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Un schéma Galerkin Discontinu de type hp pour la
résolution des équations de Maxwell tridimensionnelles
sur des maillages orthogonaux non-conformes

Résumé : On présente ici une nouvelle méthode de Galerkin Discontinue appliquée & la
résolution numérique des équations de Maxwell en maillages orthogonaux raffinés de maniére
conforme ou non-conforme. Le méthode repose sur un jeu de fonctions de base locales dont
le degré augmente & l'interface des grilles. Les intégrales de surface sont calculées par une
formule centrée. Un schéma saute-mouton est utilisé pour l'intégration temporelle. On est
assuré de la stabilité du schéma sur un maillage non-conforme. On montre aussi que la
dispersion est trés faible sur ce type de maillage

Mots-clés : électromagnétisme, Galerkin discontinu, flux centrés, schéma saute-mouton,
stabilité L2, maillage orthogonal non-conforme, PML
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1 Introduction

We are investigating in the present work the solution of the time-domain Maxwell’s equations
using cartesian grids. When the grid is regular (i.e. all the hexahedra have the same volume),
the Finite Difference Time-Domain (FDTD) scheme [8] is very efficient. It has good phase
property and is easy to implement. It is also very inexpensive as long as the geometry
and the physical data (currents, material interfaces, etc..) remain simple. In presence of
complex structures, one may still use the Yee’s scheme with very fine uniform grids but the
solution becomes very costly in time and memory and sometimes impossible to compute. An
alternative is to refine the grid only where it is needed and then join the resulting subgrids
in a conforming or non-conforming way. It is well known that the increasing of dispersion
errors may be the major drawback when applying explicit schemes to locally refined grids.
Concerning FDTD methods they are few works in the literature and one may cite the space-
time mesh refinement approach presented in [4]. The method uses successive refinements of
ratio 2 from the coarse to the fine grid and the resulting mesh is non-conforming. One may
join the coarse and the fine grids in a conforming way using an irregular subgrid but doing
so, FDTD schemes can no longer be used. Finite elements or finite volumes become the
classical alternatives, see [3] and [5] as examples for each family.

As mentioned above, our goal is to deal with locally refined cartesian grids whether they are
conforming or not. We propose in this paper a scheme based on the Discontinuous Galerkin
(DG) method which has already shown his ability to handle highly distorted grids. One
can find a large set of various applications in the review [2] where only few papers concern
the Maxwell’s equations. On may also cite a previous work [7] which shares with almost all
other DG schemes the use of some Riemann solver for flux evaluation and a Runge-Kutta
scheme for time integration. Generally this results in schemes having good phase properties
but are still too diffusive particularly with low order versions. As we know that combining
a centered flux approximation with a leap-frog time integration results in a non diffusive
scheme, see [5], we select these ingredients to construct new DG schemes. Such a method
using conforming tetrahedral meshes is described in [6]. The presented work differs from
the work cited above in the choice of a new set of basis functions well adapted to cartesian
grids as it will be shown in the sequel. Moreover, we propose to increase the degree of the
approximation at nonconforming interfaces. It can be viewed as a hp technique used for
adaptive computations (p-refinement is the expression used for functional enrichment and
h-refinement for mesh refinement). We will also prove that the new scheme is stable, non
diffusive (a discrete energy is conserved) and is able to work on highly refined grids without
any noticeable dispersion and reflection effects, including for long time calculations.

2 The Discontinuous Galerkin method
We consider in this paper Maxwell’s equations in three space dimensions for heterogeneous

anisotropic linear media with source j (current density). The electric permittivity tensor
€(x) and the magnetic permeability tensor i(z) are varying in space and both symmetric
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4 Canouet, Fezoui € Piperno

positive definite (and uniformly bounded). The electric field E = *(E., E,,E.) and the
magnetic field H= t(HI, H,, H,) verify

_ E - — -

E— =curl H —j,

3t_’ (1)

08 _ il E

By = —curl E.
These equations are set and solved on a bounded domain 2 of R3. On the domain boundary
090 (of unitary outwards normal 72), a boundary condition is set which is either metallic

(7 x E =0, on 90,,) or absorbing (7 X E=—cufx (fi X ﬁ), on 99Q,, where we assume

the medium is isotropic, i.e. £ = €l3 i = ull3 and the local light speed c is given by euc? = 1).
We assume we dispose of a partition of the domain 2 into a finite number of orthogonal
hexahedra. This partition can be conforming or non-conforming (see figure 1). For each
hexahedron 7;, called "finite volume" or "cell", V; denotes its volume, and &; and fi; are
respectively the local electric permittivity and magnetic permeability tensors of the medium,
which could be varying inside the cell 7;. We call interface between two neighbouring finite
volumes their intersection (if it is a surface). This interface is a whole face only in the
conforming mesh case. For each internal interface a;, = 7; () 7k, we denote by ;. the
integral over the interface of the unitary normal, oriented from 7; towards 7. The same
definitions are extended to boundary interfaces (in the intersection of the domain boundary
0N, J 09, with a finite volume), the index k corresponding to a fictitious cell outside the
domain. We denote by - t(ﬁikz,mky,mkz) the normalized normals 7z, = ik /|| Tk || -
Finally, we denote by V; the set of indices of the neighboring finite volumes (i.e. having
an interface in common) of the finite volume 7; . We also define the perimeter P; of 7; by

