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Abstract: Applications in many scientific and engineering domains are structured in large
numbers of independent tasks with low granularity. These applications can thus be naturally
parallelized, typically in master-worker fashion, provided that efficient scheduling strategies
are available. Such applications have been called divisible loads because a scheduler may
divide the computation among worker processes arbitrarily, both in terms of number of tasks
and of task sizes. Divisible load scheduling has been an active area of research for the last
twenty years. A vast literature offers results and scheduling algorithms for various models
for the underlying distributed computing platform. Broad surveys are available that report
on accomplishments in the field. By contrast, in this paper we propose a unified theoreti-
cal perspective that synthesizes previously published results, several novel results, and open
questions, in a view to foster novel divisible load scheduling research. Specifically, we dis-
cuss both one-round and multi-round algorithms, and we restrict our scope to the popular
star and tree network topologies, which we study with both linear and affine cost models for
communication and computation.
Key-words: parallel computing, scheduling, divisible load
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Unité de recherche INRIA Rhône-Alpes
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Ordonnancement de tâches divisibles sur les réseau en étoile

ou en arborescence: résultats et problèmes ouverts

Résumé : De nombreuses applications scientifiques se découpent naturellement en un grand
nombre de tâches indépendantes avec une faible granularité. Ces applications se parallélisent
naturellement à l’aide d’une approche mâıtre/esclave. De telles applications relèvent du mod-
èle des tâches divisibles car un ordonnanceur peut diviser les calculs sur les différents pro-
cesseurs disponibles, à la fois en terme de nombre de tâches mais également en terme de taille
des tâches. L’ordonnancement de tâches divisibles a été un domaine de recherche actif du-
rant les vingts dernières années. On trouve donc dans la littérature de nombreux résultats et
algorithmes d’ordonnancement pour différents modèles de plates-formes. À la différence des
états de l’art déja existant sur le sujet, ce rapport propose une nouvelle approche permettant
d’unifier et de retrouver les résultats de la littérature, de proposer de nouveaux résultats et
d’ouvrir de nouveaux problèmes. Plus précisément, nous présentons les distributions en une
seule tournée et en plusieurs tournées et nous restreignons aux topologies populaires en étoile
et en arborescence, que nous nous étudions à l’aide de coût de calculs et de communications
linéaires puis affines.
Mots-clé : calcul parallèle, ordonnancement, tâches divisibles
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1 Introduction

Scheduling the tasks of a parallel application on the resources of a distributed computing
platform is a critical issue for achieving high performance. The scheduling problem has
been studied for a variety of application models, such as the well-known directed acyclic task
graph model for which many scheduling heuristics have been developed [25]. Another popular
application model is that of independent tasks with no task synchronizations and no inter-task
communications. Applications conforming to this admittedly simple model arise in most fields
of science and engineering. A possible model for independent tasks is one for which the number
of tasks and the task sizes, i.e. their computational costs, are set in advance. In this case, the
scheduling problem is akin to bin-packing and a number of heuristics have been proposed in
the literature (see [13, 20] for surveys). Another flavor of the independent tasks model is one
for which the number of tasks and the task sizes can be chosen by the scheduling algorithm.
This corresponds to the case when the application consists of an amount of computation,
or load, that can be arbitrarily divided into any number of independent pieces. In practice,
this model is an approximation of an application that consists of large numbers of identical,
low-granularity computations.

This divisible load model has been widely studied in the last several years, and popularized
by the landmark book written in 1996 by Bharadwaj, Ghose, Mani and Robertazzi [8]. As
already mentioned, a divisible job can be arbitrarily split in a linear fashion among any
number of workers. This corresponds to a perfectly parallel job: any sub-task can itself
be processed in parallel, and on any number of workers. The applications of the Divisible
Load Theory (DLT) encompass a large spectrum of scientific problems, including among
others Kalman filtering [26], image processing [21], video and multimedia broadcasting [1, 2],
database searching [14, 10], and the processing of large distributed files [27].

On the practical side, DLT provides a simple yet realistic framework to study the mapping
on independent tasks onto heterogeneous platforms. Divisible load applications are amenable
to the simple master-worker programming model and can therefore be easily implemented and
deployed on computing platforms ranging from small commodity clusters to computational
grids [16]. The granularity of the tasks can be arbitrarily chosen by the user, thereby providing
a lot of flexibility in the implementation tradeoffs. From a theoretical standpoint, the success
of the divisible load model is mostly due to its analytical tractability. Optimal algorithms and
closed-form formulas exist for the simplest instances of the divisible load problem. This is in
sharp contrast with the theory of task graph scheduling, which abounds in NP completeness
theorems [17, 15] and in inapproximability results [13, 3].

There exists a vast literature on DLT. In addition to the landmark book [8], two intro-
ductory surveys have recently been published [9, 23]. The Cluster Computing journal has
devoted a special issue on divisible load scheduling [18]. A Web page collecting DLT-related
papers is maintained [22]. Consequently, the goal of this paper is not to present yet another
survey of DLT theory and its various applications. Instead, we focus on theoretical aspects:
we aim at synthesizing some important results for realistic models on realistic platforms. We
give a new and unified presentation of several already published results, and we add a few
new contributions. We hope that the material in this paper provides the level of detail and
the unifying perspective that are necessary for fostering new relevant research.

We restrict our scope to star-shaped and tree-shaped networks, because they often rep-
resent the solution of choice to implement master-worker computations. Note that the star
network encompasses the case of a bus, which is really a homogeneous star network. The
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Figure 1: Heterogeneous star graph, with the linear
cost model.
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Figure 2: Heterogeneous tree graph.

extended version of this paper [5] reviews work on other network topologies. We consider
two types of model for communication and computation: linear or affine in the data size. In
most contexts, this is more accurate than the fixed cost model, which assume that the cost to
communicate a message is independent of the message size. Literature dealing with the fixed
cost model is reviewed in [5].

