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Semi-groupe empirique et Calibration

Résumé : Nous présentons une méthode probabiliste pour calibrer des modéles markoviens
4 des prix d’options observés. Nous établissons tout d’abord un cadre théorique en mon-
trant qu’une condition de non-arbitrage spécifique permet de décrire le processus sous-jacent
comme un processus de Markov. Ensuite, nous mettons au point un algorithme évolutif per-
mettant de calculer les probabilités de transition infnitésimal du sous-jacent & partir des
prix coOtés sur le marché. Enfin, nous discutons de Defficacité de I’algorithme

Mots-clés : Processus de Markov, probléme inverse, calibration de modéle, évaluation
d’option
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4 Viad Bally , Emmanuel Temam

1 Introduction

In the classical problem of calibration, the assets SY and S; are given: S is a bank account
(with a known interest rate r) and S is a stock. Its dynamic follows the Black Scholes
model of volatility ¢. The aim is to find o such that the call option prices computed with
this volatility fit the best the empirical data - that is a finite number of call option prices
which are traded on the market. But it is well known that this is not possible in practice.
A call option of different maturities or different strikes give different implied volatilities -
this is the well known volatility smile ([7, 8]). So the Black-Scholes model with constant
volatility does not provide a satisfactory explanation of the prices observed on the market.
Then a large variety of extensions of the standard Black Scholes model appeared, the aim
of all these models being to overcome the above difficulty: local volatility model (Dupire’s
model), jump type diffusions, stochastic volatility diffusions and so on. All these models
implied calibration technics based either on the partial differential equation (see [11, 10, 4]
for Dupire models and [1, 12] for jump diffusion models) either on the minimization of
relative entropy ([5, 2]).

A first question is about the legitimacy of a model or another - beyond the assertion that
it explains well the empirical price table, because this is just the starting point of a long
discussion about the significance of the 'well explaining’. Such a discussion is surely very
interesting and maybe it represents the center of all the work concerning calibration. But
our question is somehow more theoretical: how far are we allowed to push our imagination in
order to produce market models which explain more or less well the empirical prices? What
is the natural frame in which such a diversity of models live? A second subsequent question
concerns completeness: jump models and stochastic volatility models are not complete. Is
this a real difficulty or one may accept (or even privilege) this type of models? This problem
has been already discussed in the interest rates theory. In this frame incompleteness is
a structural characteristic of the market and one has not the choice between accepting
or rejecting incomplete models. The answer which has been given there is the following:
introducing the so called risk prime fixed by the market. This new free parameter absorbs
the incompleteness. Put it otherwise: anyway the Black Scholes model is based on a free
parameter, which is the volatility. Why not considering two free parameters instead of one?
So, facing the problem of an infinite number of risk neutral probabilities, one parameterizes
this family on a new parameter - the risk prime - and this parameter becomes itself subject
to calibration. The common sense fact which is behind this solution is that, does not matter
mathematical discussions, the market produces prices (at list in a fluid market) and the
market price table is the basic object which has to be explained by the models.

So our starting point is the idea that the market price table produces automatically a
’pricing machinery” which represents the natural underlying model. This leads to a non
parametric point of view. Then different specific models appear as parametric approach
to the problem - and parameterization is a way to reduce the number of unknowns in the
calibration problem (which is naturally a sub-determined problem). We come back on this
further on. Let us be more precise on the pricing machinery. We assume that the market
is based on a bank account SY and on d stocks S; = (S}, ..., Si').Moreover we assume that

INRIA



Empirical semi-groups and calibration 5

for every continuous positive function ¢ : R — R, and every 0 <t < T,z € R?, a number
I, r(¢)(z) is given. This is the price of an European option of maturity T" and payoff ¢,
at time ¢, if the stock price is S; = z. So we dispose of a complete price table for the
European options (which of course is not the case in practical situations - this is just a
theoretical assumption). The function x — II, 7 (¢)(x) is assumed to be continuous so that
I, 7 appears as an operator which maps continuous functions into continuous functions.
Under the non arbitrage assumption we prove that this operator has to be linear, positive
(and consequently monotone) and passes to monotone limits. Then Daniell’s theorem asserts
that we may represent it by a finite and positive kernel u r(z,dy), that is I, r(¢)(z) =
[ ¢(y)pe,r(z,dy). This kernel has the martingale property [ yu: r(z,dy) = x. Moreover the
above family of operators is a semi-group: they satisfy the Chapman Kolmogorov equation
II; 7 = II; s oIl 7 for every t < s < T. We also prove that if the family of operators 11, r has
the above properties, then the market is arbitrage free. So these represent necessary and
sufficient conditions for non arbitrage.The decision of working with a jump model or with
a local volatility model does not appear as a natural consequence of arbitrage arguments
but as a modeling hypothesis which may be (or not) benefit from computational reasons.
Note that the stochastic volatility model does not enter in the frame described above: if
dS; = o(Y;)SdW; where Y is a diffusion process independent of W, then S is not a Markov
process and so prices may not be given by a semi-group. This is because II; r(¢) does not
depend on S; only but on Y; as well. So markovianity enters in our hypothesis by mean of
the assumption that the price of the option at time ¢ is completely determined by the stock
price at this moment.

Up to this moment no probability space appeared and one may wonder if this is really
necessary or one may restrict himself to a deterministic calculus based on the above semi-
group. The answer is beyond our competency but we think that even if this is possible, it
does not seem desirable. Not only stochastic calculus technical permit to solve problems but
probability theory is the natural language in which number of interesting financial questions
are asked. So we go a step further and call up the Markov processes theory which, under mild
regularity assumptions, provides a representation of the above semi-group as expectations
of a Markov process. The probabilistic representation comes on naturally.. But we have
to recall that the general Markov process theory represents a weak approach (in law) and
does not automatically produce a unique probability space on which everything is going
on, but describes the evolution of the underlying process by means of a whole family of
probability measures on the canonical space of trajectories. So we are still far from a
stochastic calculus (a substitute of stochastic calculus is available for symmetric Markov
processes in Fuckushima’s theory). We stop here with our axiomatic discussion and go on
to calibration problems.

Since there is no underlying model, searching for the volatility is meaningless. The object
to be determined in our frame is the family of positive measures p; r(x,dy). We have the
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6 Viad Bally , Emmanuel Temam

following structural information on them:

(P) ,ut,T(ma D) = e—T’(T—t), ,ut,T(ma dy) Z 07
(M) /yut,T(w,dy) =

(9) / o) dy) = / / (a1 (4, A2t (2, dy).

(P) means that up to a normalization u:r(z,dy) is a probability measure, (M) is the
martingale property and (S) is the semi-group property. Except for this we have some
experimental prices, that means a table of prices Cy 7, (2o, K;),k = 1,...,n,l = 1,...,m.
These are call option prices of maturity Tj and strike K;. In our numerical experiments we
take n = 4 and m = 5,10, 20. If we want that our measures explain this prices we have the
equalities:

(Ch) Com (20, K1) = / (v — K1)+ 101, (20, dy).

The problem of finding the family of measures which verifies these properties is an infinite
dimensional non parametric problem and it is obvious that this problem is dramatically sub
determined. So the problem is now to find a way to reduce in a reasonable way the number of
degrees of freedom. One way of doing this is to suppose that the dynamics of the underling
stock is given by some model (Dupire’s model, jump type diffusions....) and then one comes
on in a parametric frame: the parameters would be the local volatility or the jump measure
for example. Even in this case the space of parameters is still infinite dimensional. Thus we
have to consider a discretization procedure in order to come to a numeric problem. But, a
model is a way of including in our computations some restrictions coming from some a priori
assumptions on the dynamics of the stock and so one search for the solution in a smaller
space.. This point of view has the advantage that the restrictions produced by the model
have a clear intuitive meaning, so we know what we are doing. But what is much less clear
is that what we are doing is what we have to do - because we do not know that the empirical
prices come from a specific model, namely the one we have chosen.. So our point of view is
to avoid model hypothesis and to postpone a priori restrictions as long as possible. We work
directly with a discretization of the family of measures p; r without any model hypothesis.

The first discretization concerns time: we consider a time grid 0 = ¢ty < ... < t, = T,
typically n = 12. We assume that the empirical call prices are known for all these epochs.
We mentioned before that only four epochs are given but we extent the data to twelve epochs
just by linear interpolation - and numerical experiments show that this works very well and
does not represent a real problem. Then we use the semi-group hypothesis in order to write
the restriction (Cy,;) under the form

(Chirt) Conno (20, K2) = / (v — K1) 4 110,00, (0, dy)

- / (0 — D)+ st (22 Ao (0, ).

