5.3 Condensed time-expanded graphs

The time-expanded graph is clearly not a practical notion in continuous time because of the infinite
number of time instances. A method to deal with this difficulty is to discretize the time with a
sufficient roughness to get a condensed time-expanded graph of polynomial size. Note that changing
the length of the time step can also be an approach to overcome the inherent exponential size of the
time-expanded graph in discrete time. Rougher discretization, however, leads to less precise results.
Philpott and Cradock [37] proposed an adaptive discretization algorithm that can choose the length
of the times steps so that it provides the best performance. Fleischer and Skutella [13] devised a
discretization method that provides satisfactory precision but keeps the complexity of the resulting
time-expanded graph low. They showed that there is an appropriate choice of the time-step length
that gives a polynomial-size condensed time-expanded graph and allows a �
� � � � -approximation in
time for the quickest flow or transshipment problems. In [14], Fleischer and Skutella improve their
analysis and show that fewer time-layers are enough to obtain the same precision in approximation.

5.4 Averaging

Another, simpler approximation method was also given in [13]. This method is based on averaging
the flow on every arc. That is, let * be a feasible dynamic flow rate in time horizon � 1 �
��� , and � be
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a static flow with the following values on the arcs:

�"� � �
�
� �
� * � � � � � � for all 
T57	 	

This static flow is feasible, and its throughput during time horizon � 1 �
��� is the fraction ��� � of the
throughput of * . Furthermore, � is � -length-bound, which means that it can be decomposed into
chains such that the length of any chain (assuming the traversal times to be distances) is at most � .
Finding a � -length-bound static flow is NP-hard, but can be approximated by a factor of ��� � � � ,
as shown in [13]. The process of getting � from * can be reversed. Given a static feasible � -
length-bound flow � with throughput � , we can obtain a feasible dynamic flow with throughput �;�
by pumping the chain flows determined by � into the network for � time units, and then wait for
another � time units until all flow units arrive. This method allowed Fleischer and Skutella to get a� � � � � -approximation for the time of the quickest flow.

5.5 Cuts

The static flow algorithms are based on the famous max flow-min cut result of Ford and Fulkerson.
A similar relationship were discovered for dynamic flows. In discrete time, cuts can be found in the
time-expanded graphs, as it was already done by Ford and Fulkerson in [17]. The dynamic analogue
of the cut is a set valued function � H ��I 	 , such that at each time the value of � is an ordinary cut
in the network. From a slightly different point of view, dynamic cuts change with time, arcs at some
point can become members of the dynamic cut and remain there for a given period. This notion
can be adapted to continuous time, as done by Philpott [36], following [2]. Generalized continuous
dynamic cuts are used for getting theoretical results in [2, 3, 36]. On the other hand, Ogier [32]
employed cuts to get a polynomial algorithm for the earliest arrival flow problem in continuous time
with zero traversal times and piecewise constant capacities.

5.6 Alternative approaches

The multiperiod structure of a discrete dynamic flow problem can be exploited by a forward al-
gorithm, a generic procedure for solving successively a multiperiod problem. Aronson and Chen
[5] combined the forward technique with the network simplex method to get the forward network
simplex method. This algorithm is applicable for discrete dynamic network flow problems that can
be described with linear constraints and objective function. For more about forward algorithms and
references, see the survey paper of Aronson [4].

Control theory is an alternative modelling approach for dynamic networks. It is more concerned
with the change in the variables than their actual values. We define the states of the system and a
control function that drives the system from the initial state to a desired final state via an optimal
trajectory. The states of the system can represent the flows on the arcs or the storage at the nodes.
The control function determines how the flow or storage changes in time. The optimality of a
trajectory can be related to the value of the flow, its cost or to the time. Feasibility of a specific flow
translates into the reachability of the final state. The control theory approach is more suitable for the
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continuous-time problems, where the trajectory of the states can be described by the derivatives of
the functions describing them. The basic reference of the application of control theory to dynamic
flow problems is due to Moss and Segall [31]. Among our references, [20, 39] also use control
theory.

