N

N

Determination of Moment Invariants and Their
Application to Visual Servoing

Omar Tahri, Francois Chaumette

» To cite this version:

Omar Tahri, Frangois Chaumette. Determination of Moment Invariants and Their Application to
Visual Servoing. [Research Report] RR-4845, INRIA. 2003. inria-00071738

HAL Id: inria-00071738
https://inria.hal.science/inria-00071738
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00071738
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4845--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Determination of Moment I nvariants and Their
Application to Visual Servoing

Omar Tahri — Francgois Chaumette

N° 4845
Juin 2003

THEMES 4 et 3

apport

derecherche







% I N RIA

RENNEsS

Determination of Moment Invariants and Their
Application to Visual Servoing

Omar Tahri H, Francgois Chaumette [l

Thémes 4 et 3 — Simulation et optimisation
de systémes complexes — Interaction homme-machine,
images, données, connaissances
Projet Vista

Rapport de recherche n® 4845 — Juin 2003 —E0 pages

Abstract: Moment invariants are important shape descriptors in computer vision. In
this paper, we give a general and systematic method to derive moment invariants of any
order and for k-dimensional space (invariants to scale, to orthogonal transformation and to
translation). This result is applied to the selection of adequate features for visual servoing.
To elaborate the control law, we also determine the analytical form of the interaction matrix
of any image moment. This matrix relates the variation of the image moments to the 3D
motions of the camera. We finally presents some visual servoing experimental results using
very simple images. These results allow to validate the theoretical developments proposed
in this paper.
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Moments invariants : méthodes de calcul et application a
I’asservissement visuel

Résumé : Dans cet article, on présente une nouvelle méthode de calcul des moments
invariants. Nous utiliserons ces invariants pour minimiser les non linéarités de la matrice
d’interaction des primitives choisies et pour obtenir un asservissement visuel 2D découplé.
Des résultats expérimentaux utilisant une caméra embarquée sur un robot & 6 ddl pour se
positionner paralléelement & un objet plan de forme complexe sont présentés pour démontrer
Iefficacité de la méthode proposée.

Mots-clés : Moments invariants, commande découplée, non linéarité
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1 Introduction

The moment invariants theory takes an important place in computer vision. It was first
introduced in 1962 by Hu [B], when he established the fundamental theorem of moment
invariants (FTMI). Hu employed his theorem to derive seven bi-dimensional moment invari-
ants. Since 1962, the moment invariants theory has been applied in several applications:
pose estimation [4], [12], character recognition [2T], quality inspection in industrial areas
[18], matching [20], etc. In fact, the FTMI contains some mistakes that have been empha-
sized by Mamistvalov in [I0] in 1970 (in russian). However the FTMI has been quoted in
several works [16], [20], [8], [E].... Subsequently, Reiss established in 1991 [15] the revised
fundamental theorem of moment invariants (RFTMI). The FTMI was generalized for the k-
dimensional case and applied in multisensor fusion in [I1]. However, the generalized theorem
contains the same mistake as the theorem given by Hu. Finally, Mamistvalov in [9] gave the
correct generalization of the REFTMI to k-dimensional solids. However, this method is not
systematic since it does not allow to determine the analytical form of all moment invariants
for a given order.

In this paper, we give a new general and systematic method to derive moment invariants
under polynomial form and for k-dimensional space (invariants to scale, to orthogonal trans-
formation and to translations). The main advantage of our method is that it is systematic
and it allows to obtain the analytical form of all invariant polynomials of a given order,
which was not the case using other methods.

