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Abstract: The discretisation of the Euler equations for a barotropic state law is considered.
An upwind scheme based on the definition of a Roe’s type matrix is first obtained for
this particular hyperbolic problem. A low Mach number asymptotic study is performed
both in the continuous and discrete case showing that the discrete solution admits pressure
fluctuations in space much larger than those of the exact one. This is the same kind of
behaviour observed for the case of a polytropic state law. A preconditioning is then applied
such that the obtained discrete formulation has an asymptotic behaviour in agreement with
the continuous case. A linearised implicit scheme is defined using the properties of the Roe
matrix instead of the first-order homogeneity of the flux function which is not satisfied here.
The implicit formulation is also extended to the preconditioned scheme. All the proposed
ingredients are validated in the case of a quasi 1-D nozzle flow of a cavitating liquid.
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Un schéma de Roe implicite préconditionné pour des
écoulements barotropiques: vers la simulation de
phénomeénes de cavitation

Résumé : Ce travail concerne la discrétisation des équations d’Euler associées & une loi
d’état barotropique. Dans un premier temps, un schéma décentré basé sur la définition
d’une matrice de Roe est mis au point pour ce probléme hyperbolique particulier. Une
étude asymptotique a faible nombre de Mach est ensuite effectuée soit pour le cas continu
que discret. Cette étude montre que la solution discréte admet des fluctuations spatiales
en pression plus importantes que celles de la solution exacte du probléme continu. Il s’agit
d’un comportement analogue & celui observé dans le cas d’une loi d’état polytropique. Un
préconditionnement est alors appliqué de facon que la formulation discréte aie un comporte-
ment asymptotique en accord avec le cas continu. Un schéma implicite linéarisé est alors
défini utilisant les proprietés de la matrice de Roe au lieu de I’homogénéité de premier or-
dre de la fonction de flux, propriété qui n’est pas vérifiée dans notre cas. La formulation
implicite est ensuite généralisée au cas du schéma préconditionné. L’ensemble de la formu-
lation numérique a été validée dans le cas quasi 1-D d’un écoulement liquide cavitant dans
une tuyeére.

Mots-clés : Ecoulements barotropiques, schéma de Roe, écoulements compressibles 3
faible nombre de Mach, préconditionnement, schéma implicite
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4 E. Sinibaldi F. Beux M.V. Salvetti

1 Introduction

The present work is a preliminary study towards the definition of an efficient numerical
framework for accurate simulation of cavitating flows. An accurate computation of cavi-
tating flows appears rather difficult; indeed, one has to deal with unsteady two-phase phe-
nomena in which both incompressible zones (pure liquid) and regions where the flow may
become highly supersonic (vapor-liquid mixture) are present in the flow. Furthermore, strong
discontinuities with radical changes of the physical quantities occur around the saturation
point.

To deal with this type of flows, two opposite ways can be followed: adaptation to the com-
pressible case of numerical methods suitable for incompressible flows, or inversely, adaptation
to the low Mach number limit of compressible solver. Pressure-based methods, tipically used
for incompressible flows, have been extended to the compressible case, for instance, in [9]
and [10]. In recent works [22], [19], [2], [13] pressure-based methods have been used to deal
with cavitation problem.

On the other hand, standard numerical methods for compressible flows, which are more
efficient for high Mach number than the modified pressure-based schemes, fail to compute
very low Mach number flows. Indeed, at the low Mach number limit, the numerical dif-
ficulties are of two types: first, due to the stiffness of the equations with a very large
disparity between acoustic and convective time-scales, the numerical schemes result ineffi-
cient. Secondly, the accuracy of the solution is lost when the Mach number tends to zero.
An explanation of this behaviour, based on an asymptotic analysis in power of the Mach
number for both continuous and discrete equations, is given in [8]. The derivation of a time-
preconditioning has been proposed to overcome the convergence difficulties [16]. Moreover,
the use of a preconditioning also solves the accuracy problem [17], [21]. Furthermore, since
the preconditioning only modifies the numerical dissipation, the scheme remains consistent
with the time-dependent equations, and thus, the resulting method can be also used for un-
steady flows (see [8], [21]). An explanation of the success of the preconditioned formulation
can be obtained by again using an asymptotic analysis in power of the Mach number [8].

Our approach belongs to the second class, i.e. preconditioned compressible solvers.

As for modelling, we adopted an homogeneous-flow cavitation model capable of account-
ing for thermal effects and the concentration of the active cavitation nuclei, which appeared
well suited for the applications of our interest (see [3] and [14] for a more detailed discussion).
The model results in a barotropic state law based on the mixture sound speed.

Thus, in the present study the continuity and momentum equations for compressible
inviscid flows are considered together with a generic barotropic state law. They are discre-
tised by a finite-volume formulation; fluxes are computed by an upwind scheme based on
the definition of a Roe’s type matrix [12] for this particular hyperbolic problem.

Then, following [8], the low Mach number behaviour is investigated by an asymptotic
study both in the continuous and discrete case. The same kind of result obtained for the
case of a polytropic state law in [8] is found in our case also, i.e. the discrete solution admits
pressure fluctuations in space much larger than those of the exact one. Thus, the same type
preconditioning procedure as in [8] and [21] is formulated for the barotropic case and it is

INRIA



A Preconditioned implicit scheme for barotropic flows 5

verified that the obtained discrete formulation has an asymptotic behaviour in agreement
with the continuous case.

Finally, as for time advancing, a linearised implicit scheme is proposed, in which the
linearisation is based on the properties of the Roe matrix. The implicit formulation is also
extended to the preconditioned scheme.

All the proposed ingredients are validated in the case of a quasi 1-D nozzle flow of a cavi-
tating liquid. Although in a simplified context, this test case contains most of the numerical
difficulties which characterize the simulation of cavitating flows of practical interest.

2 Governing equations

The 1D Euler equations for a force-free fluid, written in conservative form, are considered
here:

ow oOF(W) 1
ot or (1)
where:
P pu
W = o FW) = pu?® +p
pes u(pet + p)

p is the density, u is the z-component of the velocity, e; is the total energy per unit mass
and p is the pressure. More specifically, we consider a barotropic fluid, i.e. a fluid whose
pressure is linked to the corresponding density by means of a one-to-one correspondence of
the form:

p = p(p) 2)
At this stage, p is assumed derivable and such that dp/dp > 0. Then, once the total enthalpy

per unit mass h; = e; + p/p has been introduced, the Jacobian A(W) = F/0W can be
expressed as follows:

AW) = a?—u? 2u 0 (3)

dp

i

Tt is easy to verify that the eigenvalues of A are u, u + a and u — a (the same as for the
“classical” case of the 1D Euler equations associated with an ideal polytropic state equation)
and therefore Egs. (1) and (2) represent a hyperbolic system of conservation laws.

in which a(p) =

Note 1 By virtue of the barotropic state law, the energy equation is decoupled from the
rest of the system. Therefore, it is possible to consider a reduced set of governing equations
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6 E. Sinibaldi F. Beux M.V. Salvetti

involving only the mass and momentum balances. In spite of this, we will consider the full
problem until Sec. 8.2 in order to keep some degree of generality.

Note 2 Contrary to the “classical” case, the flux function F for the present case is not
first-order homogeneous:
F(W)#AW)W

Since the homogeneity property is often used to define specific numerical schemes, the above
remark should be kept in mind while generalizing some classical hyperbolic solvers.

3 Semi-discrete formulation

3.1 Introduction

In this section a semi-discrete formulation of Eq. (1) is derived. To the purpose, we consider
a finite-volume space discretisation of the form:

dw;
6 g+ Pt ~ By =0 @)

where:
e §; is the measure of the i-th cell;
e T, is the mean integral value of W on the i-th cell;

o &, is the numerical flux function representing the convective flux flowing from the
I-th (left) cell towards the r-th (right) one.

Eq. (4) is a semi-discrete equation which can be explicitly written once the numerical flux

function has been specified. In the present work we consider the Roe numerical flux function

(see [12]):

_ FWy) + F(W,)
2

where A is a suitable matrix, called “Roe’s matrix”, verifying the following conditions for
any (W, W,):

2, - SHAWL W)W, = W) 6)

1. A(W;,W,) is diagonalisable with real eigenvalues,
- OF

2. lim AW, W,) = A(W*)

Wi, Wems W a W(W ),

3. AWy, Wy) (W, = W)) = F(W,) — F(W).

INRIA



A Preconditioned implicit scheme for barotropic flows 7

Let A1 , A2 and )3 be the eigenvalues of A; then A = T Diag(A, A2, As)T~! where T
is the (right eigenvectors) similarity matrix. The matrix |A| in (5) is defined as: |A| =
T Diag(|Xi, ], [Aa]) T

Clearly, the Roe matrix depends in general on the specific problem under consideration and,
in particular, on the specific fluid. A Roe matrix A has initially been introduced in [12] for
the case of the Euler equations associated with an ideal polytropic state equation. Different
extensions to more complex cases have been proposed in the literature (see e.g. [5], [20], [1]
and [7]). In the following, a Roe’s matrix is proposed for the problem under consideration
and the corresponding semi-discrete equations are explicitly written.

