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Abstract: An (s, 1)-total labelling of a graph G is an assignment of integers to V(G)UE(G)
such that: (i) any two adjacent vertices of G receive distinct integers, (ii) any two adjacent
edges of G receive distinct integers, and (iii) incident vertex and edge receive integers that
differ by at least s in absolute value. The span of a (s,1)-total labelling is the maximum
difference between two labels. The minimum span of a (s, 1)-total labelling of G is denoted
by A (G).

In [4], it is conjectured that AT < A +2s—1, where A is the maximum degree of a vertex
in a graph. This is an extension of the Total Colouring Conjecture. It is also shown that
AT <2A+5s—1and M(G) <6if A(G) <3 and M(G) < 8if A(G) < 4.

In this paper, we prove that AT < 2A —log(A +2) 4+ s — 1 +2log(16s — 10). The proof is
an induction based on the maximal cut of a graph. We use the same technique to improve
a little bit this result in the case of (2,1)-total labelling. We prove that if A(G) > 3, then
M(G) < 2A(G) and that if A(G) > 5is odd then M (G) < 2A(G) — 1.
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Borne supérieure pour ’écart d’une coloration
(s,1)-totale

Résumé : Une coloration (s,1)-totale d’un graphe G est une affectation d’entiers aux som-
mets et arétes de G telle que: (i) deux sommets adjacents recoivent des entiers distincts,
(ii) deux arétes adjacentes regoivent des entiers distincts, et (iii) un sommet et une aréte
incidents regoivent des entiers qui différent d’au moins s en valeur absolue. L’écart d’une co-
loration (s, 1)-totale est la différence maximum entre deux entiers affectés. L’écart minimum
d’une coloration (s, 1)-totale de G est noté AL (G).

Dans [4], il est conjecturé que AT < A+2s—1, avec A le degré maximum d’un sommet du
graphe. C’est une généralisation de la Conjecture de la Coloration Totale. Il est également
montré que AT <2A +s—1et AI(G) <65si A(G) <3et \(G) <8si A(G) < 4.

Nous montrons ici que AT < 2A —log(A +2) + s — 1 + 2log(16s — 10). La preuve est
une récurrence basée sur la coupe maximale d’un graphe. Nous utilisons la méme technique
pour améliorer un peu cette borne dans le cas des colorations (2, 1)-totales. Nous prouvons
que si A(G) > 3, alors M(G) < 2A(G) et si A(G) > 5 est impair alors AJ (G) < 2A(G) —1.

Mots-clés : coloration (s,1)-totale, coupe maximale
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1 Introduction

Let G be a graph. The degree of a vertex v is denoted by dg(v) or d(v) if G is clearly
understood. The maximum degree of G is denoted by A(G). An (s, 1)-total labelling of a
graph G is an assignment of integers to V(G)U E(G) such that: (i) any two adjacent vertices
of G receive distinct integers, (ii) any two adjacent edges of G receive distinct integers, and
(iil) incident vertex and edge receive integers that differ by at least s in absolute value. The
span of an (s, 1)-total labelling is the maximum difference between two labels. The minimum
span of a (s,1)-total labelling of G is denoted by AT (G). Note that a (1,1)-total labelling is
a total colouring and that AT(G) = xT — 1 where x7 is the total colouring number.

An (s,1)-total labelling of a graph G corresponds to an L(s, 1)-labelling of its incidence
graph I(G) which is the bipartite graph defined as follows : V(I(G)) = V(G) U E(G) and
ve € E(I(@)) if and only if v € V(G), e € E(G) and v and e are incident. L(2,1)-labellings
were first introduced in Griggs and Yeh [3] and L(s, 1)-labelling have been studied for several
class of graphs, for example chordal graphs [1] or planar graphs [5]. The (2, 1)-total labellings
of graphs were first studied by Whittlesey, Georges and Mauro [7] as L(2,1)-labellings of
incidence graphs. In [4], Havet and Yu investigate (s,1)-total labelling for any s. They
derive from Brooks and Vizing’s Theorems that AT < 2A + s — 1. Generalizing the Total
Colouring Conjecture, they conjecture the following :

Conjecture 1 (Havet and Yu [4])
M<cAt2s-1

By the previous result, it suffices to prove the conjecture for s < A. Rosenfeld [6]
established that AT (@) < 4if A(G) < 3. Havet and Yu completed the proof of the conjecture
for A < 3 by proving that AI'(G) < 6 if A(G) < 3.

