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Abstract: We present a quasi-conjugate Bayes approach for estimating Generalized Pareto
Distribution (GPD) parameters, distribution tails and extreme quantiles within the Peaks-
Over-Threshold framework. Damsleth conjugate Bayes structure on Gamma distributions
is transfered to GPD. Bayes credibility intervals are defined, they provide assessment of
the quality of the extreme events estimates. Posterior estimates are computed by Gibbs
samplers with Hastings-Metropolis steps. Even if non-informative priors are used in this
work, the suggested approach could incorporate informative priors, it brings solutions to the
problem of estimating extreme events when data are scarce but expert opinion is available.
It is shown that the obtained quasi-conjugate Bayes estimators compare well with the GPD
standard estimators on simulated and real data sets.
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Estimateur bayésien quasi conjugué pour les paramétres
de la loi GPD et application & la modélisation des queues
de distribution lourdes

Résumé : Nous présentons une approche bayésienne quasi conjuguée pour ’estimation
des paramétres de la loi de Pareto généraliste (GPD, Generalized Pareto Distribution),
des queues de distribution et de quantiles extrémes & 1’aide de la méthode des excés. La
structure bayésienne conjuguée proposée par Damsleth est tranférée aux lois GPD. Nous
définissons des intervalles de crédibilité bayésiens produisant une information sur la qualité
de nos estimations. Celles-ci sont calculées & partir de la loi a posteriori obtenue & ’aide
d’un algorithme de Gibbs avec une étape de Hastings-Metropolis. Méme si l'on utilise
dans ce travail uniquement des lois a priori non informatives, ’approche suggérée peut
incorporer des lois a priori informatives, ce qui apporte des solutions au probléme de la
modélisation d’événements rares lorsque ’on dispose de peu de données mais qu’un avis
d’expert est disponible. Nous comparons les estimateurs bayésiens quasi conjugués obtenus
A des estimateurs standards pour des données simulées et réelles.

Mots-clés : quantile extréme, loi gamcon II, loi de Pareto généralisée, algorithme de
Gibbs, méthode des exceés.
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1 Introduction

Motivated by univariate tail and extreme quantile estimation, our goal is to develop new
Bayesian procedures for making statistical inference on the shape and scale parameters of
Generalized Pareto Distributions when used to model heavy tails and estimate extreme
quantiles.

Most of the present methods of univariate tail estimation and statistical inference for ex-
treme quantiles rely on a basic result: see Balkema and de Haan (1974) and Pickands (1975).
Loosely speaking, this result states that if X is a random variable with distribution function
(d.f.) F, then the conditional distribution of the excess Y = X — u above the threshold u
given that X > u can in general be approximated by a properly scaled Generalized Pareto
Distribution (GPD) as u tends to the endpoint of F. For u large enough, this result means
that it is possible to approximate the upper tail 1 — F(u +y), y > 0, by (1 — F(u)) times a
rescaled GPD. Given an n—sample and a sufficiently large threshold u = u,,, the shape and
scale parameters of the approximating GPD are estimated on the basis of the excesses above
Uy. The estimates are then usually plugged into the GPD d.f. and extreme quantile esti-
mates are deduced. In this perspective, good estimation procedures for the shape and scale
parameters of a GPD on the basis of approximately independent and identically distributed
(ii.d.) observations are necessary for accurate tail estimation. This is the basis of the Peaks
Over Threshold (POT) method, described for example in Davison and Smith (1990) or in
the monographs Embrechts, Kliippelberg and Mikosh (1997) and Reiss and Thomas (2001).

More precisely, let us assume that observations of a studied phenomenon x1, 23, ..., 2,
are issued from i.i.d. random variables X3, X5, ..., X,, with unknown common d.f. F'. Sup-
pose that one needs to estimate either extreme quantiles ¢1_, of F' (i.e., 1 — F(qi—p) = p
with p € (0, 1/n] typically), or the extreme tail of F' (ie., 1 — F(z) for > =z, », where
Z1,n < ... < Zy,n denote the ordered observations). It is usually recommended to use
the POT method, where only observations x; exceeding a sufficiently high threshold u,, are
considered. In view of the theorem of Balkema and de Haan (1974) and Pickands (1975) the
probability distribution of the k = k,, positive excesses y; = Tn_jy1,n —un for j=1,...,k,
where z, 4, < Up < Tp_gy1,n, can be approximated for large u,, by a GPD(v, o) distri-
bution with scale parameter o > 0 and shape parameter v. The d.f. of GPD(y, o) is

-1/
1- (1+2) ify #£0
o /4
Fy.(y) = (1)
l—exp(—ﬂ) ify=0,
o
with y; = max(y, 0), where y € IRT when v > 0, and y € [0, —5/7] when v < 0.
Estimating the shape and scale parameters, v and o, is not easy. The maximum likelihood
(ML) estimators (Smith, 1987) may be numerically hardly tractable, see Davison and Smith
(1990) and Grimshaw (1993). Smith (1987) has shown that estimating GPD parameters with
MLE’s is a non regular problem for v < —1/2. Moreover, the properties of MLE’s meet their
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4 Diebolt €& Garrido € Girard

asymptotic theory only when the sample size (in our case the number k of exceedances) is
larger than about 500. Alternative estimators have been proposed by Hosking and Wallis
(1987): their linear estimators based on probability weighted moments (PWM) are easily
computed and generally reasonably efficient when —0.4 < v < 0.4 approximately (see, e.g.,
the comparative studies of Hosking and Wallis, 1987, and Singh and Guo, 1997). Castillo
and Hadi (1997) have proposed other estimators based on the elemental percentile method
(EPM), involving intensive computations. Their numerical simulations show that EPM
estimators are more efficient than PWM ones only when v < 0. The principle of maximum
entropy has also been used (Singh and Guo, 1997): the authors conclude that their estimators
are comparable in terms of bias and relative mean squared error to PWM. Finally, see Dupuis
(1998) for a robust estimation procedure based on optimal bias-robust estimates.

