N
N

N

HAL

open science

RAIDb: Redundant Array of Inexpensive Databases

Emmanuel Cecchet, Julie Marguerite, Willy Zwaenepoel

» To cite this version:

Emmanuel Cecchet, Julie Marguerite, Willy Zwaenepoel. RAIDb: Redundant Array of Inexpensive
Databases. [Research Report] RR-4921, INRIA. 2003. inria-00071658

HAL Id: inria-00071658
https://inria.hal.science/inria-00071658
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071658
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4921--FR+ENG

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET E AUTOMATIQUE

RAIDDb: Redundant Array of | nexpensive Databases

Emmanuel Cecchet — Julie Marguerite — Willy Zwaenepoel

N° 4921
Septembre 2003

THEME 1

apport
derecherche

44 INRIA

RHONE-ALPES

RAIDDb: Redundant Array of Inexpensive Databases

Emmanuel CecchetJulie Marguerite Willy Zwaenepoéi

Théme 1 — Réseaux et systemes
Projet Sardes

Rapport de recherche n 4921- Septembre 2003 27 pages

Abstract: Clusters of workstations become more and more lpopol power data server appli-
cations such as large scale Web sites or e-Comnagngekcations. There has been much re-
search on scaling the front tiers (web serversapplication servers) using clusters, but data-
bases usually remain on large dedicated SMP maxHhimehis paper, we address database per-
formance scalability and high availability usingistiers of commodity hardware. Our approach
consists of studying different replication and fienming strategies to achieve various degree of
performance and fault tolerance.

We propose the concept of Redundant Array of Inesive Databases (RAIDb). RAIDD is to
databases what RAID is to disks. RAIDb aims at fliog better performance and fault toler-
ance than a single database, at low cost, by cangbmultiple database instances into an array
of databases. Like RAID, we define different RAIDlevels that provide various
cost/performance/fault tolerance tradeoffs. RAIDEe@tures full partitioning, RAIDb-1 offers
full replication and RAIDb-2 introduces an intermegéd solution called partial replication, in
which the user can define the degree of replicatforach database table.

We present a Java implementation of RAIDb calledst@red JDBC or C-JDBC. C-JDBC
achieves both database performance scalabilityhégid availability at the middleware level
without changing existing applications. We showngghe TPC-W benchmark, that RAIDb-2
can offer better performance scalability (up to 258%@an traditional approaches by allowing
fine-grain control on replication. Distributing anekstricting the replication of frequently written
tables to a small set of backends reduces I/0O umagi@nproves CPU utilization of each cluster
node.

Keywords: database, cluster, fault tolerance, performargagability, JDBC.

*

INRIA Rhdne-Alpes — Projet Sardes — Emmanuel.Cei@nrialpes.fr
T ObjectWeb consortium — INRIA Rhéne-Alpes — Juliadguerite@inrialpes. fr
* EPF Lausanne — IN - Ecublens, CH-1015 Lausannaz&vand — willy.zwaenepoel@epfl.ch

Unité de recherche INRIA Rhéne-Alpes
655, Avenue de I'Europe, 38330 Montbonnot-St-Mafkrance)
Téléphone : +33 4 76 61 52 00 — Télécopie : +38 17752 52

RAIDb: Redundant Array of Inexpensive Databases

Résumé: Les grappes de machines deviennent de plus enuplistes comme plateforme
d’exécution pour les applications de type servemirddnnées comme les sites Web a grande
échelle ou les applications de commerce électr@eniBeaucoup de travaux de recherche ont été
menés pour passer a I'échelle les tiers frontaepvésirs Web et serveurs d’application) en utili-
sant des grappes, mais les bases de données hetiemgées sur de grosses machines multipro-
cesseurs dédiées a cette tadche. Notre approchistecagtudier différentes stratégies de répli-
cation et de partitionnement pour obtenir diffésemtzeaux de perforrmance et de tolérance aux
fautes.

Nous proposons le concept intituedundant Array of Inexpensive DatabagBAIDb).
RAIDb est aux bases de données ce que RAID edliagnes. RAIDb a pour but de fournir une
meilleure performance et tolérance aux fautes qu'sgule base de données, a faible codt, en
combinant plusieurs instances de base de donnéaseematrice de bases de données. Comme
RAID, nous définissons plusieurs niveaux de RAIDIb fournissent différents compromis entre
co(t, performance et tolérance aux fautes. RAIRKHBe le partitionnement complet, RAIDb-

1 offre la réplication compléte et RAIDb-2 introtlune solution intermédiaire appelée réplica-
tion partielle, dans laquelle I'utilisateur peufidé le degré de réplication de chaque table de la
base de données.

Nous présentons une implémentation Java de RAIDeléap Clustered JDBC ou C-JDBC. C-
JDBC fournit a la fois le passage a I'échelle dasgsmances et la haute disponibilité de la base
de donnée, au niveau intergiciel, sans changeapesications existantes. Nous montrons, en
utilisant le test de performance TPC-W, que RAIDbf2e un meilleur passage a I'échelle des
performances (jusqu’a 25%) que les approches imaditlles en permettant un contréle a grain
fin de la réplication. Distribuer et restreindrerégplication des tables accédées fréquemment en
écriture a un petit ensemble de machines, rédsiefdrées/sorties et améliore I'utilisation du
processeur sur chaque nceud de la grappe.

Mots clés: base de données, grappe, tolérance aux fautdermpance, passage a I'échelle,
JDBC.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 3

1 Introduction

Nowadays, database scalability and high availgbddn be achieved, but at very high ex-
pense. Existing solutions require large SMP machoreclusters with a Storage Area Network
(SAN) and high-end RDBMS (Relational DataBase Mamagnt Systems). Both hardware and
software licensing cost makes those solutions awdilable to large businesses.

In this paper, we introduce the concept of Redunhdsmay of Inexpensive Databases
(RAIDD), in analogy to the existing RAID (Redundahtray of Inexpensive Disks) concept,
that achieves scalability and high availabilitydik subsystems at a low cost. RAID combines
multiple inexpensive disk drives into an array dkddrives to obtain performance, capacity and
reliability that exceeds that of a single largever[7]. RAIDb is the counterpart of RAID for
databases. RAIDb aims at providing better perfowaaand fault tolerance than a single data-
base, at a low cost, by combining multiple databastances into an array of databases.

RAIDb primarily targets low-cost commodity hardwamned software such as clusters of work-
stations and open source databases. On such platf®AIDb will be mostly implemented as a
software solution like the C-JDBC middleware prgpet we present in this paper. However,
like for RAID systems, hardware solutions couldfrevided to enhance RAIDb performance
while still being cost effective.

Clusters of workstations are already an alternatMarge parallel machines in scientific com-
puting because of their unbeatable price/performaatio. Clusters can also be used to provide
both scalability and high availability in data semenvironments. Database replication has been
used as a solution to improve availability and gemiance of distributed databases [2, 12]. Even
if many protocols have been designed to provida dahsistency and fault tolerance [4], few of
them have been used in commercial databases [24Y. € al. [9] have pointed out the danger
of replication and the scalability limit of this pqwach. However, database replication is a viable
approach if an appropriate replication algorithnused [1, 14, 26]. Most of these recent works
only focus on full database replication. In thisppg we study and compare various data
distribution schemes, ranging from partitioningfod replication with an intermediate partial
replication solution that offers fine-grain contmler replication. We propose a classification in
RAIDbD levels and evaluate the performance/fauktriamce tradeoff of each solution. The three
basic RAIDD levels are: RAIDb-0 for partitioningthut redundancy, RAIDb-1 for full mirror-
ing and RAIDD-2 for partial replication. We alsopéain how to build larger scale multi-level
RAIDb configurations by combining the basic RAIDdvéls.