In this paper, we improve Havet and Yu’s upper bound by showing AT < 2A — log(A +
2)+ s —1+2log(16s — 8). The proof is an induction based on the maximal cut of a graph.
The idea and tools are presented Section 2 and the proof is given Section 3. Finally using
the same technique to improve a little bit the result in the case of (2,1)-total labelling.
We prove that if A(G) > 3, then M(G) < 2A(G) this generalizes results of Havet and
Yu [4] who proved it for A € {3,4}. Furthermore, we show that if A(G) > 5 is odd then
M(G) <2A(G) - 1.

2 The tools and the idea

Definition 1 A cut [A, B] of a graph G is a set of two induced subgraphs A and B of G
such that (V(A),V(B)) is a partition of V(G). The bipartite graph (A, B) is the graph with
vertex set V(G) and edge set E(G) \ (E(A)U E(B)). The edges of (A, B) are called the cut
edges. A mazimum cut [A, B] is a cut with maximum number of cut edges.

Lemma 1 Let G be a graph with mazimum degree 2k + 1. Then a mazimum cut [A, B]
satisfies A(A) < k and A(B) < k.

RR n° 4816



4 F. Havet

Proof. Consider a maximum cut [A4, B]. B contains no vertex b of degree greater than k
otherwise [A + b, B — b] is a cut with strictly more cut edges. Analogously A has no vertex
of degree greater than k. O

Lemma 2 Let G be a graph with mazimum degree 2k. Then G has a cut [A, B] such that
A(A) <k and A(B) <k.

Proof. Consider a maximum cut [A, B] wich minimizes the number of vertices with degree
k in A. As in the proof of Lemma 1, A and B contain no vertex of degree greater than
k Moreover A has no vertex a of degree k otherwise [A — a, B + a] is a cut with the same
number of cut edges as [A4, B] and one vertex less of degree k in the first subgraph. d

Lemma 3 Let G be a bipartite graph with mazimum degree A. There is an edge colouring
¢ of G in [1,A] such that c(e) > i only if it is incident to a vertex of degree at least i.

Proof. Let us prove it by induction on A, the result holding trivially when A = 0. Consider
now a graph with maximum degree A > 1. By Koénig’s theorem, it admits an edge colouring
¢1 in [1,A]. Let M be the set of edges coloured A incident to a vertex of degree A. Consider
G’ the graph obtained from G by removing M. Since every vertex of degree A is adjacent
to an edge of M, A(G') = A — 1. Then by induction G’ has an edge colouring ¢ of G in
[1, A — 1] such that c(e) > 7 only if it is incident to a vertex of degree at least i. Extending
¢ into an edge colouring of G in [1, A] by colouring the edges of M with A, we obtain the
result. O

Definition 2 Let G be a graph. A list assignment L is an assignment of a set L(v) of
integers to every vertex v of G. The graph G is L-colourable if it admits an apllication ¢
called L-colouring from its vertex set into the set of integers such that for any vertex v,
c(v) € L(v) and for any edge (u,v), c(u) # c(v).

Let k be a non-negative integer. A k-list assignment is an assignment L such that
|L(v)| = k for every vertex v. A graph is k-choosable if it is L-colourable for any k-list
assignment, L.

Let v be a vertex of G. A (d,v)-list assignment of G is a list assignement L such that
|L(u)| = d(u) if w # v and |L(v)| = d(v) + 1. We say that G is (d,v)-choosable if it is
L-colourable for any (d, v)-list assignment L.

Proposition 1 Let G be a connected graph and v € V(G). Then G is (d,v)-choosable.

Proof. There is an ordering vy, vs,...,v, of the vertices of the graph such for ¢ < n the
vertex v; has a neighbour in {v;,7 < j < n}. Hence by a greedy algorithm, one can find an
L-colouring of G for any (d,v)-list assignment L. O

Using this proposition, we strengthen Havet and Yu result [4] stating that AT(G) <
2A +s—1.

