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Sur la positivité des polyndmes a valeurs matricielles et la
programmation semi-définie robuste

Résumé : Ce rapport est consacré i ’étude de la programmation semi-définie robuste. Nous montrons
qu’au probléme du calcul de la valeur optimale, dans le pire des cas, d’un programme semi-défini dépendant
de maniére polynoémiale de paramétres scalaires bornés, on peut associer une famille dénombrable de pro-
grammes semi-définis standard, dont les valeurs optimales convergent de maniére monotone vers la quantité
recherchée. Ce résultat est lié & une formule de représentation et & un critére de positivité pour les polynémes
& valeurs matricielles.

Mots-clés : Programmation semi-définie robuste, Inégalités linéaires matricielles



1 Introduction

Semidefinite programming has become a powerful unifying framework for expressing and solving many prob-
lems, especially in optimization and control theory [13, 6]. This class of convex optimization problems, solved
by efficient interior-point methods, has spread widely, see an up-to-date panorama of the theoretical, ap-
plicative and algorithmic aspects in [14]. Among other applications in control (where semidefinite programs
are often referred to as linear matrix inequalities, abbreciated LMIs), stability, stabilizability, detectability,
H? and H* performance analysis, and various related design issues may be stated as LMIs, see e.g. recent
progress in [7].

A natural extension was to introduce robust semidefinite programming, adapted to semidefinite program-
ming problems with data subject to uncertainties [3]. In the context of control [1], this type of problems ap-
pears for example when studying control techniques robust against parametric uncertainty, or gain-scheduling
methods, as these issues amount to check solvability of LMIs obtained for different values of some parameters.

Robust semidefinite programming is linked to a difficult problem of algebraic geometry, namely the
determination of extrema of multivariate polynomials. Recently, Lasserre [8] and Parrilo [10] have shown
independently that to every problem of the latter type may be associated a sequence of standard semidefinite
programming relaxations, whose optimal values converge monotonically to the requested worst-case optimal
value. Both approaches make large use of techniques and results of algebraic geometry. Solution of robust
definite programming problems with polynomial dependence of the parameters may be obtained as a by-
product of these results, basically adding the initial decision variables to the set of variables introduced in
the relaxed problems.

In the present paper, we present alternative method to solve the robust semidefinite programming method.
The result is similar in spirit, as it also provides a sequence of semidefinite relaxations of the initial problem,
with increasing precision. However, it is directly obtained from the matrix inequality, without introducing
additional variables to obtain scalar inequalities. Moreover, the proof is obtained by a completely different
approach, based essentially on Kalman-Yakubovich-Popov lemma. together with a result on existence of
polynomial solutions to parameter-dependent SDP problems taken from [4].

This report is organized as follows. In §2 are introduced useful notations. Positiveness of matrix-valued
polynomials is then studied in §3, where the key result is stated and proved (Theorem 2). It is shown in §4
how this result is linked to representation result for polynomial matrices (Theorem 5), in the same way than
the results by Lasserre and Parrilo are linked to representation of positive polynomials by sums of squares.
Last, Theorem 2 is applied to the issue of robust semidefinite programming in §5 (Corollaries 6 and 7).

2 Notations

The matrices I, On, Opxp are the n x n identity matrix and the n x n and n X p zero matrices respectively.
The symbol ® denotes Kronecker product, the power of Kronecker product being used with the natural
meaning: MP® def prv-v® @ a1, A key property is that (A ® B)(C ® D) = (AC ® BD) for matrices of
compatible size. The conjugate and transconjugate of M, are denoted M* and M*. The unit circle in C is
denoted as the boundary 0D of the unit disk, and the set of positive integers N. Last, the set of symmetric
real (resp. hermitian complex) matrices of size n x n is denoted S™ (resp. H™).

