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Abstract:

This report tackles the registration of 2D biological images (histological sections or au-
toradiographs) to 2D images from the same or different modalities (e.g., histology or MRI).
The process of acquiring these images typically induces composite transformations that we
model as a number of rigid or affine local transformations embedded in an elastic one. We
propose a registration approach closely derived from this model.

Given a pair of input images, we first compute a dense similarity field between them
with a block matching algorithm. A hierarchical clustering algorithm then automatically
partitions this field into a number of classes from which we extract independent pairs of
sub-images. Our clustering algorithm relies on the Earth mover’s distribution metric and is
additionally guided by robust least-square estimation of the transformations associated with
each cluster. Finally, the pairs of sub-images are, independently, affinely registered and a
hybrid affine/non-linear interpolation scheme is used to compose the output registered image.

We investigate the behavior of our approach under a variety of conditions, and discuss
examples using simulated and real medical images, including MRI, autoradiography, histol-
ogy and cryosection data. We also detail the reconstruction of a 3-D volume from a series
of 2-D histological sections and compare it against a reconstruction obtained with a global
rigid approach.
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Recalage automatique affine par morceaux des images
biologiques

Résumé :

Ce rapport s’intéresse au recalage d’images biologiques en 2 dimensions (coupes his-
tologiques ou autoradiographiques) vers des images de méme dimension acquises suivant
une modalité soit similaire (histologie) soit différente (IRM). Le processus d’acquisition de
ces images induit typiquement des transformations composites que nous modélisons sous la
forme d’un ensemble de transformations locales, rigides ou affines, plongées dans une trans-
formation élastique. Nous proposons ici une méthode de recalage directement inspirée de ce
modéle.

Etant donnée une paire d’images en entrée, nous calculons en premier lieu un champ dense
de similarité via une méthode d’appariement par bloc. Un algorithme de partitionnement
hiérarchique segmente ensuite automatiquement ces champs en un ensemble de classes d’ou
I’on extrait des paires indépendantes de sous-images. Notre algorithme de partitionnement
s’appuie sur la métrique sur les distributions “Earth mover” et est par ailleurs guidé par
I’estimation robuste aux moindres carrés des transformations associées & chaque classe. Ces
paires de sous-images sont ensuite recalées, rigidement ou affinement, de fagon indépendante.
Enfin, un schéma d’interpolation hybride affine/non linéaire compose l'image recalée en
sortie.

Nous analysons dans ce rapport le comportement de notre approche dans un ensemble de
situations, et discutons d’exemples de recalage sur des images simulées et sur des images bio-
logiques (IRM, autoradiographies, coupes histologiques et image cryogénes). Nous détaillons
également la reconstruction d’un volume 3-D & partir d’un ensemble de coupes histologiques
2-D, volume que nous comparons & celui obtenu avec une méthode de recalage rigide globale.

Mots-clés : recalage, clustering, reconstruction, histologie, IRM
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1 Introduction

A key component of medical image analysis, image registration essentially consists of bring-
ing two images, acquired from the same or different modalities, into spatial alignment. This
process is motivated by the hope that more information can be extracted from an adequate
merging of these images than from analyzing them independently. For instance, mono-modal
registration of a population’s MRIs can be used to build anatomical atlases [9, 35], while
mono- or multi-modal registration of the same patient’s data can help determine the nature
of an anomaly [20] or monitor the evolution of a tumor [17] or other disease process [27].

In particular, pair-by-pair registration of a series of 2-D biological images (histological
sections or autoradiographs) enables the reconstruction of a 3D biological image. Subse-
quent fusion with 3D data acquired from tomographic imaging modalities (e.g. MRI) then
allows the tissue properties to be studied in an adequate anatomic framework, using in vivo
reference data [5, 25, 4].

More formally, given two input images, registering the floating (i.e., movable) image
to the reference (i.e., fixed) one entails finding the transformation that minimizes the dis-
similarity between the transformed floating image and the reference. As such, it can be
decomposed into 3 elements:

e a transformation space, which describes the set of admissible transformations from
which one is chosen to apply to the floating image;

e a similarity criterion, which measures the discrepancy between the images; and

¢ an optimization algorithm, which traverses the transformation space, in search of the
transformation that will minimize the similarity criterion.

A large variety of transformation spaces have been discussed in the literature (see [24] for an
extensive review of medical image registration): among others, one finds linear transforma-
tions (rigid, affine) and non-linear transformations (polynomial [38], polyaffine [14, 1], elastic
[11, 15] or fluid [6]). Similarly, many similarity criteria have been presented: Studholme et
al. [33] use normalized mutual information, Collins et al. [8] cross-correlation, Roche et
al. [29] the correlation ratio, Ashburner et al. [2] the squared intensity difference, etc.
Optimization algorithms range from the straightforward Powell method [7] to sophisticated
multi-scale Levenberg-Marquardt techniques [34] or stochastic search [37].

Motivation For iconic (i.e., intensity-based) methods, optimal similarity measures can
be derived from a careful analysis of the expected relationships between the input images
[29], with different hypotheses leading to different measures. Similarly, a priori knowledge
about the acquisition process for biological images may allow the transformation space to
be modeled more accurately.

In our case, the cutting process, successive chemical treatments, and the glass mounting
step that a slab of tissue undergoes during a histological preparation yield a fairly flexible
global transformation that is however locally affine for some identifiable components of the
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4 Pitiot et al.