INRIA
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Lemma 4 Let G be a graph with mazimum degree A < k. G admits a (s,1)-total labelling
in [0,2k + s — 1] such that a vertex v is assigned a label in [0,d(v)] and an edge a label in
[k+s—1,2k+s—1].

Proof. Obviously it suffices to prove it when G is connected.

By Vizing’s Theorem, there is an edge colouring ¢’ of G with coloursin [k+s—1, 2k+s—1].
Let v be a vertex of G. Free to permute the colours of ¢/, we may assume that for every edge
incident to v, ¢'(v) > k + s. Let L be the (d,v)-list assignement with L(u) = [0,d(u) — 1] if
u # v and L(v) = [0,d(v)]. By Proposition 1, G has an L-colouring. The union of ¢ and ¢/
is an (s,1) total labelling of G.

Indeed for every edge e = zy, if © # v then ¢(z) < k—1 < c/(e) — s and if z = v then
c(v) <k <d(e) —s. O

Analogously, we have the following lemma:

Lemma 5 Let G be a graph with mazimum degree A < k. G admits a (s,1)-total labelling
in [0,2k + s — 1] such that an edge is assigned a label in [0,k] and a vertex v a label in
k+s—1,k+s—1+d(v)].

Theorem 1 (Galvin [2]) Every bipartite graph G is A(G)-edge choosable.

The idea of the results is to consider a suitable maximum cut of G given by Lemma 1
or 2 and to label edge and vertices of A and B with Lemma 4 or induction hypothesis and
Lemma 5 respectively and then to label the bipartite graph (A, B) using Lemma 3. Some
few relabellings are then necessary to obtain the desired (s,1)-total labelling. Theorem 1 is
used for some of the relabellings.

3 Main result

The aim of this section is to prove the following theorem :
Theorem 2 For any s > 1,
M <2A —2log(A + 2) + 2log(165 — 8) + 5 — 1

In order to prove this theorem, we prove by induction a stronger result.
Let G be a graph with maximal degree A. An (s,1)-total labelling in [0, p] is a s-good
labelling if each vertex is assigned a label in [0, A + s — 1].

Theorem 3 Let G be a graph with mazimal degree A. Then G has a s-good labelling in
[0,2A — 2log(A + 2) + 2log(16s — 8) + s — 1].

The idea is to prove this result by induction. Note that Lemma 5 give the result for
small value of A. We will now give two Lemmas allowing us to do an induction step.
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6 F. Havet

Lemma 6 Let k > max(i + 2s — 1,2i + 6s — 5). If every graph of mazimal degree k admits
a s-good labelling in [0,2k — i] then every graph G of mazimal degree A = 2k + 2 admits a
s-good labelling in [0,2A — i — 2].

Proof. According to Lemma 2 there is a cut [4, B] of G such that A(A) < k and A(B) <
k + 1. Thus by hypothesis, there is a s-good labelling of A4 in [0,2k —i]. And by Lemma 5,
there is an (s, 1)-total labelling of B such that vertices are labelled in [k + s,k + s + dg(v)]
and edges in [0,k + 1].

By Lemma 3, label the edges of (A, B) with [2k — i + 1,4k — i + 2] so that an edge is
labelled 4k — i 4+ 3 — [ only if it is incident to a vertex of degree at least [ in (A, B).

The obtained labelling is not yet an (s, 1)-total labelling. Indeed for j € [0,7 + 2s — 1],
edges (a,b) labelled 2k — i+ 1+ j when b is labelled in 2k — i+ j — s+ 2,2k — i+ j + 9]
violate the constraints. Hence they must be relabelled.

Let us consider the bipartite graph induced by such edges. It has degree at most ¢ + 2s.
We want to relabel the edges with labels in [k + 2s — 2,2k — i]. According to Theorem 1,
we need to find a list of 7 + 2s available labels for each edge. Let (a,b) be an edge labelled
2k—i+1+j with b labelled in [2k—i+j—s+2,2k—i+j+s]. Thendp(b) > k—i+j—2s+2.
So b has degree at most k + i — j + 2s in (A, B). But by construction (a, b) is incident to a
vertex of degree at least 2k +2 — j in (A, B). Since k > i 4+ 2s — 1 then this vertex is a and
da(a) < j. So at most j labels of [k + 2s — 2, 2k — i] are forbidden because of the edges of A
incident to a. Moreover at most 2s — j — 2 labels of [k + 2s — 2, 2k — i] are forbidden because
of b (those of [2k — i+ j — 2s + 3,2k — i]). Hence at most 2s — 2 labels of [k + 2s — 2,2k — ]
are forbidden. So because k > 2i + 6s — 5, at least k —i — 2s + 3 — (25 — 2) > i + 2s labels
available on (a,b).

