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Influence d’une condition d’interface et linéarisation
exacte dans les itérations de Newton pour des
écoulements diphasiques en milieu poreux hétérogénes

Résumé : Les hétérogénéités de bloc ont une influence importante sur 1”écoulement et
le transport multiphasique a 1’échelle macroscopique en milieu poreux. On s’intéresse
particuliérement & la mise en ceuvre numérique d’une condition d’interface entre deux
matériaux différents, ainsi qu’a I’amélioration de 'efficacité du solveur non-linéaire a
I’aide d’une linéarisation exacte.

Mots-clés : écoulement multiphasique, systéme hétérogéne, solution numérique,
condition d’interface, solveur non-linéaire
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Notation

Roman

B; control volume, box for vertex v;
dyx NEWTON direction

dtscale scaling factor for time step

e element

E set of elements

E; set of elements adjoined to vertex v;

f right-hand side for Jacobian system

F defect term

F equation system

g gravity vector [m/s?|

gk direction of the gradient

G domain of interest

kra relative permeability of phase a [—]

K intrinsic permeability scalar [m?]

K intrinsic permeability tensor [m?], matrix for Jacobian system
Kr tangent element matrix

l counter

Nys number of line search steps

Nphas number of phases (here equal 2)

n normal vector for box face at integration point

N; shape function of vertex v;

P pressure [Pal]

De capillary pressure [Pa]

Dd displacement pressure, Brooks—Corey parameter [Pa]
De entry pressure; capillary pressure of the biggest pore [Pa]
q number of actual line search

o source term for phase o [m?®/(m? - 5|, specific flux [m/s]
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S saturation [—]

S, effective saturation, S, = % [—]
Sy residual saturation [—]

Sy total liquid saturation [—]

t time [s]

u vector of unknowns for Jacobian system, corrections for primary variables
V; vertex 1

v Darcy velocity vector

V set of vertices

W; weighting function for vertex v;

x spatial variable [m]

X vector holding the primary variables

xF barycenter of element e,

Y spatial variable [m]

z geodetic height [m]

Greek

o subscript indicating an arbitrary phase;

I} constant for the NEWTON method

bij Kronecker’s delta (= 1 if ¢ = j; = 0 else)

Ah grid width |m]

At numerical time step |[s]

€lin accuracy of the linear solution in the NEWTON method

€nl accuracy of the nonlinear solution in the NEWTON method

fyf;Ue’ integral over sub-control volume face between vertex v; and vertex v; in
Element ¢;

r Boundary between two subdomains of G

I'p, integration path around control volume B;

Lop Dirichlet boundary

Lo n Neumann boundary
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n damping factor for the NEWTON method

A Brooks-Corey parameter [—|

Ao mobility of phase a [(ms)/kg]

w dynamic viscosity [kg/(ms)]

p density [kg/m?]

o) porosity [—]

0 total potential [Pa]

Ok angel between NEWTON direction and gradient

Subscripts

G; belonging to subdomain G;; e.g. =g, € G; or p|G; for the pressure in subdo-
main G;

) index; counter

it initial

J index; counter

k index; counter

l index; counter

n non-wetting phase or NAPL phase

t total

w wetting phase or water phase

Superscripts

k time step

r iteration step

Abbreviations

BC Brooks—Corey

BOX box method
DNAPL non-aqueous phase liquid denser than water

FE finite elements
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FU fully upwind

FV finite volumes

FUB fully upwind box method (fully upwind finite volume method)

I1LU incomplete decomposition solver

1 nvﬁj inverse capillary pressure saturation relationship for subdomain G;
NAPL  none-aqueous phase liquid

PPS Phase Pressure Saturation (formulation); usually p,, — S, formulation

PPSIC Phase Pressure Saturation (formulation) with Interface Condition; usually
Pw — Sp formulation with extended capillary pressure equilibrium condition

REV Representative Elementary Volume
VG van Genuchten

INRIA



Interface Condition with Exact Linearization 11

1 Introduction

Groundwater is an essential element of the hydrological cycle. It is the most impor-
tant contribution to drinking water supply in many countries all around the world.
Pollution of groundwater resources can therefore seriously endanger lives. Thus it is
very important to determine flow and transport paths in the subsurface. The tools for
prediction are numerical models.

The subsurface hydrosystem is a multiphase system consisting of groundwater, soil air
and often also pollutants which are not soluble in water and thus form an extra phase
(NAPLs: Non-Aqueous Phase Liquids). The flow and transport processes take place
at different scales ranging from the microscale and the pore scale to the regional scale
at which whole groundwater reservoirs can be considered.

On all scales strong spatial variations of material properties may occur. These have to
be taken into account when modelling flow and transport phenomena in the subsurface.
Macroscale heterogeneities, which will be the topic of this work, have to be taken into
account very carefully as they have an enormous influence on the flow and transport
behaviour. Besides describing the mere physical dimensions and properties of a block
heterogeneity, the interface between the media with different properties has to be duely
considered. A physically correct description of the entering and leaving of the different
rocks has to be provided and moreover a good performance of the numerical scheme
has to be ensured.

To represent the flow and transport processes between two different types of rocks in
a physically correct manner, MOLENAAR and DE NEEF have developped an interface
condition to ensure that the non-wetting phase cannot enter a less permeable material
until the physical conditions for the entering (sufficient entry pressure) are reached,
see |6]. This interface condition (or transition condition which is used synonymously
with interface condition in this thesis) is explained in Section 3.5.

JAKOBS et al. investigated the performance of the numerical simulator MUFTE-ug us-
ing the BOX scheme with the interface condition given by MOLENAAR and DE NEEF
[16]. Comparisons with computations carried out without using the interface condi-
tion showed, that the transition condition is efficient under certain conditions, but
encounters problems under special circumstances (steep relative permeability - satura-
tion relationships), see Figure 1. In this figure, k., represents the relative permeability
of the wetting phase, k,, that of the non-wetting phase. The numbers, 0.25, 1.0, and
4.0 on the labels on the relative permeability curves indicate the steepness of the re-
spective function at saturation equal 1, which proved to be the crucial point for the
performance of the scheme.

To cope with these difficulties and to improve the performance of the code with the
transition condition the idea was to combine the interface condition with an "exact"

RR n" 4903
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linearization of the partial differential equations (PDE’s). The derivation of the global
algorithm and matrices is described in HELMIG (1993) [11].
The aim of this Master’s Thesis is

1. to correctly represent the processes at the interface between different rock types
by using a special interface condition,

2. to combine this interface condition with a consistent linearization of the partial
differential equations,

3. to implement it into the MUFTE code,

4. to compare the performances of the newly developped numerical scheme with
those of existing numerical schemes (numerically linearized BOX scheme without
and with the interface condition) and

5. to apply them to some theoretical and practical examples.

In Chapter 2 the fundamental definitions needed for the mathematical model devel-
opped in Chapter 3 are explained. Depending on this mathematical model the nu-
merical model described in Chapter 4 is derived. Finally, the numerical scheme is
applied to principle and realistic 1D and 2D examples and the performance of the
new scheme is compared to the performances of other current schemes (Chapter 5).
Proposing a possible amelioration stategy in Chapter 6 we conclude with some final
remarks (Chapter 7).

INRIA
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Figure 1: Performance of the code using the interface condition (PPSIC, phase pres-
sure saturation formulation with interface condition) in comparison with the common
method (PPS, phase pressure saturation formulation without interface condition). [15]
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2 Fundamental Principles and Definitions

Basic definitions concerning scale and parameters are presented first. The selected scale
determines which physical processes are taken into account. On the molecular scale
single molecules are considered. These are decisive for fluid properties such as viscosity,
density, and interfacial tensions. By averaging over a large number of molecules, we
reach the continuum scale. The consideration of a continuum will be persued in the
following. On the micro scale discontinuities at interfaces between different phases can
be detected. Thus, at one point in space, exactly one phase is present. When talking
about the macro scale, the micro scale properties are averaged over a representative
elementary volume (REV). This leads to new parameters like porosity or saturation
with new equations. If we consider one of these parameters, e.g. porosity, it becomes
obvious, that if we choose a small averaging volume it might well lie either totally
within solid rock or totally within the pore space, i.e. ¢ = 0 or ¢ = 1. Enlarging this
volume we will encounter oscillations starting from extreme values and stabilizing at a
more or less constant value, see Figure 2 left hand side, until larger scale heterogeneities
are included into the averaging volume. The REV is the minimum volume for which
the averaging parameters remain constant for the first time when further enlarging
this volume, see Figure 2, right hand side (from [16]). The inclusion of larger scale
heterogeneities leads to derivations from this constant value. The consideration of
macro scale heterogeneities and thus the concept of the REV will be essential in this

work.
’ . P=P+p
1: small averaging
| volume: =0
/ 2: larger averaging ;

volume in a

homogeneous .
medium: @ o Qo

; v,V
o1 volume V
um mm m km
sub-REV-scale heterogeneities super-REV-scale heterogeneities

boundary layer block heterogeneities
single pores geological structures

=]

minimum REV length scale

physical property P
e.g. porosity

Figure 2: Definition of the representative elementary volume (REV)

Before discussing the mathematical model the relevant parameters for the macro scale
have to be defined. The saturation of phase « is defined to be the ratio of the volume

INRIA
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non-wetting
phase

wetting
phase

a
SSSS S S S S

Figure 3: Definition of the the terms wetting and non-wetting fluid, respectively

of fluid o within the REV to the volume of the pore space within the REV:

¢a(z, 1)
Salz,t) = ———=.
(z,1) p
For saturation and phase porosity the following relationships are valid:
Nphas
> S, =1 for 0<S5,<1,
s (1)
X 9a=¢ for 0<¢q <9,
a=1

where nppqs is the number of phases in the model.

Another item to be discussed here is capillarity. Capillary effects are caused by cohesion
within one phase and by adhesion between two different phases. These forces result
in a wetting angle when two phases meet at an interface and a discontinuity of the
pressure. The difference between the two meeting phase pressures is referred to as the
capillary pressure

De = Pn — Pw; (2)

where p,, is the pressure of the non-wetting and p,, the pressure of the wetting phase
respectively. The fluid with a boundary angle o < 90° is referred to as the wetting fluid
with respect to the solid phase, the fluid with an obtuse boundary angle 1 — a > 90°
is the non-wetting fluid, see Figure 3.

The microscale approach according to [12] shows that if a water-saturated soil is infil-
trated by NAPL, the wetting phase retreats to smaller pores, as a decrease of meniscus
radii corresponds to an increase in capillarity.
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On the macro scale the capillary pressure is dependent on the saturation. If the satu-
ration of the wetting fluid decreases it retreats to smaller and smaller pores which leads
to an increase in capillary pressure. Thus, a macroscopic consideration of capillarity
leads to a relationship of the form

De = pc(Sw)- (3)

As a last parameter the relative permeabilities k., with o € {w, n} have to be consid-
ered. On the micro scale the dependence of permeability on saturation can be easily
explained. The presence of one fluid disturbs the flow of the other phase and vice
versa. If the saturation of the wetting fluid decreases, not only the cross-sectional area
available for the wetting phase flow decreases, but also the wetting fluid has to flow
around those parts of the porous medium which are occupied by the non-wetting fluid.
This results in increasing tortuosity of the flow paths for the wetting fluid.