If image moments have been widely used in computer vision, it would also be interesting
to use them in visual servoing since they provide a generic representation of any object, with
simple or complex shapes, that can be segmented in an image. Attempts of using moments
in 2D visual servoing have already been presented in the past. The problem was that the
analytical form of the interaction matrix related to image moments was not available. This
matrix is however essential to design a visual servoing control scheme [6]. That is why, in [T,
if the idea of using image moments was expressed rigorously, very coarse approximations
were performed in practice to control only 4 dof of a robot using the area, the centroid and
the main orientation of an object in the image. Similarly, in [T9], a neural network has
been developed to numerically estimate this interaction matrix. In this paper, a method
to determine the analytical form of the interaction matrix related to any image moment is
given. Another important objective of using moments in image-based visual servoing is to
try to determine visual features that avoid the potential problems that may appear when
redundant image points coordinates are used: local minimum, coupled features that leads to
inadequate robot trajectories, etc [2]. A nice step in that way has been recently presented
in [3] for a simple rectangular object. More precisely, we search for six independent visual
features such that the corresponding interaction matrix has a maximal decoupled structure,
without any singularity, and such that its condition number is as low as possible (to improve
the robustness and the numerical stability of the system [I3, [I7]). Finally, we also would
like to minimize the non linearities in the interaction matrix in order to obtain an adequate
behavior of the system, as well as in the image space than in 3D space. Indeed, the goal is to
obtain a robot trajectory as near as possible of the optimal one (typically, a straight line as
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for the translation and a geodesic as for the rotation) using only image moments as inputs
of the visual servo. To reach these objectives, we apply in this paper the results obtained
for moments invariants to design adequate visual features.

In the following, we first recall some definitions and important properties of moments. A
general and systematic method to compute moment invariants is also proposed. In Section 3,
we determine the analytical form of the interaction matrix related to any moment of the
image of planar object. We then determine in Section 4 six visual features to control the six
robot dof. The obtained control scheme is finally validated in Section 5 trough experimental
results.

2 Moment invariants

We first recall some basic definitions of moment functions. More details can be found in
Mukundan [12] and Prokop [14]. Denoting X = (1, ..., ) the coordinates of a point in a
k-dimensional space, the moments of the density function f(X) are defined by:

+co +o0
Mpy..pp = / / itk f(X)dX (1)

where p = p; +. ..+ py, is the order of moment my, . 5, . The moments of the density function
F(X) exist if f(X) is piecewise continuous and has nonzero values only in a finite region of
the space. Similarly, the centred moments are defined by:

+co
= / / 21— 1y (2 — 2g)P F(X)dX (2)

where 21, = TH0-0, gy, = T0-8L are the coordinates of the center of gravity of the
object. It is well known that the centred moments are invariant to translational motions
in their respective k-dimensional space. In the following we treat only the invariance to
orthogonal transformations and to scale variations. If we want to consider also invariance
onto translational motions, we just have to consider the centred moments in the following
derivation. The method we propose is based on a variational approach, it allows to obtain
a basis of moments invariants.

2.1 Invariants to orthogonal transformations

We consider that the object points undergoes the following orthogonal transformation:
=RX (3)
where RR”T = 1. After derivation of () we obtain:

X = AX (4)

INRIA
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where A = RTR is an antisymmetric matrix. In a first step, we only consider the simple
case where we seek invariant polynomials of order 1:
¢g(my) = a’'my (5)

where m) = (m o,...,mg_,), & = (a1,...,a) is a parameter vector to be determined,

and t = dim(m,). The polynomial ¢(m,) is invariant to R, if and only if:

1

j(m,) = o

) =0, Vm) (6)

After derivation of () and using Green’s theorem, we obtain:

k 400 400 k
Ty .. n =Z/ / pix? "ty [ 28 £(X)dX
i=1"Y —> -

> J=1,j#i
+oco +oco .
+/ / it ahk f(X)dX (7
o0 ptoo LA
+/ / 2o f XS 2 ax
—oo —oo i—1 61'2

Combining (@) with @), we obtain:

k k
Mpy..pp = § : § : Pi@ijMp, .. .pi—1...p;+1...0r (8)
i=1 j=1,j#i

where a;; are the elements of matrix A. To obtain this result, we assume that f (X)=0.
This hypothesis has also been made in [I5] and in [9] to prove the RETMI (i.e. the density
function f does not change after transformation R). Therefore the second term of ()
vanishes. Furthermore, since matrix A is antisymmetric, the third term of ([]) also vanishes.
From (B), we can see that the derivative of each element of mé is a linear combination of
the other elements of m113_ Hence using (), it is possible to compute some matrix M; (A)
such that equation (@) can be written:

¢(m}) = a"M;(A)m} =0 9)
Therfore, a is the kernel of the matrix M (A)?. Now, we consider the general case where
we seek an invariant polynomials of order n:

a(m}) = a’m] (10)
where my; = (mg___o,mg:ém;_l’l___o,...,mg___p). The polynomial g(my) is invariant to
transformation (@) if and only if:

4(my) = aTrhg =0, Vmy (11)
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From () we note that the derivative of each element of mj is a linear combination of the
other elements of mj. Hence, it is possible to determine a matrix M, (A) such that:

¢(m}) = a"Mp(A)m} =0 (12)

Finally, if o belongs to the kernel of matrix M (A) then o"'m? is invariant to orthogonal
transformation.

2.2 Examples

In 2-dimensional space (k = 2), we have

[2 )

where w is the rotational velocity of the object in its plane.
* For polynomial of order 1 and moments of order 2, we define ml = (mag, mi1, mo2).
Using (@), we obtain:

m'20 — 2]1_;0 fj_;o .Zl.'i?lf(xl,ﬂfz)dl‘ldmg
= —2uw fj;o fj;o z122 f (71, 22)dT1dTo
= —2wm11
. + + . .
mi; = f_;o f_;o(l'l.’lfz + J?lxz)f(.’lil,.’llz)d.’lfldil,'z
=  wWmazo — WMop2
Moz = 2wmyy

We thus obtain:

o]
N e

from witch we deduce e = (1, 0, 1). We thus easily find again the well known invariant to
2D rotation:

q(m%) = Mg + Mo2 (13)

* For polynomial of order 2 and moments of order 2, we have m3 = (m3, maom11, m20moz, m31, M11Mo2, M3s).
Using the method proposed, we obtain after very simple derivations:

Joo 1 -10 01"

Kee Mz(A)=1| 1 0 9 o o 1

from which we deduce two independent invariants to rotation:

g(m3) = maomoz —mi; (14)

q(m%) = m%o + 2magmos + m32 (15)

INRIA
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Note that (IH) is nothing but the square of [I3)) and is thus useless. Many other invariants can
be obtained using the same way, either by considering moments of higher order, polynomials
of higher order, or space of higher dimension (k = 3 for instance).

Finally, as already denoted, if the centred moments are used in the previous results, the
polynomials obtained are also invariant to translations.

2.3 Invariants to scale

In pattern recognition, several applications use a shape classification of object (square,
spherical, cubic, etc.). This kind of applications requires a scale invariant classifiers. If
we use the moments functions as descriptors and if the scale transformation is given by an
uniform scale factor A, it is very easy to make the polynomials invariant to translations

and rotations also invariants to scale. Indeed, if each component of X = (z1,...,zx) is
multiplied by the scale factor A, the polynomial ¢(mj) is multiplied by AYP+HE) and mg o

P
is multiplied by A*. Hence, the ratio of ¢(m?) by mg.(foﬂ) is invariant to scale. We now

consider the general case. We remind that k is the space dimension, p is the moments order
and n is the invariant polynomial order. For general scale transformation:

X' = DX (16)

where D = diag(Aq, ..., Ax), Mamistvalov proposed in [9]:

me p
k' k

£
0...0

I =

m

as an invariant to scale. We propose a more general form of scale invariants:

B n
I |._ m' .
i=1""pi. . .pt

I=—am (17)
My...0

where Ele(pj- + 1)n; =n(f +1) Vj, Zle pl = p Vi, and Ele n; = n. Indeed, using the
/\(p;-+1)ﬂi
17

)

moment definition, we obtain after transformation (IH) mZi" ,: multiplied by Hf:
1 Fg

k i ; )
hence Hle mgii---p%; is multiplied by Hle ,\J,Ez=1(p]+1)n,‘ Since mg_(__%“) is multiplied by
P
H§:1 /\;L(’“H), (@) is thus invariant to (IH).