We now introduce more specific notations. For any [ € N, for any v € C, let
1
pndef | (1)
vlil

This notation will permit manipulation of polynomials. Notice in particular that, for a free variable z € C™,
the vector (z,[ﬁ R--® zgl]) contains exactly the I™ monomials in 2y, ..., 2,, of degree at most I — 1 in each

variable.
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Last, for any [ € N, let

def

& z def
JE @ 0, I F (O L) - (2)

The previous matrices are fixed elements of RI*(+1)

3 Positiveness of matrix-valued polynomials

Our first result, the key result of the paper, studies the following problem: for given map G(§) taking on
values in §”, and polynomial in the components of a vector § € R™, check whether:

V6 € [-1;+1]™, G(6) >0 . (3)
The polynomial G will be represented as follows. Let us achieve the change of variables

Z+Z

6:2

(4a)

When z covers (OD)™, then ¢ varies in the whole set [—1; +1]™. Without loss of generality, one may write

G(8) = G(%) =Mg 0 Mer) Mo oMol , (4b)
where k — 1 is the maximum of the degrees of G in the variables 6i,...,6,, separately, and where Gy, is a

fixed matrix in S¥” ", called the coefficient matriz of G. The expression of G}, in (4) may be deduced easily
from the similar expansion of G(6) in powers of 8§, see the Appendix, where the adequate techniques are
developed.

By (4), the initial problem has thus been transformed, without loss of generality, into checking whether

Vze D)™, (Mo . -0l )i (WM -0Me1,)>0, (5)

for a fixed coefficient matrix Gy, € S¥"' .
For | > k, define the coefficient matrices G; € S"" ™ by the following recursion formula:

def 1
G = 5 D, Um® @ h@L) Giln® @1 @) (6)
s

Recall that J;, J; are defined in (2). Before going on further, we clarify in the next result the link existing

between the matrix-valued polynomials (27[711] ® - ® zy] ®I,)" Gl(z%] ® - ® zy] ® I,) obtained for different
values of [ > k.

Lemma 1. For all 1l > k, for all z € C™,

1 2\ _
(zﬁ)@---@zi’]®In)HGz(z£9®---®z£”®fn)=H( o ) a5 - (7)
i=1
In particular, for oll 1 > k, for all z € (D)™,
Me-efon)cEls odlen)=c1). u
Proof. Due to (6) and the basic properties:
Yo e GV e N, ol = Jpltt gyl = Joltt1 (8)
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one has, for any [ > k,

e @M e L) G (e -0t T,
1
= o= 2, UndMeehdMeL) Gl e o nat L)
Ja€{Jy,J;},
a=1,...,m
1 . ,
= o 2 P aPrElle e dlen)Tadle -0l el
ja €{0,1%,
a=1,...,m
1 A
= 2—m(1+|2m|2) (+zaP) e 0l en)iaEle -0l e,

The claimed property (7) is then obtained inductively, and the second formula in Lemma 1 is deduced
immediatly. O

We are now ready to state the key result of the paper.

Theorem 2. Let G a polynomial mapping: R™ — S™ of degree at most k — 1 in each variable. Define
its coefficient matrices Gy, | > k, by the transformation (4) and the recursion (6). Then, the following
assertions are equivalent.

(i) Matriz G(6) is positive definite for any § € [—1; +1]™

(ii) There ezist | € N, | > k, and m matrices Q;; € SU=V™ 0y — 1 m, fulfilling the semidefinite

program:
F(m—1i T Fm—1i
G+ 3 (T @ Linn) Qua (A7 @ L,y
i=1
m T . (9)
Z (J(m R RJ_1® Ili—ln) Ql,i (Jl(:nl_z)@) QR J_1® Ili—ln) > 0pmp
i=1
Moreover, if LMI (9) is solvable for the index 1, then it is also solvable for any larger index. |

Theorem 2 provides a family of standard LMIs, indexed by the positive integer I, whose solvability is
sufficient to deduce (7). These conditions are more and more precise when [ increases. A capital property
is that they are “asymptotically necessary”, as property (i) implies solvability of the LMIs for large enough
values of [.

The LMIs above constitute a family of convex relaxations, computationally tractable, of the initial prob-
lem, which is nonconvex.