Pi = X kev; Itixll-

Figure 1: A typical orthogonal non-conforming mesh

INRIA



Discontinous Galerkin method for 8D Mazwell equations on orthogonal meshes 5

2.1 The spatial discretization

Inside each finite volume, the numerical unknowns of the method are related to the orthog-
onal (in the sense of the classical L? scalar product) projection of the electric and magnetic
fields on a chosen set of vector basis functions g;;,1 < j < d;, where d; denotes the number
of local scalar degrees of freedom inside the finite volume 7;. The approximation is allowed
to be discontinuous across element boundaries.

Dot-multiplying (1) by a given basis function @;;, and integrating over 7; yields

_0E T
/ t@j@g = [ (curl H —j).@ij,
T T;

i

., _oH SR
/ t@ijliiﬁ = —/ curl E.g;;.
T; T;

—

Using the identity curl X .4 = curl . X — div(d x X), we get

. . 0F - . .
/ t¢ij6ia— :/ curlcpij.H—/ (Bi; xH).n—/ J-Bii
T t Jn oT; T @)
L, . OH - o= . -
/ tQOijﬂi— = —/ curlgoij.E—k/ (%’j x E).q.
7 ot Ti oT;

If we degote by E; and H; respectively the canonical L2-orthogonal projections of the fields
E and H on Span(@;;, 1 < j <d;) inside the finite volume 7;, verifying the property

vge Span(y 155 <d). [ Bup= [ Bp [ Fug= | A
T; T; T; T;

then, in equations (2), E; and H; (and their time-derivative) can be directly used to evaluate
volume integrals.

2.2 A centered flux formula

For boundary integrals, since no continuity is imposed on the fields, some additional ap-
proximations have to be done. We choose here to use a centered flux approximation:

. Hi(z) + ﬁk(«’C)'

H(z) 3

k eV, Vr € a, E(CC) —

The fields El and ﬁl are then decomposed the following way:

Vo in T, Ei(z,t)= > Eyt) @5), Hiz,t)= Y Hyt) @)  (3)
1<5<d; 1<5<d;
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6 Canouet, Fezoui € Piperno

Inside each control volume, the fields El and ﬁz can now be represented using a chosen
number of scalar values E;; and Hy, for 1 < [ < d;. We will denote by E; the column
(Eit)i<i<d,- Finally, this leads to

aqu - . - P - ﬁi + I:i =
M = / curl g;; . H; _/ J-®ij — Z / (Gij % 7k)n1k ’
ot j i T aik 2 (4)

keV;

oH,; R . _Ei+E -
(M{L 6t ) = —/Ticurl(pij.Ei—l- Z </aik(ﬂoij X T)ffhk)?

J keV;

where the j subscripts denote the jth component of vectors, the fields E; and H; are given
in (3) in functions of scalar degrees of freedom, and M§ and M/ are square matrices of size
d;, given by

(Mf)jl = / t(f_o”ijgi@ilv 1 S J?l S di7
P (5)
(M7);, = /T GijiPa, 1 < gl < d;.

It is clear that the matrices Mf and M} are symmetric and definite positive, because the
tensors ¢; and fi; are symmetric definite positive, and the basis functions 7;; are assumed
to be linearly independent. In the sequel, &; and i; are assumed to be constant inside each
volume.

2.3 The time discretization

We propose to use a leap-frog time discretization. This kind of time scheme has both
advantages to be explicit and to be free of time-dissipation. In the sequel, superscripts refer
to time stations and At is the fixed time step. The unknowns related to the electric field
are approximated at integer time-stations {” = nAt and are denoted by E;;. The unknowns
related to the magnetic field are approximated at half-integer time-stations t™'"? = (n +
1/2)At and are denoted by H,;'"”. All definitions for E}, H}'"”, E?, and H?'"” are
similarly extended. The time scheme directly derives from equation (4) and can be written:

E’t! — Epr - - = H''? +HE ™2 L
Mfzfz = curl @‘UH? He j(ﬁ” - (@1] X #)ﬁlk,
At j 7; T; ik 2

kEV;:
= LARCI & (R . om . ET-L+1 + En+1 -
M= ) = —/curl @ij.E?+1 + E (Bij x =k ).
At g T keV; ¥ ik 2

(6)

2.4 Treatment of boundary conditions

The metallic and absorbing conditions are dealt with in weak sense by taking some values for
the fields E and H inside the fictitious finite volume beyond the boundary face. In the two