We can note that the scale invariants given in [9] are a particular case of () (i.e. valid
for n = 1 and 7 = 1). Using our formula, we obtain the following examples of scale invariants
(for k = 2):

2
I, = mi _ Mop2Ma2g Io = mi I, = M30MMo3
1= 2 42— 7 2q » 3= g M= T 5
00 Moo Moo Moo (18)
I — Ma1M12 I = ma2 _ MyoMoy
5= 7 5 67 3 AT T 6
Mo Mg Mg
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Other scale invariants can be derived by adding or multiplying the scale invariants of the
above form. That property will be used to derive invariants to rotation, translation, and
scale.

2.4 Invariants to rotation and scale

In Section 2.1, we have derived polynomials invariant to orthogonal transformation, whose
form is given by:

q(m}) = amj) where a € Ker MT(A)

Each element of mj; can be written: ML, mZ{...pﬁ; where Zle P4 =pand ¥ ni=n. We
note ; the i" element of a and m; the i*" element of m?. If Vi such that oy # 0, %
Mo...0
is invariant to scal, then the ratio:

am?”

_ /3
=~ (19)

My...0

is invariant to rotation and to scale. Indeed I is the ratio of two invariants to rotation and
is also a linear combination of scale invariants given by (). For example:

2
MmagMo2 — M
I, = 20T T (20)
Mg

is invariant to scale and to rotations. Finally, using the centered moments, we can obtain

forms that are also invariant to translation. As an example, the two following ratios that

will be used in our visual servoing scheme are invariant to rotation, translation and scale:
I, I,

— =22 21
(a1 In3 , T2 In3 ( )

L, = (ps0 + 232+ p14)* + (ptos + 2423+ f141)*
where < I,,= (50 — 2p32 — 31114)% + (po5 — 223 — 3p441)?
Iy= (150 —10p32 + 5p14) %+ (p05 —10p03 + 51141)?

We now apply the previous result to image-based visual servoing. For that, we first have
to derive the interaction matrix related to the moments. This matrix links the variation of
the moments observed in the image (after a perspective projection) to the kinematic screw
between the camera and the considered object. As will be seen in Section 4, it plays an
essential role in the design and in the behavior of the control law.

INRIA



Moment Invariants: Application to Visual Servoing 9

3 Interaction matrix of 2D moments

We recall that the image moments my, of order p + g are defined by the formula:

+co +co
mpg= [ [ hlaydady (22)

where h(z,y) = zPy?f(z,y), f(z,y) being the intensity level of image point with coordinates
x = (z,y). We are interested in determining an analytical form describing the time variation
Thpq of moment my, in function of the relative kinematic screw v = (v, w) between the cam-
era and the object, where v = (v, vy, v,) and w = (w,,wy,w.) represent the translational
and rotational velocity components respectively. As for classical geometrical features [6], we
will obtain a linear link that can be expressed under the form:

Tpg = Lim,, v (23)

where L,,,, is called the interaction matrix related to m,,. By developing (@) for 2D
moments (where k = 2), we obtain:

. Oh . Oh. 0t 0y
Mg _//D[(‘)_mm+ 6_yy+h($’y)(£+6_y)]d$dy (24)

In this expression, the terms &, 9, % and %yﬁ can be linearly expressed to the kinematic
screw v. Indeed, for any point x in the image whose corresponding 3D point has depth Z,

we have the well known relation [6]:
% =Lev (25)
where:

-1/Z 0 =z/Z =xy -1-2% y

L=l -1/Z y/Z 1+y* —zy —z

(26)

If we consider a planar object, whose equation expressed in the camera frame is given by
Z = aX + BY + Zy, we have (since z = X/Z and y = Y/Z):

1
E:Am—}—By—{-C (27)

where A = —a/Zy,B = —f(/Zp and C = 1/Zy. Using 1) in @26), @3 can finally be
written:

& = —(Az + By + C)v, + 2(Az + By + C)v,

+ zyw, — (1 + 2%)wy + yw. (28)
y = —(Az + By + C)vy + y(Az + By + C)v,

+ (1+ y*)w, — Tywy — 2w,

RR n° 4845
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from which we deduce:

% =—Avy+(2Az+ By+C) v, +yw, — 22w,

, (29)
g—z:—BU:,/+(A.’L'+2.B:IJ+C)’UZ+2?JW1;_-'Ewy

Substituting 28) and £9) in @4), and knowing that % = paP~lylf(z,y) and Z—Z =
qzPy?! f(x,y), we can express ([Z4) under the expected form ([Z3). We obtain after sim-
ple developments:

Ly, =Mz Moy Mz Mus Muy My | (30)
where:
Myy = —P(Ampg+Bmy_1,g11+Cmyp_1,4) — Amyp,
Myy = —q(Ampi1,g—1+Bmpg+Cmypg—1) —Bmy,

Myz = (P+q+3)(Ampi1,g+Bmy g11+Cmypg) —Cmy,
Muwe =  (P+q+3)Mpgr1 + gmp g1

Muy = —(P+q+3)Mpt1,4 — PMp—1,4

Myz = PMp—1,q+1 — §Mpt1,q-1

The time variation of a moment of order p + g can thus be expressed from the moments of
order less than p+ ¢ + 2 and from the 3D parameters A, B and C. Similarly, the interaction
matrix related to the centred moments p,, can be obtained (after tedious developments):

Lﬂpq = [ Boz va HPvz  HPwsz ;u"wy Hwz ] (31)
with:
Pz = —(p+1)Appg — PBpip—1,q+1
Poy = —qAppy1,9-1 — (¢ + 1)Bpy,
Poz = —Apwy + Bpwe + (P + ¢+ 2)Cpipg

Pwz = P+ q+ 3)hp,g+1 + PTghp—1,0+41
+(p + 2q + 3)ygpipg — P11 fp—1, — qNoO2p,g—1
Pwy = =P+ q+3)pt1,e — (2P + g+ 3)Tgppg
—QYgPp+1,g—1 T PN20fp—1,¢ + Q11 lp,g—1
Hwz = PHp—1,¢4+1 — qHp+1,9—1

where nyq = 4ppq/moeo. For the positions where the object is parallel to the image plane
(ie. A= B =0), we can check from the first two components of L, that the variation
of the centred moments with respect to v, and v, vanishes, which proves that the centred
moments are invariant to 2D translations parallel to the image plane when (and only when)
the object is also parallel to the image plane. For the same positions, it is easy to check
that the variation of the invariants to 2D rotations given in Section 2.2 vanishes for any
motion w,, and that the variation of the invariants to scale given in Section 2.3 vanishes for

INRIA



Moment Invariants: Application to Visual Servoing 11

any translational motion v,. Because of the perspective transformation, we can note that
these invariances are local (i.e. only valid when A = B = 0), but we will see that a good
behavior of the control scheme is obtained using such invariants even if the object plane is
not parallel to the image plane.

4 Application to visual servoing

In this section, we select from the previous theoretical results six features to control the
six dof of the robot. Our objective is to obtain a sparse interaction matrix that changes
slowly around the desired position of the camera. We will see that the solution we present
is such that the interaction matrix is triangular when the object is parallel to the image
plane. Furthermore, we will see that, for the same positions, the elements corresponding to
translational motions form a constant diagonal block, which is independent of depth. This
property had never been obtained yet in image-based visual servoing.

We now assume that the desired position of the object is parallel to the image plane (i.e.
A = B = 0) and we denote L,lg| the interaction matrix for such positions. In the following,

we will only be concerned with L! since it will be used to build the model f.: of Lg in the
folowing control scheme:

T=-AL (s—s (32)

where A is a proportional gain, s is the current value of the selected visual features, and s*
their desired value.

4.1 Features to control the translational dof

In [B] where a simple rectangular object was considered, the three visual features used to
control the translational dof have been selected to be the coordinates x4, y, of the center of
gravity of the object in the image (£, = m10/Mo0, Yy = Mo1/Moo), and its area a(= mgo).
In that case, we obtain from (B0):

Lug=[—0 0 Czy e —(l+e) y, ]
LQQ =[ 0 —C Cyy lH+e3 —e —x4] (33)
Ll =[ 0 0 2aC 3ay, —3az, 0 ]

with €; = n11 + 34y, €2 = ngo+2x, and €3 = ngz +y;. Even if the above matrix is triangular,
we can note that its elements are strongly non linear. Moreover, the features do not have
the same dynamic with respect to each translational dof.