Semiparametric estimators of v along with related estimators of extreme quantiles have
been intensively studied. For example, the Hill estimator presented by Hill (1975) and
studied in Haeusler and Teugels (1985) and Beirlant and Teugels (1989), among many others.
Two classic extensions of the Hill estimators are:

— The moment tail index estimator (denoted hereafter MTI(DEdH)) of Dekkers, Einmahl
and de Haan (1989);

— The Zipf estimator, see Schultze and Steinebach (1996), and its generalization by
Beirlant, Dierckx and Guillou (2001), denoted hereafter ZipfG.

Most of these semiparametric estimators do not perform much better than parametric ones
when applied to sets of excesses. Only the ZipfG estimator seems to outperform the other
ones.

Actually, bias-corrected semiparametric estimators of v and extreme quantiles have re-
cently been introduced and studied. See, e.g., Beirlant, Vynckier and Teugels (1996), Beir-
lant, Dierckx, Goegebeur and Matthys (2000), Beirlant, Dierckx, Guillou and St#ric (2002).
These estimators, based on the second-order theory of regularly varying functions, are not
studied in this paper.

The present paper presents a new Bayesian inference approach for GPD’s with v > 0.
In a number of application areas such as structural reliability (see for example Grimshaw,
1993) and excess-of-loss reinsurance (see Reiss and Thomas, 2001), tail estimation based on
small or moderate data sets is needed. In such situations Bayes procedures can be used to
capture and take into account all available information including expert information even
when it is loose. Moreover, in the realm of tail inference, evaluating the imprecision of
estimates is of vital importance. Bootstrap methods have been suggested to assess this
imprecision. But standard boostrap based on larger values of ordered samples is known to
be inconsistent, whereas standard bootstrap based on excess samples has not second-order
coverage accuracy and is imprecise when sample sizes are not extremely large (e.g., Bacro and
Brito (1993) Caers, Beirlant and Vynckier, 1998). On the contrary, in the Bayesian context,
credibility regions and marginal credibility intervals for GPD parameters and related high
quantiles provide a non-asymptotic geometry of uncertainty directly based on outputs of

INRIA
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the procedure, thus shortcutting bootstrap. Actually, imprecision measures making use of
posterior distributions can loosely be seen as analogues of GPD-based parametric bootstrap.
For all these reasons (expert information, credibility intervals) easily implementable Bayesian
inference procedures for GPD’s are highly desirable to study excess samples in the scope of
POT methodology.

The restriction v > 0 is not too damaging, since several major application areas are
connected to heavy-tailed distributions. Qur approach can also be tried for data issued from
distributions suspected to lie in Gumbel’s maximum domain of attraction where v = 0.
In the latter case, direct Bayesian analysis of the exponential distribution can be made in
parallel (see Appendix A).

For other papers on Bayesian approaches to high quantile estimation, see, e.g., Coles
and Tawn (1996), Coles and Powell (1996), Reiss and Thomas (1999), and the monographs
Reiss and Thomas (2001) and Coles (2001) along with references therein.

Our starting point is a representation of heavy-tailed GPD’s as mixtures of exponential
distributions with a gamma mixing distribution. Since the Bayesian conjugate class for
gamma distributions is documented (Damsleth, 1975) we only have to transfer it to GPD’s.
As described in Section 2, this provides a natural Bayesian quasi-conjugate class for heavy-
tailed GPD’s, leading to comparatively simple calculations and highly efficient computations
through Gibbs sampling. Hierarchical structures can be built over this quasi-conjugate class:
this will be discussed in a forthcoming work.

The computation of the posterior distributions is numerically implemented through an
efficient Markov Chain Monte Carlo algorithm in Section 2. Section 3 compares our Bayes
estimates to ML, PWM, moment tail index MTI(DEdH) and generalized Zipf (ZipfG) esti-
mates on excess samples through Monte Carlo simulations. Section 4 is devoted to bench-
mark real data sets. Finally, Section 5 lists some conclusions and presents forthcoming
research projects.

2 Bayesian inference for GPD parameters

The standard parameterization of heavy-tailed GPD distributions described by (1) when
~ > 0 is now replaced by a more convenient one depending on the two positive parameters
a =1/v and B = o/v. The re-parameterized version GPD(a, ) has d.f.

—Q

)

Fas@) = Flula ) =1 - (14 4) ", y20, ©
and probability density function (p.d.f.)

a y —a—1
fya,,b’=—(1+—) , y>0. 3
wle, B) 3 3 ®3)
We assume that we have observations y = (y1, - - -, yx) which are realizations of i.i.d. random
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variables Y1, ...,Y} approximately issued from (2)—(3). Typically, they represent excesses
above some sufficiently high threshold u. The latter means that for each j < k, there exists
an integer ¢ < n such that Y; = X; —u, X; > u, where the X|s are assumed i.i.d. and issued
from a distribution in Fréchet’s maximum domain of attraction: DA (Fréchet). Remark
that the case where the common distribution of the X/s is in Gumbel’s maximum domain
of attraction (see Appendix A) can also be covered by considering the limiting situation
a — +00 and 8 — +oo with 8/a — o > 0.