Since the labels of the vertices are in [0,2k + 1 + s], we have a s-good labelling of G in
[0,4k —i +2]. O

Lemma 7 Let k > max(i + 4s — 1,2i + 6s — 3). If every graph of mazimal degree k admits
a s-good labelling in [0,2k — i] then every graph G of mazimal degree A = 2k + 1 admits a
s-good labelling in [0,2A — i — 2].

Proof. Let [A, B] be a maximum cut of G. Then A(A) < k and A(B) < k. Thus by
hypothesis, there is a s-good labelling of A in [0,2k —i]. And by Lemma 5, there is an
(s,1)-total labelling of B such that vertices are labelled in [k + s,k + s + dp(v)] and edges
in [1, k].

By Lemma 3, label the edges of (A, B) with [2k — i,4k — i] so that an edge is labelled
4k — i+ 1 —1 only if it is incident to a vertex of degree at least [ in (A, B).

There are two types of edges of (A4, B) violating a constraint of an (s, 1)-total labelling :

(1) edges (a,b) labelled 2k —i + j while b is labelled in 2k —i4+j —s+1,2k—i+j+s—1]
for some j € [0, + 2s — 1];

(2) edges (a,b) labelled 2k — ¢ with a incident to an edge (of A) labelled 2k — i.

INRIA
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Let us first relabel the edges of type (1) with labels in [k + 2s — 1,2k — ¢ — 1]. Let us
consider the bipartite graph induced by them. It has degree at most ¢ + 2s. According to
Theorem 1, we need to find a list of 7 + 2s available labels for each edge. Let (a,b) be an
edge labelled 2k — i + j with b labelled in 2k —i+j — s+ 1,2k —i+ j + s — 1]. Then
dg(b) > k—i+j—2s+ 1. So b has degree at most k + ¢ — j + 2s in (A, B). But by
construction (a,b) is incident to a vertex of degree at least 2k + 1 — j in (A, B). Since
k > i + 2s, this vertex is @ and da(a) < j. So at most j labels are forbidden because of
the edges of A incident to a and at most 2s — j — 2 are forbidden because of b (those of
[2k —i+j — 25 + 2,2k — ¢ — 1]. Hence at most 2s — 2 labels of [k + 2s — 1,2k — i — 1] are
forbidden. So since k > 2i + 65 — 3, there are at least £k —i—2s+1— (2s — 2) > i+ 2s labels
available on (a, b).

Let us now relabel the edges of type (2). Since a is incident to an edge of A, it has degree
less than 2k + 1 in (A, B). Hence b has degree 2k + 1 in (A, B) and thus is isolated in B.
In particular b was not incident to an edge of type (1). Let I(a) be the label of a. There is
a label in [0,k + 2s — 1]\ [{(a) — s + 1,1(a) + s — 1] that is not assigned to any edge of A
incident to a. Relabel (a,b) with [. Since | + s < k+ 3s —1 < 2k — i — s, we can relabel b
with k + 3s — 1.

Since the labels of the vertices are in [0, 2k + s] we have a good labelling of G in [0, 4k —1].
O

Proof of Theorem 3. Set ¢, = 2log(16s —8) + s — 1. If A < 16s — 10, then we have the
result by Lemma 4. Suppose now that G is a graph with maximal degree A > 16s — 9.

If A is even, set A = 2k + 2. By induction hypothesis AT (H) < 2k — 2log(k + 2) + cs.
And setting ¢ = 2log(k+2)—cs, we have k > max(i+2s—2,2i+6s—5). Hence by Lemma 6,
M(G) < 2A —2log(k + 2) + ¢ — 2. Since log(k + 2) + 1 = log(2k + 4) = log(A + 2). We
obtain A1 (G) < 2A — 2log(A + 2) + cs.