Our choice is based on these intuitive features, but adding an adequate normalization
and the results for invariance to scale. More precisely, we define:

,G/*
an = Z* 37 Tn = an-z'ga Yn = anyg (34)

RR n°® 4845
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where a* is the desired area of the object in the image, and Z* the desired depth between
the camera and the object. The interaction matrices related to these normalized features
can be easily determined from @3). Noting that Z*va* = Z\/a = V'S where S is the area
of the 3D object, we obtain:

nglnz[—l 00 an€rr  —an(l+€12) yn ]
L. =[0 -1 0 an(l+€21) —anenr —2n] (35)
Ll =[0 0 -1 —3y,/2 3z./2 0]

with €11 = n11 — 24Y4/2, €12 = nao — mg/Q, and €21 = nga — yﬁ/?. Since a,, is inversely
proportional to \/a, we find again the recent result given in [7] stating that the variation of
such features depends linearly of the depth (note the constant term in the third element of

Lun). The normalization by Z*v/a* has just be chosen so that this constant term is equal
to —1. Furthermore, the design of z,, and y,, (so that they are invariant to scale) allows us
to completely decouple the three selected features with respect to the translational dof. We
also obtain the same dynamics for the three features and the three translational dof (note
the diagonal block equal to —I3 in (BA)). This very nice property will allow us to obtain an
adequate robot translational trajectory.

Finally, we can notice from the analytical and the numerical values of Lﬂn and Lgn
(see (BY)) the classical coupling between v, and w,, and between v, and w,. In fact, this
natural coupling allows the object to remain as much as possible in the camera field of view.

4.2 Features to control the rotational dof

Asin [B], we use the classical object orientation o = 3 arctan(u—;%) to control the rotation
around the optical axis w.. For the two remaining dof w, and w,, (that are really more difficult
to control), we propose to use the two moment invariants r; and ro given in (ZII). The related

interaction matrices can be obtained from (BIl). We obtain (after tedious developments):

L, =[ 00 0 r,, r, 0]
L, =[ 0 0 0 ro, 7, 0 ] (36)
L =[ 0 0 0 aw 0w -1 ]

where the analytical form of the elements corresponding to w, and w, can not be given
here by lack of place As expected, we can notice the invariance of the selected features with
respect to any 3D translational motion (remember that we consider here that A = B = 0),
and the invariance of r; and r, with respect to w,. As expected, we can also note the linear
link between the variation of @ and w,. As for r; and 75, they have been chosen from all
the invariants to translation, rotation, and scale, such that Lul and Lﬂz are as orthogonal
as possible in order to decouple as much as possible w, and w,,.

INRIA



Moment Invariants: Application to Visual Servoing 13

5 Experimental results

This section presents some experimental results obtained with a six dof eye-in-hand system.
The moments are computed at video rate after a simple binarization of the acquired images,
without any spatial segmentation. As already explained, we have used as visual features:

s = (xn;yn;an;rhr?;a) (37)

In our experiments, the parameters of the object plane in the camera frame are given ap-
proximately for the desired position (A = B = 0, C' = 2, which corresponds to Z* = 0.5 m).
They are not estimated at each step. For the two first experiments, a correct value of the
camera intrinsic parameters has been used. The desired value s* is given by:

s* = (2*932,2*@/;‘,2*,7'}‘,7';,(1*) (38)

where z7,y;, 77,75 and a* are computed directly from the desired image (acquired during
an off-line learning step), and where Z* has been set to 0.5 m. We can note from (38), (&7
and (B4) that using a wrong value Z* for Z* has no influence on the convergence of the
system (s = s* only for the desired position whatever the setting of value 2\*) It will just
induce the same gain effect (with value z /Z*) for the decreasing of the three first features.
An experiment with a wrong setting of Z* is described at the end of this section.