A central technique in Theorem 2 consists in achieving the change of variables (4), in order to take as
a departure the auxiliary problem (5), expressed with variables lying on the unit circle. In consequence,
Theorem 2, as well as other results in the present paper, may be extended along the same principles, in order
to check positiveness of polynomial matrices on sets different from a product of intervals or unit circles,
but which, up to polynomial change of variables, may be parametrized by a finite number of independent
variables lying on complex unit disks. To date, it is possible to consider sets such as the boundary of an ellipse,
the boundary of a hypersphere (using generalized spherical coordinates), or even spheres or hyperspheres
themselves (introducing a new complex variable lying on the disk to parametrize the radius). This artifice
permits some extensions of Theorem 2, without however attaining the powerfulness of the results by Lasserre
and Parillo.

Proof of Theorem 2. The converse implication (%) = (i) is the easy part of the proof. Indeed, right-
multiplying and left-multiplying both sides of inequality (9) by (z,[fm] ® - [” ® I,) and its transconjugate
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yields, after repeated use of formulas (8),

h<G@le -2dllen)igtle -l er,)
+3 (1-laP)EE e vl el o wdle L) Qu e ed e g wdleL) .
=1

This sense of the claimed equivalence is then deduced by letting |z;| = 1,4 =1,...,m, and using Lemma 1.

The principle of the proof of the implication (i) = (%) consists in “removing” one-by-one the m free
variables z; in (i), and “replacing” them by the matrix variable @Q;; in (4). The intermediate stage, where
the first ¢ free variables zi,..., #; have been removed and the corresponding ¢ matrices @;,1,..., &, have
been introduced, is called property (P;). The proof is organized in four steps that we now present.

1. The property (P;) is first defined, and it is shown that (i) and (i) are just (Po) and (P,,) respectively.

2. Departing from property (P;), Kalman-Yakubovich-Popov lemma is applied. It results in the sup-
pression of the free-variable z;;; and the introduction of a new matrix.

3. It is shown — using basically Theorem 4 below, a result on existence of polynomial solutions for
parameter-dependent LMIs established in [4] — that the previous matrix, which depends upon the remaining
free-variables z;yo,...,2m, may be supposed polynomial with respect to the latter and their conjugates.
Therefore, it may be represented by its coefficient matrix. This new constant matrix, denoted Q 41, is
precisely the (i + 1)-th matrix variable in the LMI (9).

4. Some matrix manipulations permit finally to establish that (P;) is equivalent to (P;41). At this
point, an induction demonstrates that (Py) and (P,,) are equivalent. This ends the proof of the equivalence
between (4) and (%). The fact that solvability of (9) for [ implies the same for larger value, is obtained as a
by-product of 3., see Remark 1 below.

e 1. Forie€ {0,...,...,m}, define the property (P;) as follows: 3 € N,I > k,3Qi1 € HU=D"n
IQui € HOD" 7T Y(zi40, .  2m) € (OD)™,

(Z%] R® zz[lJ]rl ® Izin)H G, +§ (j,(infjﬂ)@ ®Ilf—1n)TQl,j (jl(i”fjﬂ)@’ ® Iz:‘—ln)

i, . 5 T . . B
-y (J,(Tf’)‘g ®J_1 ® I,j_ln) Qu; (J}T{”‘g ®J_1 ® I,J-_ln) (zﬁ} ®--0d e I,,-n) > 0y, -
7j=1

Property (Po) writes
AeNI>kVze @)™, (Mo 0oL e 0o, >0,.

and it is thus clear, in view of Lemma 1, that (P) is equivalent to (5), and to the initial problem (3).

On the other hand, (Py,) is just the LMI (9) in the statement of Theorem 2, except that the matrices (Q;;
are not restricted to be real, but are allowed to be complex. In the former case, the matrices G; being real
themselves, one may indeed assume without loss of generality, that the J;; are real symmetric: otherwise,
one may consider their real part ... In brief, (P,,) is hence equivalent to solvability of (9).