3.2 The Roe matrix for barotropic flows

In this subsection we determine a Roe matrix for the 1D Euler equations associated with
a generic barotropic fluid, i.e. Egs. (1) and (2). To the purpose, we recall the well-known
“Roe averages” (see [12]):

( ﬁ(le W’I‘) = \/plpr

. _VPrw + \/pruy
L W) = (6)

oWy, ) = Yot o),

\ P+ /P

Furthermore, we introduce the following notation:
AT() = ()r = ()

Let us consider, at a preliminary stage, the 1D Euler equations associated with an ideal
polytropic state equation. In this case, the Jacobian matrix depends on the variables W only
through the two physical quantities u and h;. The Roe matrix verifies a similar property,
indeed (see [12]):

AW, W,) = A(@(Wi, W,.), he (Wi, W,.)) (7)

with @ and h, given by (6). By virtue of the following lemma, whose proof is reported in
Sec. A, it is possible to extend Eq.(7) to the problem under consideration. Indeed:

Lemma 1 A suitable Roe matriz for the problem under consideration is:
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8 E. Sinibaldi F. Beux M.V. Salvetti

where @ and hy are given by (6) and a2 is defined as follows:

A ij:p if pi # pr
a(W,W,) = P 9)
a*(p,p(p)) Ep=pr=p
From (8) it is clear that:
AW, W) = A(a(Wy, W,.), ho(Wi, W), a2 (Wi, W) (10)

where A = A(u, ht, a?) is given by (3). The formal analogy between Eqgs.(7) and (10) is then
evident.

Note 3 It is possible to derive (6), (8) and (9) from the Roe averages defined in [5] in a
more general context. More precisely, in [5] the 1-D Euler equations are considered with a
generic state equation of the form: p = p(p,e), e being the internal energy per unit mass,
assuming the hyperbolicity of the resulting system and the existence and the unicity of the
the associated Riemann problem. Furthermore, (9) has been previously obtained in [6], but
only on the reduced problem (11).

Note 4 As far as the numerical implementation is concerned, a?(W;, W,) should be defined
as follows:
Alrp

TN if | Al7p |> e
W, w,) =4 Ap

a2(ﬁlrvp(ﬁlr)> Zfl AlTp |< €
where € is a suitable numerical threshold and py- is an average value such that:

lim Dir = p*
W,,WT—‘W*'OT P

For instance, we can take pi. = p(W;, W,.) as in (6).

3.3 Semi-discrete equations

From now on attention is focused on the "reduced” problem:
o "* 9 pu
— + = =0 (11)
ot pu ox pug +p
associated with a generic barotropic state law like Eq.(2).
In this section we explicitly write the semi-discrete equations:
dw;

b+ Bt — B =0 (12)

where:

INRIA



A Preconditioned implicit scheme for barotropic flows 9

e W, and ®;; now belong to R?;
e &, is the Roe flux function (see (5)):

F(W; F(W; 1 - -
B, = w — 5 1y| AW (13)
in which A;; = A(W;, W;) is the reduced Roe matrix from (8), i.e.:
B 0 1
Ai]' =
a2 — % 2y
where di]‘ = [l(W,‘, Wj) and ﬁij = ﬁ(W,‘, Wj).
The eigenvalues of /L]- are:
)‘Egl') = Uij + Qi )‘(2) = Wij — Q45

while the corresponding (right) eigenvectors are REJI-) =(1, )\S))T and REJQ-) =(1, )\g))T. The
upwind term of the numerical flux function can then be expressed as:

2
| Aij | AW = 3" (W) [ AP | RY

k=1

where ¢ (?) is the k-th coordinate of € R? in the basis formed by the eigenvectors. By
exploiting the following classical property of the Roe averages (see, for instance, [20] or [1]):

AY(pu) = @i; A p + pijAu

we obtain:
g L i Pis i 1 (A¥p
AYW) == [ AY BINAYy ) = AV
al ) 2 ( e Qi u) 2445 ( Qi Py )
’ 1 g Pii i 1 Avp
Azg — Azg _ _JAU — = v i'A”
2(AYW) 2 ( g Qi u) 245 ( Qi P u)
Hence: L
. 3 1 A¥p
| Aij | AW = 2~— Uij
s i A7 u
where: n (2
RS EAR (1) (2)
e % =122
ij
U, = (14)
)\(1) ‘ )\(1) | +)\(2) | )\(2) |
i (1) (@) (2) | (2
AP 1A =28 A9

RR n°® 4891



10 E. Sinibaldi F. Beux M.V. Salvetti

By substituting the relevant terms into Eq.(12), the semi-discrete equations finally write:

d Pi Pi—1Ui—1 Pit1Ui41
261-& = _ +
Pill; pic1ul |+ pic1 P¢+1Uf+1 + Dit1
(15)
) . Az(z—l—l)p 1 ; A(’L—l)’tp
2% i(i+1) ) N TP L ) s
Aj(i+1) pi(i+1)Al(l+1)u A(i—1)4 p(i—l)iA( iy,

4 Low Mach number asymptotic study

4.1 Introduction

It is well known from the literature that the accuracy of a compressible flow solver dealing
with a nearly incompressible flow is generally very poor. In the present section we analyze
the behaviour of both the continuous and the semi-discrete governing equations when the
Mach number tends to zero. We will show that the numerical solution may exhibit pres-
sure fluctuations in space much higher that those in the continuous solution. In Sec. 5 a
preconditioning technique able to counteract this discrepancy will be introduced.

4.2 Non-dimensionalisation

In order to emphasize the role of the Mach number (i.e. of the flow compressibility), the
governing equations must be non-dimensionalised. To the purpose, we introduce the follow-
ing reference quantities:

px = max p(z,0), uy, = max u(z,0), a2 = max a*(z,0) and 6, (an arbitrary length scale).

Then, a reference Mach number may be defined as: M, = u./a, where a, = \/a_,%. By
exploiting these quantities, we define the non-dimensional variables as: &' = /6, p' = p/px,
u' = ufuy, t' = tu, /6, and p' = p/(p.a?). These variables will be used for both the contin-
uous and the semi-discrete flow equations (in the latter case the discretised variables will be
non-dimensionalised). The prime will be dropped for the sake of clarity.

4.3 The continuous case

By introducing the non-dimensional variables into the mass and momentum balances of
Eq.(1), the following system is obtained:

pu

ot ox 2, 1
PU pU +Wp

INRIA



A Preconditioned implicit scheme for barotropic flows 11

while the non-dimensional state law is still of the form of Eq.(2). We now look for solutions
to Eq.(16) as an asymptotic expansion in power of M,:

): pO(xvt)J’_M*pl(xvt)+M*2p2(x7t)+
w(x,t) = wo(x,t) + Myur(z,t) + M2 ug(z,t) +--- (17)
): po(.’L‘,t)+M*p1(.’1:,t)+pr2(.’I:,t)+~“

By substituting these expansions into (16), the momentum equation can be rewritten as

follows:
1 Opo | 1 Op; <3pouo Op2

il 4" Zr2 2 M.(--)=0
M2 ox T M, oz ot | ox +p°“°)+ <)

It is possible to solve this equation in the limit M, — 0 only if:

Opo Ip1 _

-z 18
Ox Oox (18)
As a consequence, when M, — 0 the pressure field solution of Eq.(16) is of the form:
p(a,t) = po(t) + My pi(t) + M pa(x,t) (19)
Note 5 Since the fluid is barotropic, it is possible to write:
p=p(p) = plpo + Mup1r + MZ(---)) = p(po) + Mua®(po)pr + M(---)
By comparing this Taylor expansion with (17) we get:
po = p(po)
(20)

= a*(po)p1

4.4 The discrete case

In the low Mach number limit (M, — 0) |ds;| > |@i;|- Therefore, since @;; > 0, we have
| ,\5}) |= AE;), | )\5]2-) |= —)\g) and thus, (14) becomes:
1 iis;
Uy = 2 (21)
2i;; (a3 +a3;)