INRIA



Discontinous Galerkin method for 8D Mazwell equations on orthogonal meshes 7

cases, a;r denotes a boundary face between a boundary cell 7; and its fictitious neighbour
Tk
For a metallic boundary face a;, we use

METALLIC BOUNDARY: V2 € ai,, Ep(z) = —E?(z), Hy'"?(2) = H'(2).  (7)

A first-order Silver—Miiller absorbing condition is used on the absorbing boundary 0€2,. Let
us recall that the medium is assumed to be isotropic near the absorbing boundary 901,
then the permeability and permittivity tensors £ and i are scalars. Using the wave speed
¢ = 1/,/pi€, the Silver-Miiller absorbing condition can be written

ﬁxE:—cuﬁx(ﬁxH), ﬁxH:ceﬁx(ﬁxE)7

where 7 is the outgoing unitary normal. This boundary condition is exact for outgoing plane
waves (with a wave vector collinear with 7). This condition is a first-order approximation,
asymptotically correct when the fictitious absorbing boundary is far enough.

In view of the absorbing boundary condition above, we propose the following fictitious fields
I-iZ P2 and f)’,;“ over an absorbing interface a;;, between the real finite volume 7; and its
fictitious neighbor 7, (these fields are used in the scheme (6)) for the absorbing interface
a,‘k):

i 1/2(13) = Ci€; ﬁik X Ef(w),

ABSORBING BOUNDARY: VI € ag = s L,
v EZ+1(.’L‘) = —Cijl; ﬁik X H:LH/Z(.’L'),

(8)

where ¢; = 1/,/p;€; is the local wave speed (recall the medium is assumed isotropic near the
absorbing boundary).

2.5 Perfectly Matched Layer Absorbing Medium

To deal efficiently with the solution of electromagnetic problems in unbounded regions, we
study the application of the Perfectly Matched Layer (PML) introduced by Berenger [1].
Let us recall that this method is based on a split-field formulation of Maxwell’s equations.
Each vector field component is split into two orthogonal components. We rewrite the 12
PML equations in the following way :

' —
_OFE -
58—1'1 + Sl(E)El = T_’(Hl +H2),
_OE. =
58—;—1-52(0') 2=T2(H1 +H2>,

< o 9)

ﬁa—tl+51(5*) 1=—71(E1 + Ea),
_OH. -

\ ﬁa—;—FSz(U) 2 = —13(E1 + E»),

RR n° 4912



Canouet, Fezoui € Piperno

where -E—"l = t(Ezvay 7Eza:)7 -E_; = t(Eszyz’Ezy): H!I = t(HZy7HyZ7HZ$) and

-

Hy ='H,,,Hy,, H,,). The operators S; and S, are given by :

vy 0 v, 0
S1(P)=| 0 w, O and S2(@)=| 0 wvw, O |. (10)
0 0 wvg 0 0 vy

The differential operators 7/, and 7> are defined by

0 0 9, 0 -9. 0
_'1 = az 0 0 and F2 = 0 0 —&E . (11)
0 9. 0 -9, 0 0

Following the section 2.1, we dot-multiply (9) by a basis function Z;; and we integrate over
T :

( - = aE -\ 7= - - - N
/T ¢ z‘j&(a—tl + 51(6)E1) = /T(Tl(H1 + Ha)).3ij,
. N P
/ ¢ ijgi(a—; + 52(5)E2) = / (r3(Hy + Ha)).@ij,
q 7% o, 7 (12)
t = = —sk 7 — = = -
[ et + 5@ ) = - [ G + E) g,
T t T
. - OH e g3 e e
[ i + 520 ) = - [ ((E + E)gi
\ JT; 7T
Integrating by part, we can write
( t = = 6E1 =\ 79 — 2\ = T. 7
i€ + 5@ E) = [ 7i(Giy)-(Hi + Ha) = | Si()@y-(Hy + Ha),
T v T oT;
. ., OF o IR -
/ ! ”51'(8—; S2(F)E2) :/ 73(Pij)-(H1 + Ha) — Sa(n)@ij-(Hy + Hz),
) 7 T 0T;
- = aH —% — =
/ k z]ﬂz(a—tl + Sl( )Hl) = _/ T ((pz]) (El +E2) + Sl(")‘npzj (El +E2)7
T t T oT:
- = aH s 7 — =
| i 520V m) = - [ @) E v B+ [ Su@)g (B + B
\ JT; T; oT; (13)

To discretize E;, E_;, H, 1 and ffg, we use the same basis functions as for £ and H. Boundary
integrals are also evaluated with a centered flux formula and an exponential scheme is used
for the time integration.

Now the absorbing medium itself has to be bounded. Using a metallic boundary condition
on the reconstructed fields H, 1 +f_—f2 and E—’; +E‘; leads in some cases to numerical instabilities.

