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Abstract: We show in this note that, under general conditions, any convex programming problem de-
pending continuously upon scalar parameters, and solvable for any value of the latter in a fixed compact
set, admits a branch of solutions polynomial with respect to these parameters. This result may be useful to
generate tractable approximations of robust convex programming problems with vanishing conservativeness.
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Existence de solutions polynomiales pour les problémes de
programmation convexe robustes

Résumé : Nous montrons dans cette note que, sous des conditions générales, tout probléme de program-
mation convexe dépendant continiiment de paramétres scalaires et soluble pour toute valeur de ceux-ci dans
un ensemble compact fixé, admet une branche de solutions polyndmiales par rapport & ces paramétres. Ce
résultat peut étre utile pour générer des approximations calculables de problémes de programmation convexe
robustes, ayant un conservatisme tendant asymptotiquement vers zéro.

Mots-clés : Programmation convexe robuste, Solutions polyndémiales



1 Introduction

In many practical applications of convex optimization, the data of the problem are subject to uncertainties,
measurement errors, modelling approximations. To find tractable methods permitting to take into account
these imperfections, is the goal of robust convex programming [3, 5, 8].

Previous recent works have extensively studied the basic robust convex programming problems, see [8]
for a recent survey. It has been established that the robust counterpart of linear programming is equivalent
to a standard convex programming problems, under usual constraints on the perturbations [3, 4, 8]. But in
general, this good news does not hold any more for quadratic programming and conic quadratic programming
problems [3, 7, 8], and for semidefinite programming problems [3, 8]. Indeed, except for special uncertainty
structures, these robust convex programming problems are NP-hard.

In these conditions, efforts have been made to exhibit tractable approximations of the latter. For quadratic
and conic quadratic programming problems [12, 7, 8] and for semidefinite programming problems [13, 5, 6, 8],
such an operation is possible, and in certain cases, astute computations even permit to estimate (from above)
some appropriately defined levels of conservativeness.

Yet, as satisfying as these progress may be, they do not offer, up to our knowledge, the possibility to
decrease, and asymptotically remove, the approximation error. In an attempt to progress in this direction,
we provide here a result on existence of polynomial solutions to general robust convex programming problems
depending on parameters. As a matter of fact, optimal solutions of the considered problem may be seen,
generally speaking, as functions of the parameters, with unprescribed regularity. Basically, the results to
be exposed below permit to “replace” this untractable unknown function by new unknowns: the degree and
coeflicients of the polynomial. Moreover, they ensure that the conservativeness of this procedure vanishes
when the degree increases. Thus, a natural next step to complete this procedure is to consider the theoret-
ically simpler problem, obtained when assuming polynomial dependence with respect to the parameters, of
the solution of the studied problem.

This idea has been applied to robust semidefinite programming. Based on a result on existence of
polynomial solutions for this type of problems [9], such an approach has permitted to construct explicitly
a family of standard semidefinite programming problems approximating with increasing, asymptotically
perfect, precision, a given robust semidefinite programming problem [10]. The previous family is indexed by
the degree of the underlying polynomial solution, and the coefficients of the latter may be deduced from the
solution of the corresponding linear matrix inequality. The results given in this note are indeed extension of
the work in [9] to general convex problems.

The central result presented here, Theorem 1, considers robust feasibility problem. It is afterwards
applied in Corollary 2 to the estimation of the worst-case optimal value of convex programming problems
depending upon parameters.

2 Main results

In all the paper, K is a compact set of R, and C a proper cone in R”, in other words a closed convex solid
and pointed cone. To C is associated as usual a partial ordering in R", denoted <¢: by definition

Va,o' eR", a<cd o —a€el.
We also consider the strict partial ordering associated to C:
Va,o' eR?, a<cad & o' —a€int C .

Such generalized inequalities satisfy nice properties, among which the following will be especially important
in the sequel:

For any sequence ap <¢ On, ap = Qoo = s <¢ 0 ,
and:
For any a <¢ 0, there exists ¢ >0, ||/, <e=>a+a <¢ 0y, .