Evolving graphs have been recently proposed by Ferreira [9] to model specific dynamic net-
works. An evolving graph is a sequence of subgraphs of a given underlying graph where each
subgraph in the sequence represents a network topology existing for a given period of time. It can be
argued that an evolving graph is equivalent to a dynamic network in which the network parameters,
notably the arc capacities, are special piecewise-constant functions taking a value 0 if the subgraph
does not contain the arc. Modelling such networks with evolving graphs provides a more compact
description than with time-expanded graphs. This is especially true for continuous time, where time-
expansion is not a viable option. Bui Xuan, Ferreira and Jarry [7] analysed evolving graphs, focusing
on the least-cost path problems.

6 Annotated bibliography

This section lists most of the papers on which the previous sections are based. For each item we
give some keywords to specify the problems attacked, then add comments which describe the main
contribution of the paper. The items are ordered according to their subject.

Survey papers

Lovetskii, Melamed: Dynamic flows in networks [28]
A good survey with detailed description of the solution methods covered (e.g., control theory,

time-expanded graph, labeling algorithms). Both discrete and continuous-time models. Problems
include maximum flow, minimum cost flow, earliest arrival flow, maximum throughput, minimum
cost transportation.

Aronson: A survey of dynamic network flows [4]
The paper is full of references for a wide range of problems and models, but concentrates mainly

on the maximum flow and transshipment problems in networks with fixed traversal times in discrete
time. The main advantage of this paper is the extensive coverage of applications.

Powell, Jaillet, Odoni: Stochastic and dynamic networks and routing [38]
It provides an extensive survey on dynamic and stochastic network problems (shortest paths,

flows, etc.). The dynamic network part is very strong in modelling issues (especially about infinite
horizons), not so much in techniques (mainly time-expanded graphs). It addresses only discrete-time
models, but also deals with flow-dependent parameters.

Bookbinder, Sethi: The dynamic transportation problem: A survey [6]
A thorough description of the transportation problem both in discrete and continuous time.
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Discrete time

Ford, Fulkerson: Flows in Networks [17] Maximum flow, discrete time, fixed traversal times and
capacities.

The foundation of the static and dynamic flow theory. It introduces time-expanded graphs and
temporally dynamic flows and proves that there is an optimal flow among the latter. Also gives a
polynomial algorithm for the maximum flow problem in discrete time. Essential reference work.

Klinz, Woeginger: Minimum cost dynamic flows: the series-parallel case [25] Minimum cost
problems, discrete time, fixed capacities and traversal times.

The paper proves that the minimum cost maximum dynamic flow problem and the minimum
cost quickest flow problem are both NP-hard even for simple networks. A simple greedy algorithm
is also given.

Hoppe, Tardos: The quickest transshipment problem [24] Quickest transshipment problem, dis-
crete time, fixed traversal times and arc capacities.

Polynomial time algorithms for the lexicographically maximum dynamic flow problem and the
quickest transshipment problem are given. The main idea is to introduce non-standard chain decom-
position of flows in which the flow on a chain may traverse an arc in opposite direction to the one in
the original flow.

Hoppe, Tardos: Polynomial time algorithms for some evacuation problems [23] Earliest arrival
flow, evacuation problem, lexicographically maximum flow, discrete time, fixed parameters.

A preliminary paper to [24] above. A polynomial approximation of the earliest arrival flow, and
exact algorithms for the evacuation problem and the lexicographically maximum flow are given.

Wilkinson: An algorithm for universal maximal dynamic flows in a network [40] Earliest arrival
flow, discrete time, fixed parameters.

An algorithm is described to find the earliest arrival flow in a simple model. The algorithm is not
polynomial.

Minieka: Maximal, lexicographic, and dynamic network flows [29] Earliest arrival flow, discrete
time, varying parameters.

It provides results for static and dynamic flow, including the relation of the earliest arrival, latest
departure and lexicographically maximum flows. For fixed parameters an algorithm (not polyno-
mial) is given for the universally maximum flow.

Continuous time

Fleischer, Tardos: Efficient continuous-time dynamic network flow algorithms [15] Continuous
time, fixed integral traversal times and arc capacities.

A very good overview of the existing results both for discrete and continuous time; and several
new findings for continuous time, using the natural transformation of discrete flows to continuous
ones.