Our starting point is the following mixture representation for (3), see Reiss and Thomas
(2001) page 157:

Fla B) =/Oooze‘yzg(z|a,6)dz, @

where for z > 0, g(z| a, B) = [3%/T(a)] 2 1e5% is the density of the Gamma(a, ) distri-
bution with shape and scale parameters a and §. The previous representation stands only
in DA (Fréchet) as a and 8 have to be non-negative (as parameters of a gamma distribution)
which implies v > 0.

There is no Bayesian conjugate class for GPD’s. Nevertheless, as shown below, the
mixture form (4) allows us to make use of the conjugate class for gamma distributions to
construct a suitable quasi-conjugate class for GPD’s.

2.1 Conjugate distributions for Gamma(x, )

According to Damsleth (1975), the description of the conjugate class for gamma distribu-
tions relies on the so-called type II Gamcon distributions: for z > 0, the density of the
Gamcon II(c, d) distribution with parameters ¢ > 1 and d > 0 is

be,a (@) = I, T(de + 1) (T(2)) " (cd)™, (5)

where I q = [y [(dz + 1)(T'(z))~%(cd)~% dz. The density &, q has roughly the shape
of a gamma density, lim, o4+ & q4(z) = 0 and & 4 is upper tail equivalent to a gamma
density up to some multiplicative constant factor. Let z = (z1,...,2) denote a k-sample of
realizations of i.i.d. random variables Zi,..., Zy issued from Gamma(a, 3). According to
Damsleth (1975), Theorem 2, the conjugate prior density on («, §) with hyperparameters
d>0andn>p>0isgiven by 754 u(a, B) = n(a)7(B|a)  where

e 7(a) is the density of Gamcon II(c = n/u, d = 96) ;
e 7(B3| @) is the density of Gamma(da + 1, d7).
The corresponding posterior densities are given by:
e The conditional density of a given z, denoted 7 (a|z), is Gamcon II(n'/u', ') with

g b\ @R
6 =64k, o = TS and g = 00+ (H%) i
i=1

INRIA



Bayes estimates for GPD 7

e The conditional density of 8 given a and z, denoted w(8|a, z), is Gamma(d'a +
1, 8'n’).

The hyperparameters  and p act on the sufficient statistics Ele z; and Zle In z;, whereas
¢ tunes the importance of these modifications. For § = 1, the introduction of these prior
distributions can loosely be interpreted as artificially adding one observation zg = 1 in the
arithmetic mean, and another observation zj, = y in the geometric mean, with 29/2{ = n/p
=c>1.

2.2 Transfer paradigm
Now the question is: How can we deduce the posterior density of the GPD parameters (o, )
from the gamma conjugate structure, starting with the prior density w5, 5, (e, 8) 7

At this point, we face the following general question. Let y and z be realizations of
two random vectors Y and Z defined on the probability space (IRF, B(IRF)). Consider a
parametric family of densities for Z, {gg}sco (also denoted g(e|8)) where © C IRP. Assume
that a natural parametric family of densities for Y, {fy}sco, can be deduced from {gs}oceo
as follows:

) =110 = [ prin) a(al0) da, @

where y + p(y|z) is a probability density function for all z € IR (i.e., p(y|z) is a transition
density). Suppose that Bayesian inference is already documented for the family {gs}sco-
How can we transfer it to the family {fs}sco 7 In our setting 8 = (a, ), fo is given by (3)
and gy is the density of Gamma(a, 8), as indicated above.

Notations and Assumptions —

1. The likelihood function of the observations y for fp writes f(y|6) = Hle f(yil 6).
2. Similarly, the likelihood function of z for gy writes g(z|6) = Hle 9(zi 6).

3. We set p(y|z) = I, p(yi| z:)-

4. We let m(0|y) denote the posterior density of 8 given the observations y = (y1,-. ., yx)
corresponding to fy and the prior density 7 (6):

0) m(0
w0y = IO e f0) = [ roiors@rar. @
Ix (¥) )
5. Similarly, 7(6] z) denotes the posterior density of € given z = (21, ..., 2) corresponding
to gy and the prior density =:
r@)2) = LEOTO) - e gi(z) = / (207 (0") do'. )
In (z) ©
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8 Diebolt €& Garrido € Girard

6. We further denote

p(y|2) g« (2)
w ) = ) g ) i 1o

For each y, the function z — ¢ (z|y) is a p.d.f. with respect to Lebesgue measure:
g=(2z|y) is a transition density.

The following straightforward result shows that the posterior distribution of 6 given y
is a mixture of the posterior distributions of 6 given z with mixing density ¢,(z|y). See
Garrido (2002) for more details.

Proposition 1  Under the previous assumptions we have
7r(0|y):/q,r(z|y)7r(0|z)dz, (11)
where g, is defined by (10).

REMARK 1 . — It follows from Proposition 1 that each posterior moment given y is the
integral of the corresponding posterior moment given z with respect to ¢,(z|y).

REMARK 2 . — In the GPD setting, we have

ﬂka a-l R k k
9(x]8) = (H) e #Xia% and p(y|z)=<Hzi> exp (—Zy)
=1 =1

REMARK 3 . — Let fpred (Y0 | y = f yo|0) (0 ]y) db be the posterior predictive density
based on y, and gpred (20 |2) = [g(20|0) 7 (6|z) df be the posterior predictive density
based on z. These predictive densities are linked by

Jored (W0 |y) = /qn (z|y) (/p(yolz())gpred (20]2) dzo) dz. (12)

Unfortunately, the functions g, (see (9)—(10)) and z — ¢, (z|y) (see (10)—(11)) are not
expressible in analytical close form. Therefore, a numerical algorithm is needed. The mixture
representation (11) allows us to design a simple and efficient Gibbs sampler. It is presented
in the next Subsection.