At this point, it thus remains, in order to achieve the proof of (i) = (%), to demonstrate the equivalence
between (Py) and (Pm). In the sequel, we shall establish that (P;) < (Pit1) for any i = 0,...,m, this
leads by induction to the desired equivalence.

e 2. Now,

(z,[ﬁ ®---®z ® I,,-n) = (zLﬂ ®---®2, ® I,mn) M © L)

and

(Z[l] ® Ijin) = ( lIli1n ) = ( Tiin L )
o " 2 (N @ Iy zivt (La—nyiin — 2ip1t(Fim1 @ Iiy)) ~ (fimr ® L))
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where the matrices F; € R™*!, f; € R*! are defined by

def le(lfl) 0 ) def ( 1 )
= , = .
! ( Ly Op-1yx1 f O-1)x1

Indeed, to establish the previous identity, it suffices to verify that
(Tu=1yiin — 2zig1(Fio1 © Iiy)) (21[5:11] ® Liin) = (fi-1 ® Liip) »

which is straightforward, as (I;_; — vFj_1)vl'~1 = f,_;, for any complex number v.

At this point, recall the discrete-time version of Kalman-Yakubovich-Popov lemma. This fundamental
result, initially due to Yakubovich [15] for the continuous-time case, has been adapted to discrete time by
Szegd and Kalman [12]. We use the statement as expressed e.g. in [11]. A proof of the result in the complex
case (and for the continuous-time case) may be found in [9, Theorem 1.11.1 and Remark 1.11.1].

Lemma 3. Let F € CP*P, f € CP*9, M = M ¢ Clatp)x(a+p) | [f det(I, — 2F) # 0 for any z € 9D, then
the following are equivalent.

(i) For any z € 0D,

I # I
P P
< (a,tr1g) (e, g
(i) There exists Q € HP such that

Opre <(f F)'Q(f F)= Oy L) QOpxqy L)+M. ™

Putting p = (I — 1)l'n, ¢ = I'n, F = Fi_1 ® Ijip,, f = fi_1 ® I}i,, in the previous statement, we recognize:
(f F)=Ji1®Lin, (Opxg Ip) = Ji1® I, ,

and this yields equivalence of (P;) with: 31 € N,I > k,3Qi1 € HU=DTn L 3Qr, € HU=1)m Ty
v(zi+27 Tt zm) € (aD)m7i717 3Ql,’£+1(z’t+27 D zm) S H(l*l)l1n7

)

(o odl,@hum,) |G+ 3 (9 @ Lyen) Qg (FTI2 0 1)
j=1

i
_ z (jl(inl—j)‘@ ® jl,1 ® Ilj_ln)T Ql,j (jl(inl—j)® ® jlfl ® Ili—ln) (z%] R ® zl[:]_z ® Ili+1n)
j=1

A T . N . T ~ .
+ (J,_1 ® Ilin) Qript (JH ® Ilin) — (e ® L) Quiss (Jict ® Lin) > Opisryy . (10)

e 3. The next step consists in assigning polynomial form to QNM_H. This is done with the help of the following
general result, borrowed from [4].

Theorem 4. Suppose Gy, G1,...,G, are continuous mappings defined in a compact subset K of R™, and
taking values in S™. If, for any § € K, there exists a solution x(§) € RP to the parameter-dependent LMI

3z € R, G(z,8) & Go(6) +21G1(8) + -+ 2,G,(8) > 0, (11)

then there exists a polynomial function z* : K — RP, such that, for any 6§ € K, G(z*(6),6) > 0. [ |
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Notice that any LMI depending upon a finite number of scalar parameters may be put under the form
(11). ~

By use of the previous result, Qp ;41 (%42, - .., Zm), being solution of a LMI with parameter in the compact
set (0D)™~i~1 may be chosen polynomial in its variables and their conjugates. Let [ — 2 be its degree. If
[ <1, then one may write

~ _ H o —
Qui+1(zit2,.- -5 2m) = (zgfl] ®---® zz[l+21] ® I(lfl)lin) Qui+1 (Z% g Zz[{ml] ® I(l—l)l"n) , (12)

for a certain coeflicient matrix Q41 € HU-D"
Otherwise, we show now that, up to an increase of I, the degree may be supposed the same, so the

previous formula still holds. For this, let us form, for j =1,...,4, the matrices
def 1 T
Qi = 5 > (Jmn @@ N QIn) Qui(Jm @@ 1@ 1),

