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Abstract: We lay a foundation for modeling and validation of asynchronous designs
in a multi-clock synchronous programming model. This allows us to study properties of
globally asynchronous systems using synchronous simulation and model-checking toolkits.
Our approach can be summarized as automatic transformation of a design consisting of
two asynchronously composed synchronous components into a fully synchronous multi-clock
model preserving the flow equivalence. Since true asynchrony is not amenable to modeling
in synchronous design frameworks, we seek to automatically insert desynchronizing protocol
to 'match’ the asynchronous model. Such protocol insertion brings about the possibility
of formally investigating the behavior of globally asynchronous components in synchronous
environments and hence leveraging the tools and techniques developed over decades for such
environments. The ultimate goal of this research is to provide the possibility to model and
build GALS systems in a way to preserve some proven properties when deployed on an
asynchronous network.

Key-words: Formal methods, embedded systems design, globally asynchronous locally
synchronous architectures
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Conception de systémes asynchrones fondée sur une
approche polychrone

Résumé : Nous proposons une théorie pour la modélisation et la validation de systémes
asynchrones au moyen d’un modéle de programmation synchrone multi-horloge. Nous étu-
dions les propriétés de systémes globallement asynchrones en utilisant des techniques de
simulations et de model-checking. Notre approche peut se résumer en la transformation
automatique d’un systéme constitué de composants connectés de maniére asynchrone en un
systéme synchrone multi-horloge équivalent (en flots) au premier. Comme ’asynchrone ne
peut pas en général étre modélisé dans un outil de conception synchrone, nous cherchons
donc & insérer de maniére automatique un protocole de désynchronisation capable de mod-
éliser le comportement asynchrone de ’application considérée (lorsque cela est possible).
Cette insertion de protocole offre la possibilité d’étudier formellement le comportement de
systémes asynchrones dans un outil de conception synchrone et donc d’utiliser les outils et
les techniques (compilation, transformation, vérification) développées avec ces outils. Le but
de notre travail est de permettre la modélisation et la construction d’architectures GALS
(globallement asynchrones locallement synchrones) d’une maniére préservant des propriétés
formellement établies avant de les déployer sur un réseau asynchrone.

Mots-clé : Meéthodes formelles, conception de systémes enfouis, architectures globalement
asynchrones locallement synchrones
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1 Introduction

Synchronous languages have been extensively used in the (co-)design of software and hard-
ware systems [4]. Applying synchronous languages to real-world designs revealed their strong
and weak points over time. Abstract and easy to learn and use syntax, formal and succinct
semantics (which paved the way for efficient simulation and verification tools) are among
the strong points of such languages. However, the synchronous assumption turns out to be
a limiting factor. On one side of the spectrum, in distributed real-time systems, providing
a single, fully synchronized clock over distributed nodes may be very expensive or actually
infeasible. On the other side of the spectrum, in nano-scale system design, the propagation
delay of the clock over the chip size becomes a major obstacle in providing a single synchro-
nized clock. Thus, all these domains call for a mix of synchronous and asynchronous design
patterns.

Globally Asynchronous, Locally Synchronous (GALS) designs have emerged in the re-
cent years in response to the above mentioned challenges and have received major attention
from the system level design community. In GALS design, the system is composed of syn-
chronous components that have their local synchronous clock structures and communicate
using asynchronous schemes. There have been several attempts to formalize GALS design
(see for example, [13, 3]).

Problem Statement In this paper, we address the problem of modeling and validat-
ing globally asynchronous composition of synchronous components in the multi-clock syn-
chronous programming framework SIGNAL. The main goal of such an approach is to leverage
the simulation and model checking toolkit existing for such frameworks [1]. Our solution
can be seen as a formal methodology for composing existing IP blocks, designed with syn-
chronous assumptions, in an asynchronous fashion to satisfy the demands of tomorrow’s
GALS designs.

Our approach can be summarized as transforming the design consisting of two syn-
chronously composed components to a design that is equal to asynchronously composed
components. Since true asynchrony does not exist in synchronous design frameworks, we
seek for a desynchronizing protocol to match the asynchronous model. Finding such a
protocol brings about the possibility of formally investigating the behavior of synchronous
components in asynchronous environment.