The rest of the paper is organized as follows. In Section 2 , we detail our platform
and cost models. We also introduce the algorithmic techniques that have been proposed
to schedule divisible loads, in particular one-round and multi-round algorithms, as well as
resource selections schemes. One-round algorithms are described in detail in Section 3 and
multi-round algorithms in Section 4. Finally, we conclude in Section 5.

2 Framework

2.1 Target architectures and cost models

We consider either star-graphs or tree-graphs, and either linear or affine costs, which leads to
four different platform combinations.

As illustrated in Figure 1, a star network S = {P0, P1, P2, . . . , Pp} is composed of a master-
worker P0 and of p workers Pi, 1 ≤ i ≤ p. There is a communication link from the master P0

to each worker Pq. In the linear cost model, each worker Pq has a (relative) computing power
wq: it takes X.wq time units to execute X units of load on worker Pq. Similarly, it takes X.gq

time unites to send X units of load from P0 to Pq. Without loss of generality we assume that
the master has no processing capability (otherwise, add a fictitious extra worker paying no
communication cost to simulate computation at the master).

In the affine cost model, a latency is added to computation and communication costs: it
takes Wq + X.wq time units to execute X units of load on worker Pq, and Gq + X.gq time
units to send X units of load from P0 to Pq. It is acknowledged that introduction of these
latencies, renders the model more realistic.

For communications, the one-port model is used: the master can only communicate with a
single worker at a given time-step. We assume that communications can overlap computations
on the workers: a worker can process one chunk of work while receiving the data necessary

INRIA
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for the execution of another chunk. This corresponds to workers equipped with a front end
in [8].

A bus network is a star network such that all communication links have the same char-
acteristics: gi = g and Gi = G for each worker Pi, 1 ≤ i ≤ p. Basically, the same one-port
model, with overlap, is used for tree-graph networks. A tree-graph T = {P0, P1, P2, . . . , Pp}
(see Figure 2) simply is an arborescence rooted at the master P0. We still call the other re-
sources workers, even though non-leaf workers have other workers (their children in the tree)
to which they can delegate work. The model states that a worker in the tree can simultane-
ously execute some work, receive data from its parent and communicate to at most one of its
children (sending previously received data).

2.2 Algorithmic strategies: one-round versus multi-round

We denote by Wtotal the total load to be executed. The key hypothesis of DLT is that this
load is perfectly divisible into an arbitrary number of pieces, or chunks. The master can
distribute the chunks to the workers in a single round (also called “installment” in [8]), so
that there will be a single communication between the master and each worker. The problem
is to determine the size of these chunks and the order in which they are sent to the workers.
We review one-round algorithms in Section 3. For large loads, the single round approach is
not efficient, because of the idle time incurred by the last workers to receive chunks. To reduce
the makespan, i.e. the total execution time, the master will send the chunks to the workers
in multiple rounds so that communication is pipelined and overlapped with computation.
Additional questions in this case are: how many rounds should be scheduled? what is the
best size of the chunks for each round? We discuss multi-round algorithms in Section 4.

3 One-round algorithms

For one-round algorithms, the first problem is to determine in which order the chunks should
be sent to the different workers. Since the master can handle only one communication at a
given time step, the solution is as depicted in Figure 3. Once the communication order has
been determined, the second problem is to decide how much work should be allocated to each
worker Pi: each Pi will receive αi units of load, where

∑p
i=1 αi = Wtotal. The final objective

is to minimize the makespan, i.e. the total execution time.

3.1 Star network and linear cost model

This is the simplest platform combination, denoted as StarLinear. Let αi denote the number
of units of load sent to worker Pi, such that

∑p
i=1 αi = Wtotal. Figure 3 depicts the execution,

where Ti denotes idle time of Pi, i.e. the time elapsed before Pi begins its processing. The
goal is to minimize the total execution time, Tf = max1≤i≤p(Ti + αiwi), according to the
linear model defined in Section 2. In Figure 3, all the workers participate in the computation,
and they all finish computing at the same time (i.e. Ti + αiwi = Tf , ∀i). This is a general
result:

Proposition 1. In any optimal solution of the StarLinear problem, all workers participate
in the computation, and they all finish computing simultaneously.

RR n̊4916
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Figure 3: Pattern of a solution for dispatching the load of a divisible job, using a star network
and the linear model. All workers complete execution at the same time-step Tf .

Note that Proposition 1 has been proved for the case of a bus in [8]. To the best of our
knowledge, this is a new result for the case of a heterogeneous star network.

Proof. We first prove that in an optimal solution all workers participate to the computation.
Then, we prove that in any optimal solution, all workers finish computing simultaneously.

Lemma 1. In any optimal solution, all workers participate in the computation.

Proof. Suppose that there exists an optimal solution where at least one worker is kept
fully idle. In this case, at least one of the αi, 1 ≤ i ≤ P , is zero. Let us denote by k the
largest index such that αk = 0.

Case k < n. Consider the following solution of StarLinear, where the ordering

P1, . . . , Pk−1, Pk+1, . . . , Pn, Pk

is used, and where we set ∀i 6= k, α′
i = αi. Clearly, the solution defined above

is valid, since Pk did not process any task in the initial solution. By construction,
αn 6= 0, so that the communication medium is not used during at least the last
αnwn time units. Therefore, it would be possible to process at least αnwn

gk+wk
> 0

additional units of load with worker Pk, hence a contradiction.

Case k = n. Consider the following solution of StarLinear, with the ordering P1, . . . , Pn,
and where we set ∀i 6= n, α′

i = αi. Moreover, let k′ be the largest index such that
αk′ 6= 0. By construction, the communication medium is not used during at least
the last αk′wk′ > 0 time units. Thus, as previously, it would be possible to process
at least

αk′wk′

gn+wn
> 0 additional units of load with worker Pn, hence a contradiction.

Therefore, in any optimal solution, all workers participate in the computation.