Fleischer, Skutella: The quickest multicommodity flow problem [13] Quickest multicommodity
flow, continuous time, fixed traversal times and arc capacities.
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The introduction contains a very good survey of the existing results. They give a fully polynomial
approximation scheme for the quickest multicommodity problem, i.e., a method that can provide a�
� � � � -approximation for any

�
. The main machinery is a condensed time-expanded network which

relies on a rougher discretization of time. The paper also describes a simple � � � � � -approximation
for the quickest multicommodity flow with costs based on averaging the flow.

Fleischer, Skutella: Minimum cost flows over time without intermediate storage [14] Minimum
cost flow, continuous time, fixed traversal times and arc capacities.

It is shown that storage is not needed in the optimal solution. The authors give a strongly poly-
nomial approximation scheme using a condensed time-expanded graph.

Hall, Hippler, Skutella: Multicommodity flows over time: Efficient algorithms and complexity
[21] Multicommodity flow, continuous time, fixed parameters.

The dynamic multicommodity flow problem is proved to be NP-hard even for two commodities.
For some special cases (e.g., for network with out-degree at most one) polynomial algorithms are
given.

Philpott: Continuous-time flows in networks [36] Maximum flow, continuous time, varying ca-
pacities, fixed traversal times.

Philpott defines cuts in dynamic networks and proves a max flow-min cut theorem. The technique
used is an analogue of the labeling algorithm of Ford and Fulkerson [17]. The paper also gives some
results on the equivalence of the quickest maximum and the least cost evacuation problems.

Anderson, Nash, Philpott: A class of continuous network flow problems [2] Maximum flow,
continuous and discrete time, varying capacities, zero traversal times on the arcs.

This is a special case of [36], above. Cuts are defined, and a max flow-min cut theorem is
proved. The main theorem is erroneous, as pointed out in [36]. The techniques in [2] and [36] are
very similar, but, of course, those in [36] are more difficult, and correct.

Orda, Rom: On continuous network flows [33] Maximum flow, continuous time, varying capaci-
ties and traversal times.

This paper proposes an extension of [36] to varying piecewise-continuous traversal times. The
capacities are also piecewise continuous. A max flow-min cut theorem is given, as well as a con-
struction of an earliest arrival flow.

Anderson, Philpott: Optimisation of flows in networks over time [3] Maximum flow, continuous
time, varying capacities, fixed traversal times.

The paper explores some questions connected with duality theory, and the form of the optimal
solutions.

Philpott, Craddock: An adaptive discretization algorithm for a class of continuous network
programs [37] Minimum cost flow, continuous time, piecewise-constant arc capacities, piecewise-
linear cost function.

An adaptive discretization method is presented and its performance is compared to other ap-
proaches.
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Flow-dependent traversal times

Köhler, Langkau, Skutella: Time-expanded graphs with flow-dependent transit times [26]
Quickest flow, continuous time, fixed arc capacities, inflow-dependent traversal times.

The main contribution is to introduce fan graphs and bow graphs to model the flow-dependency
of the traversal times. Fan graphs give a precise model, but yield huge networks (basically a time-
expanded graph for varying traversal time arcs), while bow graphs lead to a polynomial � � � � )-
approximation.

Köhler, Skutella: Flows over time with load-dependent transit times [27] Quickest flow, contin-
uous time, fixed arc capacities, load-dependent traversal times.

They give a � � � � � -approximation for the quickest dynamic flow using temporally repeated flows.
The method is an application of the ideas of Ford and Fulkerson [17] and Fleischer and Skutella [13].
They also prove that the problem is strongly NP-hard, not being approximable in polynomial time
with arbitrary precision, unless Q � � Q .

Varying capacities

Minieka: Dynamic network flows with arc changes [30] Maximum flow, discrete time, fixed
traversal times, arcs can be added to or deleted from the network. No storage.

Ford and Fulkerson’s algorithm is modified in this paper to handle networks with simple changes
in the layout. The author has to assume that there is no storage to avoid difficulties.

Halpern: A generalized dynamic flows problem [22] Maximum flow, discrete time, fixed traversal
times, varying arc capacities. Storage may not be allowed at nodes at specific times.