2.3 Gibbs sampling

We consider again the GPD setting where y denotes a k-sample from GPD(a, §8). A Gibbs
sampler is used to get approximate simulations from the posterior density of 6 given y,

INRIA
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w(0ly). Damsleth’s priors are used for § = (a, 8). The proposed sampler generates a
Markov chain whose equilibrium density (denoted 7(z,6|y)) is the joint density of (Z, 6)
conditionally on Y =y where Y and Z denote respectively random vectors of k independent
Gamma(a, §) and GPD(a, ) random variables. To implement the Gibbs sampler we first
note that within the general setting of subsection 2.2, the conditional density of 6 given
(y, z) is independent of y: 7(f|y, z) = 7(6|z), and the conditional density of Z given (y, )

18

(ylz)g(z]0)

p
_ 1
In our GPD setting,
k k
&y, 0) = [ Gilys 0) o< J] 2 e @Hv=1,,50. (14)
i=1 i=1

It follows that for ¢ < k, conditionally on 8 and Y; = y;, Z; ~ Gamma(a + 1, 8 + y;)
independently.

This yields the following intertwining sampler, where simulation from the posterior den-
sity of € given the observations y is based on successive simulations alternatively from the
conditional density of Z given (y, #) and the posterior density of 8 given z. Let §(™) denote
the current parameter value at iteration m. The next iteration:

1. independently simulates each z§m+1) from Gamma(a(m) +1, ﬂ(m) +9i) ;
2. simulates (™t from 7r(0|z(m+1))_

In such a setting, both (z(m))mzo and (0(m))m20 are Markov chains. The simulation step
of ™ +1) s split into the marginal simulation of a(™*1) and the conditional simulation of
Bm+1) given a(m+1), Finally, the iteration m + 1 of our Gibbs sampler:

1. independently simulates each z§m+1) from Gamma(a(™ +1, (™ 4y, ;

2. simulates (™) from m(a|z(™*+Y), i.e. from Gamcon II(yn'/y', ") with &',
7' and p' computed from z(™*!) using equation (6) ;

3. simulates S(™*Y from Gamma(8'a(™tV) + 1, §'7).

When the equilibrium regime is nearly reached, simulated values of 6 are approximatively
issued from the posterior distribution of 8 given y.

Implementing the previous algorithm requires simulating Gamcon II distributions and
choosing adequate values of the hyperparameters &, n and p of the priors 7(a) and 7(8| a).

RR n° 4803
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2.4 Simulating Gamcon II distributions

Our sampling scheme involves simulations from Gamcon II(¢, d) distributions with ¢ = ¢/
=1n'/y', where ' and y' are given by (6), and moderate to large values of d = d' = §' =
0+ k. Up to our knowledge, there is no standard algorithm for simulating such distributions.
The simulation method that we present is based on a normal approximation to Gamcon II
distributions using Laplace’s method (this approximation is deeply studied in Garrido 2002).

Gamcon II(c, d) can be approximated by a normal distribution having the same mode.
It is proved in Garrido (2002) that this mode, M., 4, is the unique root of the equation

Y(dMeq+ 1) — ¢ (Meq) —Ind —Inc =0, (15)
where 1 denotes the digamma function: the derivative of the logarithm of T'(¢),

!
NS ()

The standard deviation S; 4 of the normal approximant distribution is computed through a
Taylor expansion of the Gamcon II(¢, d) density in a neighborhood of its mode:

1
S, 4 = .
T ) (M,.4) — 42 (dMe.q + 1)

Garrido (2002) has established that (1 —1/d)/(Inc+1nd/2) < M. 4 < 2/Inec. In practice,
M., 4 is numerically approximated through the bisection method.

(16)

At each iteration, we simulate Gamcon II(c', d') with the help of the independent
Hastings-Metropolis algorithm, which requires a suitable proposal density. Actually, it is
enough to make only one step of Hastings-Metropolis at each iteration of the Gibbs sam-
pler: see Robert (1998). The proposal density must be as close as possible to the simulated
density, Gamcon II(¢', d'), and have heavier tails to ensure good mixing. Since Gamcon II
densities have gamma-like tails (see the comments after (5) in Subsection 2.1 above), we
cannot directly take the normal approximant density as a proposal. Rather, we have cho-
sen a Cauchy proposal density as close as possible to the normal approximant density to
Gamcon II(¢', d'), i.e. with the same mode and modal value. Therefore at each iteration our
Hastings-Metropolis step:

1. independently simulates a new Y from the Cauchy distribution with mode

M. ¢ and modal value 1/(Sy, aVv27) ;

2. computes the ratio

:auchy (a(m)) EC’, d’ (Y)
:auchy(Y) &c’,d' (Oé(m)) ’

denotes the density of YV ;

p = min |1,

*
where fcamchy

INRIA
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3. takes a(™*Y) = Y with probability p and ol™t!) = (™ otherwise.

Since all the transition densities involved are positive, the resulting Markov chain (0(m))m20
is ergodic with unique invariant probability measure equal to the posterior distribution of §
given y. Intensive numerical experiments reported in Garrido (2002) show that for 6 > 0.5,
this Gibbs sampler with one Hastings-Metropolis step at each iteration converges quickly
to its invariant distribution. Actually, it seems that discarding the first 500 iterations is
sufficient, although refined MCMC control methods (for e.g. Chauveau and Diebolt, 1999)
suggest a slightly more expensive strategy. For § < 0.5, we observed numerical instabilities.