It is worth pointing out that the above property does not hold true if we consider solutions
where the communication ordering is fixed a priori. For instance, consider the following
platform made of two workers P1 (with g1 = 4 and w1 = 1) and P2 (with g2 = 1 and w2 = 1).
Then, if the first chunk has to be sent to P1 and the second chunk to P2, the optimal number
of units of load that can be processed within 10 time units is 5, and P1 is kept fully idle in

INRIA
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this solution. On the other hand, if the communication ordering is not fixed, then 6 units
of load can be performed within 10 time units (5 units of load are sent to P2, and then 1
to P1). In the optimal solution, both workers perfom some computation, and both workers
finish computing at the same time, which is stated in the following lemma.

Lemma 2. In the optimal schedule, all workers finish computing simultaneously.

Proof. Consider an optimal solution. All the αi’s have strictly positive values (Lemma 1).
Consider the following linear program:

Maximize
∑

βi,
subject to
{

LB(i) ∀i, βi ≥ 0

UB(i) ∀i,
∑i

k=1 βkgk + βiwi ≤ T

Clearly, the αi’s satisfy the set of constraints above, and from any set of βi’s satisfying
the set of inequalities, we can build a valid solution of the StarLinear problem that
process exactly

∑

βi units of load. Therefore, if we denote by (β1, . . . , βn) an optimal
solution of the linear program, then

∑

βi =
∑

αi.

It is known that one of the extremal solutions S1 of the linear program is one of the
convex polyhedraon P induced by the inequalities [24, chapter 11]: this means that in
the solution S1, at least n inequalities among the 2n are equalities. Since we know that
for any optimal solution of the StarLinear problem, all the βi’s are strictly positive
(Lemma 1), then this vertex is the solution of the following (full rank) linear system

∀i,
i
∑

k=1

βkgk + βiwi = T.

Thus, we derive that there is an optimal solution where all workers finish their work at
the same time.

Let us denote by S2 = (α1, . . . , αn) another optimal solution, with S1 6= S2. As already
pointed out, S2 belongs to the polyhedra P. Now, consider the following function f :

f :

{

R → R
n

x 7→ S1 + x(S2 − S1)

By construction, we know that
∑

βi =
∑

αi. Thus, with the notation f(x) = (γ1(x), . . . , γn(x)):

∀i, γi(x) = βi + x(αi − βi),

and therefore
∀x,

∑

γi(x) =
∑

βi =
∑

αi.

Therefore, all the points f(x) that belong to P are extremal solutions of the linear
program.

Since P is a convex polyhedron and both S1 and S2 belong to P, then ∀0 ≤ x ≤
1, f(x) ∈ P. Let us denote by x0 the largest value of x ≥ 1 such that f(x) still belongs
to P: at least one constraint of the linear program is an equality in f(x0), and this

RR n̊4916
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Figure 4: Comparison of the two possible orderings.

constraint is not satisfied for x > x0. Can this constraint be one of the UB(i)? the
answer is no, because otherwise this constraint would be an equality along the whole
line (S2f(x0)), and would remain an equality for x > x0. Hence, this constraint is one
of the LB(i). In other terms, there exists an index i such that γi(x0) = 0. This is a
contradiction since we have proved that the γi’s correspond to an optimal solution of
the StarLinear problem. Therefore S1 = S2, the optimal solution is unique, and in
this solution, all workers finish computing simultaneously.

Altogether, this concludes the proof of Proposition 1.

To be able to characterize the optimal solution, there remains to determine the best
ordering for the master P0 to send work to the workers:

Proposition 2. An optimal ordering for the StarLinear problem is obtained by serving the
workers in the ordering of non decreasing link capacities gi.

To the best of our knowledge, Proposition 2 is a new result. Closed-from expressions
are given in [12] for a heterogeneous star network, but they require (i) to know the optimal
ordering, and (ii) to know that all workers finish computing simultaneously. As already men-
tioned, this latter property holds true for the optimal ordering, which is indeed characterized
by Proposition 2.

Proof. The proof is based upon the comparison of the amount of work that is performed by
the first two workers, and then proceeds by induction. To simplify notations, assume that
P1 and P2 have been selected as the first two workers. There are two possible orderings, as
illustrated in Figure 4. For each ordering, we determine the total number of units of load
α1 + α2 that have been processed in T time-units, and the total occupation time, t2, of the
communication medium during this time interval. We denote with upper-script (A) (resp.
(B)) all the quantities related to the first (resp. second) ordering.

Let us first determine the different quantities α
(A)
1 , α

(A)
2 , and t(A) for the upper ordering

in Figure 4:

INRIA
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• From the equality α
(A)
1 (g1 + w1) = T , we deduce:

α
(A)
1 =

T

g1 + w1
. (1)

• Using the equality α
(A)
1 g1 + α

(A)
2 (g2 + w2) = T , we deduce (from equation (1)):

α
(A)
2 =

T

g2 + w2
−

Tg1

(g1 + w1)(g2 + w2)
. (2)

Therefore, the overall number of processed units of load is equal to (by (1) and (2)):

α
(A)
1 + α

(A)
2 =

T

g1 + w1
+

T

g2 + w2
−

Tg1

(g1 + w1)(g2 + w2)
. (3)

and the overall occupation time of the network medium is equal to (using the previous equal-

ities and t(A) = α
(A)
1 g1 + α

(A)
2 g2):

t(A) =
Tg1

g1 + w1
+

Tg2

g2 + w2
−

Tg1g2

(g1 + w1)(g2 + w2)
. (4)

The same kind of expression can be obtained for the situation (B) and we derive that:

(α
(A)
1 + α

(A)
2 ) − (α

(B)
1 + α

(B)
2 ) =

T (g2 − g1)

(g1 + w1)(g2 + w2)
, (5)

and

t(A) = t(B). (6)

Thanks to these expressions, we know that the occupation of the communication medium
does not depend on the communication ordering. Therefore, we only need to consider the
number of processed units of load in both situations. Equation (5) suggests that one should
send chunks to the worker with the smallest gi first.