Figure 1: Two consecutive myelin-stained histological sections of the human brain (a & b); Human
brain cryosection (c) and its associated Nissl-stained section (d). White arrows and circles indicate
moving gyTi.

section. In brain sections for instance, each gyrus (compare white arrows in Figure 1.a
& b, and white circles in ¢ & d) undergoes an affine transformation (due to successive
manipulations) relatively independent from those of other gyri. Consequently, even though
alarge variety of transformation spaces have been discussed in the literature, their functional
form may not reflect our specific needs.

Discussions with neuro-anatomists and histologists prompted us to model the composite
transformation yielded by this chain of physical processes as a number of affine or rigid trans-
formations applied to carefully delimited areas, with non-linear transformations interpolated
in between.

Note that the utility of this transformation model extends to medical as well as biological
images (our primary motivation here). For instance, abdominal or torso MRIs often include
rigid structures such as bones (ribs, vertebrae, etc.), deformable organs (liver, heart, etc.),
and elastic tissues. Two abdominal MRIs of the same patient are then linked by a complex
transformation which can be rigid in some regions (for bones) but potentially exhibits large
local dilations (in deformable organs). Global rigid or affine transformations cannot ade-
quately handle such a case. Also, a single rigid transformation would not correctly register
all the vertebrae along the spinal column simultaneously. Furthermore, high degree of free-
dom (e.g., fluid) transformations could correctly map one image onto the other, but they
may not ensure that specific components (e.g., bones) will be only rigidly transformed.

Prior work To alleviate these issues, a few authors have developed local registration
techniques, where the input images are divided into a number of smaller sub-images, and a
transformation is associated with each. An automatic hierarchical elastic image registration
technique is presented in [22]. The initial 2-D images are partitioned into quad-tree struc-
tures. At each level of the quad-tree, the floating sub-images are independently registered
to their counterparts in the reference image, before being merged via thin-plate spline inter-
polation. However, this technique cannot apply a transform selectively to a specific region

INRIA
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Figure 2: Overview of our local registration approach

whose boundary does not coincide with the quad-tree grid. In [23], Little et al. describe an
approach where a user selects a number of pairs of corresponding rigid structures in the in-
put images along with associated linear transformations (also given by the user). A number
of pairs of landmarks further constrain a hybrid affine/non-linear interpolation scheme that
acts as a local registration algorithm. This method, even though it fits our needs, still relies
on interactive specification of the components to be rigidly matched.

Proposed approach This paper addresses the problem of automatically registering two
images, when the images consist of a number of independent components, subject to linear
transformations. Figure 2 illustrates our approach.

Briefly, given the input floating and reference images, Ir and Ig respectively, we first
rigidly register Ir to Ir, before computing a dense similarity map (or correspondence field)
between them with a block matching algorithm. A hierarchical clustering algorithm then
partitions the correspondence field into a number of classes from which we extract inde-
pendent pairs of sub-images. Our clustering algorithm relies on a distribution metric (the
Earth mover’s distance) to agglomerate blocks, and uses the estimated transformations as-
sociated with each cluster to guide the grouping process. The pairs of sub-images are then,
separately, rigidly or affinely registered. Finally, the hybrid affine/non-linear interpolation
scheme described in [23] is used to compose the registered floating image.

Note that in contrast to that of Little et al., our approach is fully automated. It does
not require a priori structures, landmarks, or transformation matrices to be specified, but
will estimate them from a dense similarity map.

We detail our method in Section 2, and then discuss in Section 3 registration results on
a variety of biomedical images, and the sensitivity of our algorithm to noise conditions and
parameters.

RR n° 4866



6 Pitiot et al.

2 Method

The first step of our approach consists of automatically partitioning the input floating and
reference images (Ir and Ig) into a number of pairs of corresponding sub-images, where each
sub-image is associated with an independent (in terms of transformation) image component.

We approach this segmentation issue as a process of partitioning a correspondence field
computed from Ir to Ir. Our method is motivated by the following observation. When
both images are composed of pairs of independent components, where each component is
subject to some linear transformation, the associated correspondence field should exhibit
rather homogeneous characteristics within each component, and heterogeneous ones across
them. Consequently, by clustering the fields with a criterion based on local characteristics,
we hope to extract from them the desired independent components.

2.1 Computing the initial correspondence field

We use a block-matching algorithm [18] to compute the correspondence field.

2.1.1 Block-matching algorithm

We associate with Ir and Ig two rectangular lattices Lr = {(¢,7) € [1,...,wr]X[1,..., hFp]}
and Lg = {(i',j') € [1,...,wg] x [1,..., hg]} respectively, whose sites correspond to pixels
in the input images. We may choose to associate a site to each pixel of the input images,
in which case wg, hg and wg, hgr are the width and height of Ir and Ig. We could also
consider a sparser regular or non-regular site distribution. In our case, we use sparse regular
lattices and discard, for histological sections, sites which lie on the background.

The block-matching algorithm works as follows (see Figure 3): for each site (4,7) in Lr,
we consider a neighborhood b% in Ir of the pixels associated with (i, j) (usually a square
neighborhood of constant size bs;,. called a “block”, whose centroid is denoted by p}jﬁ ). We
then compute the similarity measures (given a similarity metric sim) between block b}; and

every block b%l in Ip associated with sites (k,[) in the corresponding neighborhood N};j of
(i,j) in Lg (the “exploration neighborhood”). For every site (i,7) in L, we then get a 2-D
spatial similarity distribution (the values sim (b;’ﬂj , b/;:_{,z) defined in the neighborhood N}%’j

of (i,7)). We also record the “arg max” displacement d*/ defined by d/ = pgf’l)’"”‘“” —pY

where (k,1) is the site of Ly that is associated with the block b%l in N}%j which is the
most similar to by, i.e. (k1) . = argmaxy, sim(bs’,b5'). This displacement field will
serve to estimate transformations on clusters (see Section 2.2.1).

mazx

The quality of both the similarity map and the displacement field is essentially deter-
mined by three parameters: the size of the blocks, the similarity metric and the size of the
exploration neighborhood in Lg.