In Section 2 we present some related work. Section 3, contains definitions of the SiG-
NAL language. Subsequently, we define an ideal desynchronizing protocol using unbounded
fifo channels and prove it correct in Section 4. Since an unbounded fifo channel cannot
be implemented in SIGNAL, this protocol is only an imaginary model but it can be used
as a reference model for other non-perfect desynchronization protocols. Then, we provide
the conditions under which this design can be refined to a network of bounded and thus
implementable fifo channels. In Section 5, we propose an implementation by defining the
fifo channels and the wrapping (the protocol) around components to prevent overwriting the
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buffer data. Furthermore, we present a design to estimate the appropriate fifo channel size
in practice. Finally, Section 6 summarizes the results and presents the concluding remarks.

2 Related Work

In [2], distributing SIGNAL programs is studied under synchronous conditions. Since all
components are assumed to work with a single master clock, there, the size of the buffer
is naturally restricted to one. In [14], the problem of decomposing SIGNAL programs into
components is studied and a handshaking mechanism is proposed for the asynchronous
communication of components. Our work extends the results of [2, 14] to asynchronous
settings were handshaking is removed or reduced to some extent.

In [13], the issue of communication-based design is addressed. It introduces the idea
of Behavior Adapters in order to interface two (possibly mismatching) input and output
signals. Fifo queues are then proposed as primitive communication channels. It is claimed
there that unbounded fifo channels are ideal communication mechanisms for asynchronous
designs (expressed as Abstract Co-Design Finite State Machines or ACFSMs for short).
Then ACFSMs are refined into ECFSMs which contain a network of bounded fifo channels
and a blocking mechanism or a lossy channel to overcome the rate mismatch problem.

Our contribution to the work of [13] can be summarized in the following two issues: First,
we formalize the concepts of asynchronous design in the SIGNAL model. This formalization
provides us the possibility to prove the claim of ideal asynchrony with unbounded buffer
and the conditions for refining it to bounded buffer. Moreover, it provides the reference
theoretical model for implementations of asynchrony. Secondly, we propose a practical design
to estimate the size of buffer in the refined design so that we can decrease the amount of
blocking for normal system behavior.

The work of Berry and Sentovich in [5] studies the issue of asynchronous interaction
between synchronous Esterel programs. There, the authors solve the problem of overwriting
messages due to asynchrony by proposing a protocol that blocks the sender processor until
the receiver process consumes the data value in the buffer. Although in this way the buffer
size is restricted to 1, the parallelism and pipelining is decreased.

In [7], distribution of synchronous sequential programs (in style of Esterel programs)
is discussed. In this approach, the asynchronous interaction between the components is
encapsulated in send and recieve commands and the main effort is invested in exploring the
appropriate places for send and receives in order to minimize communication and maximize
parallelism. However, the issue of buffer size is left implicit and remains to be addressed by
investigating the semantics of (asynchronous) send and receive commands which in one way
or the other involves this issue.

Implementing asynchronous systems using synchronous languages is also studied in [8].
After defining a generic semantic model for synchronous and asynchronous computation,
the attention is focused on implementing communication mechanisms such as mutual ex-
clusion mechanisms and rendez-vous. Although these mechanisms can be very handy in
asynchronous system design, the paper does not suggest any process starting from syn-
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chronous designs and arriving in components instrumented with these structures. This is
one of the goals of the present paper (with respect to fifo channels).

The work of [9] models asynchrony (interleaving semantics) in I/O Automata model
using a synchronous communication mechanism. However, due to differences between the
models of computation (such as input enabling assumption in I/O Automata), the notion
of buffer is internalized inside the semantics of [9] and is not addressed explicitly.

3 System Design in SIGNAL

The abstract syntax of core-SIGNAL is given in Figure 1. In this syntax, a SIGNAL program
is decomposed into several components. Components are assumed to work synchronously
and in parallel. Decomposition of a SIGNAL program can be as a result of re-use a number
of COTS (Commercial Off The Shelf) components or using decomposition techniques based
on graph partitioning (see for example [12, 14]). A single component consists of a number
of signal definitions. The set of all signal names is denoted by X with typical members
Z,Y,%,.... There are a few primitive operators in SIGNAL allowing for definition of basic
processes. The expression x = pre val y defines that the signal named x holds the previous
value of signal y, and it is initially set to val (thus,  and y are synchronous). The equation
x = y when z defines = to have the value of y when 2z is present and ¢rue. The equation
x =y default z defines = by y when it is present and otherwise by z.