We now proceed to the general case. Suppose that the workers are already sorted so that
g1 ≤ g2 ≤ . . . ≤ gp. Consider an optimal ordering of the communications σ, where chunks are
sent successively to Pσ(1), Pσ(2), . . . Pσ(p). Let us denote by i, if it exists, the smallest index
satisfying σ(i) > σ(i + 1). Let us consider the following ordering:

Pσ(1), . . . , Pσ(i−1), Pσ(i+1), Pσ(i), Pσ(i+2), . . . Pσ(p).

Then, Pσ(1), . . . , Pσ(i−1), Pσ(i+2), . . . Pσ(p) perform exactly the same number of units of load,
since the exchange does not affect the overall communication time, but together, Pσ(i+1) and

Pσ(i) perform
T (gσ(i)−gσ(i+1))

(gσ(i+1)+wσ(i+1))(gσ(i)+wσ(i))
more units of load, where T denotes the remaining

time after communications to Pσ(1), . . . , Pσ(i−1). Therefore, ince gσ(i+1) ≤ gσ(i), there exists an
optimal ordering where chunks are sent accordingly to non-decreasing values of the gi’s.

Following Proposition 2, we re-order the workers so that g1 ≤ g2 ≤ . . . ≤ gp. The following
linear program aims at computing the optimal distribution of the load:

RR n̊4916



10 Olivier Beaumount, Henri Casanova , Arnaud Legrand, Yves Robert, Yang Yang

Minimize Tf ,
subject to














(1) αi ≥ 0 1 ≤ i ≤ p
(2)

∑p
i=1 αi = Wtotal

(3) α1g1 + α1w1 ≤ Tf (first communication)

(4)
∑i

j=1 αjgj + αiwi ≤ Tf (i-th communication)

Theorem 1. The optimal solution for the StarLinear problem is given by the solution of
the linear program above.

Proof. Direct consequence of Propositions 1 and 2. Note that inequalities (3) and (4) will
be in fact equalities in the solution of the linear program, so that we can easily derive a
closed-form expression for Tf .

We point out that this is linear programming with rational numbers, hence a polynomial
complexity. Finally, we consider the variant where the master is capable of processing chunks
(with computing power w0) while communicating to one of its children. It is easy to see that
the master will be kept busy all the time (otherwise more units of load could be processed).
The optimal solution is therefore given by the following linear program (where g1 ≤ g2 ≤
. . . ≤ gp as before):

Minimize Tf ,
subject to






















(1) αi ≥ 0 0 ≤ i ≤ p
(2)

∑p
i=0 αi = Wtotal

(3) α0w0 ≤ Tf (computation of the master)
(4) α1g1 + α1w1 ≤ Tf (first communication)

(5)
∑i

j=1 αjgj + αiwi ≤ Tf (i-th communication)

3.2 Tree network and linear cost model

All the results in the previous section can be extended to a tree-shaped network. There is
however a key difference with the beginning of Section 3.1: each worker now is capable of
computing and communicating to one of its children simultaneously. However, because of
the one-round hypothesis, no overlap can occur with the incoming communication from the
node’s parent.

We use a recursive approach, which replaces any set of leaves and their parent by a single
worker of equivalent computing power:

Lemma 3. A single-level tree network with parent P0 (with input link of capacity g0 and
cycle-time w0) and p children Pi (with input link of capacity gi and cycle-time wi, 1 ≤ i ≤ p),
where g1 ≤ g2 ≤ . . . ≤ gp, is equivalent to a single node with same input link capacity g0 and

INRIA
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⇔
w0

w1 w2 wi wp

w−1
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Figure 5: Replacing a single-level tree by an equivalent node.

cycle-time w−1 = 1/W (see Figure 5), where W is the solution to the linear program:

Maximize W,
subject to






















(1) αi ≥ 0 0 ≤ i ≤ p
(2)

∑p
i=0 αi = W

(3) Wg0 + α0w0 ≤ 1
(4) Wg0 + α1g1 + α1w1 ≤ 1

(5) Wg0 +
∑i

j=1 αjgj + αiwi ≤ 1

Proof. Here, instead of minimizing the time Tf required to execute load W , we aim at deter-
mining the maximum amount of work W that can be done within one time-unit. Obviously,
after the end of the incoming communication, the parent should be kept working all the time.
We know that all children (i) participate in the computation and (ii) terminate execution at
the same-time. Finally, the ordering for the children is the best one, according to Propo-
sition 2. This completes the proof. Note that inequalities (3), (4) and (5) will be in fact
equalities in the solution of the linear program, so that we can easily derive a closed-form
expression for w−1 = 1/W .

Lemma 3 provides a constructive way of solving the problem for a general tree. First we
traverse it from bottom to top, replacing each single-level tree by the equivalent node. We
do this until there remains a single star. We solve the problem for the star, using the results
of Section 3.1. Then we traverse the tree from top to bottom, and undo each transformation
in the reverse ordering. Going back to a reduced node, we know which amount of time it
is working. Knowing the ordering, we know which amount of time each of the children is
working. If one of this children is a leaf node, we have computed its load. If it is a reduced
node, we apply the transformation recursively.

Instead of this pair of tree traversals, we could write down the linear program for the
whole tree: when it receives something, a given node knows exactly what to do: compute
itself all the remaining time, and feed its children in decreasing bandwidth order. However,
the size of the linear program would grow proportionally to the size of the tree, hence the
recursive solution is to be preferred.

3.3 Star network and affine cost model

To the best of our knowledge, the complexity of the StarAffine problem is open. The
main difficulty arises from resource selection: contrarily to the linear case where all workers
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participate in the optimal solution, it seems difficult to decide which resources to use when
latencies are introduced. However, the second property proved in Proposition 1, namely
simultaneous termination, still holds true:

Proposition 3. In an optimal solution of the StarAffine problem, all participating workers
finish computing at the same time.