Thus we propose to use the first order boundary absorbing condition (8) which makes the
scheme stable.

INRIA



Discontinous Galerkin method for 8D Mazwell equations on orthogonal meshes 9

3 Stability analysis

We recall here a stability result given in [6] for arbitrary polyhedra grids. However the proof
does not use neither the way the polyhedra are connected or the exact particular form of
the basis functions, thus this result is still true for the DG method described here. It has
shown in [6] that for a class of DG schemes supplemented by a metallic boundary, a discrete
electromagnetic energy is exactly conserved which proves that the scheme is non-diffusive.
Moreover, under some CFL condition on At, this energy is a positive definite quadratic form
of the numerical unknowns H"** and E? ensuring the stability of the scheme. The discrete
energy has the following definition.

Definition 3.1 For a finite volume partition G of the domain Q with metallic boundary
conditions (0Q = 9Ny, ), we consider the following electromagnetic energy inside each finite
volume and in the whole domain:

1
(i) Vi, E} = 5/ (En En + Hn 12= Hn+1/2) _
T;

(i) B* = EP.

i€G

1 i tyrn. n
S (‘BrMeED +HPAMIH] ),

where the matrices M* and M€ are given by (5).

4 Basis Functions

We introduce a set of basis functions well adapted to cartesian grids. A classical approach
is to use a basis of P™ (polynomial of degree n). We propose basis functions which are less
costly and which ensure the divergence conservation in a strong way.

Let us consider a finite number of orthogonal hexahedra. For each hexahedron 7;, we denote
by Gi = {(zai,yaqs, 2gi) its mass center and A = *(Ax;, Ay;, Az;) its size. We introduce the
space P, generated by the following basis functions :

Qail :t(l,0,0), 9312 :t(y_yGiaoao)a 95‘13 - (Z_ZG’HO 0)

§5i4 = t(Ov 17 0)7 9315 = t(oa T — TGis 0)7 95‘16 - (07 2 — ZGi» 0)7 (14)

Gir =40,0,1), Fig =0,0,2 —zg:), Fio ="0,0,9 —yci)-
The scheme given by (6)-(14) will be named DG-PL, .
In the non-conforming case, a higher approximation is required. We introduce the space
P2, where P2, \PL. is generated by :

Bito = “((y — yas )(Z - 2Gi),0,0), Biar = ((y — yas)? — Ay?/12,0,0),

Bita = H((z — 2g4)? — A22/12,0,0), Gz = 40, (z — :CGZ)(z - zG,) 0),

Gira =0, (z — wgi)? A952/12 0), Pus ="0,(2 — 2¢i)* — Az7/12,0), (15)
Gite = 0,0, (x — zei)(y —yai)),  Puar = 0,0, (z — z¢i)* — Az} /12),

Gits = (0,0, (y — yai)® — Ay?/12)

RR n° 4912



10 Canouet, Fezoui € Piperno

REMARK 4.1 Let us note that using piecewise constant functions as a basis (Po), will result
in o centered finite volume scheme which was already presented in [5]

REMARK 4.2 The basis of P%, (n = 1,2) are orthogonal with respect to the L? scalar
product. As a result the scheme will not even require the inversion of the local 9 X 9 mass
matriz. Another advantage is that the orthogonal basis makes the hybrid scheme PL. /P2..
easy to implement.

n

The spaces P77, (n = 1,2) require a smaller number of degrees of freedom than the spaces
P™ (table 1). However, the spaces IP7,, seems to be well adapted to solve Maxwell equations.

Indeed, if we denote by Hp: and I:I’]plli. the L2-orthogonal projections of the fields H on
respectively the spaces P! and P}, | we have on each hexahedron 7;

curl Hp1 ;= curl Hp1 ;. (16)

Scheme PO | Py, | P | P2 | P2
Degrees of freedom | 3 9 12| 18 | 30

Table 1: Number of degrees of freedom for one field

Moreover, it is easy to check that :

0

2 Hp» ;51,0,0)=0

e Py (7 ’ ) y

o =

—Hp- ;.5(0,1,0) =0, 17
8y Pdiv’ ( ) ( )
d

—Hp» ;.50,0,1) = 0.
82’ Pdiv’ (7 )

It is a strong way to ensure the Gauss’law on each finite volume 7; :

div(fi;Hpn ) = 0. (18)
Since our formulation is symmetric for both fields we have the same relation for the field E
which writes on each finite finite volume 7;:

div(5iEpy ;) =0. (19)

That is to say the volumic charge density is equal to zero on each hexahedron 7;. Our model
can not create volumic charges. Nevertheless, surfacic charges are allowed because the fields
are discontinuous on each interface a; :

Pay = fi-(Bpn_j — Epgiv,i)- (20)

div?