INRIA



Empirical semi-groups and calibration 7

Our algorithm is evaluative. At the step k& + 1 we assume that we have already computed
to,t, at step k and we want to compute ji, ¢, . So we consider (Cyy1,),l = 1,...m as a
system of equations with the unknown i, ¢, . ,. Once iy, 1, , computed, we use the Chapman
Kolmogorov equation in order to produce o, ., = po,s, ® fit,,t,,, and go further to the
next step.

Recall that except for the above equations we also have the conditions given by (P),
and (M). We are still in an infinite dimensional setting and we have to perform one more
discretization. We consider a space grid 0 < y1 < ... < yas and replace ju, ¢, (4, dy) by an

. M _ij .
approximate »_;~, 7, 19y, (dy). Now our equations read
ij — —r(tgri—tr) ; ij
E Tpks1 = € =1, M Th k1 >0,

M
(M;) Zyﬂr;cj,kﬂ = y,i=1,..,M

M
(Crs11)  Co,tyyy (0, K7) Z(yj — K1) 17614

<.
I
—

Il
Mz

M
0,p_p.J _
+E 7T0kﬂ'kk+l, =1,....,m.
p=1

<.
Il
-

We have now 2M + m equations with M x M unknowns and so we have still to reduce
the number of degrees of freedom.. One idea is to use a three branches tree, but from a
numerical point of view it seems not the best possible idea ([6]). The reason is that such a
tree is extremely sensible to the location of the points y;,7 = 1,..., M. In order to smooth
our algorlthm we instead use a finite element type method. More prec1se1y we fix 7 and look
to 7/, ,, as a function in the forward argument that is m/, ., = 7} ;. (y;) and then project

this function on three trials v ,,p = 1,2,3. So we have 7}, , ., (y;) = Ep L AL p(y;). Now
the unknowns are A;,i =1,...,M,p=1,...,3. We have now a system of 2M + m equations
with 3M unknowns. In our numerical tests we took M = 150 and m = 5,10,20 so this
system is slightly undetermined. One way to countering this difficulty is to interpolate and
so to obtain all the prices Co, ., ,(v0,9;),J = 1,..., M and then to solve a system of 31/
equations with 3M unknowns. Numerical experiments show that the interpolation works
very well and the system is well solved. But the results are bad.

Let us explain a little bit what we mean by numerical experiments. We considered
synthetic data produced by a local volatility (Dupire) diffusion with four types of volatilities
0=03,0(t,z) =15/x,0(t,z) = 0.05+0.1 exp(—x/100)+0.01¢ and o (t, ) = 0.21 ,¢[90,110] +
0.41,¢[90,110)- In each case we produced the corresponding call prices Co, (70, K;) and
solved the above system of linear equations. Then we asked the question if the results are
good or not. There are several ways to appreciate the quality of the results. The first one
is to see if we are able to feet well the experimental (synthetic) data, that is to satisfy the
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8 Viad Bally , Emmanuel Temam

equations (Cj). And this works well. The second way, which is more subtle, is to produce
by our algorithm the weights w;j x+1 and then to use these weights in order to compute
put option prices. And then to compare our results with the prices given by the synthetic
underlying model. And this works well also. The third test consists in computing the
local volatility o} associated to the weights T ky1»d = 1,y M (the quadratic variation)
and then to compare it with the theoretical one o(tx,y;). And this works bad. The reason
is the following. One may produce two different local volatilities o/ and ¢” such that the
corresponding call prices C ,, ., (20, Ki) and Cgy, | (0, K)) are different but very close each
another. As a consequence although the system of equations is well solved (we succeed to
feet very well the experimental data), we are not able to distinguish between ¢’ and ¢”. This
seems natural: as long as we just feet prices we are at the precision level of prices and we
may hope that our results are sufficiently accurate in order to compute other prices. And
this is true. But if we go deeper and want to find the underlying volatility then we need
another level of accuracy. In fact, if the volatility is well computed, then we may compute
Greeks, and these are no more prices but derivatives of prices which are much more sensible
quantities. We conclude that if we want to achieve a precision level which is compatible with
volatility, fitting prices is not a sufficient criterion and we have to employ another criterion
which is compatible with this level of accuracy. This is why we turn to another setting in
which we do no more compare prices but implied volatilities, and this amounts to solve the
following non linear minimization problem.

Recall that our unknowns are i = 1,...,M,p = 1,2,3. We denote A = (A',..., AM) =
(AL, ..., A1), that is the weights of the central trials 15 ;,7 = 1, ..., M. Then we solve explicitly
the equations (P;) and (M;) and so we obtain A} = X{(\) and \§ = A\;()). So our unknown
is now A = (A', ..., A\M). To each such a A we associate the weights m/, | ()) and then the

call option prices given by these weights, that is Ci(\) = Zj]\/il(yj - K l)yré{ +(A). Finally we
denote by Ivg;(A) the implied volatility of Ci(A). Then we consider ﬁk,l to be the implied
volatility of the corresponding experimental call option price Co, ., (7o, K;). Finally we

consider the coast function

m

M
) =Y [Tora () = Tora|” + 0 DX = M N)|* + A = 300
=1 =1

where p is a positive weight. The important part of our coast function is that containing
the implied volatility. The second term has somehow a regularisation effect - it contributes
to a uniform distribution of the weights on the three trials. But one may conceive another
type of regularisation term as well. Then we use a quasi Newton algorithm in order to solve
the following problem: find \* = argmin ¢(\) under the constraint 7,/ , (A) > 0. And this
gives good results.

We close our introduction with some commentaries.. We claimed in the beginning that
our algorithm is model free. And it is. The fact that we employ the implied volatility is not
a model hypothesis but a scale which is used in order to interpret data. There is another
point in which an a priori guess on the dynamics of the underlying stock comes on: in the
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Empirical semi-groups and calibration 9

choice of the grid y;,7 = 1, ..., M and of the trials v; ,,7 = 1,..., M,p = 1,2,3. We chose an
Yexponential grid” because we expect an exponential behavior of the stock. And we use the
implied volatility associated to the empirical prices in order to construct the trials. So the
geometry of our grid and of our trials supposes a "Black-Scholes type” behavior of the stock.
This may be seen as a light counterpart of model hypothesis and has the advantage of being
very flexible.

2 European options price tables

We assume that on the market is given a bank account S and d stocks S; = (S}, ..., S¢f). SO
evolutes in a deterministic way according to SY = S{e™ where 7 is the deterministic interest
rate. S represents a risky stocks and we know nothing about their evolution. Usually one
assumes that it evolutes according to some stochastic equation so there is some probabilistic
model which gives the behavior of S;. The uncertainty related to S is expressed by means
of this probabilistic model. But here we try to see what can be said without any underling
model.

We consider an open set D C R? (typically D = {(z!,...,2%) : 2 > 0,i = 1,...,d})
and denote by C, the space of continuous functions defined on D and taking values in
R, :=(0,00). Any continuous function ¢ € C is thought to be a payoff. A (T, ¢)—option
is a contract which gives the right to the owner to a payment of ¢(St) (exactly) at time 7.
Our assumptions on the market are the following:

Assumption (H;): The market is completely "fluid” in the sense that

i) At any time ¢ > 0 one may buy and sell any quantity of stock S at price S; (this price
is not known before ¢, but is known at time ¢ ). One also may borrow or lend at time ¢ any
given quantity of stock S for a given period T' > t.

i7) One may borrow or lend money to the bank (any quantity) with interest rate r (both
for borrowing or lending).

i41) One may sell or buy at any moment 0 < ¢ < T any (T, ¢)— option for any payoff
function ¢ € Cy.

We consider now a price operator II; 7(¢)(z) which represents the price of a (T, ¢)—
option at time ¢ < T, if S; = . Our hypothesis (H1, i) implies that II; 7(¢)(x) is known
for x = S; only but we think that S; may take any positive value and so we will assume
that II; 7(¢)(x) is known for every z € (0, c0).

We define a price machine II to be a family of operators II; v : C. — C for every
0<t<T < oo

We will now define an arbitrage opportunity (free lunch). We say that II admits an
arbitrage opportunity if there exists 0 <t < T , 6 € D and € > 0 such that an agent may
buy and sell the stock Sy, s € [0, 7], borrow and lend money at the bank and buy and sell
(T, ¢)— options at any moment s € [0,T], for any payoff ¢ € C at price II; 7(¢)(S:) in
such a way that:

(H1) For every possible evolution of S;, the agent does not loose money.