INRIA
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Figure 3: Block-matching algorithm

e The similarity metric and the size of the blocks must reflect the expected relationship
between the intensity distributions of blocks in the floating and reference images, and
the scale of the features of interest within those blocks respectively (see [9] and [13]
for details).

e The size of the exploration neighborhood is linked to the expected magnitude of the
residual displacements after global alignment. It conditions the extent to which our
registration algorithm can recover large deformations: the further apart corresponding
components are, the larger the size of the neighborhood must be.

The Appendix Section provides an exhaustive list of the parameters of all the algorithms
used in this study, along with comments on their impact on the overall registration quality
and some standard values.

As a pre-processing step, we first rigidly register Ir to Ig to remove from the subse-
quently computed correspondence fields the global rigid transform that uniformly affects all
components. We use the fully automated intensity-based registration algorithm presented
in [26], where a robust multi-scale block-matching strategy was introduced. Not accounting
for this would only degrade the quality of the field and affect the efficiency of the clustering.

2.1.2 Extended correlation coefficient

A ubiquitous choice for image registration [29], the correlation coefficient represents, in the
context of block matching, a measure of the affine dependency between the block of interest
b% in the floating images and every block b'}“?jl in the corresponding exploration neighborhood
in the reference image. It is written:

cov (37, 1)’ S (65 (uy0) — 527 . (05 () —
2 FUR uw \OF (U kg |- \Op (4,V)— lp
- i kL) i) 2 Kl k)2
var <bF ) .var (bR ) Zu,v (b}.] (u,v) — M}‘J) 'Eu,v (bR (u,v) — ks )
g g (1)
where p%’ and ,uﬁ:l are the mean intensities of b3 and blfz’l respectively. To make the affine
dependency clearer, equation 1 can be re-written (see [28] for instance):

ij gkl
cor (bF ,bF )
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8 Pitiot et al.

o 2 mingpkE [b}}j — AW — 3]2
1= cor <b;"]’ b%l) - var (bi,i) ?
F

where F is the statistical expectation and A and B represent the affine coefficients of the
intensity dependency function between b}’ and b’;{l.

This affine formulation stems from the assumption that each block contains at most two
different tissues, a reasonable hypothesis when dealing with small image windows. A variety
of studies have documented the effectiveness of the correlation coefficient in not only mono-
but also multi-modal registration applications [29, 26].

Yet, when building the similarity map of b}’ (and thus, also when computing the “arg
max” displacement field), different implicit A and B are used with every block in the ref-
erence exploration neighborhood. Comparing similarity values, both within the similarity
distribution associated with a single floating block and across the distributions associated to
different floating blocks, when obtained under those conditions then becomes questionable.
A simple way to alleviate this issue consists of ezplicitly estimating A and B over the entire
neighborhoods Np’ (the “exploration” neighborhood of (4,7) in Lg) and N’ (the corre-
sponding, same size, neighborhood in L), to keep them constant during the computation
of the similarity distribution of a given floating block. Equation 1 then becomes:

o () = e P M) Q0 M)
S (0 (w0) = M) 5, (0 (0 0) — M)

where M}’ and M }’;’l are the mean intensities of Nz’ and N3’ in the floating and reference
image respectively.

By estimating A and B on a larger neighborhood, we homogenize the computation of
the similarity field (and of the displacement field) over the entire image. Note that we also
make a stronger hypothesis. Whereas, with the classic correlation coefficient, we assume an
affine relation between small blocks (equation 1), we here extend that assumption to larger
areas: the exploration neighborhoods (equation 3). As it is, this extended hypothesis is
still reasonable in our context (better experimental results were obtained with the extended
coefficient). It should however be carefully re-considered for multi-modal registration appli-
cations (we had to revert to the classic coefficient for the registration of autoradiographies
to MRI data in the monkey brain, see Figure 8).

Furthermore, by homogenizing the similarity measures, we also justify the computation
of distances between our similarity distributions (see Section 2.2.1).

Figure 4 displays the similarity distributions and the “arg max” displacement field for
two consecutive histological sections of the brain (60 um myelin stained coronal sections

INRIA



Automated Piecewise Affine Registration of Biological Images 9

Figure 4: Dense correspondence field: input reference image (left column), input floating image with
superimposed similarity distribution (middle column) and superimposed “arg max” displacement
field (right column) for two consecutive myelin stained histological sections. The color bar in the
middle column shows the range of values of the similarity function, for each block. The red lines
connecting A and B represent the geodesic (full) and Euclidean (dotted) paths.

through the occipital cortex). For every site of the floating lattice, a color square shows the
similarity measures between the corresponding floating block and the reference blocks in its
neighborhood (middle column). The optimal ”arg max” displacement field is rendered with
arrows whose length and direction are those of the optimal displacement vector associated
to the lattice site at which the arrow originates. For visualization purposes, only half of the
“similarity squares” are rendered in the similarity map.

Obviously, the similarity squares present clear patterns, and, more importantly, conspic-
uous differences in patterns across the image, that will help the clustering algorithm segment
the input images. Additionally, the “arg max” displacement field, although globally rather
chaotic, tends to present more homogeneous patterns at a local scale, from which transfor-
mations can be estimated in a robust fashion. This will help both cluster the input images
and register the extracted sub-images.