Bayesian inference on the GPD parameters «, 8 is based on the outputs of this algorithm
when it has approximately reached its stationary regime. We then record a sufficient number
of realizations a(™ and §(™).

2.5 Hyperparameters values

In this paper we suppose that no expert information is available for the choice of priors
on the GPD parameters («, 3). Introduction of expert information will be discussed in
a next paper. Here we take an empirical Bayes approach, where loose prior information is
obtained from the available sample. The more natural approach to compute hyperparameter
values of the priors 7(a) and 7(8| @) is to equate some of their location parameters (mean,
median or mode) to frequentist estimates of o and 3, denoted @ and E in this Subsection.
Actually, we made use of the estimators @ and 3 induced by the Hill procedure, since they
are easily computed and always provide positive values of @ and £, i.e. of 7 as required in
our procedure.

We took 6 = 1 both for convenience (for § = 1, the prior 7(a) reduces to a gamma
distribution, see below) and because a small value of § > 0 indicates little confidence in
prior information (see the comments after (5)): here, we adhere to a quasi non-informative
approach. Recall that we observed numerical instabilities of our Gibbs sampler for ¢ < 0.5.

Prior means were used to determine values of the hyperparameters  and p: the mean
of the prior distribution 7(8|a) is (o + 1) / 7. Taking this mean equal to § = zp_g, n, the
estimate induced by the Hill procedure, and replacing a by its Hill estimate

kn
a = kn <§ In Tn—k,+i,n — lnmnkn,n>
i=1

yields = (@ + 1)/3. When 6 = 1, the prior 7 (a) reduces to Gamma(2, In (1/p)). Its mean
is 2/In(n/p). Solving the equation where this prior mean is set equal to @ yields

62—}—16 2
= — X — = .
w 3 p a

-1

If prior modes are used instead of prior means, a similar approach leads to slightly different
formulas for n and p. Actually, with prior modes explicit expressions can be obtained for

RR n° 4803
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all 6 > 0. However, preliminary numerical experiments yielded better estimates with prior
means.

2.6 Computation of Bayesian estimates

When the Gibbs sampler approximately reaches its stationary regime, K values denoted
(@™ gm)) m =1,...,K, are saved. This simulated sample is used to compute posterior
means, medians or modes and estimate (a, ), leading to Bayesian estimates for (-, o) and

¢1—p. Concerning the estimation of an extreme quantile ¢1_, (y = (y1,...,¥yx) is a sample

of excesses over a threshold u), a sample of values cﬁ 1), is computed using POT from the

simulated (a(™), (™))’

m n 71/(1(7”)
@™ = u + gm [(?‘”) - 1] . (17)

Means, histograms and credibility intervals can then be computed and represented from (17).
See sections 3 and 4 below.

REMARK 4 . — The posterior modes are more difficult to compute since one has first to
construct smooth estimates of the joint posterior density of o and 8. Numerical experiments
reported in Garrido (2002) for both GPD generated data and excess samples led us to keep
only posterior medians. |

Bayesian credibility intervals for o, 8 and ¢, are obtained by sorting the corresponding
simulated values obtained from the Gibbs sampler. Similarly, predictive quantile functions
can be approximated through

e

~ 1y
Flprealy ZF(m) g \Y (¥). (18)

m=1

The probability distribution of the observed sample y can be estimated either by GPD(a, B ),
or by the posterior predictive distribution. According to Reiss and Thomas (2001) page 157,
a mixture of Pareto distributions with respect to a gamma mixing density is a log-Pareto
distribution, which has a “super heavy” tail, i.e. the right tail of the survival function is of
the order of O((Inx)~") for some positive v as x — oo. Although in our case posterior
predictive distributions are not expressible in close form, their mixture form (see (11)—(12)
and Remark 2) and the properties of Gamcon II distributions suggest that our predictive
distributions have super heavy tails, too. This is comparable to the results of Appendix A,
and leads us to discard estimation procedures involving posterior predictive distributions.
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3 Comparative Monte Carlo simulations

Intensive Monte Carlo simulations were used to compare our Bayes quasi-conjugate esti-
mators (denoted hereafter Bayes-QC) of v and ¢1_p, with their counterparts when usual
estimators of GPD parameters are used: Maximum Likelihood (ML), Moment Tail Index
estimator (MTI(DEdH)), Generalized Zipf estimator (ZipfG) and Probability Weighted Mo-
ments (PWM).

3.1 The simulation design

Three probability distributions in DA (Fréchet) were considered in order to produce various
excess samples:

— The Fréchet(1) distribution, for which v = 1 and the second-order regular variation
parameter (presented below) p = —1. The d.f. of Fréchet(B) for § > 0 is F(z) =
exp (—z /P, z > 0.

— The Burr(1, 0.5, 2) distribution, for which v = 1 and p = —0.5. The d.f. of Burr(8, 7, A)
for >0, 7>0,A>0is F(z) =1 — [/(B+27)]*, z>0.

— The Log-Gamma(2) distribution, for which v = 1 and p = 0. A random variable Z
is Log-Gamma/(2) distributed when In Z is Gamma(1, 2) distributed. The density of
Log-Gamma(2) is f(z) = 2z 2(Inz)~!, z > 0.