(H2) If | S; — 0] < € then the agent wins a strictly positive amount of money..

RR n° 4873



10 Viad Bally , Emmanuel Temam

In other words: all the treading operations presented in Hj,1%),14i), i) are allowed and
the price of a (T, ¢)—option at time s € [0,T] is II; 7(¢)(Ss). An arbitrage opportunity
means that an agent may trade in such a way that he is sure that he does not lose money
(property (H;)) and, in some "favorable situation” - described by the fact that the price of
the stock is closed to a given value 6 - he wins money. Note that we do not describe this
opportunity by ”S; = 6” but we just ask the price S; to be close to 6 up to some € > 0. This
way of taking things is motivated by the common sense assertion that we may not expect
that the event S; = 6 really occurs while we may hope, with "non null probability” that the
event |S; — 0| < e occurs.. So the arbitrage opportunity is effective with strictly positive
probability.. As we mentioned in the beginning no probability space is given so this is just
a probabilistic intuition which motivates the definition. So the definition of the arbitrage
opportunity obliges us to assume that = — II; 7(¢)(x) is continuous.

Let us give a more quantitative description of an arbitrage. An operation done at time ¢
and sold at time T is described by the following objects. First of all one considers a number
«a € R which represents the quantity of stock S; which is traded. If o < 0 this means that
the agent buys a quantity —« of stock - after this operation he has oSy < 0 dollars. If « > 0
then this means that the agent sails a quantity « of stock, and after this he has aS; > 0
dollars. If the agent buys, at time 7" he will sail the same quantity of stock at time 7" and
so he will get —aSt. The situation is a little bit different if the agent sails a quantity of
stock - for the simple reason that he owns no stock.. So, in order to sail a quantity « of
stock he has to borrow it, and then, at time 7" he has to pay St in order to honor his
duty.. Next one considers the payoffs ¢;,7 = 1,...,n and the numbers 3;,7 = 1,...,n. The
agent trades the (T, ¢;)— options and (; represents the quantity of option which is traded.
As before, if 3; > 0 this means that the agent sails 5; (T, ¢;)— options and so he wins
Billy, 7(¢;)(S¢) > 0 dollars. At moment T he has to honor these options and so he pays
Bidi(St). If B; < 0 this means that the agent buys a quantity —0; of (T, ¢;)— options and
so his gain is 5;II; 7(¢:)(S¢) < 0 dollars. At time T he wins —8;¢;(St) > 0. We introduce
now two functions

9:(S0) = aSi+ > Billir(4:)(Sy),

=1

st(St) = —aST—Z@'@(ST)-

i=1

Having in mind the above discussion, ¢;(S;) is the gain of the agent at time ¢ (the moment
when the operation starts) and s;(St) represents the sold of the operation at final time
T and the agent has to pay this sum. We say that this operation represents an arbitrage
opportunity if there is some § € D and € > 0 such that g(z) > 0 for v € B.(0) and sr(x) <0
for every x € R. If such an opportunity exists, then one may achieve an arbitrage in the
following way: up to time ¢t he does nothing ant at time ¢ he checks if S; € B.(6). If this is
not the case he does nothing, but if this is true, then he buys/sails « stocks and 3; (T, ¢;)—
options. His gain is ¢¢(S;) > 0. At time T he has to pay s7(S7) < 0 so his gain is larger or
equal to g.(S;) > 0.

INRIA



Empirical semi-groups and calibration 11

Finally we give a technical hypothesis which essentially says that prices are not expected
to be larger then a sufficiently large level. This is an analogues of the thighteness property
for measures.

(Hs3) For every 6 > 0 and ¢ € [0,7) there exists some K, > 0 such that for every
¢ € Cy, with 0 < ¢ < 1 and such that the support of ¢ is included in B5y  (0), one has
IT; 7 (¢)(z) < 6 for every x such that |z| < Ky 5.

Here B, (z) := {y : | — y| < r}. The probabilistic interpretation of the above hypothesis
is that for any § > 0 there exists some K such that the probability that |S; — So| > K is
smaller then K. If we express this by means of some continuous functions ¢ (which gives
a more complicated statemanet) this is because in the beginning we decided to work with
continuous functions. So ¢ has to be seen as the regularization of the indicator function

1[K,OO)

Lemma 2.1 Suppose that I1 does not admit arbitrage opportunities.. Then for every a >

07¢7¢€C+

a) Wyr(o+v)(@) = Hyr(9)(x) + 1l r(¥)(x)
b) Hyr(ad)(z) = allyr(é)(z)
o ¢ < v=1r(d) <),
d) ¢n | ¢=1Iir(dn) | ir(s),
e) Mr(l)(x) = e @1,

The property d) holds true for every sequence ¢,,n € N such that ¢1 is bounded.

Proof. a) Suppose that II; r(¢ + ¢)(0) > II; 7(¢)(8) + I 7(¢)(#) for some given 6.
Since the above functions are continuous one may find some ¢ > 0 such that the inequality
holds true for every x € B.(6). Then one trades in the following way. Up to ¢ one does
nothing ant at time ¢ one checks if S; € B.(0). If not, he does nothing. If yes, then he
seals a (T, ¢ + 1) —option and buys an (T, ¢)—option and a (7', ¢)—option. The sold of these
operations is g;(S¢) = Iy (& + ) (St) — (I, (4) (St) + i () (St)) > 0. He keep this gain.
At time T he receives (¢ + 1)(St) because he exercises his (T, ¢ + 1))—option and he gives
this money because he has to honor the two options that he had sold. His gain is ¢;(S;) > 0.
So we have an arbitrage opportunity.. The proof of b) is similar.

Let us prove ¢). Suppose that II; 7(¢)(0) > II; 7(¢)(6), and consequently this holds true
on a whole B.(¢). Suppose also that S; € B.(f). Then we sell a (T, ¢)—option and by an
(T, v)—option in order to obtain g:(S:) = Iy 7(¢)(St) — I 7 (1) (Se) > 0. At time T we have
to pay sr(St) = ¢(St) — ¢¥(Sr) < 0.

We prove d). Recall that ¢ is fixed. Suppose that there is some 6 such that inf,, ¢,,(0) >
3 + ¢(0) for some § > 0. Suppose also that M > ¢; > 0. Then we take §' = §/2M and
consider K s from the hypothesis (Hs3). Since ¢, | ¢ we may use Dini’s theorem and
conclude that the convergence is uniform on compact sets. So we may find n;s such that

4]

0§¢na($)_¢($) < Z fOT |CE| SKtﬂs'—’—l‘
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We will trade on the payoff ¢,, which is now fixed. We find some ¢ > 0 such that
I (¢ns )(x) > 0 + I (@) (z) for & € B.(0). We also consider a localization function
x € C such that 0 < x < 1,x(z) =0 for |z| < K45 and x(z) =1 for |z| > K; 5 + 1. Then
we construct ¥ = x(¢,; — ¢). Note that, since 0 < ¢,,;, — ¢ < ¢1 < M, we have
) )

e r()(2) < e (Mx)(2) = Mg r(x)(2) < M x op = 5.
We are now ready to trade. We are at time ¢ and suppose that S; € B.(0). Then we buy a
(T, ¢)-option and a (T, )-option and sell a (T, ¢, )-option. The gain is

)

9t(St) = Iy 7(Pns ) (St) — Iy 7(9)(St) — Iy () (Se) > 6 — 3= 73

f St < K;s + 1 then
I S > K, 5+1 then
(¢(ST)_¢na (ST)) =0.

—

At time T we have to pay sr(St) = ¢(St) + ¥(ST) — Pn;s(ST).
|6(ST) — dns (S7)| < § and ¢(S7) = 050 g¢(St) —s7(S) > §—§ =
X(S7) = 1and 80 ¢(S1)+¢(S1)—¢n, (ST) = G(ST)—Pns (ST)+X (ST
So in both situations we have a strictly positive gain.