RR n° 4866



10 Pitiot et al.

2.2 Extracting the image components

A dense correspondence field has been computed as described in the previous section. We
further assume that the input floating image consists of components that share similar trans-
formation characteristics. We describe here the way the correspondence field is clustered,
and how we extract sub-images from the clustered sites. Those sub-images will be later used
to estimate local transformations.

2.2.1 Clustering the correspondence field

We are looking for a hierarchical clustering of Lp, that is, a sequence of partitions in which
each partition is nested into the next partition in the sequence [3]. Cluster analysis (unsu-
pervised learning) essentially consists of sorting a series of multi-dimensional points into a
number of groups (clusters) so as to maximize the intra-cluster degree of association and
minimize the inter-cluster one. It is particularly well suited here as it behaves adequately
even when very little is known about the category structure of the input set of points. That
is, it does not require strong hypotheses to be formulated beforehand.

For simplicity’s sake, we rewrite Ly as an ordered set of sites: Lp = {ss.t.3!(3,5) €
Lp,s=(1,)) z”:Fl'hF (Table 2 shows the main notations we use for our approach). Our clus-
tering method is adapted from the standard agglomerative hierarchical clustering algorithm
described in [19]:

step 1: initialize a cluster list by placing each site of Ly in an individual cluster, and let
the distance between any two of those clusters be the distance between the sites they
contain (the more similar the clusters, the smaller the distance).

step 2: find the closest pair of clusters, remove them from the cluster list, merge them into
a new single cluster and add the new cluster to the cluster list.

step 3: compute the distances between the newly formed cluster and the other ones in the
cluster list.

step 4: repeat steps 2 and 3 until the desired number of clusters have been reached.

The number of clusters can either be specified by the user (our case here), or pre-
indicators like the Davies-Bouldin index [12] or the cophenetic correlation coefficient [3] can
assist this choice. The Appendix Section briefly discusses the influence of this parameter
over the registration quality.

To store the distances between any two clusters in the cluster list at each iteration, we
maintain a variable-size distance matrix M which summarizes their proximity (or similarity).
At each iteration, M is therefore a square symmetric matrix whose size is the number of
clusters in the cluster list at that iteration. The computation of similarity matrix M is the
pivotal element of the clustering algorithm. The distance measure between clusters should

INRIA
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be consistent with both the model we chose for the input images and the relationships we
expect between them.

To define a distance on clusters, we first need a distance on sites. This distance is defined
as a linear combination of two distances, a distance between the centroids of the associated
blocks and a distance between the associated similarity distributions:

Dsite =« Dcentroid + (]- - Oé) Ddist'ribution (4)

Distance between the centroids. To satisfy the model constraint, we have to ensure

that close blocks are more likely to be clustered than blocks far apart. It appears that
the Euclidean distance is not the most suitable here. Indeed, if the input images con-
tain several pieces of tissues (e.g., in histological images, they can easily be identified
by thresholding) that are potentially non convex, a geodesic distance within each piece
will be more convenient to define the proximity of two points from an anatomical point
of view.
We recall that the geodesic distance between two points is the length of the shortest
path that connects these points within a component that must contain them (the con-
tinuous red line in Figure 4 is the geodesic path between A and B, the dotted line the
Euclidean path). By convention, when two sites cannot be connected (when they be-
long to disjoint components), we define the geodesic distance as the Euclidean distance
between their associated centroids plus the radius of the input image. Computation of
the geodesic distances was done using a variant of the circular propagation algorithm
introduced in [10] which achieves a good trade-off of precision over speed.

Given two sites ¢t and u, their centroid distance is written:
Dcent’roid (t7 u) = Dgeodesic (p}‘v p%) (5)

Distance between similarity distributions. The high expressivity of the similarity dis-
tributions described above (Section 2.1), which summarize the similarity landscapes
associated with the neighborhoods of the blocks of interest, makes them remarkably
well suited to capture the actual differences between those blocks, in spite of noise or
decoys, and thus allows for a better discrimination. We use a normalized version p of
these distributions to ensure that they all have the same overall unit mass (see [32] for
a similar distributional approach in the context of image-flow computation).

Given a site ¢t in Lp, the associated 2-D normalized distribution p' is defined for

sim(bl,b%)
. h
EvENt sim(b},b}’%) SUC

sites u in the neighborhood N; of t in Lg by p' (p% — p%) =
distributions are depicted in Figure 4 (middle column).

As a distance between distributions, we chose the Earth mover’s distance [31], a dis-
crete solution to the discrete Monge-Kantorovich mass-transfer problem [16]. Given
the so-called “ground distance” (the distance between elements of the distribution, the
Euclidean distance in our case), the Earth mover’s distance (EMD) between two dis-
tributions becomes the minimal total amount of work (= mass x distance) it takes

RR n° 4866



12 Pitiot et al.

to transform one distribution into the other. As argued by Rubner et al. [31], this
boils down to a bipartite network flow problem, which can be modeled with linear pro-
gramming and solved by a simplex algorithm. Among other advantages, the EMD is a
true metric, is not impaired by quantization problems (as opposed to histogram-based
approaches for instance) and can handle variable-size distributions (our case here).
For sites t and u, we obtain:

Ddistribution (tv U) = DEMD (pt7 pu) (6)
To summarize, given two sites ¢ and u, their site distance is written:

Dsite (t,’U/) = aDgeodesic (p%‘ap‘l]i?) + (1 - Oé) -DE'MD (pt,pu) (7)

where « is a real-valued positive weight (0 < o < 1).