Like for capillary pressure, the macroscale relative permeability is a function of the
saturation

kra = kra(Sy)- (4)

The relations given in (3) and (4) depend on the material as well. They are determined
by fitting the parameters of analytical functions to measured data, for more detail see
Section 3.1. Our choice of the constitutive relationships, the functions in (3) and (4),
is given in Subsections 3.1.1 and 3.1.2.

INRIA



Interface Condition with Exact Linearization 17

3 Mathematical Modelling of Two-Phase Flow

Like other physical quantities such as energy and momentum mass is conserved in
nature. Conservation of mass for multiphase flow with respect to volume can be for-

mulated as
O(Sappa)
ot
where ¢ is the porosity, S, is the saturation of phase «, p, the density, ¢ time, v, is
an average macroscopic pore velocity vector and g, represents the source term.
The velocity vector v, is related to the gradient of the pressure p, by the generalized
Darcy law

+V. (pava) — Paba = 0, (5)

kra

o7

K(Vpa - pag), (6)

which is considered to be a momentum balance equation. k,, represents the relative
permeability, u, the dynamic viscosity, p, the pressure of phase a, K the tensor of
absolute permeabilities and g the vector of gravity. Inserting equation (6) into equa-
tion (5) leads to

Vo = —

ASabpe) _ g (, fra

ot 1o K(Vpa — pag)) — Pada = 0. (7)

While micro scale heterogeneities are included in Darcy’s law macro scale hetero-
geneities have to be accounted for by the spatial variation of the parameters in Darcy’s
law (¢ and K) as well as by the variation of the parameters in the constitutive relation-
ships, see section 3.1. For two phase flow, the multiphase flow equation (7) represents
two equations, one for each of the two phases w and n. With the definition of the
capillary pressure given in equation (2), p. and k, still depend on the saturations of
the phases, so that the closure relationship given in the first equation of (1) reduces to

Sw+Sp =1 (8)

and the following constitutive relationships given in (3) and (4) are needed
pe = De(Sa) (9)
kro = kra(Sa)- (10)
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3.1 Constitutive Relationships
3.1.1 Capillary Pressure - Saturation Relationship

On the macro scale both capillary pressure and relative permeability depend on the
saturation. If the water saturation decreases the wetting phase retreats into smaller and
smaller pores and thus the capillary pressure increases. The macroscopic consideration
of the capillarity results in a relationship given in equation (9).

Numerous parameterizations of the p, — S, relationship exist. Among the most com-
mon ones are the relationships of BROOKS and COREY and of VAN GENUCHTEN. The
principle difference between the two types of relationships is the behaviour of the func-
tion at S,, = 1. Whereas for VAN GENUCHTEN the capillary pressure is equal to zero
for a fully water saturated soil, the BROOKS-COREY relation involves a displacement
pressure (the pressure needed to displace the wetting phase from the largest pore, pg).
Even though measurements of capillary pressure for drainage processes (pressure cell
technique) show, that p. starts from 0 and not from a certain entry pressure, gamma-
sorption techniques show, that such an entry pressure exists. As gamma-sorption is
able to resolve interfaces, which is the main interest of this work (pressure cell techiques
average over volumes), the BROOKS-COREY curve which directly implies the existence
of an entry pressure is used.

The capillary pressure - saturation relationship according to BROOKS-COREY is defined
with the help of the effective saturation S,:

S(p):M: ]ﬁ)\ for p. > p (11)
e 1- S’wr De c=re
The parameters
S. : effective saturation
Swr @ residual water saturation
A : form parameter
pq : entry (displacement) pressure

characterize the pore space geometry. They are determined by fitting to measured
Pe — Sy CUrves.

The visualization of the BROOKS-COREY parameters can be found in Figure 4. As
mentioned above, py is the displacement pressure. The parameter A on the other hand
describes the uniformity of the material. High A parameters indicate a highly uniform
material, usual values lie between 0.2 and 3.0.
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Figure 4: Typical BROOKS-COREY relation with visualization of parameters p; and A

3.1.2 Relative Permeability - Saturation Relationship

Like for the p. — S,, relationships macroscale k,, — S, relationships can be evaluated
by fitting to experimental data. In this work, we again use the BROOKS-COREY
relationships - here in conjunction with the BURDINE theorem [4] - for the relative
permeability curves:

243\

k,,-w = Se A (12)
242
krn = (1 - 56)2 <1 — Se? ) (13)

The form of the relative permeability-saturation relationships after BROOKS-COREY
can be seen in Figure 5.

3.2 Selecting the Primary Variables

Different alternatives for choosing the primary variables can be distinguished: the
choice depends on the problem to be solved.
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Figure 5: Relative permeability-saturation relationship after BROOKS-COREY

3.2.1 Pressure Formulation

The pressure formulation uses the phase pressures p, as primary variables. Saturations
are transformed to pressures by inverting the capillary pressure - saturation relation-
ship. The constraint for using this formulation is, that the p. — S, function has to be
strictly monotonic in order to be invertable,

Sa = Ga (pc)-

The p,, — p, formulation reads as follows:

w_v.<p krw

wetting phase:

Kvw_'w _'w'w:Oa
5 (Vp pg)> Pul

w
0 k
non-wetting phase: % -V <pan(Vpn — png)> — pugn = 0.
n
(14)
These two equations represent a strongly coupled, nonlinear parabolic system
disadvantage: For capillary pressure gradients g%: = 0 or close to zero, problems

with inversion particularly in heterogeneous systems will occur. For this reason, the
formulation is not very convenient for the problem at hand.

INRIA



Interface Condition with Exact Linearization 21

3.2.2 Saturation Formulation

This formulation is only applicable to incompressible fluids. The S,, — .S,, formulation:
after calculating the total velocity vy = vy + v,, inserting one equation into the
other and making further changes, there remains only one differential equation for the
saturation [12].

3.2.3 Pressure-Saturation formulation

This formulation uses the pressure of one phase and the saturation of the other phase
as primary variables. Differentiating equations (2) and (8), we obtain

Vo, = V(pw+Dpe) (15)
95, 0 _ 9S.
Bt T e TS T (16)

Inserting (15) and (16) into the two-phase flow equations (7) leads to the p, — S,
formulation (p, — Sy, Pw — Sw, Pn — Sn accordingly):

wn kV‘w
w: _% S VAN (pw p K(pr - pwg)) — Puwlw =0
w 17)
0(PpnSh krn (
n: % -V (pn K(va + Vp, — png)) —PnGn = 0

As with the pressure formulation, we also have a strongly coupled, nonlinear parabolic
system consisting of two equations.

The advantages of this formulation are the following:

1. No problems with small capillary pressure gradients, as the capillary pressure
is directly included in the equation system. Like this it is also applicable to
heterogenous systems.

2. In the case of two immiscible fluids, decoupling of the equation system is possible
(pressure -+ saturation equation) = IMPES method (implicit pressure — explicit
saturation) [14].

As we are dealing with heterogenous systems a pressure-saturation formulation is cho-
sen namely the p,, — S, formulation. In the following only this formulation will be
considered.

Remark: Another possible formulation is the global pressure formulation. In order to
have an equation similar to the single-phase flow equation, a non-physical variable, the
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Figure 6: Definition of boundary conditions

so called "global pressure" is introduced. The two-phase flow equations are transferred
to a coupled system of one parabolic saturation equation and one elliptic pressure
equation. The two presssure unknowns p,, and p, are replaced by one unknown, the
global pressure, which is a functtion of p,, p, and S.. For more details see [5].

3.3 Boundary and Initial Values

The two-phase flow equations represent a system of partial differential equations which
describe a boundary and initial value problem. Thus the total boundary 0G of the
domain has to be described via boundary values. Moreover, initial values are needed
for the whole domain G.

To be able to specify different sorts of boundaries, the boundary of the domain can be
split up into different boundary segments, see figure 6:

The two basically different types of boundaries are DIRICHLET and NEUMANN bound-
aries. If u denotes the vector of the unknowns (the primary variables, in our case
Pw and S,), DIRICHLET boundaries directly specify the value of u on the boundary.
NEUMANN boundaries on the other hand specify the value of the derivative of u in the
direction of the outer normal vector n: g_Z' Thus, this boundary condition is used to
describe a flux across the boundary 0G. A third type of boundary conditions exists
(the CAUCHY boundary condition) which are constructed as a linear combination of
the two previously mentioned boundary conditions.

The initial values finally define values for p,, and S,, for the initial state in the whole

domain, i.e. t = 0.
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Figure 7: Discontinuity of parameters across the interface

3.4 Inclusion of Heterogeneity

For modelling macro scale heterogeneities an abrupt changing of rock properties such as
porosity ¢ or absolute permeability K is a good approximation for realistic situations,
see Figure 7. Thus, the respective parameters are assumed to be discontinuous across
the interface between two different rock types.

The most difficult task is to determine discontinuous primary variables across the
interface. To solve the flow problem, two transition conditions are needed at the
interface [12]:

e continuity of flux
The flux of both phases across the interface has to be continuous:

QoI = GaII

e continuity of intensive state variables
The capillary pressure is continuous at the interface:

p. =1
As can be derived from the capillary pressure - saturation curve given in Figure 8, con-
tinuity in capillary pressure (p! = p!’) involves a discontinuity in saturation (S. # SII)

which should also be taken into account by the model. This is done by implementation
of the interface condition, see Section 3.5.
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Figure 8: Continuity of capillary pressure, discontinuity of saturation across the inter-
face

3.5 The Interface Condition

As mentioned in Section 3.4, discontinuous materials are a good approximation for
heterogeneities in macroscale models. To maintain the macroscale momentum balance,
i.e. the extended Darcy law given in (6), the capillary pressure p. has to be continuous
at the interface between different materials. This requirement, however, implies the
discontinuity of saturation at the interface, see Figure 9. As the saturations are defined
at the nodes of the FE mesh, a discontinuity of saturation can only be put into practice
if these nodes lie directly on the interface. Using the box method, the interface I
between two different subdomains with different properties normally coincides with
the one between control volumes (patch oriented approach). For the implementation
of the interface condition however, the grid is shifted so that the interface coincides with
the FE grid, see Figure 10 (element oriented approach). Whereas for the box method
without interface condition, non-wetting phase can enter the material with the lower
entry pressure before the entry pressure py of the respective material is reached, this is
no longer possible when implementing the interface condition. For this reason, the box
method with interface condition, rather the box method without interface conditon,
represents the interface in a physically correct manner.