We propose C-JDBC, a Java middleware that implesnér® RAIDb concept. We evaluate
the different replication techniques using the TW@enchmark [24]. C-JDBC proves that it is
possible to achieve performance scalability antt falerance at the middleware level using any
database engine that has no native replicationstriliition support. We show that partial rep-
lication offers a significant improvement (up to%2bcompared to full replication by reducing
both the communication and the 1/0 on the backeiuks.

The outline of the rest of this paper is as follo®sction 2 gives an overview of the RAIDb
architecture and its components. In section 3,nt@duce a classification of the basic RAIDb
levels. Then, section 4 shows how to combine thxsséc RAIDD levels to build larger scale
RAIDb configurations. Section 5 presents C-JDBQasa implementation of RAIDb and sec-
tion 6 details the various RAIDb levels implemeiatas. Section 7 describes the experimental
platform and an analysis of the benchmark worklo&igerimental results are presented in
section 8. Section 9 discusses related work andomelude in section 10.

RR n°® 4921

4 Emmanuel Cecchet et al.

2 RAIDDb architecture

2.1 Overview

One of the goals of RAIDb is to hide the distribaticomplexity and provide the database cli-
ents with the view of a single database like irat@lized architecture.

Figure 1 gives an overview of the RAIDb architeetuhs for RAID, a controller sits in front of
the underlying resources. The clients send thejuests directly to the RAIDb controller that
distributes them among the set of RDBMS backents. RAIDb controller gives the illusion of
a single RDBMS to the clients.

DB client DB client DB client

=

RAIDb controller

RDBMS1 RDBMS2 RDBMS.. RDBMSn-1 RDBMSn

Figure 1. RAIDb architecture overview

2.2 RAIDb controller

RAIDb controllers may provide various degrees o¥ises. The controller must be aware of the
database tables available on each RDBMS backettthsthe requests can be routed (according
to a load balancing algorithm) to the right noddfg)parsing the SQL statement. This knowl-
edge can be configured statically through configonafiles or discovered dynamically by re-
guesting the database schema directly from the RBBIMad balancing algorithms can range
from static affinity-based or round-robin policiess dynamic decisions based on node load or
other monitoring-based information.

RAIDb controllers should also provide support fomdmic backend addition and removal
which is equivalent to the disks’ hot swap feature.

As RAID controllers, RAIDb controllers can offeratang to hold the replies to SQL queries.
The controller is responsible for the granularitgl @he coherence of the cache.

Additional features such as connection pooling lwamrovided to further enhance performance
scalability. There is no restriction to the setsefvices implemented in the RAIDb controller.
Monitoring, debugging, logging or security managateervices can prove to be useful for cer-
tain users.

2.3 Application and database requirements

In general, RAIDb does not impose any modificatidrthe client application or the RDBMS.
However, some precautions have to be taken camsioff as the fact that all requests to the da-
tabases must be sent through the RAIDb contrdtiés.not allowed to directly issue requests to
a database backend as this might compromise thesglathronization between the backends as
well as the RAIDb cache coherency.

As each RDBMS supports a different SQL subsetati@ication must be aware of the requests
supported by the underlying databases. This prolt@mbe easily handled if all RDBMS in-

INRIA

RAIDb: Redundant Array of Inexpensive Databases 5

stances use the same version from the same verdloexample, a cluster consisting only of
MySQL 4.0 databases will behave as a single instafidlySQL 4.0. Nevertheless, heteroge-
neous databases can be used with RAIDb. A mix atl@rand PostgreSQL databases is a pos-
sible RAIDb backend configuration. In such a cdlse,application must use an SQL subset that
is common to both RDBMS. If the RAIDb controllerpports user defined load balancers, the
user can implement a load balancer that is awatkeofespective capabilities of the underlying
RDBMS. Once loaded in the RAIDb controller, theddaalancer should be able to direct the
gueries to the appropriate database.

3 Basic RAIDDb levels

We define three basic RAIDb levels varying the éegof partitioning and replication among
the databases. RAIDb-0 (database partitioning)RAMDb-1 (database mirroring) are similar to
RAID-0 (disk striping) and RAID-1 (disk mirroringjespectively. Like RAID-5, RAIDb-2 is a
tradeoff between RAIDb-0 and RAIDb-1. Actually, R#9-2 offers partial replication of the
database. We also define RAIDb-1ec and RAIDb-2ed #dds error checking to the basic
RAIDb levels 1 and 2, respectively.

3.1 RAIDb-0: full partitioning

RAIDbD level 0 is similar to striping provided by RB:0. It consists in partitioning the database
tables among the nodes. Figure 2 illustrates RAODAGith an example afl database tables par-
titioned on 5 nodes. RAIDb-0 uses at least 2 datlimckends but there is no duplication of
information and therefore no fault tolerance gutzes.

| SQOL requests

RAIDb controller

-
=

table 1 table2 & 3 table ... table n-1

Figure 2. RAIDb-0 overview

RAIDb-0 allows large databases to be distributediciv could be a solution if no node has
enough storage capacity to store the whole datal¥dse, each database engine processes a
smaller working set and can possibly have betteheaisage, since the requests are always hit-
ting a reduced number of tables. As RAID-0, RAIDGiges the best storage efficiency since no
information is duplicated.

RAIDb-0 requires the RAIDb controller to know whithbles are available on each node in
order to direct the requests to the right nodesKmowledge can be configured statically in
configuration files or build dynamically by fetclgithe schema from each database.

Like for RAID systems, the Mean Time Between F&i(MTBF) of the array is equal to the
MTBF of an individual database backend, dividedhry number of backends in the array. Be-
cause of this, the MTBF of a RAIDb-0 system is lm® for mission-critical systems.

3.2 RAIDb-1: full replication

RAIDb level 1 is similar to disk mirroring in RAID: Databases are fully replicated as shown
on figure 3. RAIDb-1 requires each backend nodbaee enough storage capacity to hold all

RR n°® 4921

6 Emmanuel Cecchet et al.

database data. RAIDb-1 needs at least 2 databakeruis, but there is (theoretically) no limit
to the number of RDBMS backends.

| SQL requests

RAIDb controller

ccge

Full DB Full DB Full DB Full DB Full DB

Figure 3. RAIDb-1 overview

The performance scalability will be limited by tapacity of the RAIDb controller to effi-
ciently broadcast the updates to all backendsase ©f a large number of backend databases, a
hierarchical structure like those discussed iniseet would give better scalability.

Unlike RAIDb-0, the RAIDb-1 controller does not e know the database schema, since all
nodes are capable of treating any request. Howéwbe RAIDb controller provides a cache, it
will need the database schema to maintain the caaierence.

RAIDb-1 provides speedup for read queries becausg ¢an be balanced over the backends.
Write queries are performed in parallel by all mdberefore they execute at the same speed as
the one of a single node. However, RAIDb-1 provigesd fault tolerance, since it can continue
to operate with a single backend node.

3.3 RAIDb-1ec

To ensure further data integrity, we define tAaIDb-1leclevel that adds error checking to
RAIDb-1. Error checking aims at detecting Byzantfadures [15] that may occur in highly
stressed clusters of PCs [10]. RAIDb-1ec deteadtktalerates failures as long as a majority of
nodes does not fail. RAIDb-1 requires at least 8esoto operate. A read request is always sent
to a majority of nodes and the replies are compdfeiconsensus is reached, the reply is sent
to the client. Else the request is sent to all soereach a quorum. If a quorum cannot be
reached, an error is returned to the client.

The RAIDb controller is responsible for choosinged of nodes for each request. Note that the
algorithm can be user defined or tuned if the caler supports it. The number of nodes always
ranges from the majority (half of the nodes plusolall nodes. If all nodes are chosen, it results
in the most secure configuration but the perforreawdl be the one of the slowest backend.
This setting is a tradeoff between performancedatd integrity.