Once we have a distance between sites, a cluster distance can be defined. We adapted
the standard complete link distance [3] to additionally take into account the transformations
that can be estimated on the already formed clusters.

Namely, when the size of a cluster reaches a given threshold (we usually take 6.;yster=20,
even though experiments showed that the value of that threshold does not really impact the
quality of the clustering), a rigid or affine transformation can be estimated, in a robust
fashion, from the associated set of “arg max” displacement vectors (via a least-square re-
gression combined with an LTS (Least Trimmed Sum of Squares) estimator, see Section
2.3). The decision to merge two clusters can then be biased by the agreements between
their associated estimated transformations, again as this might indicate that they belong to
the same component. Incidentally, when the distance between a cluster with an associated
transformation and another one without enough sites to have allowed an estimation must
be computed, we choose to return 0. Although theoretically possible, such a case almost
never occurs in practice as a hierarchical clustering algorithm tends to aggregate sites in
small clusters at early stages before merging them into large ones in subsequent iterations,
not leaving single sites un-aggregated very long (see [3] for details). This so-called “chaining
effect” also motivates the use of transformation distances.

Given two transformations 7% and T, we use a standard symmetric distance:

2
Sy [T - 1d] L+ % [T T 1]} it both T are defined

0 otherwise

2
1,7

Dt’rsf (1—”17 Tb) =

(8)

(where i, j are matrix indices).

Finally, given two clusters of sites C* = {a1,...,an,,} and C® = {b,...,b,,}, the
cluster distance between them is the longest distance from any site in C® to any site in C®

INRIA
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Figure 5: Composing the locally registered floating image: (a) input floating image with clustered
“arg max” displacement field; (b) transformed binarized sub-images with darkened eroded pixels;
(c) final composed locally registered floating image.

(complete-link) plus the “transformation distance” wherever it can be computed:

DclusteT(Ca7 Cb) = ﬁnllzzﬂx Dsite(aia bj) + (]- - ﬁ) Dtrsf(TaaTb) (9)
where (3 is a real-valued positive weight (0 < 8 < 1).

Figure 5.a shows the clustering of the correspondence field for the two consecutive his-
tological sections of Figure 4 (with 4 clusters).

As an alternative, we could have used one of the numerous optical flow segmentation
algorithms developed in the literature ([36] for instance) to segment the input images. How-
ever, a number of modifications would need to be made to allow for the registration of
multi-modal images as they violate the principle of intensity conservation. Additionally,
taking into account geodesic distances might also prove difficult. Finally, we believe that
better results can be obtained by considering the complete similarity map associated with a
block instead of choosing a priori a single displacement to perform the classification.

RR n° 4866



14 Pitiot et al.

2.2.2 Extracting the sub-images

We have described above how we cluster the floating lattice Lp. We detail here how to
extract, from the input floating and reference images, pairs of sub-images that will later be
registered independently.

Let N¢ be the final number of clusters, C = {C*,...,CN¢} the cluster partition of L,
and {ci,...,c} } the n; sites of the i*" cluster C*. We want to build a set of N¢ sub-images

{I}}ficl, each of them associated with a single cluster. Given the partition of L, a partition
of Ir can be built in many ways. For instance, one could compute a Voronoi diagram of
the sites ¢ (or equivalently of their centroids) and draw a partition of the pixels (z,y) of Ir
from it. However, our clustering method does not ensure that the borders between clusters
are sufficiently precise to adequately represent the sub-images’ borders. Moreover, as we
are going to use these sub-images to find local transformations, it is often better to choose
larger supports to avoid boundary effects.

Consequently, rather than build a partition of Ir from the partition of Lp, we build a
covering of I, i.e., a set of sub-images that could overlap. To do so, we aggregate in I}} the
pixels of Ir in the vicinity of the sites of the cluster C?. We get:

I = {(z,y) € Ir such that D((z,y),¢;) < coverrqadius for some ¢, € C*} (10)

In practice we use the L., distance. Then, with blocks of size bs;.. associated to the

sites, taking cover,qdius = bsize /2 We get It = J ; b;; . In our experiments, to ensure a large
support, we chose cover,qgins = 3/4 bsize-
The corresponding reference sub-images Iy are built identically, but with the centroids
(k1
Pr

Jmaw

of the most similar blocks (see Section 2.1):

Iy = {(z,y) € I such that D((x,y),cz + dc;') < COVETrqdius, fOr some c; eC’y (11)

Again, we use the Lo, distance here, with cover,qqins = bsize (a larger extent than that of
the floating sub-image) to ensure that I}, can be effectively registered against I},.

2.3 Composing the registered floating image

Once we have extracted the reference and floating sub-images, we use the robust affine
block-matching algorithm described in [26] to register them, independently, pair by pair.
Briefly, this algorithm first estimates a sparse “arg max” displacement field, using a block
matching approach (our block matching algorithm is derived from this approach, and we
feed both of them the same parameters and similarity measure). From this field, a least
square regression extracts a rigid or an affine transformation. As an illustration, in the rigid
case we are looking for R* and t* such that:

o - 2
(R*,t*) = argn}%i}lz H (p}’? + d”) — Rypy — tH (12)
%]
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where (péjﬂj +dI ) — Rp%/ — t is the residual error and ||.|| the L, Euclidean norm.