The proof of e) is trivial, trading on the bank account.. So the proof is completed. O

We are now ready to produce a measure which represents I1; 7. First of all we extend this
operator from positive functions to real functions in the following standard way. If f = g—h
for some positive functions g and h then we define II; 7 (f) := II; 7(g) — II; 7 (h). Note that
this definition does not depend on the decomposition of f in g — h. In fact, if f = g’ — I/
then we claim that II, v (g) — IL; v (h) = II; 7 (¢’) — I, (h'). Having in mind the linearity on
positive functions this amounts to IT; 7(g+h') = II; v (¢’ + k). But g+h' = ¢’ +h and so this
is true. So we have a correct definition of our operator on the whole space of the continuous
functions and the extended operator inherits the properties of our initial operator: it is
linear, monotone and pass to decreasing limits. Then Daniell’s theorem (see [R]) says that,
for each fixed z, the functional ¢ — II; 7(¢)(x) may be represented by a positive Radon
measure pi;.7(z, dy) of total mass e~ "*. We have one more problem about the measurability of
x — pyr(xr, A) where A C R is some measurable set (this property enters in the definition
of a transition kernel and is necessary in order to have semi-group properties, as we will
discuss in a moment). The proof of this property is standard. One denotes by ;. r(z, ¢) the
integral of ¢ with respect to u:r(z,dy). If ¢ is continuous then p:r(z,¢) = I 7(¢)(z) is
continuous and so it is also measurable. Consider now a closed set A. Then there exists a
sequence of continuous functions ¢, such that u: 7 (z, ¢n) | pe,r(z, A) for every x. This is a
regularity property for Radon measures and Daniell’s theorem produces a Radon measure.
So x — . r(x, A) is measurable for closed sets. Finally the measurability property follows
for general Borel sets by a monotone class argument. So we have proven:

NGNS

Proposition 2.1 If there is no arbitrage opportunity then there exists a positive kernel
,Ut’T(x, dy) Such that ,u't7T(3:, Rd) — e—f’t and

T 7(6)(x) = / S()ue.r (. dy).
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We give now the semi-group property and the martingale property.
Lemma 2.2 Suppose that there is no arbitrage opportunity.. Then

f) yr(I)(z) = = where I(y)=y
9) IL:(I 7r(9)(x) = er(p)(xr) Vs<t<T.

Proof. Suppose that II; (1)(#) > 6 for some §. Then the inequality holds true on a
whole ball B.(6). If S; € B.(0) then we sell a (T, I)—option and buy a stock. The gain is
9:(Se) = I, v (I)(Sy)—S: > 0. At time T we sell the stock and receive Sp.We give I(St) = St
to the owner of the option and so our global gain is strictly positive. If I, v (I)(#) < 6 for
some 6 and S; € B.(0), we buy an (T, I)—option and borrow a unity of stock which we sail
and we obtain the sold ¢;(S;) = S; —II; (I)(S¢) > 0. At time T we exercise our option and
obtain a unity of stock that we give to the person from which we have borrowed..

Let us prove g). Suppose that I, ;(II; 7(¢))(6) > I 7(¢)(6). Once again the inequality
holds true on a whole ball B.(6). One does nothing up to s and if Sy € B.(6) then he seals
a an (t,1)—option where ¢ = II, v(¢). He buys then an (T, ¢)—option. The sold of these
operations is Il ¢ (IL; 7(¢))(Ss) — IIs 7(¢)(Ss) > 0. At time ¢ he sells his (T, ¢)—option and
receives IT; 7(¢)(S:) which is exactly the sum he has to pay to the owner of the (¢,1)—obtain
that he has sold. [J

We are now able to give our main result.

Theorem 2.1 Given the family of numbers [[, (¢)(2),0 < t < T,¢ € C,xz € R the
following two assertions are equivalent:

A. There exists a family of positive kernels pr(z,dy),0 <t
operators are expressed as

IN

T, such that the price

I, 1(6)(x) = / () (. dy)

and these measures verify the martingale condition f).

B. The family of price operators I, v admit no simple arbitrage.

it) Suppose that the above assertions hold true. Then II; 7,0 <t < s < T satisfies the
Chapman Kolmogorov equation I, 7 =11, ; o I, 7.

Proof. i) We have already shown that B = A. Let us now suppose that A holds true.
Then, using first the martingale property and then the representation by means of the
positive measure ;7 we obtain

gi(x) = ox+> Billir(i)(x) = all,p(I)(x) + > Billr(e)(x)

i=1 i=1
- / po o dy) ey + Y Bidi() = — / e r (., dy) s (y) < 0.

This does not permit to obtain an arbitrage opportunity.. [J
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3 Probabilistic representation

In the previous section no probability representation was supposed. But it is well known
that a semi-group as the one presented there is always the transition semi-group of a Markov
process, so that a natural probabilistic interpretation comes on. A first way of taking things is
to give an initial law po and then to construct a stochastic process which has p as initial law
and I1; 7 as transition semi-group in the following way. Let Q = {w : [0,00) — R% : t — w(t)
is right continuous and has left hand limits} be the canonical space of trajectories and defines
the coordinates process X;(w) = w(t) and the corresponding filtration F; = (X, : s < t}.
Then the probability measure P#° - under which (X;);>¢ is a non-homogeneous Markov
process - is obtained in the following way. One defines the cylindrical probabilities

P(tl,...,tn)(XO S Ao,th S Al, ...,th S An}

:/ uo(dajo)/ ,U(),tl(x(),dxl)---/ we, o (Tn—1dzy)
Ao Ay An

where 0 < t; < ... < t, and Ay, ..., A, are Borel sets in R%. Then one employs Kolmogorov’s
theorem in order to construct a probability measure P*° on (2, F.) such that Py, . ;) rep-
resents the law of (X, X¢,, ..., X¢, ) under P#°. It turns out that X is a (non-homogeneous)
Markov process under this probability and E*o(f(X;) | Fs) = I, +(f)(Xs), which means
that II, ; is the transition semi-group of X.

This procedure works in all generality but in order to obtain a nice theory one has to
restrict himself a little bit. First of all one assumes homogeneity, that is

(Hy) Iy =TIo 71—y

which means that the price of an option depends on the time to maturity only. One also
has to make the (rather natural) regularity assumption:

(Hs }gl% ot f(7) = f(x)

for every € R? and every f € Cy where Cj is the space of continuous real functions on R?
which vanished at infinity.

It is easy to check (as a consequence of the hypothesis (Hs)) that if f € Cj then Il . f €
Cp so we have a homogeneous semi-group of operators from Cy to Cy which satisfy the
regularity condition (Hs). Then it is proved in [3] theorem (9.4) that the Markov process
associated to such a semi-group is a standard Markov process and there exists a classical
and well developed theory for this type of processes. We do not enter in more details
but send the reader to [3] or [13] for a complete exposition of this theory. We just make
some commentaries.. First of all, a standard process is described by a family of probability
measures P*,x € R? on (Q, F,,) so that P” represents the law of (Xt)t>0, if Xo = 2. In
particular dP*° = dP*uo(dz). This is a weak approach in the following sense. The classical
model of Black and Scholes describes the evolution of the stock S (which in our context is
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Empirical semi-groups and calibration 15

the Markov process X) by means of the stochastic equation dS; = ¢S dW, Syp = so where
W is a Brownian motion. So one may define on the same probability space (2, Fi,, P) (the
one where W is defined) all the processes S;°, so € R? and then P* is the law of S0 under
P. This means that for every w € 2 we have an application (¢, sg) — S;°(w) which, under
sufficient regularity assumptions on the coeflicients of the underlying stochastic equation, is
a flow of dipheomorfisms. This is a very strong and useful property (see [K] for a complete
presentation of the theory related to stochastic flows). But a standard Markov process
can generally not be represented by means of an underlying flow, and this is why we say
that this is a weak approach. In particular there is no Brownian motion and no stochastic
equation coming on. And so there is no stochastic Ito calculus. In the case of symmetric
Markov processes (this means that [m(dz)¢(x)os(¢)(x) = [ m(dz)y(z)o,(¢)(z) for
some measure m) a substitute of the stochastic calculus is settled (see [9]). But we do not
discuss this here.

3.1 Call option price tables

In calibration problems we have not the whole price table but a few prices of call option
prices. This motivates the following question. We are given a call price table and we want
to use it in order to find the price machinery which produces this call prices. So we denote
Ct r(z, K) the price of a Call option of maturity 7" and strike K at time ¢ if the value of
the underlying stock is S = x. In our previous notation we have C; r(z, K) = II; 7(0x )(x)
where 0k (y) = (y — K)*. Since the linear combinations of the functions of type 0k are
dense in the class of the differentiable functions it is clear that knowing the call options
prices completely determine all the European option prices. But we would like to give a
more precise result concerning approximation. For simplicity we restrict ourself to the one
dimensional case that is d = 1. So we consider some h > 0 and the grid z, = kh,k € N and
want to approximate II; 7 (¢)(z) by a linear combination of Cy r(x, z1), k € N. We also prove
that if K — Cy r(z, K) is twice differentiable then p, 7 (z, dy) is absolutely continuous with
respect to the Lebesgue measure. We restrict ourself in this section to the one dimensional
case - but it is clear that the multi-dimensional case may be treated in an analogues way.