For each distribution, the second-order regular variation parameter p (p < 0) indicates
the quality of approximation of F, by a GPD(y, o(u)) for high values of u and suitable
o(u)’s. High values of |p| indicate excellent fitting, whereas values of |p| close to 0 indicate
bad fitting. For the Fréchet(1) distribution, p = —1 reflects the fact that

1 - F(z) ~1—exp(—£> - 1(1—%(1+0(1))> as @ — +00.

x

For the Burr(1, 0.5, 2) distribution, p = —0.5 corresponds to the expansion

1 1 2
1—F(m)~m25(l—ﬁ(l+o(l))> as £ — +00.

Finally, for the Log-Gamma(2) distribution, p = 0 corresponds to

1

L= F@) ~ zlnz

as r — +00o.

For each one of these three probability distributions, 100 data sets of size n = 500 were in-
dependently generated. For each simulated data set and each value of k£ = 5, 10, .. .,490, 495,
we performed 1000 iterations of the Gibbs sampler and only the last 500 ones were kept.
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3.2 First results

For each simulated data set and each value of k = 5,10, ...,490, 495 Bayes-QC estimates of -y
and g1—p, p=1/5000, are computed as the medians of the resulting 500 7(m)’s and (ﬁT%’S
given in the 500 last iterations of the Gibbs sampler. Figures 1-3 display the averages over
the 100 data sets of these Bayesian estimates of v and ¢;_, as functions of k. The means

and modes were also computed and gave quite similar results. They are not displayed here.

The ML, MTI(DEdH) and ZipfG estimates of v and ¢1_,, p = 1/5000, were also com-
puted for each of those simulated data sets and the same values of k. Figures 1-3 display
the averages over the 100 data sets of these estimates of v and ¢;_,.

The left panels of Figures 1-3 show that our estimates of v based on posterior medians
(continuous line curves) perform rather well compared to the other ones, and give estimates
close to ML and ZipfG. The right panels of Figures 1-3 show that our estimates of g;_, are
very close to those obtained by ML. Both give better estimates than MTI(DEdH) but in
general do not perform as well as ZipfG, although they seem to be more stable as functions
of k. Again, credibility intervals for v and ¢, and potential improvements when prior
information is available are strong arguments supporting the use of our Bayesian procedure.

3.3 Bayes credibility and Monte-Carlo confidence intervals

Monte Carlo simulations were also used to study whether Bayesian credibility intervals could
be used as approximate frequentist confidence intervals for v and g;_p, in the present quasi
non-informative approach. For each simulated data set, the last 500 iterations of our Gibbs
sampler provide 500 estimates 3(™ and 500 estimates ﬁ’f;, m = 501,...,1000. They can
be sorted to provide approximate 90 % credibility intervals for v and ¢;_,. The precision
of these credibility intervals was studied through Monte Carlo simulations: for each one
of the three probability distributions considered and for each value of k, we counted the
number of simulated data sets (out of 100) for which the true values of v and gi_p fell
within the corresponding 90 % credibility intervals. Figure 4 exhibits the coverage rates for
each simulated distribution and for k = 5,10,...,490,495. These credibility intervals are
very accurate for the Fréchet distribution. For the Log-Gamma distribution, the credibility
intervals have good coverage rates for g;_, but not for ~.

This rather unexpected behavior when p = 0 can be explained in terms of penultimate
approximation, see Diebolt, Guillou and Worms (2002): it can be proved that for p = 0, the
distribution of excesses is better approximated by a GPD with scale parameter vy + ay(F),
where ay(F') is some correction term, than by a GPD with scale parameter v (see, e.g.,
the paper coauthored by Kaufmann, pages 183-190 in Reiss and Thomas (2001) along with
references therein and Worms (2001)). This explains why in the case p = 0 the estimates
of v strongly deviate from the true value. Furthermore, Diebolt, Guillou and Worms (2002)
have established for all sufficiently regular estimators (¥, o) of the parameters (v, o) such
as ML or PWM, that when p = 0 the estimated survival function F ; is a bias-corrected
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Figure 1: Means of 4 and ¢ on the 100 Monte Carlo replications from Burr(1, 0.5, 2) for
different values of the number & of excesses.

estimate of F, ,. We think that this result partially explains the good and stable coverage
rates observed for ¢;_, for the Log-Gamma distribution.

Finally, Figure 1 suggests that the optimal value of k in the Burr(1, 0.5, 2) case is close
to 90. For k = 90, the credibility intervals for both v and ¢;_, are still satisfactory.

These trials show that the credibility intervals computed through our procedure give
very promising results.

For each one of the three simulated probability distributions and each value of k €
{5,10,...,495} the 100 simulated data sets give 100 estimates of (,¢;_,). The empirical
0.05 and 0.95 quantiles of the previous estimates give 90% Monte-Carlo Confidence intervals
(MCCI) for (v, ¢1—p). The width of these MCCIs are used in Figure 5 to compare the preci-
sion of our Bayes Quasi-conjugate ¢1_, estimator to ML, ZipfG and MTI(DEdH) estimators.
For Burr data sets (left panel of Figure 5) ZipfG gives the most precise quantile estimators,
it is followed by ML, Bayes-QC and MTI(DEdH). For Fréchet, Bayes-QC and ML have the
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Figure 2: Means of 4 and § on the 100 Monte Carlo replications from Fréchet(1) for different

values of k.
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Figure 3: Means of 4 and ¢ on the 100 Monte Carlo replications from Log-Gamma(2) for
different values of k.

best precisions. It is worth noting that Bayes-QC is used here with non-informative priors,
its precision will increase when informative priors are used.