The paper gives a detailed augmenting path algorithm to solve the problem. Some words about
complexity and a comparison with the time-expanded graph approach.

For more papers with varying capacities, see also [2, 3, 33, 36, 37] listed in other subsections.

Zero traversal times

Fleischer: Faster algorithms for the quickest transshipment problem [10] Quickest transship-
ment, discrete and continuous time, zero traversal times, fixed arc capacities.

It presents a polynomial algorithm that reduces the problem to a polynomial number of maximum
flow computations and a faster algorithm that uses minimum cost flow computations. The main
technique is a two-level network inspired by the time-expanded graphs. One level represents the
first time unit, the other represents all other time units, and then this representation is repeated at
most

�
times, where

�
is the number of terminals. The author also gives an algorithm to get integral

flows. The continuous-time solutions are achieved via the natural transformation.

Hajek, Ogier: Optimal dynamic routing in communication networks with continuous traffic
[20] Minimum delay flow, continuous time, zero traversal times, fixed arc capacities.

This paper uses a control theory approach, and gives a polynomial algorithm to find the optimal
flow.
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Fleischer: Universally maximum flow with piecewise-constant capacities [11] Earliest arrival
flow, continuous time, zero traversal times, piecewise-constant capacities.

It is shown that the problem can be reduced to a generalized parametric maximum flow problem.
Thus the paper provides a faster algorithm than that of [32].

Ogier: Minimum-delay routing in continuous-time dynamic networks with piecewise-constant
capacities [32] Earliest arrival flow, continuous time, zero traversal times, piecewise-constant inte-
ger capacities.

A polynomial algorithm for the earliest arrival flow is given. The author proves a max flow-
min cut result and uses it in the algorithm. He also shows that the minimum delay flow problem is
equivalent to the earliest arrival problem.

Fleischer, Orlin: Optimal rounding of instantaneous fractional flows over time[12] Minimum
cost quickest integral transshipment, discrete and continuous time, zero traversal times, fixed arc
capacities, fixed storage capacities can also be handled, the cost function is convex and piecewise
linear.

The focus of the paper is on discrete time, but the results can be extended to continuous time
with the natural transformation. The authors look for integral solutions, and their contribution is a
rounding technique that transforms a fractional stationary transshipment into an integral one with
the same cost.

See also [2].

A classification

The following table classifies the references according to the network model they use. On the one
hand, we differentiate networks that do not change in time, i.e., the arc capacities and the traversal
times are fixed, from those in which the parameters might vary. On the other hand, we classify
models according to the traversal times.

Zero traversal times Non-zero traversal times
Fixed parameters [10] [12] [20] [13] [14] [15] [17] [24] [25]

Varying parameters [2] [11] [32] [3] [22] [26] [27] [30] [36]

7 Conclusions

We have seen that the theory of dynamic flows is powerful enough to satisfy the need for more
realistic network models. For some problems this statement can be extended to the practice as well.
Unfortunately, however, we are not at the point of having a perfect solution to the road traffic problem
described in the introduction. As quoted in Section 4.7 from [27], the existing solution methods are
either too complex for practical settings, or need to assume significant simplifying conditions. But
this difficulty should not discourage further research. On the opposite, although an all-purpose
dynamic flow solution method is unlikely to appear, there is a clear opportunity for model-tailored
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approaches that can provide sufficiently good solutions to real-world problems. For example, there
is a distinct need for algorithms that can find the maximum or quickest solutions in a network where
the traversal times are fixed but nonzero, while the capacities vary in a simple way, for example they
are piecewise-constant functions of time. Ogier [32], and then Fleischer [11] dealt with this problem
in a simpler form, with zero traversal times. Such a model appears in practical problems that can be
described with evolving graphs. The same model was analyzed by Halpern [22], but his algorithm is
most probably not efficient enough for instances of realistic size. Another possible way of attack is
from the method of Hoppe and Tardos [24] that is suitable for setting where the traversal times are
nonzero but the capacities do not change. Is there a way of efficiently introducing simple changes in
the capacities? The question is ripe for solution.
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