Program n= PName = Component |
Component ||, Program

Component = CName = FExpressions
Ezxpressions = Ezpression | Ezpression, Expressions
Ezxpression == 1z =pre valy |

x =y when z |
x =y default z |
l‘:f(y7z7"')

Figure 1: Abstract Syntax of SIGNAL

Apart from primitive operators, we assume existence of a number of arithmetic operators
(and in particular, equality, denoted by ==) that make computation on synchronously
available arguments. In our examples of SIGNAL programs, we use "z as a shorthand for
true when (x == x) which intuitively means "the clock of z".

Example 1 (One-Place Buffer) To specify a single place buffer, first we give specification
of a single cell memory, as follows:

data = msgln default (pre 0 data)
msgOut = data when “msgOut

The above program allows for independent read and write accesses (denoted by msgln
and msgOut) and the memory cell keeps the last written value and is initialized to 0. The
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)(t(b(y),)) = val,

[z =pre valyl]] = {bjayltags(b(z)) = tags(b(y)),b(x
(b(y);))}

Vi€ IN, b()(t(b(y);41)) = b(y) (¢

[w=ywhenzl] = {bayltags(b(z)) = tags(b(y)) N {t]t € tags(b(2)) A b(2)(t) = true},
Vit € tags(b(z)),b(x)(t) = b(y) (1)}

[[# =y default 2]] = {bjs,y,}|tags(b(z)) = tags(b(y)) Utags(b(z)),
vVt € tags(b(x)), (b(x)(t) = (b ((y)(t)) At € tags(b)(y)))V
t z

)
(b(z)(t) = b(z)(t) A b(y)) A t €tags(b)(2)))}

Table 1: Semantics of elementary SIGNAL equations

tag
):
¢ tag

independence between the rate of input and output signals shows the essence of polychrony
in SIGNAL design. This provides us the possibility for desynchronizing the designs. To
change this initial specification to a single place buffer where the causality between reads
and writes are forced and the first in first out principle is observed, we have to make the
following changes to the program:

data = (msgIn when (not full)) default
(pre O data)

full = (false when mngut) default
(

(true when "“msgln) default

(pre false full))
msgOut = data when (“msgIn default full)
Ndata = (“msgIn default “msgOut) default " full

This program only writes the value of input into the buffer, if the buffer is not full and
only allows to take the data from the output, if the buffer contains some data. The buffer
is initially set to be empty and becomes full when a data item is written to it provided that
it is not taken out at the same moment.

Out
I msg
Mo 1Fifo full
msgln 1 2 3
full  false  true true true  false
data 0 1 1 1 1 3
msgOut 1 3

Figure 2: Sample behavior of a 1-place buffer

In this paper, we use the tagged model [11] of SIGNAL language defined in [10]. Tagged model
of [10] defines behavior of a SIGNAL process (program) in terms of independent signals that
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may have different time scales. Thus, in this polychronous model, time is not necessarily
linear. Denotation of a SIGNAL process is defined as follows.

Definition 1 (Denotation of a Process) Time is taken from a dense set T (called tags)
with a partial order <. This notion of time allows for specification of distributed processes
with local clocks (possibly with different rates) and synchronization points. Events are
values of signal at points of time. The set of events ¢ = T' x V is a relation between tags
and values (V). We denote the time of event e by t(e). A signal s € S: T — V is a partial
function defining the value of a signal over a discrete chain of tags (thus, events in a signal
are internally ordered and their tags are assumed to be well-founded). For a signal s, we
denote its i’th event (i € IN) by s; and the sub-chain of length n + 1 starting from i’th
event by s; i+n. The set of events of signal s up to the point ¢ is denoted by [s]; and the
length of the chain of signal s is denoted by |s| € INU {oo}. In this paper, we are concerned
with processes containing infinite (reactive) behavior. However, our results can be easily
generalized to cover finite behavior, as well.