Proposition 3.1 i) Suppose that C, 1 (x, K) is known for every0 <t <T,z € Ry, K € R..
Then there exists a unique I1 such that Cyr(z, K) = II; (0 )(x). More precisely we may
approzimate the price 11, v(¢)(x) of any (T, ¢)—option of a differentiable payoff ¢ in the
following way:

o0

. 1
i) Hyr(e =7 E ) Cor(x, xpg1) + Cor(z,25-1) — 2C, (2, 1)) + o(h)
k

where lo(h)] < "0 [|¢/|__ h
it) For every twice differentiable positive payoff function ¢ one has

i) Thr(@)(x) = / " (4)Crr (2, y)dy.
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In particular, if the function K — Cyr(x,K) is twice differentiable and has continuous
second order derivatives then pr(x,dy) = 6§C’t,T(x, y)dy.

Remark 3.1 As it is clear from the following proof the above properties have nothing to
do with the dynamics of the stock underlying the call option prices but is a basic fact of
distribution theory. The point is that the call option prices correspond to the special function
(x — K)+ and the second derivative of this function with respect to K is the Dirac mass in
K.

Proof. Let us denote ¢, the polygonal line approximation of ¢ defined by ¢p(xr) =
o(xr) and ¢, piecewise linear. Consider the trials vy defined by v (zr) = 1,¥k(zr-1) =
Yr(xp+1) = 0, Yy is zero outside [zy_1,2k+1] and piecewise linear on this interval. Then it
is easy to check that ¢ (z) = Y ;7 ¥i(z)d(xr). Note also that ¢y (x) = 30z, + 0z, —
20, )(x) so we obtain

&) = 5 22 000 (Be + Oy = 200)(2)
k=0

Applying the operator II; 7 we obtain

o0

1
7 (fn)(x =5 E (k) (Crr (v, 2t1) + Crr (2, 28-1) — 20 (2, 1))
k

so that

;7 (¢)(x) — % > 6(@n)(Cor(m, wpi1) + Cor (@, wr-1) — 20 (z, )
k=0

= |Her(9)(x) = e (dn)(@)] < he" T |6/

Let us now prove the representation formula for p; . We suppose for a moment that
y — Cpr(z,y) is three times differentiable and has bounded derivatives of third order.
Suppose also that ¢ is positive, differentiable and has compact support. We write

(Crr(z,2141) + Cr (@, 28-1) — 20 (2, 71 )

S = >

1
(C’t,T(x, $k+1) — Ot,T(JJ, a:k) — 8th’T(JJ, a:k)h — 5850,5’7“(3:, g:k)h2)
1 1
_E(Ct,T(ma vg) — Crr(z,vp-1) — 0,Cy r(2, 21—1)h — §3§Ot,T(33, zp-1)h?)

h
+(8y0t,T(33, xp) — 8th,T(x,xk_1)) + 5(850,5’1"(33, xp) — 8§Ot,T(x,xk_1)).
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Since

1
—(Cer(x, xp41) — Cor(z, ) — 0yCrr (2, 21)h — §8§Ct,T(x, xk)h2) < Ch?

1
h

and ¢ is integrable
1 1,5 9
Z¢ (z:) E (Cer(z,zit1) — Crr(x, i) — OyCr o (w,25)h — §3th,T(x,xi)h ) — 0.

For a similar reason

h
Z(b (EZ 5 (9 Ct,T(ﬁ,ﬁi) — 8§Ct,T(x,xi,1)) — 0.

So we have

hmZ(b a:k CtT 33 $k+1) + C; T(x Th— 1) —2C, T(x xk))

= lim Z ¢(x1)(0yCr.r(, 21) — 0yCrr(w, x1-1))
k=0

i oton) [ BCatendr= [ oot

and finally passing to the limit in ¢) we obtain

HtT /¢ 8OtT(xyd—/ ¢N OtT(xy)d

So we have our result for a smooth call option price. In order to obtain it for a general
continuous C:r(x,y) one has to employ a standard regularization procedure: for some
e > 0 one denotes by u; r(z, dy) the convolution of i 7(z,dy) with a smooth function and
then the corresponding call option prices C 1(, y) will be smooth and so we have the above
equality. Then one pas to the lit with ¢ — 0.0J

3.2 The calibration problem

We assume now that we have the data Cy ¢, (%o, K;) where 0 < t; < ... < t, < T and
0 < K; < ...K,, and we want to calibrate”. Since there is no underling model for the stock
the volatility has no sense in this frame and so we put the problem in a more general setting:
find the measures p; r(x,dy),0 <t < T,z € Ry which explain the best possible the above
call option prices. Let us see which are the constraints on these measures. First of all

(P) / lper(z,dy) = e "D and  pgr(x,dy) > 0.
0
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Moreover the martingale property reads

(M) /0°° yuer(z, dy) = .

Finally the semi-group property reads

(5) / / (2 sy, d2)pae.r (x, dy)
=/ d(y)ps,r(x,dy), Vs<t<T,peC.
0

These are the basic properties.
Now, if we want these measures to feet to the data we will ask

(Bif1) Cony (20, K:) = / (v~ K)o, (z.dy)

- / / (Z - Ki)ﬂtk,tk+1(y7dz)/~50,tk (*T?dy)
0 0

The algorithm that we have in mind is evolutive with respect to the time. We assume that
at step k, po.t, (2,dy) is known and we look for p, +,,, (y,dz) which satisfies (Ej,),i =
1,...,m. Once we find s, ¢, ,, we may produce jg,,, using the Chapman Kolmogorov
equation and we may pass to the following step of the algorithm. Except for these equations
Ity e, also verify the relations

(P/H-l) / 1:utk7tk+1 (33, dy) = e—r/n and Mttt (33, dy) >0
0

(Mys) / Y, (@, dy) = 2.
0

This is an infinite dimensional problem so a discretization procedure is necessary in order
to solve numerically this problem. One may imagine a parametric approach - assuming a
model for py, ¢,., - or a take a non parametric point of view as we do here. This is the
subject of the following sections.

4 A finite element type algorithm

We go now further and present out calibration problem. We work in the one dimensional
case, that is D = [0, 00). We assume that we are given some call option prices Co 4, (70, K;)
(the upper bar signals that this is the value in the experimental price table). Typically we
have four epochs tx,k = 1,...,4 and ten strikes K;,i = 1,...,10. Using a standard linear
interpolation procedure (which works in practice without any difficulty) we may extend this
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table to twelve time epochs ¢,k = 1,...,n = 12. So now on we assume that such a table is
given.

We want to replace the semi-group of measures u; r(z,dy),0 <t < T,z,y € (0,00) by a
discrete semi-group 77,?7“1, k=0,..,n,4,5=1,..., M so that

M
Bty thiq (yiv dy) ~ Z ﬂ-;cj,kJrl(Syj (y)’
j=1

where y;,1 = 1,..., M is a space grid. The strikes K;,7 = 1,...,10 will be included in the
space grid but generally we can not restrict ourselves to these points. In order to obtain a
sufficiently accurate approximation we need to perform our computations on a much larger
grid. Typically we work with M = 150. Note that at time ¢y we do not have a whole grid but
only one point, because the price at time zero is a deterministic known constant. So g ; is

not a matrix but just a vector 73, j = 1,..., M so that pg 4, (zo, dy) ~ Z]Ni1 7r6716yj (y). Note

also that we may associate to these weights a Markov chain X}, so that 771,3 kil = P(Xg1 =
y; | Xx = v;). This permits to employ the probabilistic language which is proper to this
frame.

Having in mind that the stock price is expected to have an exponential behavior we
choose

%)h, ji=1,..M
2
where h > 0 has to be chosen in such a way that, M being given, the space grid covers a
significant region. This is not difficult: one has an a priory idea about the order of magnitude
of the expected volatility (and so on the behavior of the queues of X}) and then employs
some elementary queues evaluations in order to obtain P(Xj < zgexp(—2%)) < ¢ and
P(X), > zoexp(XL)) < e for a sufficiently small ¢ > 0. This is crucial for the practical
implementation of the algorithm because this permits to handle the boundary problems.
Now our problem is to find the weights 7/, |,k =1,..,n =12,4,j = 1,..., M = 150
which feet the best the call option prices. Following the idea from the previous section these
weights have to verify the following constraints. First of all they have to give probability
measures, so for every i = 1,..., M

yj = Toexp(j —

M
(P Y mlyn =1 m >0
j=1
They verify the martingale property that is, for every i = 1,..., M
M
(M) uimy i = ui
j=1

Except for the volatility we also want to compute dividends - this means that the stock
gives some dividends dj X} at the epochs ¢ and these dividends are not known. We want
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to compute them from the empirical price table. Note that in the presentation given in the
previous sections we have implicitly assumed that there are no dividends (the dividends are
null) - this was included in the martingale equation (M). If we want to treat dividends we
have to replace this equation by another one which takes them into account. We have not
done it before in order to simplify the presentation, but we do this now. So instead of the
above equation we consider

M
> i = i+ die(te — tio1)
j=1

where dj is the dividend given by the stock, at time t, for the period (tx_1,tx). These
dividends are unknown and so except for 7,7, 41 We have one more unknown at each epoch
tr.