3.4 RAIDb-2: partial replication

RAIDbD level 2 features partial replication whichda intermediate solution between RAIDb-0
and RAIDb-1. Unlike RAIDb-1, RAIDb-2 does not reggiiany single node to host a full copy
of the database. This is essential when the fulilmese is too large to be hosted on a node’s
disks. Each database table must be replicatedaat tence to survive a single node failure.
RAIDDb-2 uses at least 3 database backends (2 nealgd be a RAIDb-1 solution).

Figure 4 gives an example of a RAIDb-2 configunatibhe database contains 3 tableg and

z The first database backend contains the fullldete, whereas the other nodes host only one
or two tables. There is a total of 3 copies folgabandy, and 2 copies for table Whichever
node fails, it is still possible to retrieve thea&om the surviving nodes.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 7

| SQL requests

RAIDb controller

ccpe

Full DB table x tabley tablex & y table z

Figure 4. RAIDb-2 overview

Like for RAIDb-0, RAIDb-2 requires the RAIDb contler to be aware of the underlying data-
base schemas to route the request to the appepeabdf nodes.

Typically, RAIDb-2 is used in a configuration wheme or few nodes host a full copy of the
database and a set of nodes host partitions afatabase to offload the full databases. RAIDb-
2 can be useful with heterogeneous databases. i8tingxenterprise database using a commer-
cial RDBMS could be too expensive to fully dupliedioth in term of storage and additional
licenses cost. Therefore, a RAIDb-2 configurati@m @dd a number of smaller open-source
RDBMS hosting smaller partitions of the databasefftmad the full database and offer better
fault tolerance. In figure 4’s example, the firsickend node on the left could be the commercial
RDBMS and the 4 other nodes, smaller open-sourtabdses. These 4 RDBMS can handle a
large set of requests and even fail over the ldegabase.

As RAID-5, RAIDb-2 is a good tradeoff between cqmtrformance and data protection.

3.5 RAIDb-2ec

Like for RAIDb-1lec, RAIDb-2ec adds error checkirggRAIDb-2. Three copies of each table

are needed in order to achieve a quorum. RAIDb¢2gaires at least 4 RDBMS backends to
operate. The choice of the nodes that will perf@mead request is more complex than in
RAIDb-1ec due to the data partitioning. Howeverde® hosting a partition of the database may
perform the request faster than nodes hosting timendatabase. Therefore RAIDb-2ec might
perform better than RAIDb-1ec.

3.6 RAIDD levels performance/fault tolerance summary

Figure 5 gives an overview of the performance/ftalérance tradeoff offered by each RAIDb
level:

* RAIDb-0 offers in the best case the same faultrémlee as a single database. Performance
can be improved by partitioning the tables on ddffé nodes, but scalability is limited to
the number of tables and the workload distribuiarong the tables.

« RAIDb-1 gives in the worst case the same faultrtolee as a single database, and per-
formance scales according to the read/write digtioh of the workload. On a write-only
workload, performance can be lower than for a singide. At the opposite extreme, a
read-only workload will scale linearly with the nber of backends.

* RAIDb-1ec provides at least the same fault toleeaax RAIDb-1, but performance is low-
ered by the number of nodes used to check eachyreasg.

* RAIDb-2 offers less fault tolerance than RAIDb-1ytht scales better on write-heavy
workloads by limiting the updates broadcast to allenset of nodes.

* RAIDb-2ec has better fault tolerance than RAIDbt2 tomes at the price of lower performance and
a larger number of nodes.

RR n°® 4921

8 Emmanuel Cecchet et al.

Bes

RAIDb-1e

RAIDb-2ec

RAIDb-1 RAIDb-2

Fault tolerance

Single
databasg RAIDD-0

» Bes

Wors! Performanc

Figure 5. RAIDb performance/fault tolerance tradeof

4 Composing RAIDD levels

4.1 Vertical scalability

It is possible to compose several RAIDb levels uddblarge-scale configurations. As a RAIDb
controller may scale only to a limited nhumber otkend databases, it is possible to cascade
RAIDb controller to support a larger number of RDBM

| SQL requests |

RAIDb-1 controller

— Tt
RAIDb-0 controller RAIDb-0 controller
) —
tabie w tablex & y table z table w tabley tablex & z
A 4

RAIDb-0 controller

Al

—
f———
P — 1

table w table x tabley table z

Figure 6. Example of a RAIDb-1-0 composition

Figure 6 shows an example of a 2-level RAIDb contjmos The first level RAIDb-1 controller
acts as if it had 3 full database backends. Asdwond level, each full database is implemented

INRIA

RAIDb: Redundant Array of Inexpensive Databases 9

by a RAIDb-0 array with possibly different configions. Such a composition can be denoted
RAIDb-1-0.

Figure 7 gives an example of the same databasg asRAIDb-0-1 composition. In this case,
the database is partitioned in 3 sets that arécegpd using RAIDb-1 controllers. A top level
RAIDb-0 controller balances the requests on thadedying RAIDb-1 controllers.

| SQL requests |

'

RAIDb-0 controller

v ! I : v

RAIDb-1 controller RAIDb-1 controller RAIDb-1 controller

A e

Fv‘ﬂ?’v‘%?’v‘ﬂ

tal-)Té-w tat;i; w table X&Yy table X&Yy table X&Yy table z table z

Figure 7. Example of a RAIDb-0-1 composition

There is potentially no limit to the depth of RAIRbmpositions. It can also make sense to cas-
cade several RAIDb controllers using the same RAHEeIs. For example, a RAIDb-1-1 solu-
tion could be envisioned with a large number ofraregd databases. The tree architecture of-
fered by RAIDb composition offers a more scalaliitgon for large database clusters espe-
cially if the RAIDb controller has no network suppt® broadcast the writes.

As each RAIDb controller can provide its own caca®AIDb composition can help specialize
the caches and improve the hit rate.

4.2 Horizontal scalability

The RAIDb controller can quickly become a singlenpaf failure. It is possible to have two or more
controllers that synchronize the incoming requistgree on a common serializable order. Figureésg
an overview of the horizontal scalability of RAIRbntrollers.

| SQL requests |

|
v v

Synchronization
RAIDb controller RAIDb controller

Dy

Full DB Full DB Full DB Full DB Full DB

Figure 8. RAIDb horizontal scalability.

Backends do not necessarily have to be shared éeteantrollers as in the above example, but
nodes that are attached to a single controllernagillonger be accessible if the controller fails.

RR n°® 4921

10 Emmanuel Cecchet et al.

In the case of shared backends, only one contredlieds the request to the backend and notifies
the other controllers upon completion.

5 C-JDBC: a RAIDb software implementation

JDBC™, often referenced as Java Database Conrigcivia Java API for accessing virtually
any kind of tabular data [25]. We have implemen®=dDBC (Clustered JDBC), a Java mid-
dleware based on JDBC, that allows building all BBIconfigurations described in this paper.
C-JDBC works with any existing commercial or openirse RDBMS that provides a JDBC
driver. The client application does not need tommlified and transparently accesses a data-
base cluster as if it were a centralized databBise.RDBMS does not need any modification
either, nor does it need to provide distributecadase functionalities. The distribution is han-
dled by the C-JDBC controller that implements thgid of a RAIDb controller.

5.1 C-JDBC overview

Figure 9 gives an overview of the different C-JDB&nponents. The client application uses the
generic C-JDBC driver that replaces the databaseifspJDBC driver. The C-JDBC controller
implements a RAIDb controller logic and exposesrgle database view, called virtual data-
base, to the driver. A controller can host multipieual databases. In the current implementa-
tion, the drivers and the controller use socketsstomunicate.