Ja€{J, I}, a=1,..,j—1
Ja€{Jj_1,J7_1}, a=j,...,m

and
~ def 1 T A
Quititt = g > i1 ®-- @1 ® In) Quit1(Jit1 @ - @1 ® 1) . (13)
Ja €{J, 01}, a=1,..,i
Jip1€{S_1,91_1}
By construction, the matrix Ql+1,i+1 has the same degree | — 2 in zjyo,. .., 2Zm, Zit2, - - - , Zm than Ql,i+1-
Denoting for short R; the left-hand side of (10) and R;;; the analogue expression, obtained with the defini-
tions of Qi41,5, j = 1,...,4 and Q41,41 given above, and with the definition of G4 given in (6), we will
now show that
1 T
Rip = 5y > (Ji1®@ QN @ L) Ri(Ji1®--- @ 1 @ I,) . (14)

JQE{jl,jz}, a=1,...,i+1
First, taking into account the fact that
Vi e N, jle_l = jljl-|-1; leH—l = Iljl, lel-I-l = Iljl , (15)

one gets, for Q;41,; defined previously:

(G @ Iggayi1n)  Quing (F Y © Lygayiman)

1 Sm— i
= om > OO Qi (T @+ @ Ty @ LT ™ T2 @ 41)im1,)
Ja€{J;,J;}, a=1,...,5—1
Ja€{Ji_1,71_1}, a=j,....m
1 P
= om Z ()T [(_)TQl’j(Jl(inl J+D® QLi-ip)| (Jn®@- @11, . (16)
Jae{.fl,jl}, a=1,....,m

Here and in the sequel, the dots in the formulas stand for terms ensuring the symmetry of the expressions,
and which are not repeated for sake of space. The same argument applied to the terms (Jl(inl_J )® J-1®

Ilj—ln)TQl,j(jl(:nl_j)g) ® Ji—1 ® Ii-1,,) in (10), shows that formally, both may be treated as the term in Gj
(as formula (16) is formally identical to the relation (6) linking G; and Gy41).
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We may now consider all together the terms under brackets in (10), writing for simplicity only the term
in G;. Arguing as in 1., one shows based on formulas (6) and (8), that for any z € (0D)™

H
(Z%+1] ®---Q ZZ[_:—;] ® Ili+1n) Gi1 (ngl] ®---® Zz[{:_zl] ® Ili+1n)

- 2% Y () 0TG- e neL) (e e 6 L)
s
= QLm Z |zm|2jm._.|zi+22ji+2 (_)HGZ(Z%]@)“‘@zz[ﬂ.z@Jz#l®"'®JI®In)

Ja€{J},J1}, a=1,...,i+1
ja€{0,1}, a=i+2,...,m

= 21.11 3 (.)HGZ (z%]®---®z,[12®Ji+1®...J1®In)
Jo{Ji, i}, a=1,..,i+1
= 2;_1 Z ()T ()HGZ (zyn] & ---®Zl[{|]_2 ®Ili+1n) (Ji1 ® -1 ®1I,)

Ja E{jl,jz}, a=1,...,i+1

In order to establish (14), it now remains to consider the last two terms of (10), involving Q;;41. Using
(15) yields

(jl ® I(H_l)en)T Qz+1,i+1 (jl ® I(l+1)"n)

1 ~
= F Z ( ) ( ) Ql z+1( i1 Q- ® J1 ®In) (Jl (4 I(l+1)in)