Using the interface condition, the capillary pressure p. becomes a quasi primary variable
at the interface between two materials. If G is a subdomain with a higher entry
pressure than a neighboring subdomain G, the wetting-phase saturation in subdomain
G5 at the interface is equal to |16]:

: T > *
Sw|GF:{ 1 it S,/GY > S;

[pC]E;; if Sw‘G{ < Sy (18)
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Figure 9: Continuity of capillary pressure, discontinuity of saturation at the interface
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_>
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Figure 10: Patchoriented (left) and elementoriented grid (right hand side) [16]
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where [p] (_;; is the inverse of the p. — S, function in G, and S} is the saturation in G,
for which the entry pressure of G, is reached. Moreover, S,|G! is the wetting-phase
saturation in subdomain (G; at the interface, Sw|G£ the one in (G5 at the interface,
respectively.

To implement the transition condition (18) in the box scheme, we associate to each
node v; of the FE mesh a minimum capillary pressure pimm which is simply p.(Sy, 1)
if v; is not on the interface but is in the interior of one of the domains G;. Otherwise
is the minimum over all domains G; having v; on its boundary of | c]Gj (Sw,i):

7
p c,min

pzc,min = kIEHEi%)pC(xk7 S’w,i)

where E(i) is the set of indices of the elements which have v; as a corner, z* is the
barycenter of element ey, and p.(z¥, -) is the capillary pressure function [p.| G; for which
xk € Gj.

We shall also define for each node v; and each element e, having v; as a vertex a
"virtual" saturation S, ; x, virtual because it does not appear in the output files but is
only used for the elementwise computation of the entries of the local stiffness matrices.
If v; is not on an interface, Sy ; x = Sp; for each element having v; as a vertex. If v; is on
the interface and e is a subdomain having v; as a vertex there are three possibilities:

e ¢ is contained in the domain G at which the minimum capillary pressure pi,min
for Sy =1 — Sp; is realized, i.e. in general the material with the lowest entry
pressure. In this case Sy ;i = Sn;.

e ¢;, is contained in a domain G; whose entry pressure [p] G (1) is larger than the

minimum capillary pressure p, . . In this case, S, ; is set to zero.

® ¢ is not contained in the domain with the lowest entry presure, but p. ., is
greater than the entry pressure of the domain G; including ez. Then we let
Sw, be the wetting phase saturation for which [pc]Gj (Swii) = Dimins 1€ Swi =

[pC]Gj (pzmm) Then we put Sy, ;=1 — S’m
This can be described in a general formulation:
Sn,z' if pc(xka 1- Sn,l) = pf:,min

1 —Syi where Sy ; solves p(2", Sui) = D ypin-

The implementation of the interface condition and the computation of the minimum
capillary pressure is explained in detail in Subsections 4.4.2 and 4.4.3.
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However, there is a disadvantage to using the interface condition: due to the evalua-
tion of the constitutive relationships with two different saturations at one node at the
interface, mass conservation is no longer guaranteed.

3.6 Dealing with Nonlinearities

Numerically two different ways of dealing with nonlinearities can be distinguished.
Which method is actually appplied, depends on the intensity of the nonlinearity.

3.6.1 Weak Nonlinearities

Weak nonlinearities can simply be taken into account using linear interpolation. Vari-
ables, which are a function of one of the phase pressures can be regarded as being
weakly nonlinear in our case, see Helmig, 1993 [12]|, Chapter 2.

3.6.2 Strong Nonlinearities

To deal with strong nonlinearities, a consistent linearization is used in order to lin-
earize the system, see Section 4.4. Variables depending on saturations can be regarded
as being strongly nonlinear. Thus, the p. — S,, as well as the k,, — S, relationships def-
initely belong to this class of strongly nonlinear functions, see again Helmig, 1993 [12],
Chapter 2.
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4 Numerical Model

As the multiphase flow equations given in equation (17), which represents a system
of nonlinear coupled differential equations, generally cannot be solved analytically, a
numerical model is usually necessary.

4.1 Discretization

Discretization methods are used in order to replace the differential terms in the two
phase flow equations by algebraic terms. The requirements for convergence of the dis-
cretization methods are, that they must be consistent and stable. Moreover it is desir-
able to have a monotonic solution behaviour (which means in our case a non-oscillating
solution) in order to avoid over- or undershooting. To prevent the appearance of non-
physical sinks and sources, a conservative discretization is to be persued. In order to
combine the advantages of the (cell-centered) finite volume (FV) discretization and the
finite element (FE) discretization, the BOX scheme was developped. This discretiza-
tion technique is not only conservative (like the FV method), but can also be applied
to unstructured grids easily (like the FE method).

4.2 Subdomain Collocation Finite Volume Method (BOX method)

For the box method [1],[16], two different grids are needed. Boxes (control volumes)
are constructed around the nodes of the initial FE mesh, which defines the elements.
This construction is done by linking the barycenter of each element with the midpoints
of the edges of this element, see Figure 11. We define a weighting function equal to 1
inside a box, B; and equal to 0 outside the box:

Wi(x)_{ 0 if z¢B;. (20)

The dimension of this space is equal to the number of nodes NV of the FE mesh, and the
basis function (or shape function) associated with the 5" vertex is N; which is equal
to 1 at node 7 of the FE mesh and equal to zero at all other nodes:

with 6;; the Kronecker delta. Both p, and S, will be approximated in the space of
piecewise polynomial functions which are first order (affine linear) on the triangles of
the FE mesh and which are first order in each variable separately (affine bilinear) on
each rectangle of the FE mesh.
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control volume

element

barycenter of
element e*

Figure 11: Construction of a control volume

For time discretization, we use a fully implicit Eulerian approach, see Section 4.5. The
matrix of the accumulation term is approximated with a lumped mass matriz Mf;*mp

ME™ = 8> M. (22)
k%

with

M, = / W;N;dB (23)
B

as the consistent mass matriz.
With the definition of the mobilities A\, = ’ZT‘: and the assumptions of time indepen-
dence of the porosity ¢ and incompressibility, the two-phase flow equations (7) become

0S5,
ot

¢$—V- (/\aK (Vpa - pag)) — Qo =0. (24)

Multiplying by our weighting function W; and integrating (24) over the whole domain
G results in integrals over the boxes:

/ %¢mdB" o /V : (/\aK (Vpa - pag)) W;idB; — QaVVidBi = 0. (25)
B; )

B; i B;
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We approximate the unknowns p,,; and S, ; as well as the auxiliary function p.,; and
the gravity function g; by shape functions N; in the following way:

jev

where V represents the set of vertices of the FE mesh. The gradients of these functions
at node ¢ are approximated as

J JFi

Applying the GAUSS integral theorem and using an element oriented approach which
is necessary for the implementation of the interface condition, see Section 3.5, yields
the following form of the two-phase flow equations, discretized in time and space:

k+1, Qk . k+1. k+1 .
fai(sni 7Sm'?pwi ’pwj) T

Blex (1)

- Z (SST% - ST’Lk) meas b;
keE(i) At

SRR () [z Pt grad No(re)  (28)
kaj mEV

— PN (@i 1)8) 135 meas (Vijx)
— ¢"'meas B; — my;
— 0

with n;;; the outer normal vector, | B; | represents the area (2D), respectively the
volume (3D), of the control volume around node i, b;; the subcontrol volume of B;
which corresponds with element k, the upper indices k as well as k + 1 denote the time
step, and j represents a neighboring node of i. The integrals over the boundaries of B;,
I'p,, are evaluated by using the midpoint rule; i.e., the integral over a segment of the
boundary is calculated in multiplying the value at the midpoint of the control volume
boundary segment by its length ;; 1.
Defining

M= ey = pagi
the sign of ¥,; — 14, gives the direction of the flow of phase . The parameter z; is the
geodetic height of vertex v; and my; is the flow over 0B; NI"y where 'y is a NEUMANN
type boundary.
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Using the fully upwind (FU) finite volume method for the mobilities results in

FUq _ | Aaj if (Yaj — ai) 20
A ‘{ i A (foj —ai) <0 (29)

which means that the mobility of the node with the higher potential is chosen.
The evaluation of quantities depending on saturation is done in the following way:

Pele(x) = D pe(a®,1 = Spm) Non(2) (30)
meV (k)

pn‘ek (.I) = Z (pw,m +pc(xka 1—- Sn,m,k)Nm(x)) (31)
meV (k)

km‘ek () = Z km(xk, 1- Sn,m,k)Nm(x) (32)
meV (k)

km|ek () = Z km(xk, Sn,m,k)Nm(I) (33)
meV (k)

The box method is locally mass conservative, as exactly the same term occurs for the
boundary integral of two neighboring control volumes.

If the mobilities were weighted between two neighboring nodes this would lead to
a non-physical flux from the domain of lower to the domain of higher permeability
(e.g. central weighting, harmonical weighting). This non-physical flux however can be
avoided using Fully Upwinding (Figure 12). Although the Fully-Upwind method gives
better results then for example the Standard or Petrov-Galerkin methods [13], there is
still an error depending on the grid width. Using Fully-Upwinding, it is however im-
possible to reproduce the discontinuity of saturation at the interface between different
materials according to Section 3.4. To avoid this error, the interface condition is to be
implemented.

4.3 Consistent Linearization
The two-phase flow equations (7) are of the form
f(uy=K(u)-u—r(u)=0 (34)

where u is the vector of the unknowns, in our case p, and S,. The functional f(u)
is strongly nonlinear as the constitutive relationships (p. — Sa, kro — Sa) are strongly
nonlinear.
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Fully-Upwind box method
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Figure 12: BOX method using Fully Upwinding [16]
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To linearize the equation, a NEWTON-RAPHSON linearization is used which has the
advantage of having a quadratic convergence behaviour, compared for example to the
PICARD linearization which converges only linearly. Using the NEWTON linearization,
the nonlinear functional f is expanded into a Taylor series where the terms of higher
order are neglected [12]:

1
un+1,r+1 — un—f—l,'r _ ﬂ _f(un+1,r) (35)
au n+1,r
—_———
inverse of Jacobian of rt» iteration

Usually, the entries of the Jacobian are differentiated numerically according to

+1,
_ afzn " N fi(---,uj—lauj+Auj;uj+1;---)_fi(---,uj—lauj;uj—l—l;---)
oui Au; ’

where Au; = u; - 6 with 6 a small increment.