Proof. The proof is very similar to the StarLinear case. Details can be found in the extended
version [5].

Proposition 4. If the load is large enough, then for any optimal solution (i) all workers
participate and (ii) chunks must be sent in the order of non decreasing link capacities gi.

Proof. Consider a valid solution of the StarAffine problem with time bound T . Suppose,
without loss of generality, that ασ(1) units of load are sent to Pσ(1), then ασ(2) to Pσ(2), . . . and
finally ασ(k) to Pk, where S = {Pσ(1), . . . , Pσ(k)} is the set of workers that participate to the
computation. Here, σ represents the communication ordering and is a one-to-one mapping
from (1 . . . k] to [1 . . . n]. Moreover, let ntask denote the optimal number of units of load that
can be processed using this set of workers and this ordering.

• Consider the following instance of the StarLinear problem, with k workers P ′
σ(1), . . . , P

′
σ(k),

where ∀i, G′
i = 0,W ′

i = 0, g′i = gi, w
′
i = wi and T ′ = T . Since all computation and

communication latencies have been taken out, the optimal number of units of load ntask
1

processed by this instance is larger than the number of units of load ntask processed by
the initial platform. From Theorem 1, the value of ntask

1 is given by a formula

ntask
1 = f(S, σ) · T,

where f(S, σ) is either derived from the linear program, or explicitily given by a closed
form expression in [12]. What matters here is that the value of ntask

1 is proportional to
T .

• Consider now the following instance of the StarLinear problem, with k workers
P ′

σ(1), . . . , P
′
σ(k), where ∀i, G′

i = 0,W ′
i = 0, g′i = gi, w

′
i = wi and T ′ = T−

∑

i∈S(Gi+Wi).

Clearly, the optimal number of units of load ntask
2 processed by this instance of the

StarLinear problem is lower than ntask, since it consists in adding all the communi-
cation and computation latencies before the beginning of the processing. Moreover, as
previously ntask

2 is given by the formula

ntask
2 = f(S, σ)(T −

∑

i∈S

(Gi + Wi)).

Therefore, we have

f(S, σ)

(

1 −

∑

i∈S(Gi + Wi)

T

)

≤
ntask

T
≤ f(S, σ).

Hence, when T becomes arbitrarily large, then the throughput of the platform ntask

T
becomes

arbitrarily close to f(S, σ), i.e. the optimal throughput is there were no communication and
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computation latencies. Moreover, we have proved that if there are no latencies, then f(S, σ)
is maximal when S is the set of all the workers, and when σ satisfies

gj > gi =⇒ σ(i) > σ(j).

Therefore, when T is sufficiently large, then all the workers should be used and the chunks
should be sent to workers in the ordering of non decreasing link capacities gi. In this case, if
g1 ≤ . . . ≤ gn, then the following linear system provides an asymptotically optimal solution

∀i,

i
∑

k=1

(Gk + gkαk) + Wi + giwi = T.

This solution is optimal if all gi are different. Determining the best way to break ties among
workers having the same bandwidth is an open question.

In the general case, we do not know whether there exists a polynomial-time algorithm
to solve the StarAffine problem. However, we can provide the solution (with potentially
exponential cost) as follows: we start from the mixed linear programming formulation of the
problem proposed by Drozdowski [14], and we extend it to include resource selection. In the
following program, yj is a boolean variable that equals 1 if Pj participates in the solution,
and xi,j is a boolean variable that equals 1 if Pj is chosen for the i-th communication from
the master:

Minimize Tf ,
subject to


































(1) αi ≥ 0 1 ≤ i ≤ p (2)
∑p

i=1 αi = Wtotal (3) yj ∈ {0, 1} 1 ≤ j ≤ p
(4) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p (5)

∑p
i=1 xi,j = yj 1 ≤ j ≤ p

(6)
∑p

j=1 xi,j ≤ 1 1 ≤ i ≤ p (7) αj ≤ Wyj 1 ≤ j ≤ p

(8)
∑p

j=1 x1,j(Gj + αjgj + Wj + αjwj) ≤ Tf (first communication)

(9)
∑i−1

k=1

∑p
j=1 xk,j(Gj + αjgj) +

∑p
j=1 xi,j(Gj + αjgj + Wj + αjwj) ≤ Tf

2 ≤ i ≤ p (i-th communication)

Equation (5) implies that Pj is involved in exactly one communication if yj = 1, and in
no communication otherwise. Equation (6) states that at most one worker is activated for
the i-th communication; if

∑p
j=1 xi,j = 0, the i-th communication disappears. Equation (7)

states that no work is given to non participating workers (those for which yj = 0) but is
automatically fulfilled by participating ones. Equation (8) is a particular case of equation (9),
which expresses that the worker selected for the i-th communication (where i = 1 in equa-
tion (8) and i ≥ 2 in equation (9)) must wait for the previous communications to complete
before starting its own communication and computation, and that all this quantity is a lower
bound of the makespan. Contrarily to the formulation of Drozdowski [14], this mixed linear
program always has a solution, even if a strict subset of the resources are participating. We
formallu state this result:

Proposition 5. The optimal solution for the StarAffine problem is given by the solution
of the mixed linear program above (with potentially exponential cost).
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Medium

Communication

round 0

αpM−1

P1

P2

P3

P4

round 1

α0

αj

round Mp-1

Figure 6: Pattern of a solution for dispatching the load of a divisible job, using a bus network
(gi = g), in multiple rounds, for 4 workers. All 4 workers complete execution at the same
time. Chunk sizes increase during each of the first M − 1 rounds and decrease during the last
round.