However, given the rather noisy appearance of the displacement field, an LTS estimator
(Least Trimmed Sum of Squares, see [30] for details) is used in place of the least square one
to ensure a robust estimation of the transformation. At a glance, instead of minimizing the
total sum of the squared residuals (equation 12), a LTS estimator will iteratively minimize
the sum of the h smallest squared residuals (we take h at 50% of the number of residuals),
to reduce the influence of outliers.

Finally, a better trade-off between robustness and registration precision is achieved via
a multi-scale implementation. Note that even though this block matching algorithm com-
putes displacements (actually, translations) only locally, it is able to recover global rotations
and translations, thanks to its iterative nature. A robustness study on rat brains sections
presented in [26] demonstrated its ability to recover rotations up to 28 degrees.

Then, for each pair of sub-images {I%,I%},1 € 1... N, we obtain a rigid or an affine
transform 7. Note that since these registrations are robust, the sub-images do not need to
perfectly correspond to the anatomically separate components.

We then compose the final registered floating image using the Little et al. method [23].
Their approach applies user-provided affine transforms to user-defined structures and ensures
a smooth interpolation in between them. In our application, the set of floating sub-images
forms a covering of the input floating image, so we have to erode the sub-images to leave
space for interpolation. Furthermore, the floating sub-images must be cut to ensure that
they do not overlap, once transformed, as this may impair the interpolation scheme. This
erosion algorithm works as follows:

o We first apply the transformations to the floating sub-images (VI € 1...N¢, T* (Ik)
is the transformed floating sub-image), binarize them (zero for background, one for
tissue) and fill in the holes.

e We superimpose the binarized transformed sub-images in a single image J and compute
a distance map over the background of that image.

— A series of morphological operations (erosion) first ensures (on a need for basis)
that the T' (I,.) are disjoint.

— A Euclidean distance map of the background of J is computed.
e A medial axis algorithm then extract the skeleton of the background of J.

o We compute the distance map of this skeleton.

We identify in J pixels whose corresponding distance to the skeleton is smaller than a
given threshold v. This ensures a minimum distance of 2v between any two sub-images.
Let N be the set of these pixels. We then remove from the floating sub-images their
inverse transformed intersection with N: VI € 1...N¢, It = IL—T' "1 (T' (IL) N N).
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The choice of the amount of space to leave in between structures (2v pixels) depends on
the input images and should be set accordingly. However, there is no general prescription
for selecting a good value for v which would work well for all images and, within a single
image, for all sub-images. Clearly, as the amount of space decreases, the band in between
sub-images becomes more stretched (which might induce substantial textural changes). We
are currently investigating technique to link v to the distance between the transformations
associated to neighboring sub-images.

We choose as landmarks the corners of the original images, Ir and Ir (after the ini-
tial rigid registration), to further constraint the interpolation scheme, and use the modified
Hardy multi-quadric recommended in [23] as a basis function for interpolation, as this agrees
with an affine transform at infinity. Figure 5 exemplifies our composition process on the
myelin stained histological section of Figures 1 and 4. We show in 5.b the transformed
floating binarized sub-images in color, the skeleton of the background of J in red and the
2v = 20 pixel wide band of eroded pixels in darkened colors with white borders.

Note that the entire registration process could easily be included within an iterative
multi-scale framework to achieve a better trade-off between accuracy and complexity. Such
a framework could also be useful for handling both large-scale and small-scale components.
We are currently exploring these aspects.

3 Results

We present here the various experiments we have conducted to assess the performances
of our local registration approach. We first discuss the ability of the clustering algorithm
to correctly classify phantom images. We then detail how the various components of our
registration system influence the quality of the match for series of biomedical images.

3.1 Phantom Images

Phantom images enable us to evaluate the quality of the clustering algorithm under con-
trolled textural conditions. Namely, pairs of synthetic images were created with artificial
textures (grayscale cloud pattern, see Figure 6).

A first experiment was designed to illustrate the behavior of our approach on images
consisting of several connected components. We considered 3 structures with 2 components
each: in #1 a small square inside a larger one, in #2 and #3 the two vertical halves of a
large square. To each component, a different affine transformation was applied:
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reference image

N mgeﬂ ﬁa
# #2

Figure 6: Clustering of three 2-component structures

#3

e component la: T'® = counter-clockwise § rotation;

jus

e component 1b: T = clockwise 3

rotation;
e component 2a: 7%¢ = (—10, —20) translation;

e component 2b: T2* = (-5, 4+15) translation;

jus

e component 3a: T3% = counter-clockwise 8

rotation;

e component 3b: T3° = clockwise g rotation.

Table 1 reports the classification results with and without the transformation based
distance, and with and without distribution distance (EMD). We set a = 0.5, 8 = 0.5,
Ociuster = 20 and N¢ = 2, and used the extended correlation coefficient for rigid regis-
tration. For each structure, we show, for each component, both the number of pixels of
that component that were correctly classified and the number of vectors of the complemen-
tary component that were wrongly classified as this one, as a percentage of their respective
number of pixels.