Ja€{J1,J1}, a=1,...,i
Jiv1€{J_1.01_1}

1 ~ o
= 2u1 Z ()" (-)TQl,i+1 (szl ® Ilin) (Ji1®---01®1,),

Joe{J, i}, a=1,...,i+1

and a corresponding identity holds for (J; ® I(l+1)in)TQ~l+1’i+1(jl ® It1yin)-

Finally, putting together the previous technical developments establishes identity (14). From this identity,
one deduces that Ryy1 > 0 whenever R; > 0: a new solution of (10) may thus be constructed, with [ replaced
by I + 1, and for which Ql+1 i+1 has clearly the same degree [ — 2 in the variables Zi42; - -+, Zm and their
conjugates than Ql i+1 (see formula (13)). Hence, one concludes that, up to an increase of [, there is no loss
of generality in assuming that { = in the decomposition (12) of Ql it1-

Remark 1. Applying the previous argument to (P,,) proves that solvability of (9) implies the same property
for the larger values of the indez.

To summarize, it has been established until now that (7;) is equivalent to: 31 € N,I > k,3Qi1 €
HED™ L 3Qui € HEED T V(zi4a, .., 2m) € (OD)™ L,

H i . T . .
Opit1n, < (zr[g ®-® ZE{I]—2 ® IlH'ln) G+ Z (Jl(inl_J-l—l)@ ® Ilj_ln) Ql,j (Jl(inl_'H—l)® ® Ilf—ln)
j=1
7

- z (jl(infj)@) ® jlfl ® Ilj—1n)T Ql’j (jl(:nfj)(@ ® jlfl ® Ilj—ln) <z£,ll] R---® zl[:]_z ® Ili+1n)

=1
~ T _ ~
+ (Jl—l ® Izin) (zgfl] @ @2 ® Ii_nin ) Quitr ( Ig..0dle I(lfl)l"n) (Jl—l ® Izin)
—(Ji-1® Izin)T (z,[,’fl] Q- [l !l 2 ® Iy _1)iin ) Quiv1 ( M. [l e Ig 1yin ) (Jio1 ® Iiy)
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e 4, It remains now to achieve some matrix intervertions in the last two terms of the previous inequality.
Using the following formula (obtained with the help of (8)):

(e e AR @ L) (1@ I,,-n)
= <I(l,1)m—i—1 ® jl,l ® Ilin) (zgfl] ® - z[l+21] ® Ili+1n)

(jl(inlfz’)@) ®Ilin) (zm R ® zz[{]m ® Ili+1n) ,

and similarly:

(oo el @ I ) (s ©11)

= (jl(inlfifl)(@ ®J1® Izin) <Z£g ®--0d, Izi+1n) 7

one finally proves that (P;) is equivalent to: 31 € NI > k,3Q;; € ’H(l’l)m",...,EIQl,Hl € H(l’l)m_ili",
V(zit2, .- 2m) € (OD)™ 171

i+1
(ZLI]] R ZE{']Q ® Ili+1n)H Gy + ZE ( m—j+1)® ® Ilj_ln)TQlJ. (jl(Tl_j+1)® ® Ilj—ln)

i+1
- Z (Jl(inlij)(g’ ® jl—l ® Ilj—ln) Ql] ( (m e ® Jl 1 ® Iy 1n) (zﬂ X Zz[:]_2 ® Ili+1n) > Oji+1y,

Jj=1

One recognizes property (Pit1). In other words, (P;) < (Piy1) for alli=0,...,m — 1,50 (Po) & (Pm).
This achieves the proof of Theorem 2.
o

4 Representation results for matrix-valued polynomials

In the same fashion that the results by Lasserre and Parrilo are closely related to representation result
for polynomials (as sums of squares), Theorem 4 is sustended by a representation result, for matrix-valued
polynomials of complex variables.

Theorem 5. Let function é(z) : C™ — H™ be polynomial of degree k — 1 in z,Z, and such that
Yz e (D)™, G(z) > 0,

Then, there exist an integer | > k, a positive definite matriz R; € H'" ™, and m polynomials matrices Q;(z, )
taking values in H™, such that Vz € C™,

m 1 m ~
=l arppy [Eiee AoL) R oo oL)+ 3 1 -z 2)
7 =1

i=1
|
Proof. There exist an integer k and G € H¥"", such that G(z) nay be represented, for any z € C™, as
(z,[ﬁ] ®-- [k] QL) Gr(z Me.. ®z£ ]®In). Arguing as in the proof of Theorem 2 and defining GreH™™,
l >k, asin (6)', one shows that Vz € (D)™, G(z) > O, if and only if there exist I € N and m matrices
Qi € HEEVTT T n i — 1 m, such that