3.4 Tree network and affine cost model

This is the most difficult platform/model combination, and very few results are known. How-
ever, we point out that Proposition 4 can be extended to arbitrary tree networks: when T
becomes arbitrarily large, latencies become negligible, and an asymptotically optimal behav-
ior is obtained by involving all resources and by having each parent to communicate with its
children in non decreasing link capacities.

4 Multi-round algorithms

Under the one-port communication mode described in Section 2.1, one-round algorithms lead
to poor utilization of the workers. As seen in Figure 3, worker Pi remains idle from time 0
to time Ti. To alleviate this problem, multi-round algorithms have been proposed. These
algorithms dispatch the load in multiple rounds of work allocation and thus improve overlap
of communication with computation. By comparison with one-round algorithms, work on
multi-round algorithms has been scarce. The two main questions that must be answered
are: (i) what should the chunk sizes be at each round? and (ii) how many rounds should be
used? The majority of works on multi-round algorithms assume that the number of rounds is
fixed and we review corresponding results and open questions in Section 4.1. In Section 4.2
we describe recent work that attempts at answering question (ii). Finally, we deal with
asymptotic results in Section 4.3, which of course are of particular interest when the total
work Wtotal is very large.

4.1 Fixed number of rounds, homogeneous star network, affine Costs

As for one-round algorithms, a key question is that of the order in which chunks should be
sent to the workers. However, to the best of our knowledge, all previous work on multi-round
algorithms with fixed number of rounds only offer solution for homogeneous platforms, in
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which case worker ordering is not an issue. Given a fixed number of rounds M , the load is
divided into p × M chunks, each corresponding to a αj (j = 0, . . . , pM − 1) units of load

such that
∑pM−1

j=0 αj = Wtotal. The objective is to determine the αj values that minimize the
overall makespan.

Intuitively, the chunk size should be small in the first rounds, so as to start all workers as
early as possible and thus maximize overlap of communication with computation. It has be
shown that the chunk sizes should then increase to optimize the usage of the total available
bandwidth of the network and to amortize the potential overhead associated with each chunk.
In the last round, chunk sizes should be decreasing so that all workers finish computing at
the same time (following the same principle as in Section 3). Such a schedule is in Figure 6
for four workers.

Bharadwaj et al. were the first to address this problem with the multi-installment schedul-
ing algorithm described in [7]. They reduce the problem of finding an optimal schedule to
that of finding a schedule that has essentially the following three properties: (i) there is no
idle time between consecutive communications on the bus; (ii) there is no idle time between
consecutive computation on each worker; and (iii) all workers should finish computing at
the same time. These properties guarantee that the network and compute resources are at
maximmum utilization.

In [7], the authors consider only linear costs for both communication and computation.
The three conditions above make it possible to obtain a recursion on the αj series. This recur-
sion must then be solved to obtain a close form expression for the chunk sizes. One method
to solve the recursion is to use generating functions and the rational expansion theorem [19].

We recently extended the multi-installment approach to account for affine costs [29]. This
was achieved by rewriting the chunk size recursion in a way that is more amenable to the use of
generating functions when fixed latencies are incurred for communications and computations.
Since it is more general but similar in spirit, we only present the affine case here.

For technical reasons, as in [7], we number the chunks in the reverse order in which they
are allocated to workers: the last chunk is numbered 0 and the first chunk is numbered Mp−1.
Instead of developing a recursion on the αj series directly, we define γj = αj ∗ w, i.e. the
time to compute a chunk if size αj on a worker not including the W latency. Recall that we
only consider homogeneous platforms and thus wq = w, Gq = G, gq = g, and Gq = G for all
workers q = 1, . . . , p. The time to communicate a chunk of size αj to a worker is G + γi/R,
where R is the computation-communication ratio of the platform: w/g. We can now write
the recursion on the γj series:

∀ j ≥ P W + γj = (γj−1 + γj−2 + γj−3 + · · · + γj−N )/R + P × G (7)

∀ 0 ≤ j < P W + γj = (γj−1 + γj−2 + γj−3 + · · · + γj−N )/R + j × G + γ0 (8)

∀ j < 0 γj = 0 (9)

Eq. 7 ensures that there is no idle time on the bus and at each worker in the first M − 1
rounds. More specifically, Eq. 7 states that a worker must compute a chunk in exactly the
time required for all the next P chunks to be communicated, including the G latencies. This
equation is valid only for j ≥ P . For j < P , i.e. the last round, the recursion must be
modified to ensure that all workers finish computing at the same time, which is expressed in
Eq. 8. Finally, Eq. 9 ensures that the two previous equations are correct by taking care of
out-of-range αj terms. This recursion describes an infinite αj series, and the solution to the
scheduling problems is given by the first pM values.
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As in [7], we use generating functions as they are convenient tools for solving complex
recursions elegantly. Let H(x) be the generating function for the series γj , that is G(x) =
∑∞

j=0 γjx
j . Multiplying Eq. 7 and Eq. 8, manipulating the indices, and summing the two

gives:

G(x) =
(γ0 − P × G)(1 − xP ) + (P × G − W ) + G(x(1−xP−1)

1−x
− (P − 1)xP )

(1 − x) − x(1 − xP )/R
.

The rational expansion method [19] can then be used to determine the coefficients of the above
polynomial fraction, given the roots of the denominator polynomial, Q(x). The values of the
γj series, and thus of the αj series, follow directly. If Q(x) has only roots of degree 1 then the
simple rational expansion theorem can be used directly. Otherwise the more complex general
rational expansion theorem must be used. In [29] we show that if R 6= P then Q(x) has only
roots of degree one. If R = P , then the only root of degree higher than 1 is root x = 1 and it
is of degree 2, which makes the application of the general theorem straightforward. Finally,
the value of γ0 can be computed by writing that

∑Mp−1
j=0 γj = Wtotal×w. All technical details

on the above derivations are available in a technical report [29]. This completes the derivation
of an optimal multi-installment schedule for a homogeneous star network with affine costs.