The authentication manager establishes the magphgeen the login/password provided by
the client application and the login/password taubed on each database backend. All security
checks can be performed by the authentication nean#igprovides a uniform and centralized
resource access control.

Each virtual database has its own request manhgedéfines the request scheduling, caching
and load balancing policies. The “real” databasesdafined as database backends and are ac-
cessed through their native JDBC driver. If thauwsatriver is not capable of connection pool-
ing, a connection manager can be added to perfocina task.

The C-JDBC controller also provides additional s&s such as monitoring and logging. The
controller can be dynamically configured and adstéried using an administration console that
provides XML files describing the controller condigtion.

5.2 C-JDBC driver

The C-JDBC driver is a hybrid type 3 and type 4 @DdBiver [25] and it implements the JDBC
2.0 specification. All processing that can be penked locally is implemented inside the C-
JDBC driver like in a type 4 JDBC driver. For exdegpwwvhen a SQL statement has been exe-
cuted on a database backend, the result set sizedi into a C-JDBC driver ResultSet that
contains the logic to process the results. OncdRdwmultSet is sent back to the driver, the client
can browse the results locally.

All database dependent calls are forwarded to Hd®BC controller that issues them on the
database native driver like a type 3 JDBC drivépL Statement executions are the only calls
that are completely forwarded to the backend datdaMost of the C-JDBC driver remote
calls can be resolved by the C-JDBC controlletfitsghout going to the database backends.
The C-JDBC driver can also transparently fail oneitiple C-JDBC controllers implementing
horizontal scalability (see section 5.6). The JDBRL used by the driver is made of a comma
separated list of ‘node/port/controller name’ falkxd by the database name. An example of a C-
JDBC JDBC URL i dbc: ¢j dbc: // nodel: 1099: c1, node2: 1200: c2/ db. When the driver re-
ceives this URL, it randomly picks up a node frdma tist. This allows all client applications to
use the same URL and dynamically distribute theguests on the available controllers.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 11

Java client
P application
(Servlet, EJB, ...)
——
Administration
console

XML
configuration
file

Configuration
&
administration

XML engine

Authentication Manager

Request Manager

Scheduler

Recovery

Log Request Cache

Load balancer

Connection
Manager

Connection
Manager

Connection
Manager

MySQL
JDBC driver

MySQL
JDBC driver

MySQL MySQL Oracle

Figure 9. C-JDBC overview

5.3 C-JDBC controller

The C-JDBC controller exports virtual databasessers. A virtual database has a virtual name
that matches the database name used in the cpetitation. Virtual login names and pass-
words match also the ones used by the clientadthentication managegstablishes the map-
ping between the virtual login/password and thekbad real login/passwords. This allows da-
tabase backends to have different names and usessadghts mapped to the same virtual data-
base.

The request manager is a major component of th®EIzJcontroller that implements the
RAIDbD logic. It is composed of a scheduler, a Idrmdancer and two optional components: a
recovery log and a request cache. Each of thesepaments can be superseded by a user-
specified implementation.

When a request comes from a C-JDBC driver, it iged to the request manager associated to
the virtual database. Ttsghedulelis responsible for ordering the requests accortiinte de-
sired isolation level. Moreover, consecutive wdigeries may be aggregated in a batch update
so that they perform better. According to the aggtlon consistency, some write queries can
also be delayed to improve the cache hit rate. @meeequest scheduler processing is done, the
requests are sequentially ordered.

RR n°® 4921

12 Emmanuel Cecchet et al.

Then, an optionalequest cachean be used to store the result set associategctoquery. We
have implemented different cache granularities irapgrom table-based invalidations to col-
umn-based invalidation with various optimizatioBsscussing the query cache design and per-
formance is beyond the scope of this article. Ninedess, such a cache reduces the request re-
sponse time as well as the load on the databasehds

If no cache has been loaded or a cache miss odctinerequest finally arrives to thead bal-
ancer RAIDb-0 or RAIDDb-2 load balancers need to knove tatabase schema of each
backend. The schema information is dynamically gyath. WWhen the backend is enabled, the
appropriate methods are called on the JDBC Datdbets®ata information of the backend
native driver. Database schemas can also be #iyasp&cified by the way of the configuration
file. This schema is updated dynamically on eadateor drop SQL statement to reflect each
backend schema. Among the backends that can hieea¢quest (all of them in RAIDb-1), one is
selected according to the implemented algorithrmrreé@uly implemented algorithms are round
robin, weighted round robin and least pending retguirst (the request is sent to the node that
has the least pending queries).

Once a backend has been selected, the requestt ieod&s native driver through a connection
manager that can perform connection pooling. TheuReet returned by the native driver is
transformed into a serializable ResultSet thaetarned to the client by means of the C-JDBC
driver.

5.4 Recovery log

C-JDBC implements a recovery log that records allewstatements between checkpoints. With
each checkpoint corresponds a database dump tgehérated by the administrator using the
RDBMS specific dump tool. When a backend node @eddo the cluster, a dump correspond-
ing to a checkpoint is installed on the node. Thahwrite queries since this checkpoint are
replayed from the recovery log, and the backendsstacepting client queries as soon as it is
synchronized with the other nodes.

The log can be stored on flat files but more irggngly into a database through JDBC. This
way, it is possible to have a fault tolerant reegveg by sending the log queries to a C-JDBC
controller that will replicate them according t@tRAIDb level used. A C-JDBC controller can
send the recovery log queries to itself to usebtiekends to store both database data and recov-
ery log information.

5.5 C-JDBC vertical scalability

It is possible to achieve multiple RAIDb levels t®rinjecting the C-JDBC driver into the C-
JDBC controller. Figure 10 illustrates an examfi@a @ level RAID-x-y composition using C-
JDBC.

The top level controller has been configured forlBi#x with 3 database backends that are in
fact other C-JDBC controllers. The C-JDBC driveuuged as the backend native driver to ac-
cess the underlying controller. Each backend i&aéh a RAIDb-y array implemented by other
C-JDBC controllers. Therefore, it is possible taldany composition of RAIDb configurations
by simply configuring each C-JDBC controller witletcomponents implementing the desired
RAIDb level. The different level C-JDBC controlleese interconnected using the C-JDBC
driver and the database native drivers are usedevthe real database backends are connected.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 13

Client :
Client program Client
program C-JDBC program
C-JDBC driver C-JPBC
driver JVM driver
JVM JVM

C-JDBC Controller
(RAIDb-x)

C-JDBC driver
A y

y y

C-JDBC Controller C-JDBC Controller C-JDBC Controller
(RAIDb-y) (RAIDb-y) (RAIDb-y)

DB native JDBC driver DB native JDBC driver DB native JDBC driver

=9 88 2€

Figure 10. C-JDBC vertical scalability

5.6 C-JDBC horizontal scalability

Horizontal scalability is what is needed to prevéig C-JDBC controller from being a single
point of failure. We use the Javagroups [3] grogmmunication library to synchronize the
schedulers of the virtual databases that are loligad in several controllers. Figure 11 gives an
overview of the C-JDBC controller horizontal scaligo

When a virtual database is loaded in a controdegroup name can be assigned to the virtual
database. This group name is used to communic#teottier controllers hosting the same vir-
tual database. There is no master/slave mechamigdralebackends are truly shared.

C-JDBC relies on Javagroups’ reliable and orderedsaige delivery to synchronize write re-
guests and demarcate transactions. Only the sarsdebntain the distribution logic and use
group communications. All other C-JDBC componeatsain the same.