By substituting (21) into Eq.(15) we get the following semi-discrete equations:

dpi Ai(i—{—l)p A(ifl)ip
200—— = (Pi—1%i—1 — Pit1U; = - =
’ dt (pirtiiy = piatia) ( Qi(i+1) a(i-1yi -
(22)
i(i+1) (i—1)i
~ ~i ; A1(1+1)u — = ~ i iA(zl)zu)
(ai(i+1) Pili+1) a(i—1)i PE-1)

RR n°® 4891



12 E. Sinibaldi F. Beux M.V. Salvetti

d i Ug
pdt = (pi—luz{l - Pi+1u$+1)

26;

+(Pi-1 — pit1) +2 (ﬁAz(H—l)P - ~(—1)A(1_1)1P> +
Ai(i41) A(i-1)s (23)

(@iir1) Pigirn) AU — i1y P(i—1)s AUV )

+ (?WH) iip1) (1) AT — 2y — i 1yiBior )y AT )
Q5(i41) a(’L* )i
Eqgs. (22) and (23) are then non-dimensionalised by means of the reference variables
introduced in Sec. 4.2. Consequently, the non-dimensionalised Roe averages are obtained as
follows: p;; = p*ﬁgj, Uij = u*ﬁgj and d;; = a*dgj. As a result, the following non-dimensional
semi-discrete equations are obtained (the prime is dropped for the sake of clarity):

dp; 1 Ai(z’+1)p A(iﬂ)ip
26— = (pi—1Ui—1 — Pit1U; — | = - —
dt (Pi1Ui1 — piy1Uiz1) + M. ( Baorn) T
(24)
z(7.+1) . U( 71)1
+ M ( pl K3 Al("‘+1)u p 11— ’LA(l 1) )
al(H-l) (+1) a(z 1)3 (i=1)
dpiu;
26 a (pi—wil - pi+1uf+1)
Jf‘i (Pic1 — Pig1) + 2 (UWH) AH) _ - i A )
ME M* az(1,+1) a(z 1)i
(25)
1
ﬁ (az(z—l—l)pz(z—l—l)A i+t )U - a(z l)zp(z 1)1A( L )

Wi(it1) . ~ i(i+1),, UG (i-1)i )
+M. (~ WUi(s i 1) A Ui 1)iPli—1)i A
“\ e (i+1)Pi(i+1) A1) (i-1)iP(i-1)

As for the continuous case, we look for semi-discrete solutions to Eqs.(24) and (25) as
an asymptotic expansion in power of Mj:

pi(t) = poi(t) + My pri(t) + M2 pai(t) +
ui(t) = uoi(t) + M, uli(t) + Mf u2i(t) + - (26)
pi(t) = poi(t) + My p1i(t) + M2 pai(t) + - -

Note 6 The power expansion (26) is applied to the Roe averages as well. Let us consider,
as an example, the expansion of G;;. As shown in A, @;; is always strictly positive. Hence,

agi; = aij|M*:0 >0

INRIA



A Preconditioned implicit scheme for barotropic flows 13

and (zi—jl may be expanded as follows:

1 1 g B! i
— = (1+M~1”+-~-> = - (1—M*~1”+~-->
@i5  Qoij Qoij @oij @oij

More precisely, ag;; can be explicitly written as follows:
o if AYp =0 then p; = p; = p and a;; = a(p):

. _ ., fda
@i = alpo) + 3 (Po)pr Mo+ -

Clearly, @oi; = a(po);

o if Ap # 0 then, by definition: A¥Ypai; = AYp; if we consider only the terms of
order zero in the expansion in power of M., we obtain: AYpoag;; = A9py. Since, as
previously pointed out, d%ij > 0, the following equivalence holds:

Vi,j AYpy=0 < A¥py=0

— if A¥py # 0, and, thus, Apy # 0, then:

_ Aijp %
= (Mp)
Add 1 Ad 1
I po “py
(A”l)o) ( - Aiipy " * >
A 3 1 /AW % Add N
= Po) " (2 ko e A N VA
A¥ pg 2 \A%pqg Atpy A% pg

AY Po : .
Aiipy )’
— if A¥py =0 and, thus AYpy = 0, then, by exploiting the same kind of linearisa-

tion as above: .
By Ap,\?
0 = (A”p )
El

where s is the first integer such that A% p, # 0.

/N
+
>
§.
=
+
N——
|

In this case Ggs; = (

As for the continuous case, once the expansions have been introduced into Egs. (24) and
(25), all the terms associated with M2 and M must be set to zero in order to find the
asymptotic solution. The resulting equations are:

RR n° 4891



14 E. Sinibaldi F. Beux M.V. Salvetti

1. order M7 ? (momentum):
Po(i+1) — Po(i-1) =0 (27)

2. order M ! (mass):
Ai(i—i—l)po B A(i—l)ip0

G0i(i+1) Go(i—1): =0 (28)
3. order M, ! (momentum):
2 (aOi(i+l)m - 50(1—1)1'%)
Qoi(i+1) ag(i—1)i

o y o s 29
+ (a0i(i+1)pOi(i+1)A2(z+1)U0 - aO(i—l)iPO(i—l)iA( Digg) (29)

+ (p1(i41) — Pr(i—1)) =0

By combining Eqs.(27) and (28) we obtain:

(~ 1 T 1 ) A(i—l)’ipo =0
Ao(i—1)i  Qos(i+1)

Since dg;; > 0 (as remarked in Note 6), it is possible to conclude that p; does not depend
on the nodal index ¢:

poi(t) = po(t)
As a consequence, po;(t) = po(t) and Eq.(29) reduces to:

Po (aOi(H—l)Ai(H—l)UO - aO(i—l)iA(i_l)iUO) + (pl(i-l—l) - pl(i—l)) =0

This equation implies that in general p1; = p1;(t). Therefore, when M, — 0 the pressure
solution to Egs. (24) and (25) is of the form:

pi(t) = po(t) + My pri(t) (30)

By comparing (30) and (19), it is clear that the asymptotic solution to the numerical
problem may exhibit a behavior which is remarkably different from that of the continuous
solution. The same asymptotic behaviors have been found by Guillard (see [8]) for the case
of an ideal polytropic state equation.

The present result shows that the accuracy of a compressible solvers can be dramatically
reduced when the flow tends to be (even locally) incompressible.
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A Preconditioned implicit scheme for barotropic flows 15

5 Preconditioning for the low Mach number flow

5.1 Introduction

In the present section we still concentrate on the semi-discrete problem, i.e. Eq.(12). In
order to make the discrete solution recover the same behavior as the continuous one in the
low Mach number limit, a modified numerical flux function is introduced. More specifically,
the same procedure as in [8] is followed and (13) is replaced with:

F(W;) + F(W;)

(I’ij = )

1 - g
~3 Pl P Ay AYW (31)

where P;; is the preconditioning matrix, which is, as usual practice, first derived in primitive
variables. In our case the simplest choice is:

pony - (%)

where the primitive variables are W, = (P,u)T and 3% is a positive real constant. By
performing the appropriate change of variables, P(W) can be expressed as follows:

Py = gePo g = (Lt 7))

ow, ow gr-1) 1
Finally, we obtain the following expression for the preconditioning matrix:
o p 0

Note that, in the formulation (31), only the dissipative part of the numerical flux is mod-
ified, and therefore the numerical scheme remains a consistent approximation of the time-
dependent compressible Euler equations.

5.2 Preconditioned semi-discrete equations

By substituting the (new) relevant terms into Eq.(12), we obtain a new set of semi-discrete
equations. To the purpose, we follow the same procedure as in Sec. 3.3.
The eigenvalues of P;; A;; are:

1 1+5% 2 1+ 5%
A = —5 i+ VX NG = —5 i — VX

1- 42 ?
() oo

where:
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16 E. Sinibaldi F. Beux M.V. Salvetti

The corresponding (right) eigenvectors are RE;)” = (1, )\Ejl-)p/ﬂz)T and Rﬁf)” =(1, ,\5;‘?”’//32)7“.