In the following an "exact" calculation of the Jacobian entries (g—fl) is applied, namely

the consistent or exact linearization [11].
The derivatives to be computed are the derivations of the functions k,,, p, and p.
for the primary variables p,, and S,,. In our example, the two fluids are assumed to

be incompressible which means that g% = 0 and g% = 0. Moreover, we assume
« o

%k# = gﬁ = 0 so that it is sufficient to calculate 2= and 2= as the only non-zero
D P 8Sn 8Sn
terms

From equations (34) and (35) we obtain for an element e

Kn+1,1";n,0(u) . Aun+1,'r+1;n+1,r — Kn+1,7'(u) . un+1,r _ n+1,rn,0;n+1,0
e e

r

e ) L= S Lo . (36)
T II 117 v
with
. 1 o 0-
fgéi—l,v‘,n,o — KTELJZ—E T 112+1’T o rzjl,T,n,O,n—l—l,O’
n+1,r+1;n+1,r k+1,r4+1 k+1,r
Aue 3 3 ) ue ) — ue 3 ,
and o
n+1,rn
n+1,rn,0 6fae T
Tae - au’gff'lﬂ'

The matrix K " contains all the vectors which are differentiated at the new time step

k +1 and the last known iteration step r, whereas r”1mm.%n+1.0 repregents the known
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parameters, i.e. the derivatives evaluated at the old time and iteration step k£ and
respectively r. The evaluation of the terms I through IV can be found in appendix C.
The analytical functionals f,(u) (see equation (24)), the discretization of these func-
tionals in the BOX scheme and their derivatives at a vertex i are the following:

aS
= — div [\ K(gradpy, — pug)] — ¢w = 0
p” [AK( )] (37

fw(u) = —¢

oS, .
fa(u) = ¢ 5 div [\, K(gradp, + grad p. — pug)] — ¢ =0
SHI - Sk' k+1 k+1
fuilw) = —p=E=m | B | — [ NSPK(grad (pu)f* = pugi) - ndls,
9B;
—got | B |=0
SHI_Sk' k+1 k+1 k+1
fui(w) = o= | Bil = / An " K(grad (p,); " + grad (pe); T — pugi) - ndl'p,
9B;
—g5t I Bi =0
(38)

O fuwi | B; | ONEH! k1

oS, = _d)m _aB- oS, K(grad (pw)z - ,Owgi) ) ndrBi
aafm = — / /\Z“Ki(grad (Pw)¥*h) - ndlp,

Pw 0B apw
O fni | B; | 8)\2“
5. = Pmiog | ag Klerad(pu)" + grad (p)i" — pug)  (39)

AR (D (grad (p)$*) - ndls,

O fi a%a

O = [ AR (grad (pu)f") - ml,

Dus o5, Opw

4.4 TImplementation of the Transition Condition with Exact
Linearization into the MUFTE code

When combining the interface condition and consistent linearization, it is not enough
to implement the two methods separately at the same time into the MUFTE code. Due
to their combination, new conditions evolve which do not exist either for the interface
condition alone or for the consistent linearization alone.

Considering the saturation at the interface, it is obvious that it has to be equal to zero
within a less permeable material until the entry pressure for this rock type is reached.

This means however, that the differentiation of the storage term in the derivatives %
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is not to be calculated by differentiating the PDE’s but by computing the derivatives
in a way, that the respective derivatives of the storage term have to be set to zero as
long as the entry pressure is not yet reached.

The discretized storage terms according to equation (38) are:

Skt -
fwi(u) = —05 1 % |Bz|_
thtl — ¢
Sk _ gk (40)

Mathematical differentiation of the storage term as for the exactly linearized box
method without interface condition yields:

0S, thtl — gk A1
Of: B, | (41)

as., = ¢tk+1_tk_"'

The state derivatives used for the exactly linearized box method with interface condi-
tion are:

. Gh+l _ gk
if De,min < DPentry 0 (_éw ‘ BZ |> /(9 (Sn) =0
Sni - — SF; | Bi |
else 0 (—qﬁm | B; |> /0(Sn) = ¢m
if DPe,min < DPentry 0 qu | Bz |> /a (Sn) =0
Sni = Sk | Bi |
else 6( ST gk | B; ‘) /9 (Sn) :qﬁm

In the following, the implementation of the transition condition with exact linearization
of the PDE’s into the MUFTE code will be shown. For simplicity’s sake, only the parts
the most relevant for the implementation will be presented below. First, an overview
of the implementation is given, then the functions and the meaning of some notation
used in order to clarify the total overview of the implementation, has to be made clear.
In the end, the hierarchy of the respective functions in the code is shown.
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4.4.1 Total Overview of the Implementation

The output from the last time/ iteration step is always a value of the saturation S,, and
of the pressure p,,. In order to restrict the wetting phase saturation to the interval [0, 1]
and to avoid extremely steep gradients, especially of the capillary pressure - saturation
relationship, limiting conditions for S,, are introduced first. The relevant parts for the
implementation of the interface condition with exact linearization are the following:
first, the minimum capillary pressures with respect to the non-virtual saturation (pc,min)
and to an incremented non-virtual saturation (pcmin inc) are calculated. This is done in
the function called PreCapillaryPressure in the MUFTE code, see Subsection 4.4.2.
Next, the virtual saturations corresponding to S,, and to S, ;,. are computed in the
routine TAssembleMatrixExact in the MUFTE code, that is, S, yirt and Sy inewirt (Sub-
section 4.4.3). In the MUFTE function ConstRelDerivativesTrans the derivatives of
the constitutive relationships are computed. As in the transition condition according to
equation (19), three cases are distinguished here. The derivative of the capillary pres-
sure is approximated linearly as this was always fairly close to the analytical derivative
in practise. If the virtual saturation is zero and the entry pressure has not yet been
reached (Sy yirt # Sn and Pemin < Pentry) the derivatives of the constitutive relation-
ships are set to zero (no non-wetting phase has entered into the material with the
higher entry pressure yet). If the entry pressure is reached and we are at the interface
(Snvirt 7 Sy and Pemin >= Dentry) the relative permeability — saturation relationships
are calculated using the analytical derivatives of the BROOKS-COREY relationships, see
Appendix B. If the virtual saturation is equal to the non-virtual saturation (we are not
at the interface or we are at the interface and consider an element which belongs to the
rock type with the lower entry pressure) the mobility derivatives for S, are calculated
using a linear approximation of the k., — S, relationships, see also Subsection 4.4.5.
The last step is to actually compute the entries of the Jacobian which is done in the
routine ExactJacobianTrans (Subsection 4.4.4). Here it is important to pay atten-
tion to compute the state derivatives for the accumulation terms % as discussed in
Section 4.4.

it(1=S, <6 1-S,=6
if(1-S,>10) 1-8,=10
Pemin = f(1—Sp)
Snjine = SpTtEe€
Pesminne = J(1 = Sninc)
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Sn if De,min = De
Sn,viwt = 0 if De,min < Pentry
InvPcd (Pl (1= S,))  if pemin > De
Sn,inc if Pe,mingine = Pe
Sn,inc,'uirt = 0 if pc,min,inc < pentry

I??,UPCH(PCI(l - Sn,inc)) if De,min,ine > Dc

apc pc(l - S’n,inc,virt) - pc(1 - S’n,virt)
aS’n Sn,inc - Sn

if (Sn,vi'rt 7é Sn)

if (pc,min < pent'ry)
Oy 0Ny Ope
2S, 08, 0S,

else

0.0

w n
and

oSy, oSy,

Calculate analytically.

else

6/\11, 1 . krw(l - Sn,mc,'uirt) - krw(l - Sn,viTt)

aS’fl Mw STL,Z"HC - Sn
8/\”1 _ i k?‘n(l - Sn,inc,virt) - krn(l - Sn,virt)
85” B Hn Sn,z'nc - Sn

4.4.2 PreCapillaryPressure

This function computes the minimum capillary pressure for a node v depending on
its wetting phase saturation S, ; and the capillary pressure functions of the elements
it belongs to
. ) X
Pemin = 1 Pe(27, Sus),
where E(i) is the set of indices of the elements which have v; as a corner, and z* is the
barycenter of element e.
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Figure 13: Evaluation of the minimum capillary pressure for node i

The principal way of computing the minimum capillary pressure for a vertex i is il-
lustrated in Figure 13 on the left: we evaluate the capillary pressure for elements e
through ez which are adjoined to v; with the saturation at v; and take the minimum.
As the barycenters z° and z! lie within material II, the p. — S,, function II is taken, for
x? and 73 it is the capillary pressure - saturation function of material I, respectively. As
can be seen from Figure 13 on the right, in case of an interface the minimum capillary
pressure always corresponds to the capillary pressure of the material with the lower
entry pressure (the more highly permeable material).

In the code, within an outer loop over all elements of the grid, an inner loop over the
vertices of each element is called. First the wetting phase saturation is limited to the
interval [, 1], as described in the previous section. In this way, not only non-physical
saturations are avoided, but also too steep gradients (e.g. for the capillary pressure -
saturation function for small S,,). In the next step, the element barycenter is calculated
in order to use the right p. — S, relationship. Then the capillary pressure is calculated
and compared to the minimum capillary pressure at this node so far. The evaluation
is carried out elementwise, so that each node is evaluated more than once depending
on the number of adjacent elements. Each time, the capillary pressure is compared to
De,min for this vertex and the lower value of the capillary pressure is stored in pe p for
the respective node [2].

First, the minimum capillary pressure is computed for the non-virtual saturation S,,.
Then a value of p i, for the incremented non-virtual saturation S, ;. is needed which
will be denoted p¢ min,inc in the following. To compute Sy, incvirt the interface condition
is evaluated using pemin,inc-
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for (e = FirstElement; e = LastElement; e++)

{

for (i = 0; i < NumberOfVerticesOfElement; i++)
{
CalculationOfElementBarycenter;
PropertyOfElement;
if (1 -5, <) 1-S5,=6;
if(1—8,>10) 1—8,=10;
IN[Sw] =1-235,;
CapillaryPressure(IN|[S,]);
if (OUT[pc] < pc,min) Demin = OUT[pc];
S, =S, +e¢
if (1 -5, <) 1-8,=0¢;
if(1-8,>1.0) 1-5,=10;
IN[S,] =1—S5,;
CapillaryPressure(IN[S,]);
if (OUT[ c] < pc,min,inc) DPemingine = OUT[ c];'

}

4.4.3 TransitionCondition

This abbreviation is used for the implementation of the transition condition. The
formerly computed minimum capillary pressure is used to evaluate the saturation .S, ; x
for vertex v; with respect to element ej. According to the transition condition (19) the
saturation S, ;j can be computed as follows:

Sn:i if p(}(‘rk’ 1-— S'ﬂyz) = pi,min
Sn,i,k - 0 if pzc,mzn < pc(xk’ ]‘)
1—S, where S, solves p.(z*,S,) = Pi nin

The effect of this condition for a vertex v; at the interface with respect to an element
which belongs to material II (higher entry pressure) is illustrated in Figure 14.

for (e = FirstElement; e = LastElement; e++)
{
PropertyOfElement;
IN[S,] = 1.0;
CapillaryPressure(IN|[Sy));
Dentry = OUT[ c];
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Figure 14: Transition condition at the interface

for (i = 0; i < NumberOfSubcontrolVolumes; i+)

{

IN[S,]|=1-5u;
CapillaryPressure;
if (OUT[ c] = pc,min)

{
Sn,virt = S’n;

De = De,min;

else

if (pc,min < pentry)

{

Sn,m'rt = 0.0;
DPec = Pe,mins
}
else
{
InvertPC;
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The interface condition is evaluated not only for the stored saturation S, but also
for the incremented saturation Sy ;. With respect to the minimum capillary pressure
for Sy inc, 1-€. Peminyine. This is also done within an outer loop over all the elements
including an inner loop over the subcontrol volumes of this element. For simplicity’s
sake, the description of these loops is omitted in the following.