RR n°® 4921

14 Emmanuel Cecchet et al.

Client application

C-JDBC driver
JVM

JavaGroups
C-JDBC Controller [¢——{ C-JDBC Controller

MySQL JDBC driver MySQL JDBC driver
MySQL MySQL MySQL

Figure 11. C-JDBC horizontal scalability

6 RAIDb implementations

C-JDBC assumes that the underlying RDBMS provid€DAproperties for transactions and
that there is always at least one node that hasdbded tables to execute a query. For instance,
in dynamic content servers, one of the target enwirents for RAIDb clusters, we know a priori
what queries are going to be issued. Thereforig, dalways possible to distribute the tables in
such a way that all queries can be satisfied (ésdgrby making sure that for each query there
is at least one replica where we have all the safolethat query).

6.1 RAIDb-0

RAIDb-0 requires the request to be parsed to kndwclwtables are needed to execute the re-
guest. When the RAIDb-0 load balancer initializédetches the database schema from each
backend using the appropriate JDBC calls. Whergae®t needs to be executed, the load bal-
ancer checks which backend has the tables needix bgquest. As no table is replicated, only
one backend can serve each request.

When the client starts a transaction, connectigasstarted lazily on each backend when the
first request is sent to this node. If the requakisys hit the same backend, only one connec-
tion is dedicated for the transaction. In the waase where a transaction requires data from
every backend, a connection per backend is dedidatethe transaction until it commits or
rollbacks. If a transaction spans multiple backetiuks controller waits for all backends to com-
mit or rollback before notifying the client. A twghase commit is needed to ensure that all
backends commit or rollback.

The user can define the policy to adopt for a ‘CREATABLE’ request, either creating the
table on a specific node or choosing one node fioset of nodes using a round-robin or ran-
dom algorithm. The load balancer dynamically upslatee schema of each backend on each
create/drop statement so that requests alwaysecéorwarded to the appropriate backends.

6.2 RAIDb-1

RAIDb-1 usually does not require parsing the retgjesince all backends have a full copy of
the database and can therefore execute any qudrgn W client issues a CREATE TABLE
statement, the table is created on every node.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 15

We have implemented optimistic and pessimistic saation-level schedulers with deadlock
detection. To detect the deadlocks, we need to khewdatabase schema and parse the requests
to check which tables are accessed by each quexyal¥d have a simple query level scheduler
that let the backends resolve the deadlocks.

One thread is dedicated to each backend to sene requests sequentially. The load balancer
ensures 1-copy serializability [4] and post writeedes in the same order in each thread queue.
The user can define if he wants to send the resudoon as one, a majority or all backends
complete the request. If one backend fails, buemstisucceeded to execute the write request,
then the failing backend is disabled, becauseribisnore coherent. The administrator will have
to restore the database in a state correspondiagmown checkpoint (using a dump, for exam-
ple). Then the recovery log will replay all writesstarting from the checkpoint and re-enable
the backend once its state is synchronized witlother nodes.

As for the RAIDDb-0 load balancer, connections degted lazily. After a write query inside a
transaction, one connection per backend has bdecatdd for the transaction. Transaction
commit or rollback use the same principle as wgiteries. The user can define if he wants only
one, a majority or all nodes to commit before neituy. If one node fails to commit, but others
succeed, the failing node is automatically disabled

Finally, read requests are executed on a backerwtding to a user defined algorithm. We have
implemented round-robin (RR), weighted round-rofMRR) and least pending requests first
(LPRF) which selects the node with the fewest pegdjueries (which should be approximately
the less loaded node in an homogeneous environment)

6.3 RAIDb-2

Like RAIDb-0, RAIDb-2 needs to maintain a represgion of each backend database schema.
The query has to be parsed to be routed to thée sejtof backends.

We have implemented the same set of scheduler®\H3bRL. Read and write queries are im-
plemented almost the same way as in RAIDb-1 exitegttthe requests can only be executed by
the nodes hosting the needed tables. The set @lsrisccomputed for each request to take care
of failed or disabled nodes.

Unlike RAIDb-1, when a node fails to perform a wrijuery or to commit/rollback a transac-
tion, it is not disabled. In fact, only the tabteat are no longer coherent are disabled (that is t
say, removed from the backend schema). If a comuttigack fails on one node, all tables writ-
ten on this node during the transaction are dishfildis way, RAIDb-2 allows continued ser-
vice by a backend, after a partial failure whicéves most of its tables up-to-date.

Completion policy is also user definable and camrdrapletely synchronous (wait for all nodes
to complete) or more relaxed by waiting only fanajority or just the first node to complete.
New database table creation policy can be defihedséame way as RAIDb-0, but an additional
“set of nodes” parameter is taken into accountRAIDb-0, the table is only created on one
node, but RAIDb-2 allows any degree of replicatfon a table. The user can define a set of
nodes where the table can possibly be created poticy determining how to choose nodes in
this set. The policy can range from all nodes foxed number of nodes (at least 2 nodes to en-
sure fault tolerance) chosen according to a sdiectgorithm (currently random and round-
robin). Those policies prove to be useful to distté and limit the replication of created tables
in the cluster.

6.4 Current limitations

C-JDBC assumes that all databases are in a colsegatat startup. C-JDBC does not handle
the replication of databases to build the initlakter state. An external ETL (Extraction, Trans-
formation and Loading) tool such as Enhydra Octdplishould be used to build the replicated
initial state.

RR n°® 4921

16 Emmanuel Cecchet et al.

RAIDb-2 controllers allow partial failures, but vd® not currently support partial recovery for
failed tables. The backend must be completely ¢tkshkbo restore all tables from a known
checkpoint using the recovery log.

7 Experimental environment

7.1 TPC-W Benchmark

The TPC-W specification [24] defines a transactiodéeb benchmark for evaluating e-
commerce systems. TPC-W simulates an online bokstge use the Java servlets implemen-
tation from University of Wisconsin [5] with the fohes for MySQL databases. As MySQL
does not support sub-selects, each such quenc@rgmsed as follows: the result of the inner
select is stored in a temporary table; then, thercaelect performs its selection on the tempo-
rary table and drops it after completion.

The database manages ten tabtestomersaddressorders order_line, shopping_cart, shop-
ping_cart_line, credit_infg items authors and countries The shopping_cartand shop-
ping_cart_linetables store the contents of each user shoppmgTdze order_ling ordersand
credit_infotables store the details of the orders that haea Ipdaced. In particulagrder_line
stores the book ordered, the quantity and discdbrders stores the customer identifier, the
date of the order, information about the amountpéie shipping address and the status.
Credit_infostores credit card information such as its typemimer and expiry date. Theems
andauthorstables contain information about the books and thehors. Customer information,
including real name and user name, contact infaomatemail, address) and password, are
maintained in theustomersaindaddresgables.

Of the 14 interactions specified in the TPC-W benatk specification, six are read-only and
eight have update queries that change the datakmise The read-only interactions include ac-
cess to the home page, new products and bestsskdiings, requests for product detail, and
two search interactions. Read-write interactiorduishe user registration, updates to the shop-
ping cart, two purchase interactions, two involvorger inquiry and display, and two adminis-
trative updates.

TPC-W specifies three different workload mixesfatihg in the ratio of read-only to read-write
interactions. The browsing mix contains 95% realy-arteractions, the shopping mix 80%, and
the ordering mix 50%. The shopping mix is considettee most representative mix for this
benchmark. The database scaling parameters ar@0lidetns and 288,000 customers. This cor-
responds to a database size of 350MB, which fitgedy in the main memory of database
server.

7.2 Measurement Methodology

For each workload, we use the appropriate loadrgsrreand record all SQL requests sent by
the application server to the database. The ragultace file contains all transactions received
by the database during one hour.

We have written a multithreaded trace player teptays the trace as if requests were generated
by the application server. This way, we can tesrgeonfiguration with the exact same set of
gueries.

We always use a separate machine to generate théwaa. The trace player emulates 150 con-
current client sessions. We first measure the tiiipput of a single database without C-JDBC.
Then, we evaluate the various C-JDBC configuratasiag a dedicated machine to run the C-
JDBC controller.