We go further and ask to our semi-group to feet the empirical data. Having in mind the
semi-group property we define by recurrence

Jj o _ .7 J _ P _DJj
T™,1 = 70,10 Tok+1 — E :Wo,kﬂk,k+1'

So 7} , represents the probability that the underlying chain starts from z, and arrives in y,
at time k. We also denote

M
Co.t (0,y5) = B(Xx — y;)+ | Xo=0) =Y _(Up — ;) +7h
p=1

These are the call option prices produces by the weights 771,3 kt1- Since we know Co.t, (70, Yj)
for j = ji for which y; = K, we obtain the equations

(Eil) ontk (z0, K1) = Co,ty (2o, yjz) = Z(yp - ij)Jrﬂ—(Z)),ka

p=1

with [ = 1,...,10. Using the Chapman Kolmogorov equation we may still write the above
equations, at time tx11, as

M M
Ji
(Ed'y1) Co i (To, Ki) = E : —Y5) +7T0 E+1 = E : — i)+ E :Wo k”k 1
p=1 p=1

Suppose that we are at the step k of our algorithm and we know from the previous step
mo,, and want to compute 7y 41 - if this is done then we define mg 11 = 7ok X Tk 41
and then go to the step k + 1. At this stage we have 2M + 10 equations (P}), (M}),i =
1,...,M, (E,?H) {=1,...,10 and M x M unknowns wzj,i,j =1,..., M. So the problem is still
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sub-determined and our basic problem now is to decide on a way or another in order handle
this difficulty.

One natural idea would be to use a three branches tree (as it is done in...). This means
that we suppose that for every given i, 7, # 0 for j =i —1,4,i+1 and is null otherwise.
This amounts to consider a Cox Ross Ingersol type tree but with three branches instead of
two - and this gives an incomplete market model and so an infinite number of risk neutral
probabilities. Then we such a probability from this family which feats the best the empirical
data. The system of equations is still sub-determined - we have 3M unknowns and only
2M 410 equations, but clearly this problem is now much less dramatic. But from a numerical
point of view this approach gives rise to instable algorithms. The reason for this is that it is
extremely sensible to the geometry of the grid. Recall that we have settled an exponential
space grid of exponential step h > 0. Then using three branches amounts to replace the log-
normal law starting from a point y; by a discrete probability concentrated in three points
Yi—1,Yi, Yi+1. If the location of these points is compatible with the behavior of the sock
then everything works well. But a good choice of this location suppose that we have a very
good guess of the volatility and our resolution is extremely sensible to this guess. This is
the reason for which we take a different way and use a finite element type approach. This
approach allows to employ instead of the point itself plus two neighbors (y; and his neighbors
Yi—1,Yi+1), & much larger number of points and in some sense this has a smoothing effect.

We construct now the above mentioned trials (elements). a) We consider a standard
normal random variable A and we take fife points by < b; < by < by < by such that
P(A < bg) = P(A > by) =1/100 and P(b, < A < bpy1) =+ x (1 - :35),p=0,1,2,3. Of
course we will have by = 0,b; = —bs, by = —bs. b) We compute the implicit volatilities Ef;
corresponding to the experimental call option prices Co, ., (z0, K;),l = 1,...,10 and then
we use a linear interpolation in order to produce all the 7},,i = 1,..., M. ¢) Then we define
a, = i X /1/12b,, (recall that the time step is § = 1/12). The significance of a,,p = 0, ...,4
is simple: they represents the points which divide in equal parts the total mass of the
probability density of a normal distributed random variable of variance &% x /1/12. This
choice appears as natural if one supposes that 1, ¢, ., (¢, dy) is the law of a random variable
of the form exp (7}, x \/1/12)A + 3(0})?/12) - as it would be the case in the Black Scholes
model.

We take ¢, to be the piecewise linear function such that ¢,(a,) = 1,¢,(2) = 0 if
z € [ap—1, apt1]%,p = 1,2,3. We will achieve a finite element method for each starting point
Yi, so we have to center our trials in this point. So our trials will be ¢,(In %)

Now we think to 71';‘7 x+1 to be a function in the forward argument, that is 71';‘7 Kl =
7}, k41(y;) and project it on the trials

3
ij i i Y
(*) 7Tkj,lc+1 = Wk,k-s-l(yj) = E )\p¢p(ln y_J)
p=1 !

Remark 4.1 As we mentioned in the beginning we make no explicit model hypothesis. But
at this stage it appears clearly that an a priory guess about the underlying dynamics is implicit
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in our algorithm. In fact the choice of the space grid and of the trials presented above suppose
a certain idea about the geometry of the problem. The fact that we expect that the underlying
stock has an exponential type dynamics appears in the choice of an exponential space grid.
Choosing the trials as we have done suppose also that the underlying stock follows continuous
trajectories. If we would want to reproduce a jump type dynamics we would have to use other
trials - maybe larger or maybe located at a certain distance from the starting point y;. So
an a priory model guess comes on here. But this is a very flexible way of including model
hypothesis in the algorithm and a large class of variants may be treated in this frame. The
only rigid hypothesis concerns Markovianity which is implicit in the fact that the price of an
European option at time t depends on the price of the underlying stock at this moment only.

The question about the "model hypothesis” may be asked in another way also. It is known
that as long as we have informations on a finite number of epochs only, one is not able to
"precise the model”: a Dupire model or a jump model may explain the call option prices as
well (see Rama Cont and ...[??] for a detailed discussion and numerical experiments about
this matter). Then the question is: the finite elements method presented here will choose
the Dupir model or the jump model? The answer is that the implicit choice depends on the
geometry of the trials that one employs. Trials concentrated around the starting point will
give results which are close to Dupire’s model and large trials (or trials located far from
the starting point) will give a results closed to the jump model. And there is a flexibility
because we are not obliged to decide that we work with Dupire’s model, pure jumps models
or a mizing of the two ones.

We are now ready to present our algorithm. The initialization step & = 0 is different
from the current step and we postpone it to the end. We suppose now that the step £ — 1 is
already achieved and then we have the weights wé,k =P(Xp=y; | Xo==20),j=1,..., M.

STEP k. The equations are the following. For each i = 1, ..., M we have the equations

M 3

M
(Py) l—zﬂklpfl_zz/\zﬁf’pl yj :Z Z(bp(ln%) )
j=1 !

j=1p=1 p=1

(M) yi+did = Zyﬂk k+1 = Z?JJZ/\ op( 1“

3 ) M yi
:Z)\% Zyj(bp(ln_?)
p=1 Yi

We solve these first two equations explicitly.. We denote

M Y ) M y
=2 ¢l h), By=D yiép(in’)
=1 ’ =1 ’
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Form the first equation we obtain

)\1‘_1— 100 — A0y
3 Oéi
3

and from the second equation we obtain

o o 1_/\ii_)\ii‘
i+ did = N} + Ny + — L2
3
which gives ‘ ‘ ‘
B3 iai Q1 iai O
Yi — a_z = /\1(51 - 07253) + )\2(52 - 07253)
and finally
; (yi +dpbé — f—z) — (8] - z—%ﬁg)
2 = ) P
g5 — 223
(et did)al — ) — M (Bloh — adf)
Paoy — o34
= (k) — N
with , , o .