The upwind term in (31) can then be expressed as:

2
— It ij 7] k — k
PPy Ay AW =) E(ATW) | ’\Ej)p | (PileEj)p)
k=1
where ¢} (7) is the k-th coordinate of o € R? in the (new) basis formed by the eigenvectors.
Once the following entities have been defined: ri; = AP — 4,82, 5,5 = )\(-]2-)" —1@;;3% (notice

i 3
that ry; si; = —az2;3°), the following relations may be derived:

g 1 y 5 B2 (Afip 5
P(AY — —8;i AY 2~i‘AU — ~1"A”
F(ATW) = o e ((=565)A7p + 81 A¥Tu) = Xij(”j + pij u)

. 1 . . ﬂz Aijp y
P(ATTV) = rif) AT p— 25 Al) = ( —]-A”u)
ch( )=3 e ((ri))A%p = B*pij A%u) = o (=, %

—-1pL)p _ i 1 = i L
Py Ri™ = 5 ( Giij + 7 > T ( AP+ (1 - %)

-1 (2)p_i 1 —i !
Py R = E ( Wij + Sij ) e ( /\512-)"-1-&1-]'(1—52)

Hence: |
_ 3 1 AYp
Pl |PyAy| AW = =T},
! 2/ X v N
i pij A u
where: p(1,1) p(1,2)
U:.(1,1) U;:.(1,2
v = ( L1 Ua(, ) (33)
; Ur(2,1) UZ(2,2)
and:

1 2
G717

T4ij —845

U (1,1) =

2
UZ(L,2) = [ AP | —[ADP

R RV BN P

UP(2,1) =
(2 1) rij e

+ a(1 - B*) UG (1,1)

UR(2,2) = A7 [ ADP | =287 | ADP | a1 - B2 UE(L,2)
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A Preconditioned implicit scheme for barotropic flows 17

By substituting the relevant terms into Eq.(12), the new semi-discrete equations finally
write:

d Pi Pi—1Ui—1 Pit1Uit1
261& = - +
Pithi pi1u g + pi1 Pit1uiyy + Pit1

. A1) . Al=Dig

—UF - ——U_|\
2/ Xiir1) i(i+1) . Aili+1) 2/X(i-1): (i—1)

Pi(i+1) Bli—1)i A Vi

(34)

5.3 Low Mach number limit of the preconditioned semi-discrete
equations

By following the same procedure as in Sec. 4.4, we specialize Eq. (34) for M, — 0. In this

limit, | Aﬁj)p |= Aﬁ}”’, | /\Ef.)f’ |= —)\E?)p and (33) becomes:

~2
ws.
z+w2—n53 (1 + B%)iag;
ij
Ul =2 (35)

@2
(3 + 67+ (57 - 1)6_2]> ai; 2 (a3 + f7a3)

iJ
By substituting (35) into (34), the following semi-discrete equations are obtained:
dp;
26id_pt = (Pi—1Ui—1 — Piy1Uit1)

+

B2+1 [ g1
2 VXi(i+1)

G i i} 1) (36)
(8 -1) (ui(i+1) A1)y Wiy A(zl)1p>

2 6’12'(1'+1) Vv Xi(it1) &?iq)i VX(i-1)i

. ( Aili+1)p _ A(i—l)ip>
VX VXa-i

- ~ (i Ugi-1)i i1y
i) Pier A u — AV
X(i—1)i

+
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18 E. Sinibaldi F. Beux M.V. Salvetti

d Pil;
26; (dt ) _ (pirtl 1 — pir1uiyy) + (Pic1 — Pig1)

Ug(s . ~ i(i U(i—1)s
+ (7( e Ui(it1)Pi(i+1) D (1), — D)

~ = (i—1)4
7U(i71)ip(ifl)iA U)
VXi(i41) VX(i-1)

21 [, Uy(s (i Wiyyi i1y 1)
+/3 ( () BiGitn)  piGian), _ DG-0i UimDi G-,

2 @1y v/ Xiir) a1y /X1y

+ﬂ +3< Ui(i41) Aili+1) U(i—1)s A(zl)1p>

i

(37)

Gi(i+1) . - il a(i—1)i . . ie1)i
+02 7/%ai(i+1)pi(i+1)A 1y — %a(i—l)ip(i—l)iA( 2 U)
i(i+1) (i—1)1
Egs. (36) and (37) are then non-dimensionalised by using the same reference quantities as

in Sec. 4.2 and Sec. 4.4. In the present case, it is necessary to non-dimensionalise also X;;.
By noting that: ﬂlzim X = Ezfj we choose a2 as a proper reference quantity and define:
—1

2
X.. = a2V = a2 1= B2\" g0 2~'2
ij = 3 Yij = ay 5 ;3 My + B%a,;

The resulting non-dimensional semi-discrete equations are (the prime is dropped for the sake
of clarity):

dp;

26; dpt = (pi—1%i1 — Pit1Wit1)
B2+ 1 [ g1y - - {(i41) U(i1)yi . (i-1)i

M Ui(i41) Piit 1) AT — —==P(i—1)i AT

EERANV R e

: l (i i i 1)i (38)

+M (,82 — ]_) (“12'(141) A1(1+1)p B u?iil)i A(zl)zp)

* P ~

2 a?(iﬂ) VY1) a?ifl)i VY-

1 Ai(i-{-l)p A(i—l)ip
+_ —
M\ VYii) Y-y
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A Preconditioned implicit scheme for barotropic flows 19

d(piu;)
dt

1
26; = (pic1ui_y — piprulyy) + Vel (Pic1 — Pit1)
*

ﬁiil ~ ~ (i 7‘vvl'z'fl'i,., ~ i—1)s
+M, (ﬂui(iﬂ),’)i(iﬂ)A (4D — LD u(ifl)ip(ifl)iA( Y U)

VYiiig1) VvV Y(i—1)i

2 _ 2. 0 » TR PN Do
+M*/8 1( i(i4+1)  Wi(i+1) Al(H—l)p_ (i-1)i U(E-1)i A(l—l)zp) (39)

2 dlz'(i+1) % Y;(i+1) 631—1)1' V Y(ifl)i

+Lﬂ +3 < Ui(541) A+, MA(imp)

1 @i(i41) - = i(i+1) aGi-1)i - = (i—1)3
+— B | == i+1) Pii+1) A U — ———=0(—-1)iP(i-1)i D u
M, (\/Yi(i+1) ()P VYi-1)i
By following the usual procedure, we look for discrete solutions to Eqgs.(38) and (39) of
the form of (26). In addition we assume that the parameter  is proportional to the reference
Mach number, i.e.:
ﬁ = 6ref M, (40)
where (3,.5 is a given constant. It should be noted that (40) does not change the minimum
power of M, in the semi-discrete equations (which is still M_?).

Note 7 By taking into account (40), it is possible to expand Y;; as follows:
Vi = M} (Yoi; + M Yzi5 + )

where: .
_ Q2 =2 ~2
Yaij = Brestipi; + 7 “oij

1
_ 2 ~ ~ ~ ~
Ysi; = 20, pG0i;G1ij + 5 loijliaij

As a consequence, Y”_1 may be expanded as follows:

1
1 1 1 Ysi; T2 1 1 1Ys;,
= (1+ JM+...) :__<1__ J M. _|_>
Yi; M \/Yzz'j< Yaij " My (/Yo 2Yai;

Once the expansions have been introduced into Egs. (38) and (39), all the terms associ-
ated with M2 and M_! must be set to zero in order to find the asymptotic solution. The
resulting equations are:
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20 E. Sinibaldi F. Beux M.V. Salvetti

1. order M7? (mass):
Ai(i+1)p0 A(ifl)ipo

- —0 (41)
VY2iir1)  /Yaii-1)i
2. order M_? (momentum):
(A — Al=Dig)
i 42)
3 Woii+1) 4 +1) Uo(i=1)i 4 (i—1)i (
42 =2edl) A Ot A6 zp =0
( Yoi(it1) VYa(i1y ‘
3. order M_! (mass):
<Ai(i+1)p1 A(il)z’p1>
VYoiir)  /Ya(i-1)i
(43)

<Y3z(z+1) Al(z_l_l) Y3(z 1)i A(l 1)i ) 0
Yv21.(z+1) }/2(1 1)1

4. order M ! (momentum):

(Ai(i+1)p1 _ A(ifl)ipl)

3( Uoi(it1) Az(z+1)p1_ Uo(i—1)i A(il)ip1>

Vv Y2i(it1) VYo(i—1)i

_ _ (44)
+g< U14(341) Az(z—l—l o WiG-1)i A(i_l)ip0>

Vv Y2i(i+1) VYo(i-1)i

3 Yz 7 2(7 Y 11—
-7 (71‘01(14»1)% A ( +1)p0 - UO('L 1)1 S

A(z 1) )IO
4 (i+1) Yo(i—1)i

Eqgs. (41) and (42) constitute a system of two homogeneous difference equations for
the two unknowns AG—Dipy and A*“+Dpy. Since the coefficients are obviously arbitrary
(depending on the velocity field), it is necessary that:

A¥py =0 Y(i,]) (45)

Therefore py; is independent of the index i: po;(t) = po(t). In addition, by exploiting (45),
Eqgs. (43) and (44) become formally identical to Eqs. (41) and (42) respectively, once A py
has been replaced with A*’p,;. Therefore, we can apply to p; the same conclusions which
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have been reached for po: p1:(t) = pi(t). As a conclusion, when M, — 0 the pressure
solution to Eqs. (38) and (39) is of the form:

pi(t) = po(t) + My pr(t) + M7 pai(t) (46)

By comparing (46) with (19) it is clear that, from a qualitative point of view, the solution
associated with the modified numerical scheme exhibit a behavior which is similar to that of
the continuous one. This, in principle, should result in a more accurate numerical solution,
as confirmed by the numerical experiments reported in Sec. 7.