In the same way, we have the result if A is odd. d

4 Better bounds when s =2

4.1 Upper bound 2A
Theorem 4 If A(G) is odd and at least 5 then G has a 2-good labelling in [0,2A(G)].

Proof. Set A(G) = 2k + 1. Consider a maximum cut [4, B] of G. Then A(A) < k and
A(B) < k.

Thus by Lemmas 4 and 5, one may label A and B in [0, 2k + 1] such that a vertex v in A
receives a label in [0,d4(v)] (resp. [k + 1,k + 1+ dg(v)]) and edges labels in [k + 1,2k + 1]
(resp. [0, k]).

Now by Lemma 3, label the edges of (A, B) in [2k+2, 4k+ 2] such that an edge is assigned
2k + 2 only if it is adjacent to a vertex with degree 2k + 1 in (A4, B) and so an isolated vertex
in A or B.
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The label of an edge (a, b) of (A, B) fullfill the constraints of a (2, 1)-total labelling unless
it is labelled 2k + 2 and b is labelled 2k + 1. But in this case, a is an isolated vertex of A
and thus labelled 0. So we may relabel (a,b) with k 4+ 1. This is possible since & > 2 so
2k+1)—(k+1)>2.

Since the vertices are labelled in [0, 2k + 1] we have a 2-good labelling. O

The proof of Theorem 4 does not work when A = 3. However, we give an alternative
proof of a result of Havet and Yu [4] asserting that a graph with maximum degree 3 has a
(2, 1)-total labelling in [0, 6].

Theorem 5 If A(G) < 3 then M1 (G) <6.

Proof. Let [V1, V2] a maximal cut of G. Easily A(V;) < 1.

For i = 1,2, let S; (resp. T;) be the set of isolated vertices (resp. vertices with degree 1)
in Gz

Label the edges of V; (resp. Va) with 3 (resp. 0) and their endvertices with 0 and 1
(resp. 2 and 3). Label the vertices of Sy with 2.

By Konig’s Theorem, there is a 3-edge colouring of (V1, V2) with colours a, b and c. For
each a-coloured edge (u,v) with « € G; do the following :

e If u € S1 and v € S5, assign 4 to (u,v) and 0 to u.
e If u € T) and v € S5, assign 4 to (u,v).
o If u € S1,v € Ty and v is labelled 2 then assign 4 to (u,v) and 0 to w.

At this stage the vertices of S; whose incident a-coloured edge has an end in T3 labelled
3 are not yet coloured. We will label them one after another doing the following algorithm :

(1) If there is a vertex y € T5 that is adjacent to two non labelled vertices x and z (of Sy),
assign 0 to x and z, 3 to (z,y), 4 to (v, 2) and relabel y with 6. Go to (1).

(2) If there is a vertex y € T that is adjacent to a non-labelled vertex z and a labelled
vertex z € S1, then z is labelled 0 and there is an integer [ in {2, 3,4} that label no
edge incident to z. Then assign 0 to z, [ to (y, z), an integer of {2,3,4}\ {l} to (z,y)
and relabel y with 6. Go to (2).

(3) If there is a vertex y € T that is adjacent to a non-labelled vertex z and a vertex
z € T1. Let e be the edge of B incident to z and distinct from (y, 2).

If e is not labelled yet then assign 4 to (y,2), 3 to (z,y) and 0 to z. Relabel y with 6.
Go to (3).

Otherwise e is already labelled with 4. Let a be the label of z. Assign 6 to to (y, 2), 4
to (z,y) and a to . Relabel y with the integer of {0,1} \ {a}. Go to (3).

INRIA
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Let E' be the set of non labelled edges. It induces a bipartite graph with maximum
degree 2. And the vertices incident to edges of E' are labelled in [0, 3].

By Konig’s theorem, E' can be two coloured with label 5 and 6. Tt is easy to see that
we have a (2, 1)-total labelling of G. O

Remark 1 The (2,1)-total labelling obtained by such a proof is really different from the
one obtained by the proof of Havet and Yu [4].

Theorem 6 If A(G) is even and at least 6 then G has a 2-good labelling in [0,2A(G))].