{
IN[Sy] =1 - Shinc
CapillaryPressure(IN[Sy]);
if (OUT[pc] = pc,min,inc)

Sn,inc,virt = Sn,inc;

De = Pe,mingines

else

if (pc,min,inc < pentwy)

{
Sn,inc,m'rt = 00;

De = Peymingines

InvertPC;

As can be seen from Figure 15, the constitutive relationships are evaluated with two
(or more) different saturations for the interfacial nodes depending on the properties of
the respective elements.
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Sn

Sn,i

Figure 15: Saturations at the interface

4.4.4 FExactJacobianTrans

Here the element Jacobian is computed almost analytically or even analytically accord-
ing to the equations in Appendices C.1, B and A. Therefore the derivatives calculated
in ConstRelDerivativesTrans are needed. First the accumulation term as well as the
sink /source term is added according to equation (42). As described there, the deriva-
tive of the accumulation term % is set to zero if the entry pressure of the material is
not yet reached.

In the last step the internal flux term is computed according to Appendix C.1 and added
to the actual matrix entry. As this part represents just the coding of the equations (39)

no further explanations are given here.

4.4.5 ConstRelDerivativesTrans

This function computes the derivatives of

e the capillary pressure (351)

dpw  Opn Bpn)

e the densities (p—, o, 58
w w n

e and the mobilities (‘g;\%, gpﬂ, Bu Sn),
w w n n
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In our case, both phases are incompressible (gﬁ = g’ﬁ = 0) and the mobilities are not
dependent on the pressure (%‘j = 0). For this reason, only the derivatives gg; , ‘?,’\T‘:,
and % have to be considered.

As expﬁained in Chapter 4.4.1, these derivatives have to be set to zero if the virtual
saturation is not equal to the non-virtual saturation and the entry pressure has not
yet been reached at the interface, that is Sy irt 7 Sn and Pemin < Pentry. If the
entry pressure of the less permeable material is reached at the interface, the mobility
derivatives of the elements belonging to the material with the higher entry pressure
are calculated with the help of the analytical derivatives of the relative permeability -
saturation relationships according to BROOKS and COREY as derived in appendix B. If
on the other hand we are at a node within one rock type or at the interface considering
an element which belongs to the material with the lower entry pressure, the mobility

derivatives are linearly approximated.

dpcdSn = (pc(l - Sn,inc,vi'rt) - pc(l - Sn,vi'rt))/(sn,inc - Sn)
if (Sn,m'rt 7é Sn)

if (Pe;min < Pentry)
dlambdawdSn=dlambdandSn=dpcdSn = 0.0

else
Calculate dlambdawdSn and dlambdandSn with help of the
analytical derivatives of krw and krn.

else

dlambdaWdSn = ]-//J/w * (krw(]- - Sn,inc,virt) - krw(]- - Sn,virt))/(sn,i'nc -
dlambdaWdSn = 1//1111. * (krn(l - Sn,z'nc,'ui'rt) - k'rn(l - Sn,viwt))/(sn,inc -

4.4.6 Hierarchy of the Implemented Functions

The transition condition is implemented not only in the term of the right hand side
(defect term), but also in the matrix of the equation system. For the matrix, the exact
linearization has to be taken into account, too.
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The defect term is composed in the function TAssembleDefect. First, the minimum
capillary pressures are needed in order to evaluate the transition condition. Then,
the static data (like gravity, p,, pn, source term) are evaluated at the nodes, the ab-
solute permeability is calculated at the barycenter. In EvaluateStaticDataAtIntegra-
tionPoints, the values on the boundary faces are evaluated. UpdatelntegrationPoints
computes the mobilities at the integration points and the gradients of the extended
Darcy velocities. For the other functions, the name indicates the purpose of the func-
tion.

TAssembleDefect

{
PreCapillaryPressure;
TransitionCondition

EvaluateStaticDataAtNodes;
EvaluateStaticDataAtIntegrationPoints;
UpdatelntegrationPoints;
EvaluateUpwindSwitches;
ComputeStorageTerm;
ComputeFluxTerm;
ComputeSourceTerm;
AccumulateToGlobalVector;
PostCapillaryPressures;

The transition condition with exact linearization of the PDE’s is implemented in the
function TAssembleMatrixExact in the MUFTE code. Here, the matrix of the equa-
tion system is assembled. First, the minimum capillary pressures are needed in order
to evaluate the transition conditions for S,, and S, ;.. Then, for the matrix entries,
the exact Jacobian is needed which itsself needs the calculation of some derivations for
the primary variables computed in ConstRelDerivativesTrans. The function PostCap-
illaryPressures frees the memory allocated by the function PreCapillaryPressure.

TAssembleMatrixExact

{

PreCapillaryPressure;
TransitionConditionForSn
TransitionConditionForSninc
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FExactJacobianTrans

{
}

EvaluateStaticDataAtNodes;
EvaluateStaticDataAtIntegrationPoints;
UpdatelntegrationPoints;

AccumulationToGlobalMatrix;
EliminationOfDirichletBoundaryConditionsForPrimary Variables;
PostCapillaryPressures;

ConstRelDerivativesTrans

4.5 The NEWTON-RAPHSON Method

To solve the highly nonlinear system of partial differential equations
F(x)=0

the damped inexact NEWTON-RAPHSON method is used [16].
The algorithm used is the following:

Choose x¥t1:0; et r = 0;
. F k+1,r
while (M > G'nl)
Solve K(x¥*1)u = —F (x**17) with accuracy €n;
Xk—l—l,r—l—l — Xk—|—1,r + nu;
r=r+1,;

}-

Here, F(x*"1") represents the defect term at time step k¥ + 1 and iteration 7. The
constant ¢,; is the accuracy criterion for the nonlinear solution, €, that for the linear
1

solution. The aim is to choose a damping factor n = (5)(1 such that

IR o< [1 = B n] | F) |2

is fulfilled for the smallest possible ¢ € {0,1,...,6}. The factor § is usually set to i.
For time discretization a fully implicit Eulerian approach is used. Thus, the storage
term is discretized as

RR n" 4903



46 Niessner, Roberts € Helmig
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The time step is halved if no q is found within 6 line searches, and it is doubled if this
q is found within the first line search. Within the code, a starting value for the time
step as well as a minimum and a maximum time step are fixed. Thus, the size of the
actual time step can be interpreted as an indicator for the convergence behaviour of
the nonlinear algorithm.

As linear solver, a BiCGStab solver with V multigrid cycle as preconditioner is used.
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5 Examples

To show the correctness and the efficiency of the newly developped code using the BOX
method with interface condition and consistent linearization of the PDE’s, numerical
simulations of some examples using MUFTE-ug are carried out. First, the method
is applied to a simple 1D example using principle (not necessarily physical) sets of
parameters and constitutive relationships to investigate the behaviour of the method
under extreme conditions in order to find the sensitive parameters. In a second step, the
arbitrarily chosen parameters and relationships are replaced by realistic ones using the
same simple 1D example. Comparisons of the results as well as performance studies
are carried out. Finally, the code is applied to a 2D example corresponding to an
experiment actually performed in the VEGAS research facility of the University of
Stuttgart.

5.1 1D Examples

In this section, the BOX method with interface condition and consistent linearization
of the PDE’s is applied to a simple 1D example. In Section 5.1.1 some theoretical sets
of constitutive relationships are used whereas in Section 5.1.2 realistic parameters from
a laboratory experiment are taken.

The setup and boundary conditions of the example are given in Figure 16. A vertical
column which is initially fully water saturated and under a constant pressure (initial
values S,, = 0.0, p,, = 2.0-10° Pa) is infiltrated by DNAPL from the top boundary. The
numerical description of the example is done in 2D, but as the parameters are constant
along the x coordinate it represents in fact a 1D example. The column consists of two
different materials, denoted by I and II. Material I has a vertical length of 0.75 m,
whereas material IT has a length of 0.5 m. The width of the column is 0.5 m. On
the sides of the column, we impose noflow boundaries (NEUMANN type boundaries).
The bottom boundary is characterized by a constant pressure (which is equal to the
initial pressure) and by full water saturation (S, = 0.0, DIRICHLET boundary). At
the top, DNAPL (TCE, density 1621 24 viscosity 9-10~*m?/s) infiltrates at a rate of
S, = —0.05, the water pressure is equal to zero. For water, a density of 998 T—’fl% and a

. . _ 2 .
viscosity of 10 3’"7 are taken into account.

5.1.1 Principle parameter studies

To investigate the influence of differerent constitutive relationships, which turned out
to be the crucial point for the performance of the trans method with numerical lin-
earization of the PDE’s, some principle parameter studies are carried out. For all cases,
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(DIRICHLET)
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Figure 16: Setup and boundary conditions of the 1D example

the porosity ¢ of both materials is equal to 0.4, the absolute permeability K of material
Iis 5-107%n? and that of material II 3 - 10711m?

As for the numerical trans method the slope of the k,,-S, function at S,, = 1 had
turned out to be the critical point [15|, polynomial functions for the relative perme-
ability - saturation relationships are taken which make this slope easily controllable (it
is simply equal to the exponent e). For the capillary pressure, the BROOKS-COREY
relationships are taken, see Section 3.1.

To sum up, we are dealing with the following functions:

PUS) = ph-Si (43)
p(S) = Bl s (14)
krw(Se) = S¢ (45)
Tn(S) = (1_56)6 (46)

The parameters Al and M1, the difference of the entry pressures Apy = pl —pil and the
exponent e will be varied during the case studies. In the end, a "worst case" comparison
is made combining the parameters with the worst performance in the single parameter
experiments. The parameters for the comparisonal studies can be found in Table 1.
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variation of pa[Pal Al-] e[—| "worst case"
a b c a b c a b c

pi[Pal 100 100 100 | 100 100 100 | 100 100 100 100
pit[Pa] 200 500 800 | 200 200 200 | 200 200 200 800
M=X[-]]04 04 04|04 15 30|04 04 04 3.0
el—] 0.25 0.25 0.25]|0.25 0.25 025|025 1.0 4.0 4.0
Table 1: Parameters used for the principle parameter studies
1 T 8000 r
,,,,,,,,,,,,,,,,,,,,,, W — Gl —
,,,,,,,,,,,,,,, Krn e 7000 | Gll e 1
08k T Apg=100Pa
6000 | 1
06F 5000 |
T % 4000 |
© o4l = 3000
2000 |
0.2
1000 |
0 L 0
0 0.2 0.4 0.6 0.8 1 0
Sw -1 Sw -1
8000 T 8000 T
Gl — Gl —
7000 Gl = 4 7000 | Gll o o
B Apg =400 Pa Apg=700 Pa
6000 1 6000 1
5000 | 5000 |
E 4000 4000
= 3000 3000
2000 | 2000 |
1000 | 1000

Sw -1

Sw -1

Figure 17: The k, — S,, and p. — S, relationships for different values of the difference
in entry pressures (case a: top right, b: bottom left, c: bottom right)

The curves of the respective constitutive relationships can be taken from Figures 17

through 20.