The first result of the present contribution is the following.
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Theorem 1. Let G : RP x K — R™ be a continuous function, C-convex with respect to the first variable,
that is:

Vz,z' € R, V6 € K, YA € [0,1], G(Az + (1 — N)z',8) <¢ AG(z,68) + (1 — N\)G(2',6) . (1)
Assume that:
V6e K, 3z € RP, G(zx,6) <¢ 0, - (2)
Then, there exists a polynomial function x* : K — RP such that
V6 € K,G(z*(6),6) <c 0y, .

For fixed value of the parameter §, to find z € R? such that G(z,§) <¢ 0,, is a convex programming
problem. Thus, problem (2) is a robust convex program. Theorem 1 states that, under very general assump-
tions, solvability of the latter for any value of the perturbation vector § in K, is equivalent to existence of a
solution polynomial with respect to the components of 4.

Remark that no convexity or connectedness assumption is made on the compact set K.

Proof. We first show the existence of a certain a € int C such that
V6e K, {r e R : G(z,6) <¢c —4a} #0. (3)

Otherwise, for any a >¢ 0, there exists §* € K such that the previous set is empty. In this case, consider
8% an accumulation point of the sequence 6%, a — 0, and z° € RP such that G(z°,6°) <¢ 0,,. By continuity,
there exist points 6% a >¢ 0,, arbitrarily close from §°, and a® >¢ 0,, such that, say, G(2°, %) <¢ —4a®.
Thus, for such an a with 0 <¢ a <¢ o, we have z° € {z € R? : G(z,6%) <¢ —4a°} C {z e R? :
G(z,6%) <¢ —4a} # 0, so we are led to a contradiction. This establishes the validity of (3) for a certain
positive a € int C.

Now, for the vector a previously exhibited, define

F: K- 6-F6)={zeck : Gb) <c—2a} . (4)

Notice that the set-valued map F maps K into the non-void closed convex subsets of R?. As a matter of
fact, for any 6 € K, if z — z for a sequence z;, € F(§), then G(z,86) — G(zx,d) by continuity, and
G(T0,8) <¢ —2a, 80 T € F(6): the set F(8) is thus closed. On the other hand, C-convexity property (1)
implies that, for any § € K, any z,2' € F(§) and any A € [0,1], G(Az + (1 — N)z',8) <¢ AG(z,6) + (1 —
ANG(z',68) <¢ —2da — 2(1 — A)a = —2q, and this establishes the convexity of the set F(§).

At this point, let us establish that F fulfils the following property of lower semicontinuity, see e.g. [2].

Definition. Let X be a topological space, Y a metric space. A set-valued map F from X toY is said
lower semicontinuous at 2° € X if for any y° € F(2°) and any neighborhood N(y°) of y°, there exists a
neighborhood N (z°) such that

Vz € N(z%), F(z)nN(y°) #0 .

F is said lower semicontinuous if it is lower semicontinuous at every point z° € X. |

Let 8° € K, 2° € F(8°), € > 0. To prove lower semicontinuity of F' at §°, we exhibit 7 > 0 such that for
every § € K with [|§ — §°||,, < n, there exists x € F(6), ||z — 2°||, < e.
Indeed, by assumption, there exists %" € RP such that G(z° ,§%) <¢ —4a. For A € (0,1] such that

£

AL —————7 )
— 2||$§0 _$0||p 7 ( )

let o 9¢f (1 —X)z° + Az® . Tn particular, this implies ||z — 2°[|, = A|jz® — 2°||, <&/2 <e.
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The C-convexity property (1) implies that, for any n > 0 and every § € K,

G(z,8) <¢ (1—N)G(2°68)+ G ,6)
= (1-XNG(E,8) + G, 6% + (1- 1) (G, 6) - G2, 89) + X (G*",6) - G*", %))

0

<c —2(1-XNa—4a+(1-21)(G(°6) — G(z°,6%) + A (G(x5 ,6) — G(x5°,60)) )
For A fulfilling (5), one has Aa € int C. Thus, by continuity of G, for any ¢ > 0 and any A in (0,1]
fulfilling (5), there exists 17 > 0 such that

16 = 8%lm < 1= G(2°,8) — G(z°,6%) <c¢ 2Xa, G(z*°,8) — G(**,8°) <¢ 2Xar .