4.2 Computed number of rounds, star network, affine costs

The work presented in the previous section assumes that the number of rounds is fixed and
provided as input to the scheduling algorithm. In the case of linear costs, the authors in [8]
recognize that infinitely small chunks would lead to an optimal multi-round schedule, which
implies an infinite number of rounds. When considering more realistic affine costs there is
a clear trade-off. While using more rounds leads to better overlap of communication with
computation, using fewer rounds reduces the overhead due to the fixed latencies. Therefore,
an key question is: What is the optimal number of rounds for multi-round scheduling on a
star network with affine costs?

While this question is still open for the recursion described in Section 4.1, our work in [30]
proposes a scheduling algorithm, Uniform Multi-Round (UMR), that uses a restriction on
the chunk size: all chunks sent to workers during a round are identical. This restriction
limits the ability to overlap communication with computation, but makes it possible to derive
an optimal number of rounds due to a simpler recursion on chunk sizes. Furthermore, this
approach is applicable to both homogeneous and heterogeneous platforms. We only describe
here the algorithm in the homogeneous case. The heterogenous case is similar but involves
more technical derivations and we refer the reader to [28] for all details.

As seen in Figure 7, chunks of identical size are sent out to workers within each round.
Because chunks are uniform it is not possible to obtain a schedule with no idle time in which
each worker finishes receiving a chunk of load right when it can start executing it. Note in
Figure 7 that workers can have received a chunk entirely while not having finished to compute
the previous chunk. The condition that a worker finishes receiving a chunk right when it can
start computing is only enforced for the worker Pp, which is also seen in the figure. Finally, the
uniform round restriction is removed for the last round. As in the multi-installment approach
described in Section 4.1, chunks of decreasing sizes are sent to workers in the last round so
that they can all finish computing at the same time.

Let αj be the chunk size at round j, which is used for all workers during that round. We
derive a recursion on the chunk size. To maximize bandwidth utilization, the master must
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Communication
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P4

P3

P2

P1

round 1round 0 round M − 1

α0 α1

Figure 7: Pattern of a solution for dispatching the load of a divisible job, using a bus network
(gi = g), in multiple uniform rounds, for 4 workers. All workers complete execution at the
same time. Chunk sizes a fixed within the first M − 1 rounds but increase from round to
round. Chunk sizes decrease during the last round.

finish sending work for round j + 1 to all workers right when worker P finishes computation
for round j. This can be written as

W + αjw = P (G + αj+1g), (10)

which reduces to

αj =
( g

Pw

)j

(α0 − γ) + γ, (11)

where γ = 1
w−Pg

× (PG − W ). The case in which w − Pg = 0 leads to a simpler recursion
and we do not consider it here for the sake of brevity.

Given this recursion on the chunk sizes, it is possible to express the scheduling problem
as a constrained minimization problem. The total makespan, M, is:

M(M,α0) =
Wtotal

P
+ MW +

1

2
× P (G + gα0),

where the first term is the time for worker P to perform its computations, the second term
the overhead incurred for each of these computations, and the third term is the time for the
master to dispatch all the chunks during the first round. Note that the 1

2 factor in the above
equation is due to the last round during which UMR does not keep chunk sizes uniform so
that all workers finish computing at the same time. All details are available in [30].

Since all chunks must satisfy the constraint that they add up to the entire load, one can
write that:

G(M,α0) =
M−1
∑

j=0

Pαj − Wtotal = 0. (12)

The scheduling problem can now be expressed as the following constrained optimization prob-
lem: minimize M(M,α0) subject to G(M,α0) = 0. An analytical solution using the Lagrange
Multiplier method [6] is given in [30], which leads to a single equation for the optimal number
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of round, M ∗. This equation cannot be solved analytically but is eminently amenable to a
numerical solution, e.g. using a bisection method.

The UMR algorithm is a heuristic and has been evaluated in simulation for a large number
of scenarios [28]. In particular, a comparison of UMR with the multi-installment algorithm
discussed in Section 4.1 demonstrates the following. The uniform chunk restriction minimally
degrades performance compared to multi-installment when latencies are small (i.e. when costs
are close to being linear). However, as soon as latencies become significant, this performance
degradation is offset by the fact that an optimal number of rounds can be computed and
UMR outperforms multi-installment consistently. Finally, note that an additional benefit of
UMR is that, unlike multi-installment, it is applicable to heterogenous platforms. In this case
the question of worker ordering arises and UMR uses the same criterion as that described
in [4]: workers should be ordered by decreasing link capacities.

4.3 Asymptotic performance, star network, affine costs

In this section, we derive asymptotically optimal algorithms for the multi-round distribution
of divisible loads. As in previous sections, we use a star network with affine costs.

The sketch of the algorithm that we propose is as follows: the overall processing time T
is divided into k regular periods of duration Tp (hence T = kTp, but k (and Tp) are yet to
be determined). During a period of duration Tp, the master sends αi units of load to worker
Pi. It may well be the case that not all the workers are involved in the computation. Let
I ⊂ {1, . . . , p} represent the subset of indices of participating workers. For all i ∈ I, the αi’s
must satisfy the following inequality, stating that communication resources are not exceeded:

∑

i∈I

(Gi + αigi) ≤ Tp. (13)

Since the workers can overlap communications and processing, the following inequalities also
hold true:

∀i ∈ I, Wi + αiwi ≤ Tp.

Let us denote by αi

Tp
the average number of units of load that worker Pi processes during one

time unit, then the system becomes











∀i ∈ I,
αi

Tp
wi ≤ 1 − Wi

Tp
(no overlap)

∑

i∈I

αi

Tp
gi ≤ 1 −

P

i∈I
Gi

Tp
(1-port model)

,

and our aim is to maximize the overall number of units of load processed during one time
unit, i.e. n =

∑

i∈I
αi

Tp
.