A behavior b € B : X — S is a partial function defining signal values for different signal
names from the set X. Domain of a behavior b is denoted by vars(b) and represents signal
names taking part in this behavior. A process P C B is a set of behaviors over a common
set of signal names defining different possible behaviors of a program (a component). Two
processes P and @ are equal (P = Q) if they contain the same set of behaviors. Projection
of a behavior b on a set of variables var C X (denoted by b)) is defined by restricting
the domain of the behavior to var. Projection of a process P on var (denoted by denoted
by Plyqr) is defined by projection of all its member behaviors. Its dual, denoted by b\,q
(similarly, P ,q,), is a short-hand for bjyqs(b)\var-

Semantics of basic equations in SIGNAL is defined in Table 1, in terms of denotation of the
basic processes.

Definition 2 (Stretching and Stretch-Equivalence) A behavior b is a stretching of
behavior ¢ denoted by b < ¢ if and only if vars(b) = vars(c) and there exists a bijection
f:T — T such that

VhbueT,t 2us f(t) X f(u)

.Vte Tt < f(t)

. Vz € vars(b)dom(c(z)) = f(dom(b(x)))

. Vz € vars(b)Vt € T,b(x)(t) = c(z)(f(t))

Intuitively, stretching changes the time scale of behaviors while preserving the causal
orderings. Two behaviors b and c are stretch equivalent, denoted by b < ¢, if and only if
there exists a behavior d such that d < b and d < ¢. The definition of stretching and stretch
equivalence is extended to processes using element-wise comparison of member behaviors.

Stretch closure of a processor is denoted by P* and is defined as {b|3c € P,b < c}. A process
P is stretch-closed if and only if P* = P.

B W N =

RR n~°4935
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Definition 3 (Synchronous Parallel Composition) Semantics of synchronous parallel
composition (denoted by ||,), is defined as follows:

P ||s Q = {d‘XUylﬂ(b,C) S P x Qud\X = b\X /\d‘y = C‘y}
where X = vars(P) and Y = vars(Q).

Lemma 1 All SIGNAL programs are stretch-closed.

Proof. Inspecting (in Table 1), we see that basic statements preserve stretch-closedness.
Synchronous parallel composition also preserves stretch-closedness (see Lemma 4 in the
Appendix). Thus, the lemma follows by an structural induction on the structure of the
programs. X

Definition 4 (Relaxation and Flow Equivalence) Behavior b is a relaxation of ¢, de-
noted by ¢ C b if and only if vars(b) = vars(c) and for all x € wvars(b),b(z} < ¢|{a}-
Intuitively, relaxation stretches different signal with possibly different rates (which may not
preserve causal ordering). Two behaviors b and ¢ are flow equivalent, denoted by b ~ ¢, if
and only if 3d,b C d A c C d. Relaxation of processes is defined similarly by an element-wise
comparison of behaviors.

Definition 5 (Renaming Signals) Behavior b[y/z] (similarly, process P[y/x]) is the result
of renaming signal name x by the fresh signal name y (y ¢ vars(P)) in b (similarly, in all
behaviors in P).

4 Desynchronizing

The aim of this section is to give an implementation (a concrete way of modelling) of
asynchronous parallel composition in SIGNAL language using synchronous (polychronous)
constructs. We start with defining the notion of asynchronous parallel composition and
restrict it to a causally ordered distributed setting. Then, we show that replacing explicit
data dependencies of two components with an unbounded fifo buffer (defined semantically
in the remainder) is a correct implementation of asynchronous causal parallel composition.
Then, we set out to replace the unbounded fifo with fifo channels of a bounded size. To do
this, we investigate the conditions under which this leads to a correct implementation. This
section sets the theoretical ground on desynchonization for empirical design in the following
section.

4.1 Desynchronizing with Unbounded Fifo

The main idea behind desynchronizing is implementing the asynchronous parallel compo-
sition in SIGNAL designs using fifo channels. Figure 3 depicts a schematic view of desyn-
chronization. In this process, by introducing a fifo channel for each data dependency on

INRIA
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Tp Lq

Tp — Tq

Figure 3: Desynchronization: Schematic View

a shared variable, we relax the synchrony between the two components. To prove correct-
ness of this approach, we start with proving the fact that if this replacement is done by
an unbounded fifo channels, it is indeed a correct implementation of a asynchronous-causal
parallel composition:

Definition 6 (Asynchronous Parallel Composition) Asynchronous parallel composi-
tion of two processes P and (@ is defined as follows [10]:

P, @={dixuy[3(b,c) € P x Q,
dy Sby Ndx S e\x
Abixny E dixny Acixny Edixny}

where X = wvars(P) and Y = vars(Q). This definition defines that when two processes
are put in asynchronous parallel composition, their internal actions may be stretched (due
to different relative time scales of their local platforms) and their common variables (their
communication media) may be stretched with different rate (denoted by relaxation notation,
due to different characteristics of communication channels).