In Figure 6 the average Bayes credibility intervals (averaged over the 100 simulated data
sets) are compared to the 90% Monte-Carlo Confidence intervals (MCCI) for our Bayes-QC
estimator. For both Burr (left panel) and Fréchet (right panel) ditributions lower bounds of
the average Bayes credibility intervals and MCCI are very close. Upper bounds of average
Bayes credibility intervals are larger than those of MCCI. It is interesting to note that the
width of the average Bayes credibility intervals are the narrowest for k where Bayes estimate
of qi_p is the closest to the true value gi_p. This could be used to chose optimal values of
the number of excesses k.
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Figure 4: Coverage rates of our 90 % Bayesian credibility intervals for v and ¢;_, based on
the 100 Monte Carlo replications for different values of k.

4 Application to real data sets

Here, advantages and good performance of our Bayesian estimators are illustrated through
the analysis of extreme events described by two benchmark real data sets:

— Nidd river data. They are standard data in extreme value studies (used for example
in Hosking and Wallis, 1987 and Davison and Smith, 1990). The raw data consist in
154 exceedances of the level 65 m3s~! by the river Nidd (Yorkshire, England) during
the period 1934-1969 (35 years). The N-year return level is the water level which is
exceeded on average once in N years. Hydrologists need to estimate extreme quantiles
in order to predict return levels over long periods (250 years, i.e. p = 91074, or even

500 years).
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Figure 5: Width of 90% Monte-Carlo confidence intervals of §;_, for different values of k.

— Fire reinsurance data. These data were first studied by Schnieper (1993) and Reiss
and Thomas (1999). They represent insurance claims exceeding v = 22 millions of
Norwegian Kroner from 1983 to 1992.

4.1 Nidd river data

Bayes quasi-conjugate estimates and related 90 % credibility intervals for v and ¢1_p are
depicted in Figure 7 for several values of k. Compared to other estimators, our approach
provides the most stable estimates as k varies. For 8 values of ¥ Grimshaw’s algorithm for
computing ML estimates did not converge: see the broken ML curves in Figure 7. Histograms
of v’s and ¢1_,’s for k = 82 are displayed in Figure 8. Table 1 summarizes results of the
estimation of the 50-year and 100-year return levels of the Nidd river when the threshold u
is set equal to either 100 (k = 39) or 120 (k = 24).
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Figure 6: 90 % Bayes credibility and Monte-Carlo confidence intervals for ¢,_, for different
values of k.

REMARK 5 . — Recall that the N-year return level RLy is the water level which is exceeded
on average once in N years. Equations relating ¢;—, to the return level RLx follow from
Davison and Smith (1990): RLy ~ u — (/7 - (XN)W], where it is assumed that the
exceedance process is Poisson with annual rate A. If we have observed k excesses above the
threshold v during 35 years, then A is estimated by & / 35. It follows that EEN = g1_p with
p~k / ANn. For the Nidd river data, this yields p ~ 35 / Nn. Therefore, estimating the
100-year return level is equivalent to estimating g, by p = 35 / (100 x 154) ~ 2.271073. O

As shown in Table 1, our credibility intervals with level 95 % (see the last column)
compare well to the Bayesian confidence intervals obtained by Davison and Smith (1990),
which are based on uniform priors for g;_p, A and y (see Smith and Naylor, 1987 for more
details). Actually, ours are slightly narrower.
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Figure 7: 4 and ¢i_, for the Nidd river data set with several values of k.
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Figure 8: Histograms of 500 v’s and ¢1_,’s simulated from the posterior distribution for the
Nidd river data set, k = 82.
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Analysis ML Bayes-QC Uniform Bayes Bayes-QC
point Return level estimate Credibility Intervals
50-year return level
u =100 305 374 [210, T775] [266, 672]
u =120 280 403 [215, 850] [304, 690]

100-year return level
u = 100 340 457 [220, 935] [306, 911]
u =120 307 499 [225, 940] [354, 961]

Table 1: Uniform and quasi-conjugate Bayesian 95 % credibility intervals for 50-year and
100-year return levels. Nidd river data.

4.2 Fire reinsurance data and net premium estimation

In the excess-of-loss (XL) reinsurance agreements, the re-insurer pays only for excesses over
a high value u of the individual claim sizes. The net premium is the expectation of the
total claim amounts that the re-insurer will pay during the future period [0, T]: E(Sn,) =
Ef\fl Y;, where Ny is the random number of claims exceeding « during [0, T'] and Y7,Y5, ...
are the amounts of excesses above u. If the Y;’s are modeled by a GPD(v, o) and the
exceedance arrival process is modeled by a homogeneous Poisson process with annual rate A,
then the net premium over the coming year is approximated by E(Swn,) ~ E(N:)E(Y;) =
Ao /(1—=7).

Reiss and Thomas (1999, 2001) estimate the net premium of the Norwegian fire claims
reinsurance by analysing a data set (see Table 2) of large Norwegian fire claims between 1983
and 1992. These data were initially presented by Schnieper (1993). They use a Bayesian in-
ference method for the GPD parameters and assume that the exceedance process is Poisson.
Independent gamma, priors are used for A and « and an inverse-gamma prior, with parame-
ters (a, b), is chosen for 3. Posterior means of A, a and 8 are computed using Monte Carlo
numerical approximations of integrals. Table 3 compares estimates of (v, o) and the net
premium Ao /(1 —+) obtained by our quasi-conjugate approach with those obtained by Reiss
and Thomas for ML and Bayesian estimates with different values of the hyperparameters a
and b of the inverse-gamma. Our approach has the advantage of indicating the precision of
the estimates.