The performances of these parameter studies are displayed and discussed in Subsec-
tion 5.1.3. As we are dealing with principle parameter studies where just the differences
in the performances are important, a fairly coarse mesh and a large time step are cho-
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Figure 18: The k. — S,, and p. — S,, relationships for different values of the BROOKS-
COREY parameter A (case a: top right, b: bottom left, c¢: bottom right)
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Figure 19: The k. — S, and p. — S,, relationships for different values of the exponent
e of the polynomial &, functions (case a: top right, b: bottom left, ¢: bottom right)

1p ; ; ; ; 8000 . . . .
krw —— Gl —
. Krn e 7000 Gl oo S
08 = b
6000 .
o6k 5000 | .
T T 4000 F .
_ 3 [8] B
i~ 1 a :
04r 3000 ]
2000 | . :
02}
1000 |
O L e LTIV 1 0
0 02 0.4 06 08 1 0 0.2 04 0.6 08 1
Sw -1 Sw -1

Figure 20: The k, — S, and p. — S,, relationships for the "worst case" combination of
parameters, Apg = 700 Pa, A = 3.0, e = 4.0.
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L[ o] Km’]  A-] pdPa] Sur |
T[039 46-10-° 20 200 0.05
1] 035 31-100% 23 700 0015

Table 2: Parameter values for coarse and medium sand taken from a VEGAS experi-
ment

sen. The elements have a size of 0.25 x 0.25 m?2, the initial and maximum time step
are set to 100 s. If the time step gets smaller than 0.1 s (by halving the time step if
the maximum number of line searches is exceeded, see Section 4.5), the computation
is aborted.

5.1.2 Example using experimental data

For the same setup, boundary and initial values as for the principle parameter studies,
see Figure 16, experimental parameter sets and constitutive relationships are taken to
get a feeling for the performance of the transition condition with exact linearization
for practical applications. The parameter values are taken from an experiment carried
out at the VEGAS research facility at the University of Stuttgart [3]. The values are
given in Table 2.

The time step was chosen according to the COURANT-FRIEDRICHS-LEWY criterion
(chosen by determining the front velocity in preliminary investigations). Within one
time step, the fluid should progress by no more than one element. With this restriction,
a time step of 40 s and a mesh width of 20.83 ¢m was chosen.

5.1.3 Results of the 1D investigations

Principle parameter studies The results of experiments with the eight parameter
combinations of Table 1 for the principle parameter studies are shown in Figures 21
through 28. The performances of the BOX method without transition condition and
with numerical linearization("standard"), the BOX method with interface condition
and numerical linearization ("trans numeric") and the BOX method with interface
condition and exact linearization of the PDE’s ("trans exact") are compared.

In the first picture (upper left) of a figure, the simulation time is plotted as a function
of the computing time. The larger the simulation time for a certain computing time,
the better is the performance of the algorithm. The other three pictures show the
number of nonlinear iterations per time step of the newton solver (see Section 4.5) over
the simulation time in the following order: upper right picture: standard, bottom left:
trans numeric and bottom right: trans exact.
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Figure 21: Simulation time as a function of computing time and number of nonlinear
iterations per time step for Ap; = 100 Pa, A = 0.4, and e = 0.25
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Figure 22: Simulation time as a function computing time and number of nonlinear
iterations per time step for Apy; = 400 Pa, A = 0.4, and e = 0.25
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Figure 23: Simulation time as a function of computing time and number of nonlinear
iterations per time step for Apy; = 700 Pa, A = 0.4, and e = 0.25
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Figure 24: Simulation time as a function of computing time and number
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Figure 25: Simulation time as a function of computing time and number of nonlinear
iterations per time step for Apy; = 100 Pa, A = 3.0, and e = 0.25
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Figure 26: Simulation time as a function of computing time and number of nonlinear
iterations per time step for Apy; = 100 Pa, A =04, and e = 1.0
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Figure 27: Simulation time as a function of computing time and number of nonlinear
iterations per time step for Apy; = 100 Pa, A = 0.4, and e = 4.0
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Figure 28: Simulation time as a function of computing time and number of nonlinear
iterations per time step for Apy; = 700 Pa, A = 3.0, and e = 4.0
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How can we explain this behaviour? From Figures 21 through 28 it gets obvious
that for some parameter combinations the "trans numeric" method works best. For
other parameter sets, it is the "standard" method. However, if we wish to model the
interface in a physically correct manner, we have to restrict ourselves to the schemes
with interface condition, i.e. "trans numeric" and "trans exact". But even for these
cases, it seems that neither method is clearly preferable: sometimes "trans numeric"
performs better than "trans exact", sometimes it is the other way around.

As only the methods with the same type of linearization can be directly compared,
the "standard" method is compared to the "trans numeric" method in a first step as
they both use numerical linearization. In a second step, the general dependence of the
"trans exact" method on the different parameters is investigated in order to explain
its behaviour for the different sets of parameters.

At first, we might expect that in general "trans numeric" should perform better than
"standard", because with the trans numeric scheme

e there are fewer oscillations of the upwinding node and

e one can detect smaller gradients of the capillary pressure at the interface, see
e.g. Figure 41.

However, the results show, that this is not always the case. By increasing Apy, the
difference between the entry pressures of the two materials (Figures 21 through 23), one
can see that the performance of "trans numeric" becomes worse in comparison with to
"standard". The number of nonlinear iterations increases when reaching the interface
but normalizes again thereafter. This is due to the higher value of the variation ¢’ of the
virtual saturation Sy, i+ for higher ratios of the entry pressures %{é, see Appendix D.
Changing the value of A for the capillary pressure - saturation rdelationship does not
have a significant influence on the performance of either the "trans numeric" or the
"standard" scheme ("trans numeric" performs better than "standard"). The figures to
be compared are 21, 24, and 25. For the number of nonlinear iterations per time step
we make the same observations as for the variation of the entry pressure: a constant
behaviour for "standard" and a slight increase in the number of nonlinear iterations
per time step for "trans numeric" at the interface.

The parameter which clearly has the largest influence on the performance, is the expo-
nent e of the relative permeability - saturation relationships. Increasing A enormously
worsens the performance of "trans numeric", see also Figure 1. As mentioned there
this is due to the steep gradient of the k,,, — S,, function at S,, = 1. Given in Figure 29,
the variation of the primary variable S, is generally higher for the virtual than for the
nonvirtual saturation. Considering the number of nonlinear iterations per time step,
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Figure 29: Variation é of the nonvirtual and of the virtual (¢’) saturation

an enourmous increase for "trans numeric" can be recognized when reaching the inter-
face with increasing exponent (and thus increasing steepness of k., — Sy at S, = 1).
Combining the parameters that have performed worst, "trans exact" does not even
reach the end of the simulation time, as the execution is aborted due to halfening of
the time step up to a value smaller than the minimum time step.

Now, the dependence of the behaviour of the "trans exact" on the parameters Apy,
A, and e is to be investigated. According to the equations (43) through (46) and
appendix A, the steepness of the k,,, — S,, relationships at S,, = 1 is equal to

akrw (Sw,virt)

11\ Me i1
A
4
= ) )

Dg
Sw=1)=e- |+ - —
( )= (pé A
For the "trans numeric" method, the corresponding gradient would be equal to the
exponent e, which can be derived from (45):

Ok (Sw)

S, (Spy=1)=e-S551(S, =1) =e. (48)

Whereas for "trans numeric" the critical steepness is only dependent on e, it is depen-
dent on different parameters for "trans exact". The corresponding gradient becomes
steep for

1. large values of e (even more so than for the "trans numeric", as e can be found
in the exponent of the ratio of the entry pressures (p}'/pl, > 1)),
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Figure 30: k., — S, functions and steepnesses at S,, = 1 for the "worst case" set of

parameters

}\II

21, especially large A7, as AT is in the exponent of

2. large values of the ratio
pi' /vy > 1,

11
3. large ratios of 24-.
Pq
An example is provided in Figure 30. Here the slopes at S,, = 1 are computed for the
"worst case" parameter set.
Item 3) can be observed when comparing Figures 21 to 23. The same is valid for
increasing A values (item 2), Figures 21, 24 and 25). With increasing e the performance
of "trans exact" gets better than the performance of "trans numeric". The reason can
also be taken from the upper enumeration: whereas for "trans numeric" only e is
decisive for the steepness of k., — S,,, it is the combination of all parameters for "trans

exact". In other words: an unfavourable value for e (high value) can be compensated

)\II
N

In special cases, it can also be the NEWTON algorithm which encounters problems
and an improvement of the efficiency can be reached by the use of the Trust Region
algorithm. This possibility will be investigated in Chapter 6.

iy
by favourable values of the other parameters (low M and %) for "trans exact".
d

The VEGAS experiment For this experiment, the performances of "standard",
"trans numeric" and "trans exact" are compared (Figure 31), exactly in the same way
as before for the principle parameter studies.

The difference between this experiment and the principle studies lies in the relative
permeability - saturation relationship. Whereas polynomial relationships were chosen
for the principle parameter studies, the BROOKS-COREY relations are applied now.
The decisive difference lies in the fact that using BROOKS-COREY relations for the
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Figure 31: Simulation time over computing time and nonlinear iterations for "standard"
(upper right), "trans numeric" (bottom left) and "trans exact" (bottom right)
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relative permeability - saturation and capillary pressure - saturation functions the two
types of constitutive relationships are no longer independent of each other, but coupled
via the parameter A. Given in Appendix B, the steepness of the k., — S,, function at
Sw = 1 1is in this case equal to

*
}\II 24:\3*>\ )\II

SV

. * 11
akrw(sw,'uz'rt) 2 + 3)‘ (pd ) (49)

S (Sw=1)=

where x represents the respective material I or II. For the decisive case (interface

condition is evaluated, i.e. plf,, is reached) A* = A/ holds, which means that we
consider N

Okry (Sw wirt) (Sy=1) = 2 4 3\ (i) 243X | )\—H

Sw v A\ p) M

This derivative increases with

(50)

1. high values of the ratio ’\)\#, especially with high A, as A\!! also occurs in the

exponent of the ratio of entry pressures, though a contrary effect is produced for
the first term (@ monotonously decreasing in [0.2,. .., 3], the usual range of A
parameters)

II
2. a high ratio of entry pressures 24-.

Py

According to the investigations made within the framework of this Master’s Thesis,
"trans numeric" always performs better than "trans exact" when realistic parameters
for Ain [0.2,..., 3] are chosen.

To verify, that the numerical results of the newly constructed "trans exact" method are
correct, "snapshots" of the saturation of the non-wetting phase at different simulation
times are compared for the three methods. In Figures 32 through 34, the vertical non-
wetting phase saturation profile is shown before the DNAPL front reaches the interface
(920 s), when the DNAPL reaches the interface (1560 s), when the DNAPL is pooling
up (1880 s), and a moment when the non-wetting phase has already entered (2990 s).
To have an idea of the efficiency of these moments, the simulation times are marked
by symbols in Figure 31.