Corollary 1 For two processes P* and Q* such that vars(P) N vars(Q) = 0, it holds that:
P, Q" =P, @

Note that for the above corollary to hold, the assumption of being stretch-closed for both
P* and Q" is essential.

Definition 7 (Asynchronous-Causal Parallel Composition) If two processes P and Q
share a variable © (z € vars(P)Nvars(Q)), then there is an explicit data-dependency between
P and Q. If there is a causal ordering between P and @ (or vice-versa) on data-dependency
x, it is shown by P <, Q (Q <. P, respectively). This means that P is the producer of x
and @ is its consumer (z appears only in the right-hand-side of the assignments in P and
in the left-hand-side in Q). Note that in a general SIGNAL program, for a data dependency
x, it is not necessarily true that P <, @Q or Q <, P. However, we conjecture that any
reasonable SIGNAL program (that does not have cyclic data dependencies at any point of
time) can be transformed to a program that has the above property (by decomposing all
two way channel variables into two one way channels).

RR n~°4935
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We define asynchronous causal parallel composition of two processes (denoted by || ,)
as follows: B
Pll., Q={dixuy|3(b,c) € Px Q,
d\y s b\y A d\X s C\X
Abxny Edixny Acxny E dixny
ANV e XNY,P<,Q = b‘{z} < ¢z}
AVy e XNY,Q <, P= Cl{y} < b‘{y}}
The above definition common to asynchronous parallel composition allows for asynchronous
communication and stretching internal behavior of processes. Furthermore, it asserts that
if P depends on z for @, it cannot read x before it is written by @ and vice versa.

Corollary 2 For two processes P and @ such that vars(P) Nwvars(Q) = 0, it holds that:
Pll,Q=Pll.,Q

Definition 8 (Asynchronous Fifo Channel) An (unbounded) asynchronous fifo channel
AFifo,_,, with input port x and output port y is the smallest stretch-closed process P
satisfying vars(P) = {z,y} and P,[y/z] < P,.

Theorem 1 Suppose that P and @ are stretch-closed processes and x is a shared signal
produced by P and consumed by @ (P <, Q), then

(Pll<.a @\iey =
(Plz/zp]|l< o Rlz/za]) |ls AFifo,, 0o)\fap.2g)

Note that using asynchronous parallel composition, we are only able to prove the refinement
of the ideal asynchronous design with respect to flow inclusion (see Corollary 4 in Appendix).
This is because of the fifo behavior of the channel that introduces an ordering between the
messages sent and received on a single variable (channel).

Due to Theorem 1, if we continue the process of desynchronization, we get a network
of fifo channels (named R) such that: (P ||, @)\r = (P ||<, @) ||, R)\r, where
I = vars(P) Nwvars(Q), P’ and Q' are results of iterative replacements of explicit data
dependencies with fresh variables and I’ is the set of such fresh variables. Since all explicit
data dependencies between P and @ are resolved (vars(P’) Nwvars(Q') = 0), with the help
of Corollaries 1 and 2, we achieve complete desynchronization as follows:

(Pll<ca @\e=((P" <, @) I, R0\1
=P, QIl, Rhvr

However, an unbounded fifo channel is only a semantical object and does not have a
corresponding SIGNAL component, neither it is implementable in most embedded system
designs. Thus, we would like to replace the unbounded channel with a bounded one. This
is certainly not possible in all designs, however, we investigate this possibility in the next
section.

INRIA
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4.2 Desynchronizing Using Bounded Fifo

To restrict the desynchronizing protocol to a network of bounded fifos, we first specify the
semantics of bounded network. Then, we give a semantic characterization of processes that
can show the asynchronous behavior if they are composed using bounded fifos.