Let us consider the following linear program:

Maximize
∑p

i=1
αi

Tp
,

subject to


















∀1 ≤ i ≤ p,
αi

Tp
wi ≤ 1 −

∑p
i=1 Gi + Wi

Tp
p
∑

i=1

αi

Tp
gi ≤ 1 −

∑p
i=1 Gi + Wi

Tp
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This linear program is more constrained than the previous one, since 1− Wi

Tp
and 1−

P

i∈I
Gi

Tp

have been replaced by 1 −
Pp

i=1 Gi+Wi

Tp
in p inequalities. The linear program can be solved

using a package similar to Maple [11] (we have rational numbers), but it turns out that the
technique developed in [4] enables us to obtain the solution in closed form. We refer the
reader to [4] for the complete proof. Let us sort the gi’s so that g1 ≤ g2 ≤ . . . ≤ gp, and let
q be the largest index so that

∑q
i=1

gi

wi
≤ 1. If q < p, let ε denote the quantity 1 −

∑q
i=1

gi

wi
.

If p = q, we set ε = gq+1 = 0, in order to keep homogeneous notations. This corresponds
to the case where the full use of all the workers does not saturate the 1-port assumption for
out-going communications from the master. The optimal solution to the linear program is
obtained with

∀1 ≤ i ≤ q,
αi

Tp

=
1 −

Pp
i=1 Gi+Wi

Tp

gi

and (if q < p):
αq+1

Tp

=

(

1 −

∑p
i=1 Gi + Wi

Tp

)(

ε

gq+1

)

,

and αq+2 = αq+3 = . . . = αp = 0.
With these values, we obtain:

n ≥

p
∑

i=1

αi

Tp
=

(

1 −

∑p
i=1 Gi + Wi

Tp

)

(

q
∑

i=1

1

wi
+

ε

gp+1

)

.

Let us denote by nopt the optimal number of units of load that can be processed within
one unit of time. If we denote by β∗

i the optimal number of units of load that can be processed
by worker Pi within one unit of time, the β∗

i ’s satisfy the following set of inequalities, in which
the Gi’s have been withdrawn:











∀1 ≤ i ≤ p, β∗
i wi ≤ 1

p
∑

i=1

β∗
i gi ≤ 1

Here, because we have no latencies, we can safely assume that all the workers are involved
(and let β∗

i = 0 for some of them). We derive that:

nopt ≤

(

1 −

∑p
i=1 Gi + Wi

Tp

)

(

q
∑

i=1

1

wi
+

ε

gq+1

)

.

If we consider a large number B of units of load to be processed and if we denote by Topt the
optimal time necessary to process them, then

Topt ≥
B

nopt
≥

B
(

∑q
i=1

1
wi

+ ε
gq+1

) .

Let us denote by T the time necessary to process all B units of load with the algorithm
that we propose. Since the first period is lost for processing, then the number k of necessary
periods satisfies nTp(k − 1) ≥ B so that we choose

k =

⌈

B

nTp

⌉

+ 1.
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Therefore,

T ≤
B

n
+ 2Tp ≤

B
(

∑q
i=1

1
wi

+ ε
gq+1

)

(

1

1 −
∑p

i=1
Gi+Wi

Tp

)

+ 2Tp,

and therefore, if Tp ≥ 2
∑p

i=1 Gi + Wi,

T ≤ Topt + 2

p
∑

i=1

(Gi + Wi)
Topt

Tp
+ 2Tp.

Finally, if we set Tp =
√

Topt, we check that

T ≤ Topt + 2

(

p
∑

i=1

(Gi + Wi) + 1

)

√

Topt = Topt + O(
√

Topt),

and
T

Topt
≤ 1 + 2

(

p
∑

i=1

(Gi + Wi) + 1

)

1
√

Topt

= 1 + O

(

1
√

Topt

)

,

which achieves the proof of the asymptotic optimality of our algorithm.

Note that resource selection is part of our explicit solution to the linear program: to
give an intuitive explanation of the analytical solution, workers are greedily selected, fast-
communicating workers first, as long as the communication to communication-added-to-
computation ratio is not exceeded.

We formally state our main result:

Theorem 2. For arbitrary values of Gi, gi, Wi and wi and assuming communication-computation
overlap, the previous periodic multi-round algorithm is asymptotically optimal. Closed-form
expressions for resource selection and task assignment are provided by the algorithm, whose
complexity does not depend upon the total amount of work to execute.

5 Conclusion

The goal of this paper was to present a unified discussion of divisible load scheduling results
for star and tree networks. In Section 3 we have discussed one-round algorithms for which the
two main issues are: (i) selection and ordering of the workers, (ii) computation of the chunk
sizes. Section 4 focused on multi-round algorithms, with the two main issues: (i) computation
of chunk sizes at each round, and (ii) choice of the number of rounds. Section 4 also discussed
multi-round scheduling for maximizing asymptotic application performance. For both classes
of algorithms, we have revisited previously published results, presented novel results, and
clearly identified open questions. Our overall goal was to identify promising research directions
and foster that research thanks to our unified and synthesized framework.

We have discussed affine cost models and have seen that they often lead to much more com-
plex scheduling problems than when linear models are assumed. These models are generally
considered more realistic, and we even contend that, given current trends, linear models are
quickly becoming increasingly inappropriate. In terms of communication, technology trends

INRIA



Scheduling Divisible Loads on Star and Tree Networks 21

indicate that available network bandwidth is rapidly augmenting. Therefore, latencies ac-
count for an increasingly large fraction of communication costs. A similar observation can be
made in terms of computation. Due to the absence of stringent synchronization requirements,
divisible workload applications are amenable to deployment on widely distributed platforms.
For instance, computational grids [16] are attractive for deploying large divisible workloads.
However, initiating computation on these platforms incurs potentially large latencies (i.e., due
to resource discovery, authentication, creation of new processes, etc.). Consequently, it is clear
that divisible workload research should focus on affine cost models for both communication
and computation.
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