P i (jl(le—m)@ ® I,i_ln)T Qus (jl(le—m)@ % Izi—ln)
1

o
Il

5 T (i §
(J(m € © Jio @ Ili—ln) Qui (Jl(:nl Peodae IZH") > Otmn
- INRIA

'M§
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(compare with (9)). Right- multiplying and left-multiplying, as in the beginning of the proof of Theorem 2,

both sides of this inequality by (zm [l] -® zyl ® I,,) and its transconjugate yields, for any z € C™,

Mo -0l L)RENe 0 loL) =M -0l eL)G:le -0l eL)
+3 (-l e el Med) @ odle L) Qi Ve 0l e 0 0dleL,) .
i=1

Using formula (7) in Lemma 1 then permits to end the proof of Theorem 5. O

5 Robust semidefinite programming

Application of Theorem 2 to robust semidefinite programming problems is direct, due to the fact that the
coefficient matrices defined in (6) are then affine with respect to the decision variables.
The first application concerns robust feasibility.

Corollary 6. Let Gy,G1,...,G, be polynomial mappings: R™ — S™ of degree at most k—1 in each variable.
Define their coefficient matrices Go, Gy, --- , Gpi, | > k, by operations similar to (4) and (6). Then, the
following assertions are equivalent.

(i) There exists © € RP such that

G(z,6) T Go(6) + 21G1(6) + - -~ + 2,G,(6) > 0y, .

(it) There exist x € RP, 1 € N, | > k, and m matrices Q;; € Su=nme

LMI:

" i =1...m, fulfilling the

Gog+71Gryg+ -+ 2,Gpy + f: (J,(f‘l"'“)@ ® I,i_ln)T Qui (jl(f’l"'“)@ ® I,,-_ln)
i=1
- f: (jl(inl_i)@) ® jl,1 ® Ili—ln)TQl,i (jl(inl_i)(g ® jl,1 ® Ili—ln) > Opmy . (17)

Moreover, if this LMI is solvable for the index 1, then it is also solvable for any larger indez. [ |

The proof of Corollary 6 is immediatly deduced from Theorem 2. The latter result provides a sequence
of (more and more precise) inner approximations of the set {z : V6 € [-1;+1]™,G(z, §) > 0,}.

The next application concerns robust evaluation of the worst-case optimum under LMI constraint. For
any positive integer I, define 1; € 8! by

1
1141 d:ef2—m § Un®- @S L) 1)(Jp®--- 01 ®1,), 1; =1.
Jae{-]l Jl}

a=1,...,

Corollary 7. Let Gy,G1,...,G, : R™ — 8™, resp. go,.--,9p : R™ — R, be polynomial mappings of degree
at most k — 1 in each variable. Define their coefficient matrices Goi, Gi,4, ---, Gp,i, T€sp. go,i, 91,1, ---

9pi, L > k. Let g(z,6) def 90(8) + z191(8) + - - - + 2p9,(9), and define the, possibly infinite, constants v, and
Vs l > k; by

ef

oo @ inf{y e R : 3z € R, V6 € [=1; +1]™, G(2,6) > On, g(z,6) < 7} ,

v ¥ iy € R ¢ 3p € R, 3(Qui, qr) € STV Ty SUDmTRIET gy,
such that (17) and (18) hold} ,
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where
meo, . i1 T . i1
vl — gog —T191,0 — ' — TpGp,l + Z (Jl(inl_H_ )® ® Il(i—l)) qii (Jl(inl_H_ )® ® Il(i—l))
i=1
m R . . T R . .
- Z (Jl(inl_l)(Eb QR J_1® Il(i—l)) qi,i (Jl(inl_z)@) ®J_1 ® Il(i—l)) > Opm . (18)
=1

Then, the sequence 7y, | > k, is nonincreasing and its limit is equal to Yoo - |

Proof. We assume that all the constants v, v, [ > k, are finite, otherwise feasibility does not hold and
Corollary 6 applies.