Bhof —asfy T T Bhah — adBy

By symmetry we obtain a similar expression for \}
Ny = v3(dk) — Aiph
with _ _ o oo
(yi +did)as — By ; _ Prab — a1

1
73( k) ﬂéaé — aéﬂ% H3 ﬂéaé o aéﬁ%
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We come now to the equations (E}). We employ the semi-group equation and write

M
(BD) Cotrr(@o,u) = D (W= U)Tpn = DW= 1) D Thrs1To
1> 1> i=1
M 3 y
, , '
= D —w) Y mou ) Np(n )
l>j i=1 p=1 Yi

= ZZ»Z y;)mh xbp(In zl>

i=1 p=1 >3 ¢
M . . . . . . .
= Z(AZ+Wé(dk)—Aiué+7§(dk)— )

XZ —Yj) 71'0 k®p(In Zl)

3

1>j
S Y
i i i i
= Z/\l(l_'“2_”3)z(yl 91)770 Pp(In =)
=1 1>j Yi
ST i i Yi
*§J%+%MHZMP%MM%®;)
=1 1>j ¢

Since we know the values of Co, ., (20,y;) for y; = K;,1 = 1,...,10 we have here a
system of 10 equations with M = 150 + 1 unknowns A},i =1, ..., M and dj. This system of
linear equations is still un-determined. Our first attempt was to contouring this difficulty
using interpolation. By a more or less sophisticated method one interpolates and produces
60,tk+1(a:0,yj) for every j = 1,...,M and not only for y; = K;,l = 1,...,10. But this does
not work. A first idea would be that this is because the interpolation introduces errors - but
in fact we checked that the interpolation was very accurate, and moreover, we performed
numerical experiments in which we gave directly all the Eo,tkﬂ (20,y5),J =1,..., M produced
by our theoretical model - and this does not work also. So the interpolation error is not the
reason for which this approach fails. The real reason (numerical evidence) is that even if we
have a system of 150 equations with 150 unknowns which is theoretically well determined,
we may produce two different volatilities o and o’ which are significantly different but such
that the corresponding call prices Coy,,, (20,y;) and Eg,tk+1(xo,yj) are extremely close
each other. So it turns out that the call option prices are not sufficiently sensible in order
to distinguish between volatilities - at list from a numerical point of view. So we have to
change the ”scale” in which we work by a more significant one, and the natural idea is to use
implied volatilities.. So we live out the resolution of the above linear system of equations and
focus on implied volatilities.. This leads us to solve the following non linear optimization
problem.
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For each A = (A, ..., AM) € RM and dj, > 0 we compute

M
Ci(\dy) : = Z N1 = py — p) Z(yl — y;)mh wbp(In y_{)
=1 1>j Yi
+2_ (05 +93)(de) D (w1 =)o xp(In 22).
=1 1] !

Then we think that CY(X,d) = Coy,,, (z0,y;) so it represents the value of a call option
(N play the part of 7). We denote by Iv;(A,dy) the implied volatility associated to this
call option price. We also assume that y; = K; (that is j = 4;) and we compute the
implied volatility Tv; corresponding to the experimental call option price 607tk+1 (zo, K7).
Note that here we have a problem because when computing the implied volatilities we have
to take care of the dividends.. This means that the log normal distribution function that
we inverse contains dj - and the interest rate r as well. But this is not a difficult problem:
one just has to multiply first with exp((—r + Zle d;)tx). Note that d;,i = 1,....k — 1 are
already known but dj, is unknown and it appears in the multiplication both for C7(\, dy)
and CO7tk+1 (xo, Kl). So IUl = IU[(dk).
The first quantity that we want to minimize is

10

AN =Y T, (A, di) — Toy(dy)
=1

| 2

So we do not ask that the prices produced by our semi-group are closed to the market
prices (which gives an un-determined linear system) but that the implied volatilities are
closed. It turns out that this is the correct scale in which the problem has to be settled
- if we use not this scale but directly the price table our algorithm works much worse
(experimental evidence).

Remark 4.2 Once again we would ask if our algorithm is model free or not - because we
are using the implicit volatility which is proper to the Black Scholes model. But notice that
the implicit volatility is used just as a “distance” which measures the fact that we are more
or less close to the empirical data.

The second quantity that we want to minimize is the distance between A = A1 and )Xo, A3
where

No = 7a(dr) — N, Ny =5(di) — X'pis.
This avoids to have all the mass in \}. The corresponding coast function is

M

B =Y (N = 27+ [N = X ),
=1
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Now the coast function which we minimize is
C(A) = A(N) +pB(A)

where p is a parameter. In our concrete algorithm we take p = 10/M.

We look for the A * = argmin C()), under the constraint m/, ., > 0,4,j =1,..., M. We
use a quasi-Newton algorithm which is already implemented in Scilab. The starting point of
the optimization algorithm is the value of A which has been founded at the previous step of
the algorithm.. This ensures a certain stability in time. We are able to include in our coast
function a constraint concerning stability in space - the fact that i — )\; does not move very
fast. But we at this stage we use no such a constrained and the algorithm remains stable
anyway.

Once A = (A1, ..., AM) is computed we put Ai = A?, compute A}, A} and use () in order to
obtain m/; . Then we use the Chapman Kolmogorov equation in order to compute o x-1
and we are ready for the following step. 4

STEP 0. We recall that at step zero we compute 71'6,1 =P(Xi=y; | Xo=u0),j =

., M. Here the degree of indeterminacy is much less important because we have only M
unknowns. This is why we will employ a much more important number of finite elements,
namely 64. This is also necessary because we need a very accurate result at this stage: an
important error would orient the algorithm in a bad direction. The construction of the points
b;,i =0, ...,64 is similar: we first take the points which cut the mass of the standard normal
density in 65 equal parts. Then we construct a;, = 1, ..., 64 by normalization with ov/§ with
0 =1/12 and o is the implied volatility at the money, given by Co 4, (zo, o). So we assume
that the functions ¢,,p = 1, ...,64 are now given (the same construction as before) and we
use the trials ¢, (In %-). As before we write the two equations (/) and (Mo) (note that we

have one equation of each type) and then we write down the equations (Eél),l =1,..,10
which give:

(%) OO,tl(mOaKl) Co,t, x()?y]l Z/\ Z y]l 7TO 1¢;D(ln CCO)

25

In this case we do not use (FPp) and (M) in order to eliminate two variables - we will keep
these equations as constraints. Note that at time zero there are no dividends.. Now we
consider the coast function C'(A) = A(X) + pB(\) with A = (A1, ..., A6s)

10 ., 64
:Zvvjz(/\)_lvl‘ ’ B(A):Z|/\p_/\p+1|2-
=1 p=1

Here [vj,(A) is the implied volatility corresponding to Co , (2o, K;) computed with our A
and [v; is the implied volatility associated to the experimental value C +, (xo, K7).
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4.1 Computation of the volatility and of the dividends

Our algorithm does not depend on the concept of volatility - if not by the geometry of the
grid and of the trials. But even for this we do not use some values of the volatility produced
inside the algorithm but the implied volatilities associated to the experimental price table.
And the table of experimental implied volatilities represent a sufficiently good guess for our
purpose.. So we may live out the problem of computing volatilities. But this is the usual
language for people working in finance and so it seems useful to produce the volatility table
which is naturally associated to the semi-group that we have already computed. As it is clear
from numerical experiments the table o that we produce is significantly different from the
experimental implied volatility table 7% and, as long as we use synthetic data our volatility
surface is much closer to the real volatility then the implied volatility - which means that
some work has been done. We may also think that the difference between o}, and the precise
volatility represents a good error measure..

Except for the volatility we also want to compute dividends - this means that the stock
gives some dividends dj X} at the epochs ¢ and these dividends are not known. We want
to compute them from the empirical price table.

The concept of volatility has no sense in the abstract setting that we used up to now, so
in order to define the volatility we have to consider a Black Scholes type dynamics for the
stock. We do it at the level of the Markov chain X,k =0, ...,n = 12 which is associated to
the discrete semi-group 7y, ;+1. We assume that under the risk neutral probability

Xir1 = Xg + Jk(Xk)Ak\/g-l- dp X0

where § = ty41—t = % and A,k =0,...,n—1 is a sequence of standard normal distributed
random variables. As we mentioned above dj, represents the dividends given by the stock
Xy at time tx. Both oy (z) and dj are unknowns and they have to be computed from the
7)), obtained before..

We write first E(Xgr1 — Xk | Fr) = E(Xk+1 — Xk | Xi) = di X which gives

dr — E(Xk+1 — Xk | Xi)
k X410 '

This formula has to work on each set { X} = y;} so we have for every i =1,.... M

M
EXp1 — X | X =y) 1 ij
dy = 0 = s ;(91 — YT 1

Note that we will obtain the same value of d;, does not meter the value of 7. This is because
we have put this condition in the equation (M;) already. So if some differences appear
this is due to some numerical errors coming on in our algorithm - and then we have to use
some standard projection argument which gives the value of dj which feats the best all the
equations. At the contrary, if one considers that dy, is allowed to depend on the position of
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X} (which does not seem natural from an economic point of view) then one has to change
the formulation of the problem, namely of the equation (M;).