Definition 9 (Bounded N-Fifo) A bounded n-fifo, denoted by nFifo
process P with vars(P) = {z, y}, satisfying the following condition:

is the largest

T—Y

P C AFifo, ., AYbe PVt € T,|[b(y)]:| < n+ |[a(z)]]

r—yY

The above definition specifies that a bounded n-fifo should first, satisfy the fifo characteristics
and second, at each point of time the number of writes can deviate from the number of reads
so far by at most n. Next, we give the characterization of processes that share only a single
variable and this explicit data dependency can be replaced by a bounded fifo buffer.

Lemma 2 If vars(P) Nwvars(Q) = {z} then (P |[. , @\(zy = (Plzp/a] ||, Qlzg/z] ||,
TLFZ'fOzP—u:Q)\{wP@Q]W if:

1. P <, QAN

2. V(a,b) € P x Q,a1(s} < bz} =

El(a/,b') € P x Q,a/\{z} = a\{z} A b/\{z} = b\{z}/\
Vi€ N, t(b'(x);) < t(a’(2);,)

The above Lemma defines necessary and sufficient conditions for two components P and @
so that if they are connected by an nF'ifo, they can perform the same behavior as when
they are put in an arbitrary asynchronous network. That is, all read actions of component
Q from z can at most be delayed after n more write actions of P on the same variable (thus,
preventing the buffer overflow).

Next, we generalize Lemma 2 to a network of fifo channels in both directions:

Theorem 2 Consider the two process P and @, let I and O be the subsets (partitions)
of vars(P) N vars(Q) such that Vo € I,Q <, P and Vy € O,P <, Q. If for all z €
vars(P) N vars(Q):

Y(a,b) € P x Q,

(Vz' € I,a (o) <bjay AVY € O,a1yy <bjgyy) =

3, b)) € P xQ,

a\(ruoy = & (quoy A b\(ruo) = ¥ (uoyN

Vo € I, t(b' (x),) 2 t(a' ()4, A

vy € 0,1(a (y),) Xt W), )
then (P || , @\quo) = (P ||, Q" ||, R)\(ruory, where P' and Q' are result of replacing
all variables x € I U O with fresh variables zp and zg, respectively, R is the network of

ng Fifo (or ny Fifo ) channels and I’ and O’ are sets of such fresh variables.

TP—YQ YyQ—yp

RR n~°4935
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Note that the proposed approach and in particular the above theorem holds for channels
with single-producer and single-consumer components. In other words, it is assumed that a
shared variable can only be shared by two components. This is not a very restrictive assump-
tions since form multiple-producer, multiple-consumer shared variables, one can make use
of standard copy (fork) and merge (join) components to copy the shared channel for several
components and join several write attempts of different components into one channel.

5 Approximating the Buffer Size

In this section we are aiming at implementing the desynchronization ideas inside the SiG-
NAL model. To do this, first we have to define the implementation of the network of fifo
processes. Although the characterization we gave in the previous section can be formally
checked on semantics of components, it does not give a constructive way of determining the
buffer size. Thus, we propose a practical approach in this section, using which we are able
to estimate the buffer size (for a given environment).

5.1 Implementing Fifo Channels

An nFifo channel can be implemented using composition of n 1F' fo’s defined in Example
1, as follows:
nFifo = [1Fifo,, ., [fulli/full]

Tp—TQ

@

L 1Fifo, . [fulla—r/full
alarm (fully A ... A full,) when zp
ok = not (alarm)

Note that the alarm signals is synchronized with write attempts. Thus, when an unsuc-
cessful attempt to write to the buffer the alarm signal is raised. Its negation describes a
successful write attempt.