To measure the load on each machine, we ussydstatutility [23] that every second collects
CPU, memory, network and disk usage from the Likernel. The resulting data files are ana-
lyzed post-mortem to minimize system perturbatiomirdy the experiments. Specific C-JDBC
controller profiling is performed in separate expents using the Optimizelt profiler [17].

INRIA

RAIDb: Redundant Array of Inexpensive Databases 17

7.3 Software Environment

The TPC-W benchmark trace is generated using Apadhg.22 as the Web server and Jakarta
Tomcat v3.2.4 [11] as the servlet server.

The Java Virtual Machine used for all experimesttBiM JDK 1.3.1 for Linux. We always use
a pessimistic transaction level scheduler in C-JOi@trollers. We experiment two different
load balancing algorithms: round-robin (RR) andstgaending requests first (LPRF). All ex-
periments are performed without query caching éndbntroller.

We use MySQL v.4.0.8gamma [16] as our databaseseith the InnoDB transactional tables
and the MM-MySQL v2.0.14 type 4 JDBC driver.

All machines run the 2.4.16 Linux kernel.

7.4 Hardware Platform

We use up to six database backends. Each machingvbaP1l-450 MHz CPU with 512MB
RAM, and a 9GB SCSI disk drifeln our evaluation, we are not interested by theohute per-
formance values but rather by the relative perforeeaof each configuration. Having slower
machines allows us to reach the bottlenecks witheqiring a large number of client machines
to generate the necessary load.

A number of 1.8GHz AMD Athlon machines run the ggadayer and the C-JDBC controllers.
We make sure that the trace player does not beeobwtleneck in any experiment. All ma-
chines are connected through a switched 100Mb perifgh LAN.

7.5 Configurations

7.5.1 SingleDB

This configuration directly uses the MySQL natiM@BL driver on a single database backend
without using C-JDBC. This reference measurememéfisrred to as SingleDB in the experi-
mental reports.

7.5.2 RAIDb-0

Figure 12 summarizes the table dependencies mggudtttm the queries performing a join be-
tween multiple tables. Except tbbopping_cartable, all tables have a relation with each other
either directly or indirectly. Therefore, the orayailable configuration for RAIDb-0 will be to
store all tables excephopping_carbn one node anshopping_carbn a separate node. With-
out support for distributed joins, RAIDb-0 configtions are restricted to distribution of dis-
joint tables which could lead, like in the TPC-Waexple, to a very poor distribution.

* These machines could seem old but they have avGRAD ratio comparable to recent workstations.

RR n°® 4921

18 Emmanuel Cecchet et al.

temp_table shopping_cart_line

—

items | — authors
orders order_line
customer shopping_cart
address countries credit_info

Figure 12. TPC-W table dependencies for joins.

The temporary table created for sub-selects is lptgaiwith information from therderstable,
therefore we adopt a policy where temporary tablescreated on the node hosting dinéers
table.

7.5.3 RAIDb-1

There is no choice about data placement with RA1IBince the whole database is replicated on
each node. We present results using two differesd Ibalancing algorithms for read queries:
RAIDb-1 RR uses a simple round-robin distributiohereas RAIDb-1 LPRF uses the least
pending request first distribution defined in 672r the write queries, we choose a completion
policy that returns the result as soon as one lmachas completed the execution of the query.

7.5.4 RAIDb-2

Table 1 details the request distribution on théedéint tables for each TPC-W mix. If a request
spans over multiple tables, it is counted onceefieh table. Therefore the total percentage can
be greater than 100%. Total number of requests stibat for the browsing and shopping
mixes, more than 50% of the requests are joins.

It is also interesting to note that the percentafgerite queries are correlated but do not corre-
spond to the percentage of write interactions. Altyu the browsing, shopping and ordering
mixes have 5, 20 and 50% of write interactionspeetively. But the resulting database write
queries represent 13, 20 and 28% of the overalla®tg, respectively. However, the writes dis-
tribution on database tables greatly varies acogrth the mix.

There is clearly a hotspot on thiemstable for the browsing and shopping mixes. Itls® dhe
most accessed table but to a lesser extent foorttering mix. Even in this last mix, the write
threshold is very moderate and as this table igliad in many joins, it will benefit from being
replicated on every node.

Theauthorstable is the second most accessed table for thesbrg and shopping mixes. Both
tables are mostly read accessed and therefore vbaudfit from a large replication on every
cluster node. The small read-ordguntriestable will also benefit from a full replication h&
addresdable is also a read mostly table that can becaed everywhere.

When shifting to a workload with a higher writeiogtthe hits on botlitemsandauthorstables
decrease sharply whereslsopping_cart_lineand customerdables get more than 45% of the
overall accesses for the ordering mdeders, order_line, credit_infoand shopping_cartare
write mostly tables especially for the ordering mikere some of them are nearly write only
tables. Replication of these tables has to bedinéind distributed among the backends.

INRIA

RAIDb: Redundant Array of Inexpensive Databases

19

Table 2 summarizes the table replication in théedéht RAIDb-2 configurations ranging from 3
to 6 nodes. Note that the temporary table thasé&luo implement sub-selects can only be cre-
ated on the nodes having a copy of the tablesclik®mmers, address, items, autharlcoun-
tries tables are replicated on all nodes. These setéippl/ well for the shopping and ordering
mixes, however they are not necessary for the bngwsix.
The heaviest query in term of CPU usage it the eltgr query that performs a join between 5
tables ¢rders, order_line, itemguthorsand the temporary table). This query can onlyee e
cuted on the nodes having a copy of these tables.bEst seller query occurs 4566, 2049 and
261 times for the browsing, shopping and ordeririges) respectively. Restricting the orders
table replication for the browsing mix induces afpenance penalty and result in load imbal-
ance. We have measured a performance drop of 4284 wily half of the nodes can perform
the best seller query. Therefore we choose toaagiall tables needed for the best seller query

in the browsing

mix only.

Table 1. TPC-W workload: read and write requests digibution on database tables.

Table name Browsing mix Shopping mix Ordering mix

total read write total read write total read writd
customers 45% 41% 04% 9.0%| 75% 1.4% 21.3% 17.5% 3.9%
address 1.2% 1.1%| 0.1%| 28% 26%| 02% 7.7% 7.4% 0.3%
orders 83% 06% 76% 50% 14% 36% 65% 3.2% 3.2%
order_line T7% 7.4% 04% 42% 3.2% 1.0% 3.3% 0.3%) 3.1%
credit_info 05% 01% 049% 1.0%| 03% 07% 3.1% 0.1% 3.1%
items 86.7% 86.2% 05%| 80.49% 79.4% 1.0%| 42.8% 39.7% 3.1%
authors 34.2 % 34.2 % 0%| 25.2% 25.2% 0%| 79% 79% 0%
countries 0.6% 0.6% 0%| 1.7% 1.7% 0%| 4.1% 4.1% 0%
shopping_cart 28% 08% 2.1%| 9.7% 16% 81% 56% 0.7% 4.9%
shop_cart lind 5.6%| 4.3% 13%| 21.9% 18.2% 3.7 % 24.8% 18.4% 6.3%
Total 152.0 99 139.2 %9 12.8 %|160.8 94141.0 94 19.8 %|127.1 9% 99.3 %| 27.8 %

Table 2. Database table replication for RAIDb-2 cofigurations.

RAIDb-2
configurations

3 nodes

4 nodes

5 nodes

customers

address

orders

order_line

credit_info

items

authors

countries

shopping_cart

shop_cart_line

temporary table

=n
N

o

RR n°® 4921

Replicated on this
node in all mixes

Replicated in the
browsing mix only

Not replicated on thi
node

20 Emmanuel Cecchet et al.

Like for RAIDb-1, we present results using two diffint load balancing algorithms for read
gueries: RAIDb-2 RR uses a simple round-robin ttistion whereas RAIDb-2 LPRF uses the
least pending request first distribution definedi®. Table creation policy uses 2 nodes chosen
using a round-robin algorithm among the nodes ltpaicopy obrderstable.