Between the saturation fronts of the two methods with interface condition, no difference
can be detected. As in these cases it is only the linearization which is different, the
solutions should converge to the same value. The impression that for time step 3
in Figures 32 through 34 DNAPL has already entered the fine sand, is only due to
the interpolation of the visualization tool. When comparing "standard" and "trans
numeric" (or "trans exact") it becomes obvious that for the trans cases the DNAPL
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Figure 32: Vertical saturation profiles for "standard" at four chosen time steps
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Figure 33: Vertical saturation profiles for "trans numeric" at four chosen time steps
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Figure 35: Setup of the experiment according to KUPER

pools up up to higher values of the saturation at the interface. This is due to the fact
that for the trans method the interface is correctly modelled and it is really necessary
to reach the entry pressure before DNAPL can enter. For the standard scheme, the
DNAPL enters too early (before the entry pressure is reached) so that the saturation
at the interface remains lower.

5.2 A 2D example

In order to check the applicability of the three methods to an entirely realistic example,
the experiment given in KUPER [17] was modeled. KUPER used an acrylic glass flume
with the dimensions 70[cm| X 50[cm] X 0.6[cm]. In order to obtain a relatively complex
layering, the flume is filled with four different kinds of homogeneous quartz sands which
have uniform grain size distributions. Figure 35 shows the configuration of the sand
layers.

The properties of the sands are given in Table 3, the fluid properties were the same
as for the 1D experiments. The different permeabilities were determined by a hy-
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draulic conductivity experiment and the capillary pressure - saturation relations for
the DNAPL - water system were determined by a pressure cell experiment. For the
parameterization, the BROOKS-COREY approach was applied.

‘ ‘ Dd [Pa] A [_] Swr [_] K [mQ] ¢ [_] ‘
sand 1 | 369.73 3.86 0.078 5.041-101° 0.40
sand 2 | 434.45 3.51 0.069 2.051-10"'° 0.39
sand 3 | 1323.95 2.49 0.098 5.621-10"* 0.39
sand 4 | 3246.15 3.30 0.189 8.191-10"*2 0.41

Table 3: Sand properties for the KUPER experiment

Except for the infiltration zone of the horizontal dimension of 10 ¢m, the upper and
lower boundaries are impermeable. As in the previous experiment, the vertical bound-
aries were maintained at a constant hydrostatic pressure. The physical domain of
the experiment shown in Figure 35 is discretized by a regular grid with a mesh size
of Ax = Az = 0.0125 m. The simulation started with an initial time step size of
Atinit =1s.

At the beginning of the DNAPL infiltration, the sand in the flume is fully saturated
with water. The boundary conditions are shown in Figure 35. The DNAPL infiltration
is controlled by a constant DNAPL saturation at the infiltration zone of S,, = 0.4.
The results of the computation (levels of DNAPL saturation) for three different sim-
ulation times are shown in Figures 36 to 38. As for the 1D VEGAS experiment, the
performances at these time steps can be found by regarding the symbols in the respec-
tive illustration of the efficiency (Figure 39).

The impression that for the schemes with interface condition, DNAPL has entered sand
3 and 4 even at the beginning is only due to the interpolation done by the visualization
tool. In fact, the only sand which can be entered by DNAPL is sand 2, and shortly
before the end of the computation sand 3. The same differences as in the 1D example
can be observed: for the two trans methods the DNAPL pools up to higher saturation
levels when reaching sand 2 before finally entering. This is again due to the fact that
for these methods the entry pressure has to be reached, before the non-wetting phase
can enter the material with the higher entry pressure.

Investigating the efficiency for this 2D example shows, that also in this case the ef-
ficiency of "trans exact" for an example with realistic parameters does not reach the
efficiency of the other methods - "trans exact" even performs very poorly The ratio of
simulation time over computing time increases enormously starting from the moment
when sand 3, which has a very high entry pressure, starts to be infiltrated. As the
amount of DNAPL entered is still tiny, it cannot be detected visually, but only recog-
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Figure 36: Saturation levels of TCE for the experiment after KUPER et al. at t = 184s.

Top: standard, middle: trans numeric, bottom: trans exact.
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Figure 37: Saturation levels of TCE for the experiment after KUPER et al. at t = 220s.
Top: standard, middle: trans numeric, bottom: trans exact.
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Figure 38: Saturation levels of TCE for the experiment after KUPER et al. at t = 312s.

Top: standard, middle: trans numeric, bottom: trans exact.
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Figure 39: Simulation time over computing time and nonlinear iterations for the model
setup according to the experiment of KUPER. Upper right: "standard", bottom left
"trans numeric", bottom right "trans exact".

nized from the numerical output of the simulation. In the maximum, more than 200
nonlinear iterations per time step can be detected, see Figure 39.
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6 The Trust Region Method

6.1 Description and Applicability

In certain cases, the NEWTON method encounters difficulties. Two main indicators for
problematic cases can be identified as

1. wrong search direction of the NEWTON method and

2. singularity of the global stiffness matrix.

NEWTON direction If the angle between the gradient and the NEWTON direction is
large, which implies that the NEWTON algorithm searches for the solution in a wrong
direction, the Trust Region algorithm can help to overcome these difficulties.

In order to find out if this is the case for the parameter sets, where the box scheme with
interface condition and exact linearization performed badly, the global defect term F
and the global stiffness matrix G were computed for the simple example studied in
Section 5.1. In the MUFTE code, the local stiffness matrix entries Lg; for each element
are summed up to the global stiffness matrix G according to the scheme shown in
Figure 40 and in (51) for the simple 1D example of Subsections 5.1.1 and 5.1.2. The
subscripts represent the local vertices and the superscripts the global elements. As we
have to consider the derivatives of two equations (fy(pw,Sn) and fn(pw, Sn)) for the
two primary variables the matrix is split into four quadrants.

0 0 0 0 0 0
Loo Loy 0 Los Lo e 0 Loy Los
0 0 .1 1 0 0 .1 0 0 ;1
Lio Lyitloe Loy Lis Lis+Log e 0 Ly Lygtlyy
1 1 1
0 Lo 11 0 L13 - 0
0 0 0 .2 )
L3o L3y 0 L3zztLlpg L3atLlos - 0
0 0 .1 1 0 ;2 0 .71 .72 .73
Lyo LyytLzg Ly Lygt+Lliyg LggtLggtLyy+lyy .o O (51)
0 0 0 0
9, Ly, Lag Lys
0 0 ;1 0 0 ;1
Lo Lyitlao Lgy LystLly

For the investigations the, "critical" nonlinear iteration of the "critical" time step was
chosen, i.e. the matrix where the interface condition was evaluated for the first time
with pgmy reached, and the vector of the first and last line search corresponding to the
critical nonlinear iteration.
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Figure 40: Denotations for local and global vertices

The angle ©) between the NEWTON direction dx and the gradient gy is computed
according to

< _gk7 dk >
Oy, := arccos ——— (52)
el [|dcll
where
e g =G, Fy

According to the investigations carried out, this angle ©; was indeed approximately
90° for the cases where "trans exact" encountered difficulties, which means that the
NEWTON algorithm was searching in the wrong direction.

Singularity The global stiffness matrix is quasi-singular, if the ratio between the
largest and the smallest singular value is high or especially if the smallest singular
value is close to zero. For the studies carried out, common ranges of singular values
lie in [107®,10%] which in fact indicates quasi-singularity for the cases where the box
scheme with interface condition and exact linearization performs badly.
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6.2 Principles and Algorithm

Solving our nonlinear problem F(x) = 0 the NEWTON algorithm with trust regions
converges to a stationary point of f, i.e. grad f(zy) — 0 where {z}} is the generated
sequence.

Principles: (taken from GILBERT [10], [9])

1. We are looking for stationary points of
1 2
f@) = SIIFG)I
2. We consider a quadratic model of f around z:

1 /
deR" — ¢(d) = §”F(X) + F'(z)d||;

3. ¢ is minimized ONLY in the trust region, i.e. the sphere S(x, A):

ming ¢(d)
]z < A

where

e A > 0 is called trust radius.
e A has an influence on the displacement d.

e Advantage: d is well defined even if F'(z) is singular.

Algorithm
Iteration from (zg, Ag) to (Zgs1, Ags1): We need constants independent of k. . .

e ... which measure the success: 0 <7 <1y <1

e ... toupdate A: 0< 7 <7y <1<73.

1. Stop if already converged (|| grad f(zx)|| =~ 0)
2. Calculation of the displacement dj:

(a) Calculate an approximate solution for d
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(b) Calculate the concordance between the function f and its quadratic model

QD:
fxp +dg) — fag)
o(dy)

(c) If pr < mi: reduce Ay € [11]|di||, 2||dk||] and go to 2a

Pr =

3. Set Tp+1 = Tg + dk
4. Update trust radius:

Apos € [T Ak, Ag] if pp <o
k+1 [Ak,’TgAk] else.

This algorithm is used in the software N4IP1 called OPINeL [8], for example. It is
based on the truncated NEWTON nonlinear interior point approach, developped by
L. CHAUVIER and J. Ch. GILBERT.
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7 Summary and Concluding Remarks

The investigations in this report have shown that the hoped for amelioration of effi-
ciency of the box method with interface condition when the partial differential equations
are linearised exactly is in general not obtained.

However, for certain cases for which the numerically linearized scheme with interface
condition encountered particular problems (increase of nonlinear NEWTON iterations
due to steep gradients of the relative permeability - saturation function of the wet-
ting phase at S,, = 1) the efficiency can be improved by using exact linearization if
favourable capillary pressure - saturation relationships are taken.

Taking the constitutive relationships of BROOKS-COREY and common ranges of the
parameters, however, the trans scheme with exact linearization does not perfom as well
as that with numerical linearization as in this case the numerical linearization has the
effect of reducing the steepness in the gradients of the constitutive relationships.

To sum up, one can say that except for special applications the formerly used box
scheme with interface condition and numerical linearization is more efficient than the
scheme with exact linearization developped here. A possibility to improve the scheme
in cases where the trans method with consistent linearization encounters problems,
could be the use of the Trust Region algorithm.
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A Analytical Derivatives of akm(;?: virt) o Polynomial

k.., — S, and BROOKS-COREY p.— S, Relationships

The analytical differentiation of the relative permeability - saturation relationships is
used in case we are at the interface, we consider an element which belongs to the
material with the higher entry pressure and the entry pressure of this material has
been reached.