With this choice for 5, one has G(z,6) <¢ —2(1 + A)a + 2 a = —2a when ||§ — §°||,, < 5. Thus z € F(§),
provided that § € K and ||§ — 8°||,, < 7. We conclude that F is lower continuous at §°. This achieves the
proof of the lower semicontinuity of F' defined in (4).

We now apply to F' Michael’s Selection Theorem [14], see also [2].

Theorem (Michael’s Selection Theorem). Let X be a metric space, Y a Banach space. Let F, a set-
valued map from X into the closed convex subsets of Y, be lower semicontinuous. Then there exists f : X —
Y, a continuous selection from F'. |

Recall that a selection from F' is any single valued map f such that, for any z € X, f(z) € F(z).
Application of the previous result yields existence of a continuous selection f : K — RP from F' defined in
(4). This function is such that

V6 € K, G(f(6),6) <¢ —2a .

It remains to apply to each of the p components of f the following result, see e.g. [11].

Theorem (Weierstrass Approximation Theorem). Every continuous real-valued function defined on a
compact subset K of R™, is the limit of a sequence of polynomials, which converges uniformly in K. |

Thus, the selection f previously exhibited is uniform limit in K of a sequence of (vector-valued) polyno-
mials in é. In particular, there exists a polynomial function z* : K — RP such that

V6 € K, G(z*(6),6) <c —a <c Oy .

This achieves the proof of Theorem 1.
O

Theorem 1 is now applied to the issue of finding the worst-case optimal value of a convex objective under
generalized inequality constraints.

Corollary 2. Let G: RP x K - R", g: RP x K — R be continuous functions, C-convex with respect to the
first variable.
Then

sup inf {g(z,0) : = € R?, G(=,6) <c 0,}
s€K

= sup inf {g(z*(§),8) : z* polynomial , ¥§' € K,G(z*(§'),8") <c 0.} .
s€K

Proof. Let v def supscg inf{g(z,6) : =2 € RP, G(x,6) <c¢ 0n}, and assume that v < +oo (the case
~ = +00, which requires straightforward adaptations, is left to the reader). First, one has, for every ¢ € K:
inf{g(z*(6),6) : z* polynomial, V¢’ € K,G(z*(¢'),¢") <c 0,} > inf{g(z,6) : z € R?, G(z,d) <¢ 0,}, due
to the inclusion of the first set involved in the second one. Thus,

v < supinf {g(z*(6),8) : z* polynomial , V§' € K,G(z*(6'),8") <c 0} -
seK
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On the other hand, by definition, inf{g(z,6) : z € R?, G(z,6) <c 0,} < for every 6§ € K. Thus, for
any € > 0, for any § € K, there exists £ € RP such that G(z,6) <¢ 0, and g(z,8) < v+ ¢. In other words,
for any € > 0, the following parameter-dependent LMI is feasible:

7 g($76)_7_5 O1><n
V6 e K,z € RP, ( O 1 G(.Z',(S) <p+xc Ont1 -

Here, we denote by <p+yc the product order relation, defined on R**! by: (a,a) <g+xc< a < 0 and
a <¢ 0,. The cone Rt x C is proper in R**!, and, by use of Theorem 1, for any ¢ > 0, there exists a
polynomial map z¥ : K — RP such that

V6 e K, G(z:(6),6) <c 0, and g(z2(6),6) <~v+¢.
Thus, for any ¢ > 0, for every ¢ € K,
inf{g(z*(6),8) : z* polynomial, V§' € K,G(z*(¢'),8") <c 0,} < g(z2(8),8) <y +e¢,
so, for any € > 0,

sup inf{g(z*(6),6) : x* polynomial, V§' € K,G(z*(¢"),8') <c 0n} < Iénea}z’cg(x:(é),&) <7y+e.
feK

This results finally in:

sup inf{g(z*(8),8) : z* polynomial, V§' € K, G(z*(8'),8') <c 0.} <7,
sEK

whence the claimed equality. This ends the proof of Corollary 2. O
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