INRIA



Discontinous Galerkin method for 8D Mazwell equations on orthogonal meshes 11

We give in the table 2 the value of v = Aty/Az=2 + Ay—2 + Az~2 used for the Discontinuous
Galerkin method compared to its value for the Yee’s scheme [8]. These values are obtained
numerically in the case Az = Ay = Az.

Yee HDO P}iz’u ]P)?lzv
v 1 2 1065| 04

Table 2: Stability condition

5 Dispersion Analysis

In this section we study the phase error of the DG-P), scheme on cubic meshes and compare
it to the Yee’s scheme as a reference scheme on orthogonal grids. We will restrict the
study to plane waves which propagate in one of the principal directions given by the vector
k = (1,0,0), or ¥(1,1,0) or *(1,1,1) and details will be given for the first direction. Let us
note that this restriction is due to the difficulty in evaluating the eigenvalues of a 18 x 18
matrix even with the help of formal mathematical softwares.

When k =! (1,0,0) the problem reduces to a one-dimensional system and the unknowns
are the components H, and E, with 2 degrees of freedom for each one. Let us assume a
uniform grid (Az constant) and set V; =* (H; 1, H,2,E;1,E;2) a plane wave on the cell
[jAz, (j + 1)Ax], the indices y and z being omitted for H and E respectively.

As a plane wave, V; writes A exp(iw(n + s)At +ijkAx) where A; is the amplitude vector,
i=+v—1,k= |k|, s = 0 for the electric components and s = % for magnetic ones.

By injecting the plane wave V; on the DG-P.. scheme we obtain the following system:

p; 0 0 0
2% . [wAt 0 w 0 0
A_t Sin (T) 0 0 Ej 0 Vj = P\[]7 (21)
0 0 0 ¢
with
0 0 s t
0 0 uw v
P= s t 0 0 |’
v v 0 O
sin(kA
s = W, t = (1 — cos(kAzx)),
3 —3isin(kAx)
U= 5 (2cos(kAx) —2), v= Ay

RR n° 4912



12 Canouet, Fezoui € Piperno

We calculate the eigenvalues of the matrix P using Taylor series expansion:

M/k =14 k>Az?/48 + O(k*Azt),
Ao/k = =1 — k>Az?/48 + O(k* Az?t),

As/k = 34 5k2A2%/16 + O(k* Az?), (22)
\/k = =3 —5k2Ax* /16 + O(k* Ax*).
Using the first two eigenvalues we obtain the following dispersive relation:
2 2 (14 12802 (2 4 L + O(k* Az (23)
w? =k“c 36152 x%) ).

where v = cAt/Az. Let us note that the eigenvectors corresponding to As and A4 tend to
¢(0,+1,0,+1) when Az tends to zero thus they are considered as spurious modes.

The same calculations driven for the two other directions of vector k lead to the following
dispersive relations:

2
K= (k| {(1,1,0): w? = [k|2? <1+|k|2Ax2 (”— 1) O(|k|4Aw4)>,

36 168
2 (24)
k= [k (L L1): w? = k2 (14 [k2A02 (2 = 1) + o(ktacY)) .
36 36
We recall the corresponding dispersive relations of the Yee’s scheme:
21
k = |k| %(1,0,0) : w? =|k[?c? (1 + |k|>Az? (% - ﬁ) + O(|k|4Ax4)) ,
2
k= [k 5(1,1,0): w? = k2 (14 [k2A22 (2 = 1)+ o(k[azh) ),
’ 36 24 (25)
k= k|t C2 = (B[22 o (V21 4N A4
=k (1,1,1) : w? = |k|** {1+ |k|*Ax 3% 3% + O(|k|*Az®) ).

The figures 2 and 3 show the second order term of the dispersion error of DG-PL, and Yee’s
scheme as a function of the Courant number v which is in [0, 0.65] for the first and [0, 1] for
the second scheme respectively. The results are normalized using the maximum error Yee’s
scheme has when k = |k| ¥(1,0,0) and v = 0.

Although this study is not as complete as with an arbitrary propagation direction k we
consider that the three directions we have chosen allow us to draw some conclusions. From
figures 2 et 3, one may retain that:

1. When v is maximum (in the limit of the stability of each scheme), the dispersion errors
of both scheme are comparable with a maximum of 0.67 for Yee and 0.64 for the DG
scheme.

INRIA



Discontinous Galerkin method for 8D Mazwell equations on orthogonal meshes 13

2. When v is small, this maximum increases for the Yee’s scheme while it is reduced for
our scheme which means that using small time steps will not damage its precision.
Thus one may conclude that we can still use the DG-P, with refined grids without
any local time stepping as it is the case for the Yee’s scheme.

The table 3 shows different minima and maxima, of the dispersion errors for the two schemes.