Let us compute o (y;). We write X1 — X — dpgXid = ak(Xk)Ak\/S and taking con-
ditional expectations we obtain E(|Xg1 — Xy — de Xi0|” | Xp = yi) = y202(y:)d which
gives

E( X1 — X — diXid” | X =y) 1 = i
or(yi) = - Y25 T Z(yj — i — dryi6)°m iy
7 T j=1

So this is the volatility which is naturally associated to w,ij 41+ In our algorithm we have
produced a version o (y;) which represents a more stable version. This version is produced
using the following optimization algorithm.. We consider the coast function

M 2 Mo 2
C(U):Z|al—ak(9i)| +QZ‘01—5k—1(y¢)|
i1 i=1

with 0 = (0',...,0™) and ¢ a real number (in our concrete computations we took q =
1/M = 1/150). 6_1 is the smoothed volatility computed at the previous step and &y is just
the experimental implied volatility at the money..

It turns out that oy is closer to the real value of the volatility if we consider synthetic

data.

5 Numerical experiments

In order to test our algorithm, we try to calibrate empirical datas created synthetically from
known models. We focus essentially on Dupire model with four types of volatility:

e o constant: ¢ = 0.3. This is the Black Scholes model denoted BS.
e o(t,x) = 15/x denoted Brow.

e o(t,z) =0.05+ 0.1 x exp(—x/100) + 0.01 x t denoted Voltz.

o o(t,r) = 0.3 % 1y¢p90,110] + 0.15 % 15¢(90,110] denoted Jump.

All the experiments are done with a starting point set at So = 100, an interest rate equal
to 0, and a maximal maturity equal to 1. We take 150 points of discretization in space and
12 points in time. Recall that this the "numerical grid" on which we work. The grid on
which the experimental data is given is much more poor (see section 4).

Remark 5.1 A parameter is very important for our algorithm: the extreme value of the
grid. To determine it, we have an heuristic approach. We first set a very small grid. If at
a time step, the call are not fitted we enlarge the grid. At the first value the call are fitted,
the extreme value are found.
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5.1 Black Scholes model

model | Number of | Time step Volatility Volatility Volatility Call Put
datas error error error error error
(K €[70,130]) | (K € [80,120])
BS 20 2 20 2.3 2.2 10-7 | 21
BS 20 6 10 2.1 1.9 10=7 1.3
BS 20 12 5 1.4 1.2 10~7 1
BS 10 2 20 4.8 4.8 10~7 2.6
BS 10 6 10 1.4 1.6 10—7 1.7
BS 10 12 10 1.1 1.3 10~ 7 1
BS 5 2 20 4.1 3.5 10~7 2.4
BS 5 6 10 4 4 10~7 1.7
BS 5 12 10 1.6 1.5 10—7 1
BROW 5 2 25 9.7 5.9 10-7 | 3.4
BROW 5 6 20 5.7 1.8 10~7 2.8
BROW 5 12 15 2.4 1.3 10~7 1.6
Voltx 5 2 XX 50 28 10=7 | 3.6
Voltx 5 6 20 3.9 3.3 10-7 | 2.2
Voltx 5 12 20 1.4 1 10~7 1.1

Table 1: Precision of the algorithm. The error are in percent

We use for these test a volatility equal to 0.3. We use either 5,10 or 20 datas generated
by the closed formulas. The table 1 illustrates the evolution of the error at several steps of
the algorithm, with different number of data and different underlying models. The error is
measured in several ways. First, we consider the error between the theoretical volatility and
the volatility produced by our algorithm. We take a mean value over all the points in the
grid first and then on the strike in the center of the grid: K € [80,120], K € [70,130]. It
is clear that the results are much more better on the center and the big errors are done on
the border. Finally, in the last two columns we give the mean value for the call (resp. put)
prices. The mean value is taken on K € [80, 120]. The error for the call option is practically
equal to zero (we fit the datas) but for the put option this error becomes sgnificant. Anyway
it remains at a good level.

Note that (look at the first nine lines) as the algorithm evolutes (step 2 — step 6 — step
12) the error decreases significantly. It is natural because we take into account more and
more datas.

The sensibility to the number of datas (20,10 or 5) at each tile level seems not very
important.

Finally we look to the last line concerning "Voltx". Note that the errors are almost the
same as for the "BS" model so the algorithm seems to reproduce well any shape of local
volatility.

Of course the main interest of an algorithm of calibration is that the experimental data
must be fitted precisely. In the figure 1, we plot the Call obtained by our algorithm w.r.t.
the theoretical value. We also compute at each time step, the values of the Put option.
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This is a test significance because it shows that our algorithm is able to price other options
without using the volatility. We can observe on this figure that at step 2, the call and the
put are well fitted. We go a step further and look to the volatility: in figure 2 we plot four
curves:

e The real volatility which is constant.
e The approached volatility obtained by calibration.

e The real implied volatility which is equal to the real volatility in the Black and Scholes
model.

e The numerical implied volatility (the implied volatility computed with the numerical
call prices).

Figure 2 shows that at step two, the implied volatility is perfectly fitted on the center but
becomes bad on the borders. This seems natural because we have done just one time step.
So, roughly speaking the underlying diffusion has not the tile to go very far from the starting
point. In some sense, we have still no information far from the starting point. In contrast
with this, at step 12 (figure 4) the implied volatility is perfectly fitted on all the space grid.

We look now to the real volatility and to the numerical approximation of this volatility.
The result is significantly less goood as for the implied volatility but it remains at the level
of 0.4% on the center. Compose with the analogous result at step 12 (figure 4); Here the
numerical volatility is much more stable in space and convenient error is obtained.

Another interesting question is how closed are the real probability density and the prob-
ability density produced by our algorithm. This is explain in the next two graph who plot
the real density and ours in the center (for the figure 5) and at the extreme strike (for the
figure 6). We can see in these figures that the density is well approached by our algorithm
even at step 2.«z

At step 6 and 12 (see figure 3,4), the volatility is fitted better on the hole grid, and the
call, put and densities are still good. For the Black Scholes model we also want to see if other
options are well computed. So we use our semi-group to approach the price of 9 American
put of strike 80, 85,90, 95,100, 105,110,115, 120. We use the semi-group obtained with 5,10
and 20 experimental datas. The results are good, the precision is around 1%. These results
are plotted in the figure 7 and are almost the same for 20,10 or 5 experimental datas. Finally
we use the semi-group produces by our algorithm in order to compute the price of a barrier
option (see figure 8). The results are rather bad. But note that the algorithm that we use is
rather rough and does not take into account the specification of such an option. And such
an algorithm gives bad results even if we know the precise underlying semi-group.
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Figure 1: Computation of the Call and the Put in the Black Scholes model: time step = 2,

20 experimental datas.

Figure 2: Computation of the volatility in the

experimental datas.
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5.2 Dupire model

The three other volatilities that we use enter in the frame of Dupire’s model. We give the
graphs corresponding to Voltx (step 12, figure 9) and Jump (step 6, figure 10). In both
cases the volatility smile is perfectly fitted in the center. We have also a good shape for
the real volatility in voltx. In the case of a jump of volatility, we see that the numerical
approximation is sensible to the jump but gives a regularized version of the real shape. In
both case, the put options are well computed.

6 Heston model
In the Heston model, the underlying asset follows the stochastic differential equation:

dSy = rSydt + /v Sy dW}
dvg = k(0 — v)dt + o /ordWE,

where W,! and W? are two correlated brownian motion with (W' W?2), = pt. This model
has a stochastic volatility. Thus, it is not a markovian model which is one of our assumption.
Theoretically, we cannot calibrate such model. We proceed as follows:

o We take call options prices generated by the closed formula in the Heston model (r = 0,
k=.01,60=2).

e We run our algorithm to obtained a semi-group.

¢ We compute put options and compare it to the real prices.

In the figure 11 and 12, the first graph presents the call and the put options in their real
scale. The second one presents them in the implied volatility scale.

o = 0.2 This value for the volatility of the volatility is low, so we are close to a Dupire
model. We observe in figure 12 that the volatility smile is fitted perfectly. The error on the
put options are still acceptable. We remark that the put options are fitted better for strike
in the center than on the border.

o = 1 This is an extreme value, it implies that the process v; has high perturbation. In
fact, our algorithm does not succeed in calibrate this, and the put error is over 10%. Even
the call option are not well fitted. But, we have to see that the smile is very irregular and
this is not real in practice.
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