By virtue of this result, the matrix P;; which has been used to define the modified
numerical flux function (32) can be regarded to as a preconditioner.

6 Implicit linearised scheme

6.1 Introduction

In this section we propose an implicit algorithm which can be used in order to advance
in time the semi-discrete problem defined in Eq. (4). To this purpose, we introduce the
following additional definitions:

o WP =W(t=t"), ®} = &,;(t = t") where t" = nAt;

o AMW; =W — WP and A"®,; = 7T — 37

e for any G = G(W;,W;),

((AG =GWMH W) - GWr, W)
AG =GWr, Wi —GWr, W)

AG = GWr, WY — GWiH, Wit

\

AjG = G(Win+17 an) - G(Win+17 an+1)

In addition, we recall the following property of the Roe flux function. From Sec. 3.1 we
know that: A =T Diag(A1,A2) T~" and |A| = T Diag(|A1],|A2|) T, where A; , Az are the
eigenvalues of A and T is the similarity matrix. By introducing;:

M =maz(\,0) Ay = min(\,0) k=1,2

it is possible to define:

A* =T Diag\F, AT~ A~ = T Diag(\{,\;)T*
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Notice that At = A+(W;,W,) and A~ = A~ (W;,W,), like A and |A|. Furthermore, the
following relations hold:
At+ A~ =4
- - - 4
{A+—A=|A| (47)
Eq. (47), together with property 3 in Sec. 3.1, permit to recast the Roe flux function as

follows:
_ F(Wy) + F(W;)

(}lr 2

- SHAWL W)W, = W)
=F(W)) 4+ A~ (W, W,)(W, — W;) (48)
= F(W,) — At (W,,W,) (W, — W;)

6.2 The non-preconditioned case

The following implicit (backward Euler) scheme is firstly considered:

61' n n+1 n+1
At AW+ @) — 211 =0 (49)
where ®;; is given by (13). Eq.(49) can be recast as follows:
A_t A Wz + A (}i(i-}-l) - A @(1’_1)1‘ - - ((}i(i+l) - Q(ifl)i) (50)

Let us assume that there exist two matrices:
n n n 2)n n n
HP" = HOWr W) HY" = HOWr, W)
such that:
A" ~ HD" AW, + H" A™W; (51)
Then, substituting the approximation of A™®,; (51) into Eq.(50) the following scheme is
obtained: s
_gWn  Anypr i Mn  _ (2)n A,
H(ifl)iA Wiz + (At I+Hi(1.+1) H(Z.l)i) A™W;
(52)

(2)n nyi/. _ n _ Hn
+Hi(i+1) AWy = — <(I)i(z'+1) ‘I)(iq)i)

where T is the identity matrix. Eq.(52) represents a block tridiagonal linear system for the

unknowns: A"W,;_;, AW, and A"W,;1. Once it has been solved, the unknowns at time

"1 are directly given by: W™ = W + A™W;, Vi. Therefore, under the basic assumption

(51), the original non-linear scheme (i.e. Eq.(49)) has been linearised.
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Note 8 If the numerical fluz function was differentiable, (51) could be regarded to as a first-
order Taylor expansion with respect to t, i.e. a linearisation in time. In such a case, Hi(jl) =

0%;;/0W; and Hff) = 0®,;/0W;. However, the Roe flux function is not differentiable and

(51) must be introduced as an additional requirement on the existence of Hfjl ) and HZ-(f).

Note 9 If the numerical flux function was first-order homogeneous (as for the case of the
Euler equations associated with an ideal polytropic state equation, see Note 2), it would be
possible to express the flux function as follows:

W, W,) = AW (W, W,) W, + H® (W, W,) W, (53)

By assuming HV and H?) to be weakly dependent on (Wi, W), it is then possible to
approzimate A"®;; as in (51). This is o rather classical approach to obtain o linearised
implicit scheme like (52) (see [4]).

However, we want to point out here that, in the case of the Roe fluz function, there is not
unicity of (HWV, H®) which satisfies Eq. (53). Indeed, by virtue of Eq.(48) and of the fluz
first-order homogeneity, the couple (HM), H?)) can be ezpressed at least in three different
wWays:

_ 1 i () _ 1 i

A = 5 (AW + AW, wo)l ) AP = 5 (AW - JAw, )
A" = At (W, W) H,?) = A(W,) = A% (W, W)
Y = A(wy) - A= (W, W) a®» = A-(w,w,)

Thus, a class of admissible numerical schemes can be defined by taking into Eq. (52) H z(rk )n
defined by:

" = AW W W) =y B W7 W) + (1= ) AW W)k =1,2

where 7y s a free parameter.

_ _ 1
In particular, (H£1)7H¢(12)) corresponds to v = 3

Let us introduce a specific property of the Roe flux function which is valid regardless of
the specific state equation (for the proof refer to Sec. B ):

Lemma 2 Any Roe’s numerical fluz function satisfies the following relation:

A" = AN (WP, W) AW, + A~(WP, W) A"W; + R™H (54)
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where RZ’"H is given by:

n,n+l __
2R,

AGAT = AGAT) AT

+ (Ai/ﬁ - AJA—) AU+

Therefore, if it is possible to state that, for all (W, W, W " W*!) in a same neigh-

bourhood:
| R™ || < || AT (W, W) A™W; + A (W, W) A™W; | (55)
for a certain norm || - ||, then A™®,; can be approximated as follows:
AP = AV (W] W) AW, + A=(W], WD) A™W; (56)

Note 10 If At and A~ are independent of (W}, W), since in this case RM™ =0, (55) is

2J

trivially satisfied. However, having A™ and A~ independent of wr, Wf) s not a necessary
condition. Indeed, for any enough regular function G = G(W*, W) = G(W (z;,t"), W (z;,t"))
with x; = iAx, t" = nAt and At — 0, the following relations are verified:

I AG || = [ AiG || =~ | AW || = O(At)

(57)

IA;G I =1 A;G || = || A"W; || = O(At)

In particular, to have (57), it is sufficient to take At and A= Lipschitzian with respect to
their arguments. Furthermore, when Ax tends to zero, the following relation is also satisfied:

FAYW ™ || = | AYW™ || = O(Ax)

As a cons equence.

I R;;’”“ | = O ((At)?) + O (At Ax)

while:

| A (W W) AW, + A=(W, W) AW ||= O (At)

In conclusion, (55) should be locally satisfied in every space-time domain where the numerical

fluz function is regular enough.
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In view of the direct comparison between (56) and (51) we set:

HO™ = 1~ (wp,wn)

? J

In conclusion, under the validity of the assumption (55), the following scheme can be pro-
posed:

By AWy + By AW + By AWapn = — (910 = Oy, %)

in which: _ .
BYY = _A+(Wi"—1» wr)

in 61 1 n n A— n n
By = A—tI+A+(Wi 7Wi+1) — AT (WL, W)

Bi’n = A~ (WP Wiy

Note 11 It may be worth remarking that the scheme (58) has been derived by exploiting
only the algebraic properties of the Roe matriz. Therefore:

e it does mot depend on the specific state equation which completes the mathematical
problem. Hence, the proposed scheme can be applied to the specific case under consid-
eration, i.e. a Roe’s flux function associated with a barotropic fluid;

e it may be directly applied to the complete set of governing equations (including the

energy balance).