To show that v; > v, I > k, we use the same techniques than to prove (i) = (i) in the beginning of
the proof of Theorem 2: right-multiply and left-multiply inequality (17) (resp. (18)) by (z%] ®--® zgl] ®I,)
(resp. (z%] ®-Q® zyl)) and its transconjugate, to obtain: Vz € C™,

On < (W@ @ @I) (Goy+ 321G+ +2,Gp)) M -2 eI
m
+3 - laP)EE e el Vel 00 e L) QG e e Ve d) e el el

i— i—
i=1

and
0<(llo--- zy] ® L) (Y1i — gog — w1910 — - — wpgpr) (M @ ® zﬁ” ® Ip)
+ i(l —aP) e zElil] ® zz[lll ® - ® zy])qu,i(z%_l] ® - ® zz[lfl] ® zz[lll ® - ® zy]) )
i=1
Taking |2;| =1,i=1,...,m, and using Lemma 1 gives finally:

Vé e [_1§ +1]m7 Go(6) + 21G1(6) +--- + prp(‘s) > 0p, 90(6) +2191(6) +---+ .'I:pgp((S) <7.

Thus, for any real 7, v > ; implies that v > v, and this proves that v, > Y-

Monotony of the sequence v, [ > k, is obtained by using techniques similar to the point 3. in the proof
of Theorem 2: one shows that, if (v, 2, Qu,,q,;) constitute a solution of (17), (18), then (v, =, Qi+1,i, di+1,i)
solves the same inequality with index [ + 1, where

f 1
Qit1,5 L > Jn® @ ®L)Quj(Jm® & J1 ®I),

am
Ja €{J},J1}, a=1,...i-1
Ja€{Jj_1,J1_1}, a=i,...m

def 1
a1 = om > (Jm @0 J1) ' qj(Jm®---®J1) .
Ja €{J, 01}, a=1,...i—1
Ja€{J)_1.J1_1}, a=i,..m

To show finally that v; tends towards v, let € > 0. By the very definition of 7, there exists x € RP
such that

G(l’ (5) Onxl

Vo € [-1;+1)™ ’ .

E[ 7+] :(len ’700+5—g(-'15,6) >0n+1

Corollary 6 then ensures existence of a solution to (17), (18) with ., + € instead of v, for a certain value of
[ > k. For this value of [ and beyond, one has v; < 7o + €, so liminf y; < . From the properties of the
sequence ~; previously demonstrated, one concludes that lim; = 7, and this ends the proof of Corollary
7. O
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A Appendix

We indicate here how to obtain decomposition (4). A natural representation for a matrix-valued polynomial
G(6) : R™ — RP*™ ig

G =Gl a8l er,), (19)

for a certain matrix G; € RP*!" ", The effect of the change of variable (4) is then summarized by Lemma 8.

Lemma 8. Let G; € RP*'" " then

Zm + Zm g 21+ 2z g [l] [l
G, (T) ®---®< 5 ) oL | =lg--- L)IG e -0 0l,),

where the matriz Gy € R P is given by the formula

f
Gl d:e Z (Ll,am ®-®Ljg, ® Ip)TGl(Kl,am ®--®Kia, ® I”) ’
0<a;<Il—1
in which
e the matrices K; , € R>*! gre defined by: (Kia)ii-a = 2771C2 |, with cy dlef Wla)' ifi>a>0,
C¢ =0 otherwise;
e the matrices Ly,o € R'*! are defined by: Lia = (Oixa 1 O1x(—a-1))- [ ]

Proof. One may check that K, defined in the statement is such that Vv € C,

Mmoo
( ) Zv K, av
Thus,

= [ =\ U
G’((W) ®®<¥) ®1n>

= Y . GiKie, ® 9 K00 91, .
0<ai<i—1

The conclusion then follows from the fact that Vo € C, v* = vooll] = Ll,av[l]. O
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