Maximum Error | Minimum Error
GD-PL,, | Yee | GD-P}, | Yee
Vmaz 0.64 0.67 0.07 0
Vmaz/Z 0.53 0.91 0.04 0.25
Umagz 4 0.51 0.98 0.06 0.31

0 0.5 1 0.07 0.33

Table 3: Maxima and Minima of the dispersion error for different values of v

111 ——
T1Q) -
100) ----
08 g
06 e
04 g
0.2\ —
0 | S ! |
0 02 04 06 08 1

Figure 2: DG-P}, : 2nd order term of the dispersion error as function of v for various k
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Figure 3: Yee : 2nd order term of the dispersion error as function of v for various k

We propose now to compare the phase error of the two schemes on refined grids. We
consider a domain composed of two adjacent cubic grids with space steps noted Az, 4, for
the fine grid and Az,,;, for the coarse one and set 1 = AZ ez /AZmin.

We choose a propagation direction parallel to (1, 0,0) axis and write the dispersion relation
for both schemes as a function of Ax,,;, :

1. DG-PL, scheme with v = 0.65
e Fine grid :

|
2 k122 (1 a2 (V2 47
o = Ik (14 A (5 + 57 ) + OkPAY).

e Coarse grid :

2

. . 1
2 _ 1122 (1 2a2 2 Y 2 44
o = ke (14 AT (57 + 51 ) + Okl A

2. Yee’s scheme with v =1

e Fine grid :

2 1
W2 = k22 (1 T kPA,,, (% - E) n o<|k|4Ax4>) ,

e Coarse grid with a uniform time step :

2 1
w? = |k|*c? (1 + |k|*A2? ,, n? (31(;? - E) + O(|k|4Ax4)> ,
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e Coarse grid with a local time step :

v 1

w? = |k|*c? (1 + |k|*Ax? ,, n? (% - E) + O(|k|4Ax4)) .
The same study is done with the propagation directions *(1,1,0) and ¥(1,1,1). Second order
terms of the dispersion error are reported on tables 4, 5 and 6 for two values of the refinement
rate (n = 4 and n = 10). We use the same normalization as table 3 based on Ax,,;, in the
both fine and coarse grids (i.e. we give (w? — |k[>c?)/(|k|*c? A% min/12)). Therefore, a term
n? appears in the second order error term on the coarse grid. This is the reason why it is
larger than the fine grid one. We indicate that the Yee’s scheme results with a local time
step are computed using the optimal value » = 1. One may retain from these results the
following :

1. In the directions *(1,1,0) and ?(1,0,0), the DG-PL. scheme is less dispersive than
Yee’s scheme with a local time step.

2. The comparison is clearly in favor of the Yee’s scheme in the direction ?(1,1,1). We
must note however that the results corresponding to the local time step case were
obtained using the optimal value v = 1 (which eliminates the second order term of the
dispersion relation in the direction (1,1, 1)) which is not always possible in practice.
Thus, it was reported in [4] for example that the CFL number has to be reduced
significantly as soon as the refinement rate exceeded the value 2. At the allowed values
of v, the dispersion error of the Yee’s scheme becomes comparable to the DG-PL, s

one.
DG-PL. | Yee with no local | Yee with local
time step time step
Fine grid 0.64 0.67 0.67
Coarse grid (refinement rate 1:4) 8,1 15,6 10,6
Coarse grid (refinement rate 1:10) 50,1 99,7 66,7

Table 4: Direction ?(1,0,0) : 2nd order term of dispersion error

RR n° 4912



16 Canouet, Fezoui € Piperno

DG-P., | Yee with no local | Yee with local
time step time step
Fine grid 0.07 0.16 0.16
Coarse grid (refinement rate 1:4) 1 7.6 2.67
Coarse grid (refinement rate 1:10) 7 49.6 16.7

Table 5: Direction £(1,1,0) : 2nd order term of dispersion error

DG-PL,, | Yee with no local | Yee with local
time step time step
Fine grid 0.19 0 0
Coarse grid (refinement rate 1:4) 5.2 5 0
Coarse grid (refinement rate 1:10) 33.2 33 0

Table 6: Direction ?(1,1,1) : 2nd order term of dispersion error

6 How to deal with non-conforming grids ?

Using P, approximation with a conforming mesh refinement is very efficient. Unfortu-
nately, this discretization is not able to handle non-conforming grids since many reflections
occur at subgrid interfaces and damage the solution. An alternative is to increase the or-
der of the approximation using P3.  for example. However, this approach will require a
larger number of degrees of freedom which will raise the CPU time and memory costs. We
propose to use P}, approximation in each volume except when this volume is inside the
coarse subgrid but has at least one face on the fine subgrid, see figure 4. In these volumes
we use a P%,  approximation. We name the resulting scheme P}, /P2. . We have observed
numerically that the stability condition is still given by v < 0.65 which is surprising since a
smaller bound is expected when increasing the degree of polynomials.
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sziv F%iliv

Figure 4: PL. /P2. : 2D non-conforming example

div div

7 Numerical Results

We present some numerical results to validate our method in various configurations. Fist
we want to test the ability of the DG method in long time simulations which point out the
phase errors. Thus we select the evolution of an eigenmode in a cube with non-conforming
mesh discretizations. We compare the computed solution to the analytic one and verify that
the discrete electromagnetic energy is conserved.