Proof. Set A = 2k. Consider a cut [4, B] as in Lemma 2. Following Lemma 5, label A
such that a vertex v receives a label in [k + 1,k + 1 + d4(v)] and an edge a label in [1, k].
Following Lemma 4, label B such that a vertex v receives a label in [0,dp(v)] and an edge
a label in [k + 1,2k + 1].

Now by Lemma 3, label the edges of (A, B) in [2k + 1, 4k] such that an edge is assigned
2k + 1 only if it is adjacent to a vertex with degree 2k in (A, B) and so an isolated vertex
in A or B.

The label of an edge (a, b) of (A4, B) fullfill the constraints of a (2, 1)-total labelling unless
(a,b) is labelled 2k + 1 and 1) a is labelled 2k or 2) b is incident to an edge of B labelled
2k + 1. Thus we need some relabelling.

1) If a is labelled 2k, then a is not isolated in A. Thus b is isolated in B. Then relabel
(a,b) with 0 and b with 2.

2) If b is incident to an edge (b,b’) of B which is labelled 2k + 1, then b is not isolated
in B. Thus a is isolated in A. In particular such an edge is disjoint from any edge of type
1). Let I(b) be the label assigned to b. If I(b) > 2 then relabel (a,b) with 0. If I(b) < 1 then
relabel (a,b) with 3 and a with 5 if k¥ = 3. This is valid since k > 3.

In such a (2,1)-total labelling a vertex is assigned an integer in [0, 2k], so we have a
2-good labelling. O

One can extend Theorem 6 for A = 4. This strengthen a result of Havet and Yu [4]
stating that A2(G) < 8 if A < 4.

Theorem 7 If A(G) =4 then G has a 2-good labelling in [0, 8].

Proof. By Lemma 2, G has a cut [A, B] such that A(4) <1 and A(B) < 2.

Label the vertices of A with {0,1} and its edges with {3} such that the isolated vertices
of A receive 0.

Label the vertices and edges of B which do not lay on odd cycle of B as follows :

(i) the isolated vertices of B are labelled 3;

(ii) The vertices and edges of an even cycle or a path are labelled alternatively 3 and 4
and 0 and 1 respectively.

RR n° 4816



10 F. Havet

According to Lemma 3, label the edges of (A, B) with [5,8] so that an edge assigned 5
is incident to a vertex of degree 4 in (A, B) which are isolated vertices in A or B.

Some constraints are violated each time an edge (a,b) of (A, B) is labelled 5 and a is
labelled 4. But in that case, a is not isolated in A thus b is isolated in B and so is labelled
0. Then relabel (a,b) with 2.

At this stage, it remains to assign labels to vertices and edges of odd cycles of G.

Let C' = (bo, b1,...,b2p,bo) be an odd cycle of B. Then two consecutives vertices, say by
and by are either both incident to an edge labelled 5 or both non incident to an edge labelled
5. Then for 1 S 7 S D, label bQi_l with 3, bgi with 4, (bg,',hbgi) with 1 and (bgi,b2i+1) with
0. And label by with 2.

If by and by are non incident to an edge labelled 5 then label (bg, by) with 5. Otherwise there
is a label [ € [6, 8] such that both by and b; are incident to no edge labelled I. Label (b, b;)
with {.

Since the vertices are labelled in [0,4], we have a 2-good labelling of G in [0, §]. O

Corollary 1 M(G) <2A —2log(A +2) +8

4.2 Upper bound 2A —1 for odd A
Theorem 8 If A(G) is odd and at least 7 then G has a 2-good labelling in [0,2A(G) — 1].

Proof. Set A(G) = 2k + 1. Consider a maximum cut [4, B] of G. Then A(A) < k and
A(B) < k.

Following Lemma 4, label A such that each vertex v of A is assigned a label in [0, d 4 (v)]
and each edge e a label in [k + 1,2k + 1].

Following Lemma 5, label B such that each vertex v of B is assigned a label in [k+1, k+
1+ dp(v)] and each edge e a label in [0, k].

By Lemma 3, label the edges of (A, B) with [2k + 1,4k + 1] so that an edge is labelled
4k + 2 — i only if it is incident to a vertex of degree i in (4, B).