5.2 Instrumenting the Fifo Channels

Using the implementation of nF'i fo channel, given in the previous subsection, we are able
to design the circuitry around the fifo channels as shown in Figure 4. In this figure, every
time a write signal is received by the channel, if the channel is full and the data cannot
be inserted to the channel, an alarm signal is raised by the channel which in turn results
in an inc event of the corresponding buffer. An ok signal from the fifo results in resetting
the counter. We keep the maximum value of the counter in a register which represents
the number of times we consecutively missed a write to the buffer (for sake of brevity,
we do not give detailed SIGNAL implementation of counter and register components here).
Designers can start with a set of behavior and a rough guess of the needed buffer size and
use the instrumented fifo network (replacing explicit data dependencies) to find the right
estimation of the buffer size. This is done by simulating the behavior of the design for a
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Tp = Yq

alarml l nc
P z, | tick reset

counter

l Ut > Vg—1

Figure 4: Instrumented Fifo

given environment, observing the values in the counters, incrementing the buffer size by
these values, and iterating the simulation till no alarm is raised. This process guarantees
that for a set of (normal) behaviors, no buffer overflow will happen. However, since the
designer does not necessarily feed all possible behaviors into the design, we need a feedback
loop to prevent lossing data in exceptional cases of buffer overflow.

To do this, we can use the alarm signal to mask the clock of the producer component.
Masking the clock of the producer may be too naive for some critical designs. In such
cases, different service levels should be implemented in which the rate of production and
consumption of data items can be tuned. The necessity to change the service level can then
be indicated by observing the status of communication between components using the fifo
buffers between them. If a fifo buffer continuously gets an overflow, this means that we
have to either speed up the consumer side (by decreasing service level in consumer side) or
slow down the producer side. Similarly, if we continuously notice consumer is attempting to
access an empty fifo buffer this is an indication of inappropriate service level which should
be fixed by hibernating the consumer side or activating the producer side.

Verification of the desynchronized consists of checking that no alarm signal is raised.
In case of failing to prove this, the error trace may help us finding the input sequence
resulting in alarm. This input can be added to our simulation data. Then, we can re-iterate
the process by simulating with the new test-data, estimating the sufficient buffer size and
coming back to verification phase.

Lemma 3 If no alarm is raised then the design is correct in the sense of Theorem 2.

6 Conclusion

In this paper, we established the theoretical model of asynchronous composition in S1G-
NAL model and its implementation using fifo buffers. In addition to that, we proposed a
practical design template to estimate the buffer size. The proposed approach allows for
efficient analysis and implementation of asynchronous designs. Furthermore, it brings about
the possibility of specifying GALS systems in the synchronous framework and benefitting
from the tooling around it.

Studying compositionality and stability issues in the buffer size proof and estimation
remains as one of our future research topics. We are also looking at constructive algorithms
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based on the clock dependency graph to make the buffer size estimation and proof auto-
matic. Using program morphism approach (similar to the approach taken in [6]) is another
possibility for simulating the program behavior and estimating the buffer size.
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A  Proofs and Formal Results

Note: Proofs are available only for the review process. They will be removed from the paper
in the proceedings and will be available on-line in form of a technical report.

Lemma 4 For all general processes P and () the following properties hold:
1. P=Q =P =Q*
2. PP=Q* e P<sQ.

3. P=(P||, Q)x © Pxny = Qxny, where X = vars(P) and Y = vars(Q)
4. P||,P=P

5. Pl,@=Q|, P

6.

Pl Q= (P ||, Q")

Proof. Ttems 1, 4, and 5 hold trivially (4 is immediate consequence of 3). For the proof of
item 2, we prove that P* =Q* = Vbe PIdce Q,bsc: Yo e P,be P*=Ybe Pbe Q* =
Vb € P,3c € Q,b< c. Similarly (due to symmetry), we have P* = Q* = Vb€ Q3ce P,b <
c. For the other implication of this item, we have

Vb, b € P* =

WePbst =

AV, c) ePxQbsSVAY Sc=>

JeeQ,csb=>0beQ*

Again, due to symmetry, we have P < Q = (Vb,b € Q* = b € P*).

For the right implication of item 3, consider an arbitrary a € P, then a|xny € Q|xny
and hence 3b € Q,bxny = axny. Now, consider the behavior ¢ constructed from merging
a and b, according to Definition 3 it holds that ¢ € P ||, @ and ¢/x = a, and thus a €
(P |, Q)x- Similarly for the left implication, consider the behavior a € P xny then
Jb € P,axny = axny and according to the assumption b € (P ||, Q)|X. Then, there exists
ace Pllg Q,bx = cx. It follows from Definition 3 that c € Q and thus ¢;xny € Q|xny
and thus axny € Q| xny-