5.1 Pure translational motion

We first compare the results obtained with our features and those obtained using the centroid
coordinates (z4,y,) and the area a for a pure translational motion between the initial and

desired images (given on Figure[lla and[IIb). For both schemes, we have used L, = Lgjs=s- =
Ll

s|s—s* in the control scheme ([B2) and gain A has been set to 0.1. We can see on Figure [l the
improvements brought by the proposed features (in dashed lines) since they allow to obtain
the same exponential decoupled decrease for the visual features and for the components of
the camera velocity. As expected, the camera 3D trajectory is thus a pure straight line using

the proposed features, while it is not using the other ones.

5.2 Complex motion

We now test our scheme for a displacement involving very large translation and rotation
to realize between the initial and desired images (see Figures Pla and @b). The interaction

RR n°® 4845
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(a)

(b)

blue: S(1)
green: S(2)

red: S(3)

___ Other features

--- Other features

blue: T
X

green: T

\ red: T,

Other features q

---Our features

260 460 6&0 860 10‘00 12‘00 1400 740 2(‘)0 4(‘)0 G(‘)O B(‘)U 10‘00 1200 1400
(c) (d)
05
04
03 ——- Our features

meter

‘Other features

meter

Figure 1: Results for a pure translational motion: (a) initial image, (b) desired image, (c)
visual features (s — s*), (d) camera velocity v, (e) camera 3D trajectory
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matrix computed at the desired position has the following form:

1 0 0 0.01-0.52 0.01
0-1 0 0.51-0.010.01

. | 0 0-1-002-001 0

Lis—==| 0 0 0-033-062 0 (39)
0 0 0-061 009 0
0 0 0-004—008 —1

We can note that this matrix is block triangular with main terms around the diagonal. The
value of its condition number (equal to 2.60) is also very satisfactory. Finally, we have used
the following model of Lg in the control scheme B2):

-~ 1
Lo = ;L) +Ll,_,.) (40)
This choice has given the best experimental results. The obtained results are given on
Figure @ They show the good behavior of the control law. First, we can note the fast
convergence towards the desired position. Then, there is no oscillation in the decrease of
the visual features (see Figure Blc), and there is only one small oscillation for only two
components of the camera velocity (see Figure 1d). Finally, even if the rotation to realize
between the initial and the desired positions is very large, the obtained camera 3D trajectory
is satisfactory (see Figure le), while it was an important drawback for classical 2D visual
servoing.

5.3 Results with a bad camera calibration and object occultation

We now test the robustness of our approach with respect to a bad calibration of the system.
In this experiment, errors have been added to camera intrinsic parameters (25% on the
focal length and 20 pixels on the coordinates of the principal point) and to the object plane
parameters (Z* = 0.8m instead of Z* = 0.5m). Furthermore, an occultation has been
generated since the object is not completely in the camera field of view at the beginning
of the servo. The obtained results are given in Figure Bl We can notice that the system
converges despite the worse conditions of experimentations and, as soon as the occultation
ends (after iteration 30), the behavior of the system is similar to those of the previous
experiment, which validates the robustness of our scheme with respect to modeling errors.

6 Conclusion

In this paper, a new general and systematic method to compute moments invariants to scale
and rotation has been proposed. These results have been applied to design a new visual
servoing scheme able to handle planar objects with complex and unknown shapes. Moment
invariants have been used to decouple the camera dof, which allows the system to have a
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Figure 2: Results for a complex motion: (a) initial image, (b) desired image, (c) visual

features (s — s*), (d) camera velocity v, (e) camera 3D trajectory
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Figure 3: Results using a bad camera calibration: (a) initial image, (b) desired image, (c)
visual features (s — s*), (d) camera velocity v, (e) camera 3D trajectory
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large convergence domain and a good behavior for the features in the image and for the robot
trajectory. The experimental results show the validity of the approach and its robustness
with respect to calibration errors. Future works will be devoted to apply the results obtained
on moments invariants to the classical pose problem.
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