The second test case deals with the use and efficiency of the PML method in the version
presented above. A radiating dipole in the vacuum is simulated using uniform and non-
conforming refined grids.

The last case is more complex since it concerns the propagation of a gaussian incident wave
in a metallic shelter with a small aperture.

7.1 Resonant cavity

We compute the (1,1,1) mode which is a standing wave of 0.260 GHz frequency in a cube of
1 m of side. The central zone of the cavity is refined in a non-conforming way. The degrees
of freedom are initialized by the projection of the exact solution on the local basis functions.
The discretization used for the coarse grid is 15 points per wavelength. The rate between
the two grids is 10. Thus, the discretization of the fine grid is 150 points per wavelength.
We stop the simulation after 45 periods.

We plot on figure 5 the time evolution at a point of the coarse grid of the field E, on the last
5 periods compared to the exact solution. There is no dispersion whereas the refinement rate
is very high and the simulation is long. The figure 6 shows the discrete energy time evolution
in the whole cavity. As expected, there is no diffusion. We plot on figure 7 the solution at
the end of the computation projected on the coarse grid. One can see that computed and
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exact solutions compare very well.
These results are very good and show that the dispersion of the method is very small although

the refinement rate is high.

Figure 5: Field E,

0.4

0.4

T
Discontinuous Galerkin
Exact solution

45

46 47 48 49

50

: time evolution / Zoom on the last 5 periods / Refinement rate : 10

0.124925

0.124924

0.124923

0.124922

0.124921

0.12492

0.124919

0.124918

0.124917

0.124916

0.124915
0

T T
Discrete energy

10 15 20 25 30 35 40 45 50

Figure 6: Discrete energy
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Discontinuous Galerkin Exact solution

Figure 7: Approximate and exact E, fields (plane cut x +y + z = 3/2)

7.2 Radiating dipole

We compute a dipole located in some hexahedron 7; collinear with the z axis : j = £0,0,j:)

using the relation
ap

jz:_a
L=

and we choose the following gaussian pulse:

p(t) = 10" Pezp (— (t _T3T)2), (T = 2ns).

Assuming _f constant in 7;, it’s easy to check that

[ igs=0vizT,
T

T op
Jpir = 37
fien =5

7.2.1 Uniform grids : comparison between PML and first order condition

We first consider a computational domain of 40 x 40 x 40 cubic cells of size of 5 cm. This mesh
includes the PML layer which is eight cells large. Following Berenger [1], we use a parabolic
profile of the conductivity and a normal reflection parameter R(0) equal to 0.01%. The
results computed using PML are compared to those obtained using the first order absorbing
condition described in 2.4. We recall that the PML requires in the layer twice as much
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degrees of freedom as the Maxwell’s discretization. To compare, we consider a domain of
48 x 48 x 48 cells bounded by the first order condition. The size of the cells is always 5
cm. Thus, using either the PML or the first order condition results in the similar numbers
of degrees of freedom. We report on figure 8 the time evolution of the field H, compared
to the exact solution at a point located 10 cells away from the dipole and 2 cells from the
PML layer. Using PML, the result is in a very good agreement with the analytical solution
whereas reflections disturb the solution computed using the first order condition. To achieve
the same precision, we have to use a a computational domain of 60 x 60 x 60 cells. Then,
using PML is about 50% cheaper in memory requirement.

Discontinuous Galerkin with First order condition
Exact solution

Discontinuous Galerkin with PML
Exact solution

(a) First order absorbing condition (b) PML

Figure 8: First order condition vs PML : Time evolution of H, in a uniform grid

7.2.2 Non-conforming refined grids

We consider the same mesh as previously (40 x 40 x 40 cells including a PML layer of eight
cells) and refine locally in a non-conforming way a small zone of the grid (see figure 9) with
a refinement rate equal to 8. We show on figure 10 the time evolution of the fields H, and
E, at a point of the fine grid compared to the exact solution. One can see that the error is
very small although the refinement rate is very high.
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PML Layer

Vacuum
Radiating dipole

~Nonconformi ng refined grid

Figure 9: Diagram simulation

To show the amount of spurious reflections between the two grids, we plot on figure (11)
the time evolution of the discrete energy in the fine grid compared to its variation on an
equivalent uniform mesh. As we can see on the figure, the two energies are very similar
which means that the spurious reflections if they exist are very small.