We observed better performances when the EMD distribution distance was used than
when it was not. The similarity distribution distance actually helps the clustering algorithm
to form, at early stages, sensible clusters that are then adequately agglomerated with the
aid of the robust estimation of the associated transformations (even though, due to the
noisy nature of the “arg max” displacement field, those may sometimes hinder the clustering
process). Finally, use of the geodesic distance was particularly beneficial for components
2a/b and 3a/b.
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with transformation distance | without transformation distance
components || with EMD  without EMD | with EMD without EMD

# 1a 43 / 47 40.1 / 34 40 / 43.2 37.6 / 41

# 1b 53 / 57 66 / 59.9 | 56.8 / 60 59 / 72.4
# 2a 86.6 / 26.8 68.3 /46.2 | 74.3 / 32.4 72/ 34.2
# 2b 73.2 /134 53.8 / 31.7 | 67.6 / 25.7 65.8 / 28

# 3a 76.5 / 19 59.2 / 26.5 | 54.3 / 27.5 572 /115
# 3b 81 /23.5 73.5 /40.8 | 72.5 / 45.7 88.5 / 42.8

Table 1: Performance of our local registration algorithm for a variety of phantom images.

Note that a perfect clustering is not a necessary condition for our method to perform well,
(1) since the subsequently extracted sub-images will be larger than the obtained clusters and
will overlap, and (2) since the registration algorithm we use to register these sub-images is
robust.

3.2 Biomedical Images
3.2.1 Two detailed examples of mono- and multi-modal registration

Figures 7 displays the results of our local registration for the pair of myelin-stained histo-
logical sections introduced in Figure 1, and Figure 8 for an autoradiographic monkey brain
section and its associated MRI (obtained by co-registration of a series of contiguous autora-
diographic sections with an MR, volume of the same monkey [25, 4]). In both cases, a gyrus
(top left corner in Figure 7, and bottom left corner in Figure 8) was detached during the
histological preparation and manually realigned in an unsatisfactory fashion.

In Figure 7, we show the reference image (a), the transformed binarized floating sub-
images with darkened eroded pixels (b, refer to Section 2.3 for details), the locally registered
floating image (c), the colored superposition of the reference image and the globally affinely
registered floating image (d), the image of a regular grid convected with the associated
hybrid affine/non-linear transformation with the superimposed transformed eroded floating
sub-images (e), and the colored superposition of the reference and the locally registered
floating image (f). In Figure 8, the transformed sub-images composition is replaced by the
floating image with superimposed clustered “argx max” displacement field (b), the colored
superpositions are replaced by the reference image on which we superimposed the edges of
the globally registered floating image (d) and of the locally registered floating image (f).

These pairs of images were locally rigidly registered by our approach, with o = 0.5,
B = 0.5, Ocuster = 20 and standard parameters for the block matching algorithm (see Table
3 in Appendix) with an extended correlation coefficient and N¢ = 4 for the myelin sections,
and a classic coefficient with No = 2 for the autoradiography (tests with normalized mutual
information as a similarity measure yielded less good results). Our clustering algorithm
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adequately isolated in a separate sub-image the floating gyrus of the myelin section pair
(red area in Figure 7.b) and the moving part in the monkey case (green area in Figure 8.b)
which were subsequently correctly registered to their counterpart in the reference image.
An affine transform would of course further decrease the discrepancy between the pairs of
sub-images. However, in the general case, when one suspects only a rigid transformation
between sub-images, opting for an affine registration would only introduce unnecessary over-
parameterization which, among other disadvantages, could substantially alter textures.

3.2.2 Reconstruction of a 3-D histological volume

Even though the deformations recovered by our registration method may sometimes be
rather subtle, as exemplified by the registration of the two pairs of images presented above
(Figures 7 and 8), they become a clear nuisance when entire stacks of sections must be
aligned.

We aim here to reconstruct a 3-D volume from a series of histological or autoradiographic
images. Previous work [26, 25, 4] showed that by registering (affinely or rigidly) each pair of
consecutive slices in the stack we can recover a geometrically coherent 3-D alignment of the
2-D images and provide a satisfying 3-D reconstruction. However, local rigid/affine piece-
wise transformations, as described in the Introduction Section, still impair this registration
process and must be accounted for.

As an illustration of the benefits of our piece-wise approach, we describe here the recon-
struction of a 3-D histological volume from a series of 70 images. These were 50um thick
myelin-stained histological sections of the human brain cut in the V1 area. Reconstruction
was performed using the classic pair-wise approach described above. Note that this process
require the choice of a reference section: if we let Img(ref) be this reference section, with
1 < ref < 70, the reconstruction algorithm is then as follows:

for i from ref+l upto 70

rigid piece-wise register Img(i) to Img(i-1)
for i from ref-1 downto 1

rigid piece-wise register Img(i) to Img(i+1)

We used here the same parameters as for the registration of the myelin-stained sections
of Figure 7): a = 0.5, 3 = 0.5, O.jyster = 20 and standard parameters for the block matching
algorithm with an extended correlation coefficient and Ngo = 6.

Figure 9 compares the volume reconstructed with our piece-wise approach and that built
with the robust rigid registration algorithm we use to register the sub-images (see Section
2.3). In both cases (rigid and piece-wise rigid) we show in (b) a coronal view (middle) of the
3-D reconstructed volume corresponding to the 51°¢ image of the stack with the associated
axial (top) and sagittal (left) views, in (a) the 50** image (the immediately preceding section)
with edges of the 51°¢ one superimposed in red, and in (c) the 52"¢ image (the immediately
following section) with edges of the 51° image superimposed.
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Note the greater regularity of the 3-D structures in both the sagittal and axial views
of the piece-wise reconstructed volume, with respect to the global rigid volume. A better
registration of the separate gyri, illustrated by the better superposition between the red
edges and the underlying images, explains this smoother aspect.

Visual inspection all through the 3-D volume confirmed the enhanced continuity of the
3-D structures.