As the derivatives for S, are the same as for 5, except for the sign, the mobility
derivatives are deduced here by differentiating for S,, and changing the sign accordingly.
The constitutive relationships used here read as follows:

kTw(Sw) = Si; (53)
krn(Sw) = (1—8u)° (54)
pr = py-Su (55)
pit = pif - S, (56)

where e and )\ are real parameters.
We can compute the virtual saturation S, ,;+ as a function of the saturations .S,, as
follows:

pg(Sw) = p£I<Sw,uirt)

. 1
Py S = P Sy
0 AN AT
Swair = (pd"/pd")" - S (57)

Using this relationship for S, yir¢, the derivatives of %‘:’””) are calculated:

9 (P—)Asw_
Okrw(InvPc " (PC'(Sy)))  — Okrw(Swwirt) Pa
a3, - dS,, B 08w
I\ e i1 a1
el [PL) A e
I (p{) s (58)
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pII )‘II # €
Ok (InvPc ' (PE'(S,)))  Okpn(Swwir) 8[1_(ﬁ) 'S”A]
85, T 85,
pgl AT AA# e—1 /\H pél A %
= —e [1— <p—5> S oY (E) Sa"(59)

RR n" 4903



82 Niessner, Roberts € Helmig

B Analytical Derivatives of ’"“(S”””t) for BROOKS-COREY

k.., — S, and p. — S, Relatlonshlps

The analytical differentiation of the relative permeability - saturation relationships
according to BROOKS and COREY is used in case we are at the interface, we regard
an element which belongs to the material with the higher entry pressure and the entry
pressure of this material has been reached.

As the derivatives for S, are the same as for S, except for the sign, the mobility
derivatives are deduced here by differentiating for S,, and changing the sign accordingly.
The BROOKS-COREY relationships read as follows:

2432*
krw(Sw) = Su™ (60)
Fon(Sw) = (1= Sy)?- (1—512“) (61)
pi = py-Sw (62)
p' = pi S (63)

where \* stands for the \ parameter of the respective material, i.e. Af or \!.
We can compute the virtual saturation S, ,;+ as a function of the saturations .S,, as
follows:

p(I;(Sw) - ng(Swmrt)

1

' N /\II

Dy - Sw - Sw virt
AT

Sw,m'rt = (pdll/pdl) I'S’UE\I (64)

As for the polynomial relative permeability - saturation relationship (Appendix A), the

f OralSnirt) are computed accordingly:

derivatives o 55

9 (’i) ST
Ok,o(InvPc (P! (Sy))) Ok (Swpwirt) _ Pa
dS,, - S, 9Sw

IT243)\*
A * AT MIatart

2 + 3A* A )\_I AF
= Tt Dw 65
A* (pd ) A (65)
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(1 = Suwirt)? - (1= 23
akrn(InUPcH(PCI(Sw))) _ _6krw(Sw,virt) _ w,vird w,virt
PEDN
= 2(1 - Sw,vi'rt) ) <1 - Sw:\;z'rt) + (1 - Sw,vi'rt)2'
% . )\II
2+ 1] M (i) '51}#—1 (66)

¥ * Pw,virt
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C Evaluation of the Terms for the Consistent Lin-
earization

As derived in Section 4.3 the terms in the following equations have to be evaluated in
order to implement the consistent linearization into the code [11].

k+1,r;k,0 k+1,r+1k+1,r _ gok+1,r k+1,r k+1,mk,0;k+1,0
\I<To¢e (u)} ) \Aue , - \I<Eae (u) : ue , - E‘ae , (67)
I I 1 v
with
k+1,r5k,0 _ yok+1lr  k+1lr  Ck+1,75k,03k41,0
fae - KEae u, The
and

k+1,r;k,0
k+irko  Of 0T

Tae - u]g-i—l,'l‘ ?

The terms I through VI are calculated under the assumptions g%z =0 and gp% =0 as
mentioned in Section 4.3.

C.1 Term I: Tangent Element Matrix
Here the entries of the tangent element matrix are calculated in the following way:

k+1,7;k,0 k+1,r;k,0 k+1,r;k,0
of}] ofy] of

_ _ k+1,r;k,0
k+1, - k+1, k+1, - T
ouet Opee " OSne " *
—_—

(1) (2)

The terms (1) and (2) can be formulated as follows. The explanation of the abbrevia-
tions for vectors and matrices can be found in this appendix Section C.5.

e term (1) for phase w:

6fk+1,7‘;k:,0 1
we, k+1,r k+1,r
Twe _ — gAFtr 4 __BF

pﬁf‘élﬂ" At
aA]efH’T [(1 _ 0)pk’° + epk+1,r] T 8B’ec+l’r pﬁél’r - Pf;’g
p’qjﬂe—l’T we we apﬁ;tl’r At
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k+1,r Qk+1,r _ Qk,0 k+1,r
| QChtLr gkilr — gk0 gk

a k:+1 T At a k+1 T
— 9Ak+1 T
e term (2) for phase w:
afk—i—l r;k,0 1 ki aAk—i—l T k1 6851;1 ,T
aSkH—l )T = At Ce + OSkH )T [( e)p + Hp ] o aSk-i—l )T
aBk—l—l T pa—é—l \T pwe
aSkH-l T At
_ 1 k+1,r 8Ak+1 " k+1,r agk_H ”
T M T e (= 00w+ 0p1] - oSk

e term (1) for phase n:

afk—;::k 0 — QEI;-H ,T Jlec-f—l )T
Opuwe " At
aFk+1 " k,0 k+1,r 6I£+1’T Sﬁjl’T - Sﬁéo
+{ 6 k+1r [(1 - H)Sne + HSne ] - 6]7]51—'(;1’7‘ At
= QEFT

e term (2) for phase n:

OfrLrik,0 — Rkl LI k+1,r
ask-l-l T € At €
T ok gggiin] PV Sir st
8Ek+1 T
+ask—|—1 r [(1 - o)p’we + epk+1 T]
aJk—l—l T pk—|—1 T pk,O
+ask‘+1 T At
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— 0F§+1,T+L1ek+l,r

At
Fk+1 T
+ S [0 05k + o5
aEk-H r
NPT 9Sk+Lr [(1 — O)ple + Oplic” T]

C.2 Term II: Vector of the Unknowns p, and S,

k+1,r+1 k+1,r
Auk+1,7‘+1;k+1 ro__ uk+1 r+1 uk+1,7‘ — ( Pw ) _ ( Duw )
e

¢ Sn Sn ),
with
Puw1 Sn1
Poe=| S|
Pumipoges e S”"nodes e

C.3 Term III: Vector Kg” -uf*Lr at the Last Known Iteration

Step r at Time Step k+1

The term K’H:T contains all terms which are differentiated at the new time and iter-

ation step k£ + 1, and respectively r.

e phase w

B;
(K-u), = q§| A |5{;+“ 0 / K\dl g plttr
0B;
Kk—;l T u]ec—|—1,7‘ — 0Ak+1 T Bk:—|—1 7‘} pﬁ:}—é—l T

+ { Clec—|—1 7‘} Sk—|—1 T
— 0Ak+1 rpqu)—le—l K

+{ Ck—|—1 7‘} Sk—|—lr
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e phase n
(Ku)n == |A |Sk+1r Q/K)\ dPBpk—}—l'r Q/K)\ pcSk_HTdF
K’E‘Z?T . u’eH-l,T — { Ek+1 T AtJlec_H 7-} pﬁ)_é_l R
ngH T Ik+1 r} Gh+1r
{ At € ne
— 0Ek+1 sz—gl T
OF L Ik+1 7‘} kL
~forrere g
C.4 Term IV

In rkFLrik0k+10 on the other hand the derivatives are evaluated at the old time and iter-
ation step k, and respectively r. Moreover it contains the terms which are independent
of the primary variables.

e phase w
_ | B; | k,0 _ k,0
r, = ¢ AL SPP+(1-6) | K\pdlp,py
9B;
+ / K)\wpwngBi — Qu | Bz |
9B;
1
k010 — (g gy Akt Bk+1r} k,0
i {a-o B ol
Ck—|—1 r} Sk,O
{&
4 ghthr kLo
e phase n
[ Bi | gro k0
.= -8 Sk —H/K)\ndl“.’
r O—— At ) B; Dy

0B;
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dp.
+(1 - 9) / K)‘ndg dPBiSﬁ,O + / K/\npnngBi —Qn | Bz' |

phLERORLO {(1 _ O — AthH 'I‘} Pk
1
_ {(1 _ Q)Flecﬂ,r _ Ellgﬂ,r} S,I:éo

gk+1,r ~k+1,0
+gne ’ +mne i

where mF 10 describes the mass flux over the boundary at at the unknown time
step (k + 1).

C.5 Notation for some Matrices and Vectors

e phase w, nodes 7 and j, j # 7, element e, time step k + 1

Ae = Adpy) = 74 [MEHK,) - ndly,
0B;

nie nie
C. = Celpw) =¢-|Bi|
Bue = Bue(pw) = f {/\E_yleKepﬁjelg} -ndl'p,

doFTL
}¢ pwzge |Bz ‘:0

B, = B.(pw, S) = {Sk' - SF, pe

9B;
Mye = Mye(S,) = }[ [NEHL K, grad pht' — ML pE Kg) - ndl s,
OB;
+q112:1 | B; "

e phase n, nodes 7 and j, j # i, element e, time step k + 1

E, = E.(S,)= f{Ak“K } - ndl',

nije

OB;
d
R = Fus) = § (K, nar
0B;

dpk+t dp
I = L(S,) = oo | Bi | + {551 % e e ||
o= L) =oo 8|+ {ousp e e
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= ¢e'|Bi|

Je = Je(Sn) = ¢eSk+ldpne ‘ Bi |

nie d
ne

Bre = Bne(pw) = ?{ {)‘fz;;ipnzelKeg} -ndl'p,

0B
dpk+1
m,, = m,(S,) = ]{{)\%iK dSC'e grad S,. + \
dB; ne
— XLk Keg) - ndlp, + 53 | B; |

RR n" 4903
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D Variation of the virtual saturation S, ,;+ depending
17
on the ratio of entry pressures %JT
d

As can be seen in Figure 41, the variation of the virtual variable ¢’ can be computed
as

8 = Sw,viTt - Sw,i’nc,vi'rt- (68)

The virtual saturation S, ;¢ is calculated in Appendix A as

ML

Pl AL
Sw,m"rt = (%) w)\I . (69)
Dq

With the help of the incremented non-virtual saturation

Snine = Sp+€(S,+1) with € a small constant
= Sy(l1+e€) +e
= (1-Sy)(1+e)+e
Swine = 1— Spine
= 1—-e—(1-5,)(1+¢) (70)

we can calculate the incremented virtual saturation

)\II
/\II

pII
Sw,i’nc,viv"t = (p%) [1 — €= (1 - Sw)(l + 6)]>‘_I . (71)
d

)\II

Inserting equations (69) and (71) into equation (68) gives the variation of the virtual
AL A
{557 - e- - s+l ), 72

saturation as
5 — (i)
= T
Py
II

which increases with increasing ratio of the entry pressures %.
d
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@ "
o \
e .
o \
a \
""" lIb
"""""" lla
| T
Sw,inc Sw Sw,inc,virt Sw.virt
Sw [-]
B E—
o 5

Figure 41: Definition of the variations § and ¢'
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