8 Experimental Results

We measure the number of SQL requests performethimerte by each configuration. We only
report the best result of three runs at the pealt far each configuration.

8.1 Browsing mix

Figure 13 shows the throughput in requests per tmias a function of the number of nodes for
each configuration using the browsing mix. As expdcthe RAIDb-0 configuration with 2
nodes peaks at 138 requests per minute, just @sexjper minute more than the single database
configuration that saturates at 129 requests peutei The lack of distribution opportunities for
RAIDb-0 does not allow to get better performance.

RAIDb-1 RR starts with a linear speedup with a tigigput of 261 requests per minute with 2
nodes. The 6 nodes configuration reaches 542 rexpes minute, representing a speedup of
4.2. RAIDb-1 LPRF achieves 628 requests per midutto a better load balancing. However,
the speedup remains below 5 with 6 nodes. Thisigstd the implementation of the best seller
query. The temporary table needs to be createdlamped by all nodes whereas only one will
perform the select on this table. This is a goaahgXe of the danger of replication.

900
800
700 %
=
600 /&//E/ 4 Single DB
" |~ RAIDb-0
. //-/V/ —— RAIDb-1 RR
& RAIDb-1 LPRF
400 >
/E/ -5~ RAIDb-2 RR
500 —o- RAIDb-2 LPRF

200

Throughput in requests per minute

100

Number of nodes

Figure 13. Maximum throughput in SQL requests per nnute as a function of database
backends using TPC-W browsing mix.

RAIDb-2 configurations limit the temporary tableeation to 2 nodes. The results show a
better scalability with RAIDb-2 RR achieving 75@uests per minute with 6 nodes (speedup of
5.8). RAIDb-2 LPRF improves RAIDb-1 LPRF performanby 25% and achieves a small
superlinear speedup of 6.1 at 784 requests pertenivile attribute this good performance to the
better temporary table distribution and the linitatof the replication of the shopping cart
related table.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 21

8.2 Shopping mix

Figure 14 reports the throughput in requests pautaias a function of the number of nodes for
the shopping mix, which is often considered asrtiost representative workload. The single
database without C-JDBC achieves 235 requests ipetterat the peak point.

1600

1400

1200 1
1000 / A Single DB

— RAIDB-0
/ & |—+—RAIDb-1RR
-5 RAIDb-1 LPRF
-~ RAIDb-2 RR

/ o —4— RAIDb-2 LPRF

Throughput in requests per minute
[+}) w©
Q Q
o o

Number of nodes

Figure 14. Maximum throughput in SQL requests per ninute as a function of database
backends using TPC-W shopping mix.

RAIDDb-0 suffers from its unbalanced distributiordgreaks at 240 requests per minute. RAIDb-
1 RR scalability is similar to the one observedtfa browsing mix with a peak at 996 requests
per minute with 6 nodes. RAIDb-1 LPRF performs éeihainly due to the reduction of the best
seller queries compared to the browsing mix. RAIDbPRF achieves 1188 requests per minute
with 6 nodes.

RAIDb-2 RR gives the least scalable performance.\Wleexplain the problem using the table
replication distribution presented in table 2 witle 6 nodes configuration. When the load bal-
ancer wants to execute a query onahgers order_lineandcredit_infotables and its current
index is positioned on node 1, 2 or 3, the indaxdwved to the next available node having these
tables, namely node 4. The same phenomenon appilarany of the shopping cart tables that
will be executed by node 1 if the index is currgmth node 4, 5 or 6. We notice a ping-pong
effect of the index between nodes 1 and 4.

We can reduce this effect by alternating the tabjgication order. Instead of replicating shop-
ping cart related tables on nodes 1, 2 and 3 waepglitate them on nodes 1, 3 and 5. There-
fore, order related table replicas will be moveashirnodes 4, 5 and 6 to nodes 2, 4 and 6. With
this new configuration, we obtain a throughput 8% 8equests per minute which is better than
the previous RAIDb-2 RR configuration saturatin@a6 requests per minute. But still, RAIDb-
2 with a round robin load balancing algorithm remsaihe least scalable configuration (among
the configurations using replication).

RAIDb-2 LPRF shows the benefits of fine grain palrtieplication over full replication with
1367 requests per minute at the peak point witbdea. With this dynamic load balancing algo-
rithm, partial replication provides a linear spegdy to 5 nodes. The 6 nodes setup achieves a
speedup close to 5.9.

RR n°® 4921

22 Emmanuel Cecchet et al.

8.3 Ordering mix

Figure 15 shows the results for the ordering mixeach configuration. Almost all queries on
the shopping_carttable are small writes and their execution on pasgte node does not im-
prove performance in the RAIDb-0 configuration.

3000

|
2500 /E

2000 t | & Single DB
/ —% RAIDb-0
—+ RAIDb-1 RR
1500 -5 RAIDb-1 LPRF
-5~ RAIDb-2 RR
1000 —& RAIDb-2 LPRF

500

Throughput in requests per minute

»

0 1 2 3 4 5 6
Number of nodes

Figure 15. Maximum throughput in SQL requests per ninute as a function of database
backends using TPC-W ordering mix.

We observe that round robin load balancing gives performance for RAIDb-1 and becomes
a real bottleneck for RAIDb-2. Even when tryingréaluce the ping-pong effect using the alter-
nate distribution used for the shopping mix, weagbt throughput of 1561 requests per minute
with 6 nodes compared to 1152 requests per miouténé original RAIDb-2 RR configuration.
The load imbalance of the round robin algorithnaégentuated when the workload becomes
more write intensive. Simple algorithms such asst&ending Request First alleviate this prob-
lem and give significantly better results. The immment from RAIDb-1 RR to RAIDb-1
LPRF is 700 requests per minute, from 1923 to 26fuests per minute. RAIDb-2 LPRF
achieves 2839 reg/min with 6 nodes offering the besughput of all tested configurations for
this mix

8.4 Summary

RAIDb-0 just offers database partitioning and does$ provide performance scalability for
workloads having hotspots on one table.

RAIDb-1 performs well on read-mostly workloads wééwad can be easily balanced, however
write performance limits scalability when increasthe number of replicas.

RAIDb-2 allows to tune and control the degree @lication of each table. By limiting the write
broadcasts to smaller sets of backends, RAIDb-2vstadways better scalability (up to 25%)
over full replication when using a dynamic loadaveling algorithm such as Least Pending Re-
quest First.

Round-robin load balancing provides poor perforneascalability even using a cluster com-
posed of homogeneous nodes. When tables are teplica a small number of nodes, partial
replication becomes very sensitive to load balapcirhat is why round-robin is not well suited
for partial replication and it becomes a bottlentmrkworkloads with a high write ratio.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 23

100% 7 [
80% :-
60% mI/0
mOcPU

40% -

20%

0%

RAIDb-1 LPRF RAIDb-2 LPRF

Figure 16. Average CPU vs I/O usage on database baoads for RAIDb-1 LPRF and
RAIDb-2 LPRF configurations with 6 nodes using theshopping mix.

In all experiments, the average CPU usage on thealter node was below 8% with very little
variations between configurations.

If we profile resource usage, we observe that wetd-mostly workloads and few number of
nodes, the bottleneck is the CPU on the backendsidthe bottleneck continuously alternates
between CPU and disk I/O for workloads involvingrmavrites. Figure 16 shows the average
distribution between 1/0O and CPU usage on the batkedes for RAIDb-1 LPRF and RAIDb-
2 LPRF configurations with 6 nodes for the shopping.