4 Conclusion and Perspectives

We have presented a fully automated local registration method, capable of dealing with a
variety of 2-D images. It builds complex spatial transformations by elastically interpolating
between rigid or affine transforms that are locally defined on pairs of sub-images. Conse-
quently, we manage to minimize the overall number of degrees of freedom of the transforma-
tion, thereby agreeing with the guidelines of the parsimony principle (see [21] for a discussion
of the problems inherent to high-dimensional transformations). These sub-images represent
geometrically coherent components (in our biomedical applications, they are even anatomi-
cally coherent components). They are automatically extracted from an initial displacement
field computed between the images to be registered. All user interaction is avoided, by
contrast with other approaches [23].

The use of a hierarchical clustering approach and a similarity distribution distance proved
very promising: while the distribution distance can effectively deal with noise and textural
issues to discriminate between image blocks, our clustering algorithm manages to extract
the expected sub-images. Even though obtaining a perfect clustering may not actually be
necessary, we are currently investigating stochastic approaches to improve this step.

Results on real data in both 2-D registration and 3-D reconstruction cases proved that the
proposed method is adequate for several specific problems in biomedical imaging. Finally,
even though the presented registration method works in 2-D, it could readily be extended
to 3-D with a close-to-linear increase in processing time.
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Figure 7: Registration of two consecutive myelin-stained histological sections of the human brain:
(a) reference image, (b) transformed binarized floating sub-images with darkened eroded pixels, (c)
locally registered floating image, (d) superposition of the reference image (red) and of the globally
affinely registered floating image (green), (e) image of a regular grid convected by the associated
hybrid affine/non-linear transformation with superimposed transformed eroded floating sub-images
(in red), (f) superposition of the reference image (red) and of the locally registered floating image
(green).
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Figure 8: Registration of an autoradiographic monkey brain section and its associated MRI: (a) ref-
erence image, (b) floating image with clustered optimal ”arg max” displacement field, (c) locally reg-
istered floating image, (d) reference image with superimposed edges of the globally affinely registered
floating image, (e) image of a regular grid convected with the associated hybrid affine/non-linear
transformation with superimposed transformed eroded floating sub-images (in red), (f) reference
image with the superimposed edges of the locally registered floating image.
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global rigid registration

piece-wise rigid registration

Figure 9: Reconstruction of a 3-D histological volume with a globally rigid (top) and our piece-wise
rigid (bottom) registration algorithm: (b) coronal view (middle) of the 3-D reconstructed volume
corresponding to the 51°¢ image of the stack with the associated axial (top) and sagittal (left) views,
(a) 50" image (immediately preceding section) with edges of the 51°* one superimposed in red, (c)
52" image (immediately following section) with edges of the 51°% image superimposed
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Appendix

Notations

Table 2 summarizes the notations that we used throughout this article.

Notation Description Comment
Ig reference image (size wgr X hg) fixed image
Ip floating image (size wp X hr) moveable image
Lg, Lr reference and floating lattice list of sites
(4,5), t, u site, site in Ly, site in Lp
Ny, Nz’ | neighborhood of a site
b, oy block of ITr associated with site | group of pixels
(i,7) or t (usually a square)
i centroid of the block of I 2-D point
associated with site ¢t of Lg
cor classical correlation coeflicient computed on b}, and b%
ecor extended correlation coefficient taking into account N}, and N
d “arg max” displacement vector 2-D vector
associated with site ¢
ot similarity distribution associated
with site ¢
ce cluster unordered set of sites
{cf,...,c2 } | the ng sites of cluster C*
T® estimated transform of C* rigid or affine
I 5?» Iz reference and floating sub-images

Table 2: Notations

Standard values

Table 3 reports standard values for the various parameters of the algorithms we use in our
approach.

Number of clusters

To evaluate the influence of the specified number of clusters on the final registration quality,
we used the synthetic images of Figure 6. We checked that when the specified number
of cluster increases above the number of actual components, we get sub-components that
are correctly included in the components they come from. The associated transformations
are also part of the transformation of the enclosing component (with minimal error, 2% on
average).
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Parameter Algorithm Name Typical Comments
value

values between 4

block size block matching bsize 6x6 and 7 give similar
results.

. depends on maximal.

size of Np’ block matching | <none> 20 x 20 distance between

corresponding components.
. . . littl i t

lattices step size block matching <none> 5x5 ittle/ 1o tmpact ot
the registration quality.
depends on the modality

similarity measure | block matching sim cor or ecor of the images to be
registered.

LTS cut-off block matching h 50% always 50%
values between 0.3

centroid weight clustering @ 0.5 and 0.7 give similar
results.

. values between 0.3
transformation . . .

. . clustering 8 0.5 and 0.6 give similar
distance weight
results.

. values between 15
transformation clusterin 0 20 and 30 give similar
distance threshold & cluster &

results.
number of . [see Section
1 N
clusters clustering © 6 “Number of clusters”]
. . . little/no impact on
. 3p
covering radius extraction COVET radius 4bme 5 the registration quality.
. values between 5
space between sub-images .
. v 10 and 20 give similar
eroded structures erosion
results.

Table 3: Standard values for algorithm parameters

This comes as no surprise. Indeed, in a hierarchical clustering, each partition is nested
into the next partition in the sequence. Therefore, when the number of desired clusters
increases above the actual number of components, the new sub-images (associated with the
new clusters) are sub-parts of actual components. Since actual components are supposed
to be rigid or affine by definition, affinely registering the new sub-images should produce
transformations very similar to the transformations associated with the nesting sub-image.

Conversely, when the specified number of cluster drops below the number of actual com-
ponents, performances decrease and tend towards those of a robust global affine registration.
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