6.3 The preconditioned case

Let us consider the modified flux function introduced in (31):

_F(W) +F(W,) 1

b, = — 5 iPZZIIPzT/ier (W, = W)
Since: ~
2F(WZ) + Alr (Wr - Wl)
F(Wi) + F(W,) = :
2F(W,) — Ay (W, — W)
and:

- + ~
2Pl:1 (BrAlr) - Alr
P\ PrAy| =

A, — 2P (PITAZT)
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it is possible to express the preconditioned numerical flux function in three equivalent ways,

namely:

F(W) + F(W, 1_ ~
&, = % — 513,,1|PZTA”| (W, — W)

= F(VVZ) + ‘PIZI (-Pl'r;ll'r)i (WT - Wl) (59)

=F(W,)-P,' (Pzrfizr)+ (W, — W)

The formal identity between (59) and (48) is evident. Therefore, once (/1;;,

/L_]) has been

NS -\
replaced with (Pi;1 (Piinj) P! (Piinj)
to the preconditioned numerical flux function. As a consequence, by exploiting the same
kind of assumptions as for the non-preconditioned case, we can set:

), it is possible to directly apply Lemma 2

" = (P (Ppdz)”

)

Hi" = (Py) " (PpAy)

)

where P}} = P;;(W]*, W) and fL-”j = Aij(Wi”,W]”). In conclusion, the following scheme
can be proposed for the preconditioned case:

O} AWy + Co™ A™Wi + Cy"A™Wigy = — ((I)in(i+1) - (I)?i—l)i) (60)

where:

4

Ci7n_ ( n )_1 pn An +
-1 = = i—1,3 i—1,54%—1,1

4 Cé’n = z_iiEI+ (Pi?i+1)71 (Piq,li+1;1in,i+1)+ - (Pin—l,i)il <Pi711’iA?_1’i)_

. . . _
\ cyt = (PiT,Li+1) (PZLiHAZiH)
Note 12 As for the non-preconditioned case, it may be worth remarking that the scheme

(60) has been derived by exploiting only the algebraic properties of the Roe matriz. Therefore:

e it does not depend on the specific state equation which completes the mathematical
problem. Hence, the proposed scheme can be applied to the specific case under consid-
eration, i.e. a (preconditioned) Roe fluz function associated with a barotropic fluid;

e it may be directly applied to the complete set of governing equations (including the
energy balance).
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7 1D numerical experiments

7.1 Description of the problem
The 1D inviscid flow in a nozzle is considered; the governing equations are the following:

ﬂ OF (W)
ot ox

W = (p‘;) and F(W) = (pﬂip)

and @ is a source term, which accounts for variations of the cross-sectional area A of the

nozzle:
Q = _1 (¢4 pu
T A \dx pu?

Since the final aim of the present work is the simulation of cavitating flows typical of
aerospace applications, we choose a particular state law. More precisely, we consider a
cavitation flow model recently proposed in [3]. As shown in [14], this model seems to be
a good compromise between computational cost and physical representativeness (it can ac-
count for thermal cavitation effects and the concentration of the active nuclei in the liquid
phase). This model leads to the following barotropic state law:

1 1d 1-a o [P\ a
P< Pt —5 =~ = 1)L 4 ey (p—) ] + (62)
pa pdp P Plsat@] p Yo

=Q (61)

where:

[V

where:

e ¢ is the void fraction defined here as a = -1

Plsat

e ¢; is a known function of @ and of ér/R, which is a given input parameter;
® p., g%, n, v, are known constants depending on the considered liquid;

® pisa: is the liquid saturation density, depending on the (constant) temperature T, of
the whole flow, which is another input parameter;

e ¢g; is a known constant representing the liquid sound speed at saturation conditions.

In non cavitating regions (p > psq:) the state law for a weakly compressible liquid is adopted:

1 P
> Psa N = sa + In 63
P> Peati P = Poat + 5 (plm) (63)

where the “isentropic compressibility” 3, is assumed constant, depending on the specific
liquid under consideration Thus, given the density, pressure can be obtained numerically
from Eq. (62) and analytically from Eq. (63).
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Mixture barotropic law
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Figure 1: Pressure variation with density for a water-vapor mixture

Note 13 Within the limits of the chosen model, the whole flow (i.e. the pure liquid and the
mizture regions) behave isentropically. Hence, a = dp/dp can be rightfully regarded to as the
fluid sound speed and, by virtue of the physical foundation of the model, it is always strictly
positive, as assumed in Sec. 2.

Once p is computed, the sound speed a is explicitly given by Eq. (62) as a function of p and
p- In practice, the barotropic law is numerically integrated as a pre-processing; a table of
discrete values (p;, p;, a;) is thus created. During the simulation, given the value of density,
the pressure and the speed of sound are obtained from this table by linear interpolation.
Details of the numerical solution of Eq. (62) and of the use of the discrete table can be
found in Appendix C, while for details of the cavitation model we refer to [3] and [14].

Besides practical applications, as previously mentioned in the Introduction, the barotropic
law in Eq. (62) leads to a challenging problem from a numerical viewpoint. Indeed, the
variation of p with p is very steep especially near the saturation point, as shown, for instance,
in Fig. 1 for a water-vapor mixture. Moreover, the Mach number varies of several orders of
magnitude between non cavitating and cavitating regions. Indeed, for a water-vapor mixture
at Too=20°C, a can range from 1500 (m/s) in the liquid region to as low as 0.1 (m/s) in the
mixture region, as shown in Fig. 2.

In our simulations, the employed liquid is water at Ti,, =20°C. The values of the various
parameters in Egs. (62) and (63) are the following: B5=5 107°(1/Pa), p.=22089000(Pa),
g*=1.67, n=0.73, 7,=1.28, 617 /R=0.1, ps0;=2339.953(Pa), p152:=997.949(Kg/m?) and a; =
1415.7(m/s).
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Mixture sound speed curve
15 T T T

Water-vapor mixture at T_ =20 °C

3,/R=0.01
5,/R=0.05
i __ 3JR=0.10

Sound speed m/s

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.
Non-dimensional density: p / Pleat™ 1-a

Figure 2: Speed-of-sound variation with density for a water-vapor mixture

A convergent-divergent nozzle of adimensionalised length L = 21.4 is discretised with
360 cells. The cell width is refined by a geometric progression in the convergent part to
reach Az = 0.02 at the nozzle throat; in the divergent part the grid is specular. The
nozzle geometry and the cell distribution are illustrated in Fig. 3. At the inflow, non-
homogeneous Dirichlet conditions are imposed on density and velocity (p = poo, U = Uco),
while at the outflow homogeneous Neumann conditions are used. These boundary conditions
are numerically imposed by Steger-Warming decomposition [15]. Initially, the flow field is
assumed uniform at p = py and v = us and @ = 0 (constant section); then @ is linearly
increased to reach its actual value at a non-dimensional time 7 = 0.5. Time-advancing is
carried out either by an explicit 4-step Runge-Kutta scheme or by the implicit algorithm
described in Sec. 6. The simulations are advanced in time until a steady state is reached.

Finally, as for the preconditioning strategy proposed in Sec. 5, it is clear that it should
be applied only to those regions where the flow is nearly incompressible, i.e. to the pure
liquid. Since the liquid fraction of the cavitating mixture is a local variable, the asymptotic
analysis of Secs. 4 and 5 cannot be rigorously applied. However, we assume that it is locally
applicable at any cell interface where the flow is liquid (p >= psq:) on both sides. Hence,
a first-stage implementation of a local preconditioning strategy can be based on the matrix
(32), where 3 is now a variable defined as follows:

— /Bth if b 2 Dsat and Dr 2 Dsat
AW, Wy) = { 1 otherwise

RR n® 4891



30 E. Sinibaldi F. Beux M.V. Salvetti

Mesh: inflow duct - nozzle - outflow duct
T T T

il |||||||||||I|I||||||||||\|||u|mu\umnn|||||||||||||||||I|||||||| 17

0
Non-dimensional abscissa

Figure 3: Nozzle geometry and computational cell distribution

where (3, is the theoretical value given by (40) and M, is a characteristic Mach number of
the liquid region, e.g. the inflow Mach number.

7.2 Results and discussion

The various considered conditions are summarized in Tab. 1, in which ¢ is the cavitation
number, defined as follows:

_ Poo — Psat

 1/2p00U0o
In our simulations, cavitation phenomena occur in test-cases TC8, TC11 and TC13.

First, results obtained without preconditioning and with explicit time advancing are
discussed. The anticipated lack of accuracy of the non-preconditioned solution in the in-
compressible limit (very low Mach numbers) is clearly visible, for instance, in Fig. 4, in
which the steady state solution is reported for test-case TC9. Indeed, both density and
pressure show an unphysical asymmetric behavior (the minimum should occur at the nozzle
throat). The same behavior has been observed in all the considered test-cases; an example
for a cavitating flow (T'C11) is given in Fig. 5. In this case, the inaccuracy is evident in
the behavior of pressure in the convergent part, just before cavitation. In order to obtain
a correct solution, the Mach number has to be increased to approximately 10~! (see, for
instance, Fig. 6), which corresponds to conditions difficult to be reached for a liquid flow.
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Test-case | poo (atm) | uoo (m/s) M o
TCl1 10 0.1 710°° | 202587
TC2 5 0.1 71075 | 101059
TC3 1 0.1 71075 | 19837
TC4 0.1 0.1 710°° 1562
TC5 10 1 710 2026
TC6 5 1 7104 1011
TC7 1 1 7104 199
TC8 0.1 1 7107* 16
TC9 10 5 351073 81
TC10 5 3.5 1073 40
TC11 1 5 3.510°° 8
TC12 10 10 71073 20
TC13 5 10 7103 10

Table 1: Main features of the different considered test-cases

As for time advancing, all simulations are stable at At = 107%; since the steady state is
reached at t ~ 1, CPU times (on a PC with 1200Mhz processor and 256Mb RAM) of about
150s and 450s are respectively needed.