For the proof of item 6, it trivially holds that P* ||, @* C (P* ||, @*)*. Thus, it remains
to prove that (P* ||, @*)* C P* ||, Q. Let X = vars(P), Y = vars(Q) and [ = X NY,
then we have:
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ac (P |,Q") =3d,d e P"||,Q" Nd Sa=
I, ) € P* x Q*,

/ — !/ / _ / /

le—a‘X/\CIY—aIY/\a Sa=
I, ) € P* x Q*,

by =a/x Ny =aly,AJa",d" <d Na" <a=

| \ | |
3, ") € P* x Q*,

by = aly Acjy = afy, A" <a' Na" <a=
(b, ¢) € P* x Q*,

bx =ax ANy =ayy,Na” <a' A" <a=
ae P, Q"

Lemma 5 For arbitrary general processes P and Q:
1. PCP|,P

2. Pll,Q=Ql, P

Corollary 3
1. b<c&ebLe
2. b<ceby/r] <cly/x]t

Proof of theorem 1 Proof. Suppose that vars(P) =

holds that € X NY). First, we prove the containment of the behavior of ((Plx/x

Q[x/ﬂfQ])lAFifOxp—»xQ)\{wMQ} in (P, Q\(a}:

Va,a € (Plz/xp|l< , Qlr/zql)l
AFiwaPHwQ)\{IP@Q} =

Elb? b\{wp,wQ} = al
be Plo/zr] ll< o Qle/zaln
b‘{zp’mQ} € AFZ‘fowpan) =

O\{2p,2q} = 0N
be Plz/zp] ||, Qlz/zg]A
bizr} < bifagy =

\fzp.aq} = oA
b\{zp,rQ}(P ||§,a Q)\{I} =

a€ (Pllc, Q\iz}

X and vars(Q) =Y (it clearly

Pl ll<a

Def. 3

Def. 8

Def. 7

Lsimilarly, for relaxation and for the stretch and flow equivalence relations
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The inclusion of the left-hand-side follows from the following proof:
a€(Pllc, Qe =
3b,b\(} =anbe (P, Q) Def. 7

J(e,d) € P x Q,

oy Shy Adyx S b xA

xny Ebxny Ndixny E bjxny A
P<,QAVy,P<,Q= Uy} < dify)
Vz,Q <. P=djz <oy AN e XNY

aylrp/z] S bylrp/zIA
d\x[rq/7] S b\x[zq/T]A
cixnylzp /7] C bxny[Tp/z]A
dixny[rq/7] C bxny[rq/z]A
clzp/z)|zpyrQ/zP] < dlTg /]| {20}
Yy € (X NY)\{z},
Plzp/z] <y Qlzq/z] =
yylrp/z] < djgyylep /)
Vze XNY,
Qlzp/z] <. P =
d‘{z} < ¢z} Def. 7& 3

b\(zy € (Plz/zp] || , Qlz/2q])
|AFifOzP—>IQ)\{wp,wQ} =

a € ((Plz/zp]|l< , Qlz/zq))l
AFifozp—ao\{zp,oq}

Corollary 4 For stretch-closed P and @ with explicit data dependency on x, we have:

(P |, @\{zy 2
(Plz/zp] I, Qlr/zQ)) |l, AFifosp—zg)\ep.xg

Lemma 6 Consider two behaviors a and b such that vars(a) = vars(b) = {x}, if Vi €
I, t(a(x)i) = t(b(x)i4n), then VE € T, [[b(x)]¢] < n + |[a(z)]¢]-

Proof. Suppose that the lemma does not hold, then there exists a time ¢ in which |[b(z)]¢| >
[[a(z)]:| +n. Let j be the index of the last events of b(z) before t. If such events exist, then
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according to the lemma hypothesis, we have t(a(x);—,) = t(b(z);). Thus, the size of [a(x)]¢
is at least j—n and this contradicts our assumption (|[b(z)]:| = 7 # n+(j—n) < n+|[a(z)]:])-
So, such an event should not exist. This means that ¢ is not related to the time of any event
in b and hence |[b(z)];| = |b(x)|. But since we assume infinite behavior, |b(z)| = |a(z)| = 0o
(contradiction with the assumption).

The Proof of lemma 2 follows the same line as of Lemma 1 using Lemma, 6.
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