This labelling may violate some constraints of a (2,1)-total labelling in the following
cases :

(1) a vertex b € B labelled 2k or 2k + 1 is incident to an edge (a,b) of (A, B) labelled
2k +1;

(2) a vertex b € B labelled 2k + 1 is incident to an edge (a, b) of (A, B) labelled 2k + 2;

(3) a vertex a € A is incident to two edges labelled 2k + 1 one (a,a’) in A and one (a, b)
in (A, B);

Therefore, we need to proceed to the following corresponding relabelling :

(1) Since k > 2, then 2k > k+ 1 so b is not isolated in B. Thus the vertex a is isolated in
A and labelled 0. Then relabel (a,b) with k.

INRIA



(s,1)-total labelling of graphs 11

(2) The vertex b is labelled 2k + 1 and so dp(b) = k > 2. Hence b has degree less than
2k in (A, B) and a has degree at least 2k in (A, B). So a has degree at most 1 in A
and thus is labelled 0 or 1. One of the two integers £+ 1 and k + 2 does not label the
(possible) edge incident to @ in A. Then relabel (a,b) with {. This is valid since k > 3.

(3) Since a is not isolated in A, then b is isolated in B and thus labelled k¥ + 1. If a is
labelled 0 or 1 then relabel (a,b) with 3 and b with 5 if £ = 3. Again this is valid since
k > 3. If a is labelled in [2, k + 1] then relabel (a,b) with 0.

O

The last two relabelling of the previous proof are not valid if £ = 2. Hence, to get the
result when A = 5, we need some extra arguments :

Theorem 9 If A(G) =5 then M(G) <09.

Proof.

Let [A, B] be a maximum cut of G. Then A(A4) <2 and A(B) < 2.

We need a more careful labelling of A than in Theorem 8. Let C' be a component of A. If
C is not an odd cycle then, following Lemma 4, label C' such that each vertex v is assigned a
label in [0, da(v)] and each edge e a label in [3,4]. If C is an odd cycle (a1, as,...,02p41,01)
then for 1 S 7 S D, label a2i—1 with 0, (agi_l, agi) with 3, agi—1 with 1, and (agi, a21~+1) with
4. Label aspq1 with 2 and (a2p41,a1) with 5. Note that in that case a vertex labelled 1 in
A is not incident to an edge labelled 5.

Following Lemma 5, label B such that each vertex v of B is assigned a label in [3,3 +
dp(v)] and each edge e a label in [0, 2] with B..

By Lemma 3, label the edges of (A, B) with [5,9] so that an edge is labelled 10 — i only
if it is incident to a vertex of degree at least 7 in (A, B).

This labelling may violate the constraints of a (2, 1)-total labelling in the same cases as
in Theorem 8 :

(1) a vertex b € B labelled 4 or 5 is incident to an edge (a,b) of (A, B) labelled 5;
(2) a vertex b € B labelled 5 is incident to an edge (a,b) of (A, B) labelled 6;
(3) a vertex a € A is incident to two edges labelled 5 one (a,a’) in A and one (a,b) in
(a,b);
Therefore, we need to proceed to the following corresponding relabelling :
(1) As in Theorem 8, relabel (a,b) with 2.

(2) The vertex b is labelled 5 and so dg(b) = 2. Hence b has degree less than 6 in (A, B)
and a has degree at least 6 in (A, B). So a has degree at most 1 in A and thus is
labelled 0 or 1. Relabel (a,b) with 3. This may violate a constraint if the edge (a, a’)
in A incident to a is also labelled 3. If @’ is incident to no edge labelled 4 then relabel
(a,a") with 4. Otherwise d(4,5)(a’) < 2. Thus there is a label I € [5,7] that labels no
edge incident to a or o' (since (a,b) is now labelled 3). Relabel (a,a’) with [.

RR n° 4816
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(3) Since a is not isolated in A, then b is isolated in B and thus labelled 3. Moreover, the
vertex a is labelled either 0 or 2 because no vertex of A labelled 1 is incident to an
edge of A labelled 5. If a is labelled 0 or then relabel (a,b) with 2 and b with 4. If ¢
is labelled 2 then relabel (a,b) with 0.

O
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