The proposed preconditioning technique appears effective in eliminating accuracy prob-
lems for all the considered test-cases. This is shown, for instance, in Figs. 7 and 8 for
test cases TC9 and TC11 respectively, in which the unphysical behaviors of pressure and
density are completely eliminated. This gives an a-posteriori support to the results of the
asymptotic analysis and to the proposed formulation. It may be worth remarking that the
numerical results also validate the general structure of the preconditioner and, in particular,
the assumption (40). Indeed, it should be noted that 3 in Tab. 2 is derived from M, in Tab.
1 by essentially exploiting (40) with .. ~ 45. However, the preconditioning procedure
dramatically reduces the time step allowed by the stability of the explicit time advancing
scheme, especially for the lowest Mach number cases, as shown in Tab. 2. In particular, it
is clear from Tab. 2 that preconditioned explicit simulations are hardly affordable in 3D.

The situation is remarkably improved by the proposed implicit time advancing; for the
non cavitating test cases, the time step can be increased indefinitely and, hence, the CPU
time needed to reach the steady state becomes negligible. As for cavitating flows, for test-
cases TC11 and TC13 the At can be increased up to 1075 leading to simulations requiring
a CPU time of about 120s. Surprisingly, with implicit time-advancing, the simulation of
TC8 was not stable; this might be due to the unphysical transient (the variation of @ in
Eq. 61), which implies large oscillations of pressure when cavitation phenomena occur. This
inconvenient might be overcome by ad-hoc variable At; however, in our opinion, this is
beyond the scope of the present paper.
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Figure 4: Steady state solution obtained for test case TC9 without preconditioning; a)
density; b) pressure; c)axial speed ; d) Mach number.
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Figure 5: Steady state solution obtained for test case TC11 without preconditioning; a)
density; b) pressure; c)axial speed ; d) Mach number.
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Figure 6: Steady state solution obtained without preconditioning for M, = 7 1072; a)
density; b) pressure; c)axial speed ; d) Mach number.
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Figure 7: Steady state solution obtained for test case TC9 with preconditioning; a) density;
b) pressure; c)axial speed ; d) Mach number.
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Figure 8: Steady state solution obtained for test case TC11 with preconditioning; a) density;
b) pressure; c)axial speed ; d) Mach number.
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Test-case | 32 At CPU
TC1 107% | 5108 | 8h20m
TC2 1075 | 51078 | 8h20m
TC3 10°% | 5108 | 8h20m
TC4 1075 | 5108 | 8h20m
TC5 1073 | 510~ | 50m
TC6 1073 | 510~ | 50m
TCT7 10315107 | 50m
TC8 10=3 | 10~7 | 4h10m
TC9 1072 | 10°°© 25m
TC10 1072 | 107 25m
TC11 1025107 | 50m
TC12 10~ | 5107 5m
TC13 10T | 510 5m

Table 2: Parameters of the preconditioned explicit simulations

8 Conclusions

The discretisation of the Euler equations for a barotropic state law has been considered.
The adaptation of the Roe scheme to the barotropic case has first been presented. Then, an
asymptotic study for the incompressible limit has been performed both in the continuous
and discrete case, showing that the discrete solution admits pressure oscillations in space
much larger than those of the exact one. This is the same kind of behaviour observed in
previous studies (e.g. [8] for the case of a polytropic state law). It has been shown that
the same kind of preconditioning as in [8] is suitable also for a barotropic flow, in that
the preconditioned discrete formulation has an asymptotic behaviour in agreement with the
continuous case. Finally, a linearised implicit time-advancing algorithm has been defined
using the properties of the Roe matrix, instead of the first-order homogeneity of the flux
function, which is not satisfied here. The implicit formulation has also been extended to the
preconditioned scheme. Note that the whole numerical framework developed in this study is
not specific to cavitation problems: indeed, the preconditioned Roe scheme can be applied to
any barotropic flow in presence of high and/or low Mach number. Furthermore, the implicit
linearisation can be applied also to non barotropic flows; indeed, this formulation is suitable
for any Roe’s scheme, for conservative laws with homogeneous as well as non-homogeneous
flux functions.

All the proposed numerical ingredients have been applied to a quasi-1D nozzle flow of
a cavitating liquid. The homogeneous flow model proposed in [3] has been adopted here,
which leads to a barotropic state law in the form of a non-linear differential equation, which
is solved numerically as a pre-processing. Besides practical applications, the considered
barotropic law leads to a challenging problem from a numerical viewpoint. Indeed, the
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variation of p with p is very steep especially near the saturation point and the Mach number
varies of several orders of magnitude between non cavitating and cavitating regions.

The results of the carried-out 1D numerical experiments well illustrate the problems
encountered in this type of applications and the effectiveness of the proposed remedies.
Indeed, it has been shown that, without preconditioning, the accuracy of the numerical
solution is deteriorated for low Mach numbers, and this up to Mach number values that
are hardly reachable for liquid flows. The proposed preconditioning technique appears to
be able to eliminate this problem, also for very low Mach numbers (of the order of 107%-
10~®). However, preconditioning dramatically reduces the time step allowed by the stability
of the explicit time advancing; for the lowest considered values of M the allowable At
is reduced of several order of magnitudes with respect to non preconditioned simulations.
From our results it is clear that 3D simulations of low Mach number barotropic flows are
hardly affordable. On the other hand, it has been shown that the proposed implicit time
advancing almost completely overcomes this problem. Indeed, for non cavitating cases, the
At can be increased almost indefinitely; when cavitation phenomena occur, although the
gain is more limited because of the stiffness of the problem, the allowable At is of the same
order as that of explicit non preconditioned simulations and, thus, the deteriorating effect
of preconditioning on time stability is eliminated.

Next step will be the implementation of the described numerical approach in a 3D solver
based on a mixed finite-element /finite-volume formulation applicable to unstructured grids.
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A  Proof of Lemma 1

Firstly, by using the classical Roe averages the following algebraic system is satisfied:

0 1 0\ /A" A" (pu)
—a? 2a 0 Al (pu) = | A"(pu?)
—’fbiLt iLt m AlT(pht) A”(phtu)

Therefore, by using this relation, property 3 in Sec. 3.1 may be satisfied as follows:

0 1 0

w—=a* 2a 0 | AW = A" (F(W))

u(w — ht) ht m
for w verifying:
wAl"p = Al"p (64)
If p; = p, then Eq. (64) is verified for any choice of w while, for p; # p, the only solution is:
" Alrp
- Al'r‘p

It is possible to rewrite the above expression as:
_ plpi+ A"p) — p(pr)
(pi + Al"p) — py

thus, by assuming that the barotropic state law is continuously differentiable, the following
relation may be derived:

. . . . dp dp £ 2
. 1In LW llm . Jim Ow llm . (p1) (p*) = a*(p*) (65)

We can use Eq.(65) in order to extend (continuous prolongation) w to the case p; = p,:
Alrp

Ir
w(Wi,W,) =4 AP

if Pl ;é Pr

a*(p,p(p)) ifpr=pr=p
In such a way, also property 2 in Sec. 3.1 is trivially satisfied. By assumption (see Sec. 2),
P is a strictly increasing monotonous function of p, thus, w is always strictly positive. Then,
the symbol w can be replaced by @2, and in this way, the proposed matrix is exactly the one
expressed in (8). Property 1 in Sec. 3.1 is also satisfied: indeed, its eigenvalues are real and
equal respectively to @, @ + @ and @ — @ (with & = v/a2). This ends the proof.
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B Proof of Lemma 2

Let us consider, at a preliminary stage, a generic function G = G(U, V). In order to simplify
the notation, let us introduce the following definitions (directly derived from those of Sec.
o ( AuG = G(U, Vo) — G(Us, Vo)

AyG = G(Uy,V) — G(Uy, Vo)
{ AyG =G(U,,V)-GU,V)

AyG=GU. Vo) - G(U,V)

AyvG = G(U, V) - G(Uy, V)

Furthermore, let us prove the following lemma:

\

Lemma 3 Let Hy, Hy be two matrices and let v be a vector associated with G verifying the
following equation:

AyG+ Ay G = Hi(U,Vo)(U — Up) + Ha(Up, V)(V = Vo) + r(Uo, Vo, U, V) (66)

for any value of Uy, Vy,U and V. Then, the following relation is satisfied:

Ayy G = H1(Up, Vo)(U = Up) + H2(Uo, Vo)(V = Vo) + R(Up, Vo, U, V) (67)
with:
2RUo,Vo,U,V) = (AvHi+ Ay Hy) (U = Uo) + (AvHz + Ay Hs) (V= V)
—Ayvr(s,+Uo, V) — Ayyr(s,-, U, Vo)
Proof:

By choosing V =V} in (66) one obtains:

AyG = Hi(U,Vo)(U — Uy) + r(Us, Vo, U, Vo) (68)
while for U = Uy in (66) one obtains:

AyG = Hy(Uo, V)V = Vo) + 7(Us, Vo, Up, V) (69)
Furthermore, by inverting the role of (Uy, Vy) and (U, V) it follows that:

AyG = Hy(Up, VYU = U) +r(U,V,Uy, V) (70)
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From the relevant definitions, Ayy can be also rewritten as:
1 _ -
Ay G = 3 (AUG + AyvG — AyG — AvG) (72)

Then, by substituting Egs. (68), (69), (70) and (71) into Eq. (72) (67) is easily obtained
(67). The proof is therefore completed.