The flexibility of partial replication (RAIDb-2) &ws reducing the amount of write query
broadcasts compared to full replication (RAIDb-Therefore, the disk I/O are reduced by an
average 11.7% on the backends leaving more tirtteet€PU to process the requests.

9 Related Work

Since the dangers of replication have been poiatedy Gray et al. [9], several works have
investigated lazy replication techniques [19]. Tinatations of these approaches are described
in [12]. Ongoing efforts on eager replication halso been going on with the recent release of
Postgres-R [14]. Several groups are focusing ongommmunications for asynchronous repli-
cation [26] or partial replication [20]. These wesrére performed at the database level whereas
our approach is to implement replication technigaethe middleware level independently of
the database engine.

Commercial solutions such as Oracle Real Applicattusters [18] or IBM DB2 Integrated
Cluster Environmentd] are based on a shared storage system to achidlvgpérformance scal-
ability and fault tolerance. RAIDb targets sharexdhing architectures build with commodity
hardware.

Existing works in clusters of databases mainly fudledatabase replication. RAIDb also sup-
ports partitioning and partial replication. PostgFe implements basic mechanisms for partial
replication [12]. Updates are broadcasted to adlesothat decide whether they have to perform
the update or not. RAIDb maintains a knowledgeasftebackend database schema and broad-
cast the updates only to the concerned nodes.eTbast of our knowledge, our work is the first
to evaluate partial replication tradeoffs and tanpare its performance with other replication
techniques.

Amza et al. have obtained good results with fufllication for dynamic content web sites [2].
The approach is similar to the one used in C-JDBCtheir implementation is tightly coupled
with PHP and MySQL. They do not use transactionkevar but require the application pro-
grammer to introduce explicit table locks. C-JDB@esd not require any application change and
can use either transaction markers or explicitilogk

Support for large number of backends usually ctsdis horizontal scalability where several
schedulers synchronize and cooperate [1]. C-JDBfpats both horizontal and vertical scal-
ability allowing different replication policies toe mixed.

RR n°® 4921

24 Emmanuel Cecchet et al.

10 Conclusion

We have proposed a new concept, called RAIDb (ReahinArray of Inexpensive Databases)
that aims at providing better performance and feal#rance than a single database, at a low
cost, by combining multiple database instancesantarray of databases. We have defined sev-
eral levels featuring different replication techuég: RAIDb-0 for partitioning, RAIDb-1 for full
replication and RAIDb-2 for partial replication. ditionally, two levels called RAIDb-1ec and
RAIDb-2ec provide error checking and tolerate Byasnfailures.

We have presented C-JDBC, a RAIDb software impleatem in Java. We have evaluated the
performance of the different replication techniquesig the TPC-W benchmark on a 6 nodes
cluster. RAIDb-0 does not allow the replicationtables that represent a hotspot of the work-
load. Therefore, performance scalability is vemyited. RAIDb-1 scalability achieves a speedup
of up to 5.3 with 6 nodes but suffers from the cofstvrite broadcasts when the number of
backends increases. RAIDb-2 allows controllingdkgree of replication of each table and pre-
vent database backends from being flooded withesrriRAIDb-2 obtains improvements up to
25% over full replication and achieves linear spgsdwith read-mostly workloads.

Finally, we have shown that round robin load balagds not well suited for partial replication
especially with write intensive workloads. Simplgaithms such as Least Pending Requests
First are sufficient to obtain scalable performawité partial replication.

C-JDBC is an open-source project available for doaah from http://c-jdbc.objectweb.org/.

11 References

[1] Christiana Amza, Alan L. Cox, Willy Zwaenepoel Conflict-Aware Scheduling for Dy-
namic Content Applications Proceedings of USITS 2008larch 2003.

[2] Christiana Amza, Alan L. Cox, Willy ZwaenepoelScaling and availability for dynamic
content web sites Rice University Technical Report TR02-32802.

[3] Bela Ban — Design and Implementation of a RB#aGroup Communication Toolkit for
Java — Cornell University, September 1998.

[4] P.A. Bernstein, V. Hadzilacos and N. Goodmagencurrency Control and Recovery in
Database SystemsAddison-Wesley, 1987.

[5] Todd Bezenek, Trey Cain, Ross Dickson, Timdttgjl, Milo Martin, Collin McCurdy, Ravi
Rajwar, Eric Weglarz, Craig Zilles, and Mikko Lipas Characterizing a Java Implementation
of TPC-W —3™ Workshop On Computer Architecture Evaluation Us@mgmmercial Work-
loads(CAECW), January 2000.

[6] Boris Bialek and Rav Ahuja — IBM DB2 Integrat€@uster Environment (ICE) for Linux —
IBM Blueprint, May 2003.

[7] P. Chen, E. Lee, G. Gibson, R. Katz and D.d?atin — RAID: High-Performance, Reliable
Secondary StorageACM Computing Survey994.

[8] Enhydra Octopus — http://octopus.enhydra.org/.

[9] Jim Gray, Pat Helland, Patrick O’Neil and Denffihasha — The Dangers of Replication and
a Solution -Proceedings of the 1996 ACM SIGMOD Internationahfecence on Management
of Data June 1996.

[10] Monika Henziger — Google: Indexing the Web -challenge for SupercomputersP+o-
ceeding of the IEEE International Conference ons@uComputingSeptember 2002.

[11] Jakarta Tomcat Servlet Engine — http://jakagache.org/tomcat/.

[12] Bettina Kemme— Database Replication for Clisstef Workstations -Ph. D. thesis nr.
13864,Swiss Federal Institute of Technology Zurich, 2000.

[13] Bettina Kemme and Gustavo Alonso — A new applo to developing and implementing
eager database replication protocoAGM Transactions on Database SysteR@00.

INRIA

RAIDb: Redundant Array of Inexpensive Databases 25

[14] Bettina Kemme and Gustavo Alonso — Don'’t beyJde consistent: Postgres-R, a new way
to implement Database ReplicatioRreceedings of the 36international Conference on Very
Large DatabasesSeptember 2000.

[15] L. Lamport, R. Shostak, and M. Pease — TheaBtine Generals Problem — ACM Transac-
tions of Programming Languages and Systems, Volym&imber 3, July 1982.

[16] MySQL Reference Manual — MySQL AB, 2003.
[17] Optimizelt Profiler — http://www.borland.congtmizeit/.
[18] Oracle — Oracld9Real Application Clusters — Oracle white papehribary 2002.

[19] E. Pacitti, P. Minet and E. Simon — Fast aidpons for maintaining replica consistency in
lazy master replicated databas@seeeedings of VLDBL999.

[20] A. Sousa, F. Pedone, R. Oliveira, and F. McuRartial replication in the Database State
Machine —Proceeding of the IEEE International Symposium @twsérking Computing and
Applications(NCA’'01), 2001.

[21] D. Stacey — Replication: DB2, Oracle or Sybagsatabase Programming & Design 2.

[22] I. Stanoi, D. Agrawal and A. El Abbadi — Usithgoadcast primitives in replicated data-
bases Proceedings of ICDCS’98/ay 1998.

[23] Sysstat package — http://freshmeat.net/prejegsstat/.

[24] Transaction Processing Performance Councitp:/lwww.tpc.org/.

[25] S. White, M. Fisher, R. Cattel, G. HamiltondaM. Hapner -JDBC API Tutorial and Ref-
erence, Second EditionAddison-Wesley, ISBN 0-201-43328-1, hovember200

[26] M. Wiesmann, F. Pedone, A. Schiper, B. Kemmd &. Alonso — Database replication
techniques: a three parameter classificatidtreceedings of the Y9EEE Symposium on Reli-
able Distributed Systems (SRDS20@3tober 2000.

RR n°® 4921