Discontinuous Galerkin ——

Discontinuous Galerkin
Exact solution ------- Ex:

@ct solution ~------

(a) Field Hy (b) Field E,

Figure 10: Time evolution at a point of the fine grid : Refinement rate = 8
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Unilorn‘1 mesh
Refined mesh -------

Figure 11: Evolution of the discrete energy on the fine grid (refinement rate = 8) compared
to the uniform mesh

7.3 Shelter with an aperture

We consider a metallic shelter with an aperture located in the vacuum. The size of the
aperture is small compared to the wavelength A of the incident wave (see figure 12). The
incident wave is a gaussian. We report the results obtained with several discretizations:
a uniform coarse mesh, a coarse mesh with a non-conforming refinement (rate refinement
equal to 2) around the aperture and a uniform fine grid. More precisely, the characteristics
of the three simulations are

e Uniform coarse mesh (~ 15 points by A)

— 18 000 elements
— 108 000 unknowns
— Time step: At

¢ Uniform fine mesh (~ 30 points by A)

— 144 000 elements
— 864 000 unknowns
— Time step: At /2

e Non-conforming refined mesh (~ 15 points by A in the coarse subgrid, ~ 30 points by
A in the fine subgrid)

— 19 680 elements (17 760 on the coarse subgrid and 1920 on the fine subgrid)
— 119 496 000 unknowns (only 236 P2, elements)
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— Time step: At /2

Absorbing condition

Visudization point

Visudization point

Metallic shelter

4/3)\

3A
Figure 12: Diagram simulation

We report on the figure 13 the jump of the component H, on the surface of the shelter for
the three discretizations. We can see that around the aperture, the coarse mesh is not able
to compute accurately the solution. If we refine locally around the aperture, the results are
very similar to the results obtained with the fine mesh on the whole domain.
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Coarse mesha 108 000 unknows

[Hy] (A/m)

] Refined meshs 119 496 unknowns

2EE53

177508

[Xilenils o]

ODESAE2S
-DB7EETD

Figure 13: Jump of H on the shelter’s surface

We show on the figure 14 the time evolution of the component E, at a point outside the
shelter close to the aperture and at a point inside the shelter. The coarse mesh solutions are
again inaccurate whereas there is a very good agreement between the locally refined mesh
solutions and the fine mesh ones. The locally refined discretization is seven times less costly
than the fine mesh discretization.
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Fine mesh ~—-----

E2 (Vim)

03
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(a) Coarse mesh compared to fine mesh,
outside the shelter

Coarse mesh
Fine mesh ——-----
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(c) Coarse mesh compared to fine mesh,
inside the shelter
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Refined mesh —
Fine mesh -
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(b) Refined mesh compared to fine mesh,
outside the shelter

Refined mesh —
Fine mesh -

0 2e-08 4e-08 6e-08 8e-08 1e-07 12e07  14e07
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(d) Refined mesh compared to fine mesh,
inside the shelter

Figure 14: Time evolution of FE,

To show that the scheme is able to deal with high rate refinement, we propose to refine
around the aperture with a rate refinement equal to eight. Because we only increase the
degree of the approximation on the cells which belongs to the interface between the subgrids
and the coarse subgrid, the number of P2, elements is the same that the number required
with a rate refinement equal to two. This leads us to deal with 845 256 unknowns. Using
a fine mesh on the whole domain will lead to 55 296 000 unknowns which is far beyond the
computation power we dispose of. Thus, we can only compare the results obtained with the
refined mesh to the results obtained with the previous fine grid (~ 30 points by A, 864 000
unknowns). We report on the figure 15 the time evolution of E, at a point outside the shel-
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ter close to the aperture and at a point inside the shelter. The solutions are very comparable.

e Nonconforming refined mesh (rate = 8, ~ 15 points by A in the coarse subgrid, ~ 120
points by A in the fine subgrid)
— 140 640 elements (17 760 on the coarse subgrid and 122 880 on the fine subgrid)
— 845 256 unknowns (only 236 P2, elements)
— Time step: At/8

— Equivalent uniform mesh: 55 296 000 unknowns

Refined mesh — Refined mesh —
Fine mes h o Fine mesl p—

E2 (Vim)
€2 (Vim)

0 2e-08 4e-08 6e-08 8e-08 1e-07 12e07  14e07 0 2¢-08 4e-08 6e-08 8e-08 1e07 12607  14e07
Time (sec) Time (sec)

(a) Outside the shelter (b) Inside the shelter

Figure 15: Time evolution of E,, fine mesh compared to refined mesh: rate refinement = 8

8 Conclusion

We have described a fully explicit Discontinuous Galerkin method which has been applied
to solve Maxwell equations on both conforming and nonconforming grids. The scheme
conserves a discrete energy and is stable under a CFL condition. We have shown that
numerical dispersion errors do not increase significantly when using small time steps as it
is the case for FDTD schemes for example. The numerical experiments we carried out
revealed the high quality of the results together with the flexibility of the method allowing
us to mix different sets of local basis functions, to use PML or upwinding techniques at
absorbing boundaries and finally to use highly refined grids without a noticeable loss of
precision.
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