5 Discussion

The proposed quasi-conjugate Bayes approach has many advantages when compared to
standard GPD parameters and extreme quantiles estimators:
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year claim sizes year  claim size

(in millions) (in millions)

1983 42.719 23.208
1984 105.860 1990 37.772
1986 29.172 34.126

22.654 27.990
1987 61.992 1992 53.472

35.000 36.269
1988 26.891 31.088
1989 25.590 25.907

24.130

Table 2: Norwegian fire claims sizes over 22.0 millions NKr from 1983 to 1992, from Schnieper
(1993).

Analysis 5 o Net premium
Point estimate 90 % credib. interv.
ML for GPD 0.254 11.948 27.23
Bayes (Reiss and Thomas)
Inv.-Gamma(a =2,b=2) 0.288 11.658 27.83
Inv.-Gamma(a =4,b=6) 0.274 11.814 27.66

Quasi-conjugate
Bayes approach 0.384 10.332 30.03 [17.09, 84.39]

Table 3: Bayesian estimates of v, ¢ and the XL net premium for Norwegian fire reinsurance
data.

— it can incorporate experts prior information and improve estimation of extreme events
even when data are scarce,
—it provides Bayes credibility intervals assessing the quality of the extreme events estimation,
— it often gives estimators with week dependence on the number & of used excesses,
— the variances of the non-informative quasi-conjugate Bayes estimators compares well to the
variances of the standard estimators. This suggests that informative quasi-conjugate Bayes
estimators will give very accurate extreme quantile estimators, this point will be illustrated
in a forthcoming paper.

We deeply describe the proposed quasi-conjugate Bayes approach for the most frequent
case of Fréchet Maximum Domain of Attraction where tails are heavy (y > 0), the case of
Gumbel’s Maximum Domain of Attraction (y = 0) is analytically discussed in Appendix A.
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Future work is needed to extend this approach to the general case where the user has no
prior idea on 7.

The present paper is the first of a series of papers devoted to various developments of
the Bayesian inference methodology that we introduced here. In the next two ones we
will study: 1. How to determine and compute hyperparameters in a hierarchical structure
setting based on the quasi-conjugate class defined here to take into account realistic expert
prior information on extreme events ; 2. How to adapt the Hastings-Metropolis step of our
Gibbs sampler on the basis of Worms’ (2001) correction formulas to obtain bias-corrected
results. This point is suggested by recent work based on the second-order theory of regularly
varying functions on bias-corrected semiparametric estimators of v and extreme quantiles.
We think that a bias-corrected version of our Bayesian methodology will significantly improve
estimation of extreme quantiles and probability tails.

Finally, note that it would be possible to include a Poisson parameter for the stream of
exceedances as in Reiss and Thomas (2000). Also, spatial quantile estimation and multi-
variate or time-series extensions based on our approach are natural and very promising.

Appendix A

We present here a brief account of the simple case where Bayesian inference is made for
exponential distributions, rather than GPD’s with both parameters unknown. This simple
setup is of interest since it is the Bayesian analogue of the Exponential Tail (ET) method
(Breiman et al. 1990), and all calculations lead to explicit analytical formulas.

Set A = 1/0 and fi(y) = Ae ¥ 1,50. Denote by m, ; the prior Gamma(a, b) density
(a, b > 0). The posterior density mq, 5(A|y1,...,yx) is Gamma(a + k, b + Si), where Sy
= Ef’:l y;. Expert information is reflected in the choice of a and b. The corresponding
posterior predictive distribution is GPD (a + k, b+ Si), with yprea = 1/(a + k) and opred
= (b+ Sk)/(a + k). Our first estimate of ¢;_, is based on the posterior mean /Xbayes =

(a+k)/(b+ S) of A:
q = u + b+ Sk In ﬁ
d1—p, bayes = atk np .

Our second estimate is based on the posterior predictive distribution:

k 1/(a+k)
— - 1.
(v)

Our third estimate is based on the transformed posterior distribution. Since the posterior
on o = 1/) is an inverse-gamma distribution with density

(b + Sp)"+* o [ 2ESKY 4
T (a+ k) gotkt+l * o >0

Zl\lfp, pred = U + (b+Sk)
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whose mean is (b+ Si)/(a + k — 1) and variance is (b+ Sk)?/(a + k — 1)*(a + k — 2), the
corresponding distribution of u + o ln (k/np) has a similar shape, and has mean

qi = u + 7b+sk In ﬁ
Q1-p, post = a+k—-1 np

and standard deviation

b+ Sy In ( k )
(a+k—-1)va+k—2 \np)’
For k large enough, g1, bayes 15 close to q1—p, post With respect to the standard deviation
scale, which is of the order of (b+ Si)(a + k)~%/%1n (k/np). On the contrary, a Taylor
expansion shows that when In (k/np)/(a + k) is not too large,

Qi—p,pred & U +

s, (1)1 in ()

a+k np 2(a+ k)

The distance between gi_,, preq and each of the two other estimates can be significant, and
¢1—p, pred €xhibits a positive bias with respect to the other estimates. We have observed a
similar behavior when dealing with GPD’s: This is the reason why we have discarded the
analogous of §1—p, pred in that setting, and selected estimates of ¢1_, based on its posterior
distribution. Finally, based on the transformation of posterior distribution, approximative
90 % (for instance) credibility intervals can be obtained through a very rough normal ap-
proximation to inverse-gamma distributions:

b+ Sk k 1
2Tk ()41 + 16— b
+ a+k—1 n(np){ \/a—i—k—QH
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