We can now prove Lemma 2. Indeed, from (48) we know that the Roe flux function can
be expressed as follows:

FU)+ F(V)

= A v - o)

N | =

®UV)=4 FW)+Ai-(U,V)(V -U)

F(V)-AY(U,V)(V -U)

Thus, in particular:

{ ®(Us, Vo) = F(Uo) + A~ (Uo, Vo) (Vo — Uo)

] (73)
®(Uy, V) = F(Up) + A~ (U, V) (V — Uy)
{ ®(Uo, Vo) = F(Vo) — A* (Uo, Vo) (Vo — Up)
) (74)
(U, Vo) = F(Vo) — A*(U, V) (Vo = U)

From Egs. (73) and (74) one obtains:
Ay® = —AH(U,Vy) (Vo = U) + A+ (Uy, Vo) (Vo — Us)
{ Ay® = A~ (U, V) (V = Up) — A~ (Uo, Vo) (Vo — Uo)
and:
Ay® 4+ Ay® = AT (U, V) (U = Up) + A= (Uy, V) (V = V) + 1B (Uy, Vo, U, V) (75)

where: . .
rioC(Uo, Vo, U, V) = (Ay A~ — AyAT) (Vy — Up)

Note that:

AUV/,‘ROE(W Yy U07 V) = TROC(Uv V7 U07 V) - TROE(U07 %7 U07 V)

=—ApAt(V-U) - AvA~ (Vo = Uy)
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AUVTROE(H y U7 ‘/0) = TROE(Ua V7 Ua %) - TROE(U07 %7 U7 %)

= Ay A= (V -U)+ AyA* (Vo — Up)

Finally, by applying Lemma 3 with Hy = At, Hy = A~ and r = rf°¢_ it follows that:
Ayy® = AT (U, Vo) (U — Up) + A~ (Uo, Vo) (V = Vo) + R (76)
where R = R (Uy, Vy,U, V) is given by:
2R = (AUA+ + Avfﬁ) U - U)
+(Avd +AvA) (V- W)
+(AvA~ - AyAt) (v - U)
+ (AU/~1+ — Avfii) (V-=-0)

By means of an immediate change of notation, it is possible to recognize that (76) is formally
identical to (54). This completes the proof.
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C Numerical implementation of the mixture barotropic
law

The mixture barotropic law can be computed and stored at the beginning of each simulation
and the required output can be interpolated for the given value of the independent variable
as required by the simulation algorithm. As a result, a reduction in the computational
time is attained at the cost of a relatively small amount of data storage. However, in a
density-based CFD solver it is possible to render the interpolation procedure: p — (p,a)
more efficient by pre-processing the mixture barotropic law as follows:

e at a first stage Eq. (62) is integrated with respect to p (in order to mitigate the numer-
ical stiffness) by exploiting a fourth-order Runge-Kutta method with adaptive stepsize
control [11]. Three sequences are produced as output: p;, a; and p; (i = 1,...,n),
describing the mixture sound speed curve a;(p;) and the corresponding barotropic law
pi(pi);

e at a second stage a new density sequence p} (i = 1,...,n) is derived from p; in order to
simplify the interpolation procedure, as described below. A new pressure sequence p}
as well as a new sound speed sequence a} are then determined by linear interpolation
of pi(p;) and a;(p;), respectively, with respect to the sampling sequence p,. The
resulting curves, pi(p}) and a}(pl), closely approximate p;(p;) and a;(p;), respectively,
and constitute the interpolation database to be used by the density-based CFD solver.

From the above discussion it is clear that the sampling sequence p} should be a good ap-
proximation of p; (so that p.(p}) preserves the main features of the mixture barotropic law)
while simplifying the interpolation procedure. In order to introduce a suitable definition of
p%, let consider the density spacing (p;+1 — ps). It is negative because the mixture barotropic
law, which is monotonic, has been obtained by integrating Eq. (62) from p; = piser to
Pn K Prsar- In addition, it shows a typical behavior (see Fig. 9):

e its absolute value decreases asi — 1 (o« — 0) or i — n (o — 1);
e it is roughly symmetrical with respect to a certain value p* ~ p; /2.

It may be worth noting that both these features are due to the adaptive nature of the
proposed integration routine, together with the fact that the mixture barotropic law exhibits
abrupt changes in its gradient near the pure liquid and pure vapor extreme and it is roughly
symmetrical with respect to the point (a ~ 0.5, p(a ~ 0.5)).

In consideration of the above features, it seems reasonable to define p; by means of two

geometric subsequences, p(-l) and p(-z)

i ,~, starting from p; and p,, respectively, and joining
together at a common element in between. Indeed, these subsequences can approximate
the spacing distribution of p; and, at the same time, analitically provide the interpolation

interval (p},,p;) that contains any given input density p, < p < p1, as described below.
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Figure 9: Typical behavior of the density spacing (p;+1 — p:) as a function of the liquid
fraction (1 — ) for a water-vapor mixture at Ty, = 20°C, with é77/R = 0.01

Let g1 > 1 and g2 > 1 be the “ratios” and let 6; > 0 and d2 > 0 be the “initial spacings”

associated with pgl) and pgz), respectively. A possible definition of p/ is therefore:
i—1
-1
PV =p1 - L~ 5 ifi=1,....p
. ¢ -1
Pi =
. n—1u _ 1
pgz) :pn+q2752 ifi=p,...,n
g2 —1

It is possible to relate ¢; to 61 and ¢» to d2 by imposing a compatibility constraint of the
form:

) (2)

P = pp = p§;
where p, is the p-th element of p;. The specific value of p, can be determined from the
relation:

Ppt1 < P° < pp
where p* is considered as an input parameter of the pre-processing strategy under discussion.
However, it is worth observing that the resulting curve pi(p}) is not very sensititive to the
exact value of p* because the mixture barotropic law flattens far from the pure liquid and
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pure vapor extreme.

Once the control parameters ¢; (or 61) and ¢» (or 62) have been given a value, p! is completely
defined and the sampling process can be performed. The resulting curve p, = p(p}) is
generally very close to p; = p(p;), as shown in Fig. 10, and the same result can be achieved
also for the sound speed curves.

Comparison between p; = p(p:) and p,= p(pl)
1 T T T T T

p,=pe)

091

+ o+ P=pE)

0.8

p&?‘
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0.5F q

0.4 B
Water-vapor mixture at Tw =20°C; STIR:O.Ol

Non-dimensional pressure: p /

0.2r 4

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Non-dimensional density:p/p _ =1-a

Figure 10: Comparison between p, = p(p’) and p; = p(p;) as a function of the liquid fraction
(1 — «) for a water-vapor mixture at T, = 20°C, with é7/R = 0.01

Finally, in correspondence of any given input density p, < p < p1 (p # pp), it is possible
to determine an index j = j(p):

. 1 pL—P .
t{1+—1In(1 -1 f <
in ( +1nql n( + =5 (@ ))) if pp<p<p

. 1 P — Pn .
— _— — <
int ((n 1) I In <1 + 5 (g2 1))) if pn < p < pp

which immediately identifies the interval (p’, p}, ) to be used for the interpolation proce-
dure: p — (p,a). More precisely (the case p = p, is trivial):

P <pZpy ifp,<p<pm

Pipr Sp<py ifpn<p<p,
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In conclusion, the pre-processing strategy described in the present section allows an
efficient interpolation process to be defined, thus rendering the chosen cavitation model
particularly suitable for implementation in a density-based CFD solver.
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