N

N
N

HAL

open science

On-line Measurement of Web Proxy Cache Efficiency

Simon Patarin, Mesaac Makpangou

» To cite this version:

Simon Patarin, Mesaac Makpangou. On-line Measurement of Web Proxy Cache Efficiency. [Research

Report] RR-4782, INRIA. 2003. inria-00071804

HAL 1d: inria-00071804
https://inria.hal.science/inria-00071804
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071804
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4782--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On-line Measurement of Web Proxy Cache
Efficiency

Simon Patarin and Mesaac Makpangou

N° 4782
Mars 2003

THEME 1

apport
derecherche

%I INRIA

ROCQUENCOURT

On-line Measurement of Web Proxy Cache
Efficiency

Simon Patarin* and Mesaac Makpangou'

Théme 1 — Réseaux et systémes
Projet REGAL

Rapport de recherche n° 4782 — Mars 2003 — 29 pages

Abstract: This report presents how Pandora, our flexible monitoring plat-
form, can be used to continuously measure the efficiency of a system of coop-
erating proxy caches. It circumvents many of the drawbacks of existing tools:
Pandora integrates all stages involved in the evaluation process, it operates in
real-time, it does not depend on specific cache software, and it can be adapted
to any specific system configuration. We detail how this can be achieved using
the flexibility offered by Pandora. We also present two experiments that illus-
trate the utilisation of these techniques: the first one evaluates the proxy cache
deployed at INRIA Rocquencourt, the second one measures the efficiency of
cooperating caches in an artificial environment. Finally, we describe how we
plan to integrate these measurements inside an auto-adaptative Web proxy
cache.

Key-words: network monitoring, Web proxy cache, measurement, efficiency

* Simon.Patarin@inria.fr
T Mesaac.Makpangou@inria.fr

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Mesure en continu de ’efficacité des caches Web

Résumé : Ce rapport présente comment Pandora, notre plateforme de sur-
veillance flexible, peut étre utilisée pour mesurer 'efficacité d’un systéme de
caches Web coopérants. Cette méthode countourne grand nombre d’incon-
vénients présents dans les outils existants: Pandora travaille en continu, ne
dépend pas de logciel de cache spécifique et peut étre adapté a toute confi-
guration systéme. Nous détaillons comment ceci peut étre atteint grace a la
flexibilité offerte par Pandora. Nous présentons également deux applications
qui illustrent ’utilisation de ces techniques: la premiére évalue le cache déployé
a 'INRIA Rocquencourt, la seconde mesure 'efficacité de caches coopérants
dans un environnement artificiel. Enfin, nous décrivons comment nous proje-
tons d’intégrer ces mesures au sein d’un cache Web auto-adaptatif.

Mots-clés : surveillance réseau, cache Web, mesure, efficacité

On-line Measurement of Web Proxy Cache Efficiency 3

1 Introduction

Web proxy caches are deployed almost everywhere, at organisation bound-
aries as well as at ISPs. Proxy caches improve latency when retrieving Web
documents while reducing the overall network traffic on the Internet. Proxy
cache administrators spend some effort configuring the caching software and
determining their suitable placements in order to obtain the best achievable
quality of service, with respect to user demands. However, despite this effort,
the efficiency of caches may decline over time. Indeed, the efficiency of a given
caching infrastructure depends heavily on the actual use of the caches: num-
ber of users, type of requested documents, load of machines running caches.
Since these characteristics are subject to change, it is unlikely that any partic-
ular configuration and deployment will remain effective during the whole cache
life cycle. Therefore, to maximise the benefits offered by Web proxy caches,
administrators should reconfigure the existing infrastructure as the traffic char-
acteristics evolve; this implies frequent measurements of cache efficiency.

This raises two distinct issues. First, how often should one perform mea-
surements? With respect to the frequency of evaluations, it is important to
be able to react to sudden modifications (flash crowds, network or servers
failures), as well as slower ones with strong trends (growing user community,
increasing use of multimedia documents). The appropriate frequency depends
mainly on the impact of the cache’s efficiency on the actual quality of service.
Hence the best choice of frequency is particular to each system. Each adminis-
trator should be given a way to adapt the measurement frequency of his caches,
taking into account the objectives in terms of overall service improvement and
the effect of the degradation of performance. Second, how to cope with the
inherent subjectivity of the notion of efficiency? The suitable efficiency metric
depends on the goals defined by the cache administrators; the same level of
performance may lead to different experiences by different people in different
environments. It must be customisable. Examples of basic metrics that can
be used include the consistency of the returned documents, bandwidth savings
and latency savings.

Regardless of which metric is considered, the measurement of cache effi-
ciency requires three distinct steps. First, one needs traces recording the be-
haviour of the system of caches. Two different methods can be used to obtain

RR n° 4782

4 S. Patarin €& M. Makpangou

these traces. The obvious one is to use log files that all caching software gen-
erates. However, this technique is overly simple because those logs often lack
information and, even worse, sometimes contain inaccurate information [4]. To
circumvent these drawbacks, one needs to instrument the software; however,
this is not always possible: source code may not be available, or it may require
a large amount of work. Another approach to build such traces is to use passive
traffic monitoring. Several tools performing HT'TP traffic extraction from raw
network packets have been proposed in the past. These include BLT [5] and
Windmill [11], which can collect information pertinent to the measurement of
all necessary metrics. However, none of them consider the biases introduced
by caches. Hence, the traffic characteristics they would capture in presence
of Web proxy caches are corrupted, leading to inaccurate measures of cache
efficiency. The second stage consists of analysing the traces to extract suitable
basic metrics. This is commonly achieved by cache log analyser software such
as Calamaris [1] or Squeezer [8]. They produce statistical summaries of the
given log file in plain text or HTML format. Other packages like WebLog [14]
provide software components (Python classes for WebLog) to manipulate logs
and perform their own analysis. The final step combines the basic metrics pre-
viously extracted to produce the actual efficiency measurement. Trace-driven
simulation tools [21, 7, 28] are widely used.! However, these tools are usually
dedicated to the evaluation of a limited number of metrics. This makes it
difficult to extend them in order to take into account metrics that were not
thought of beforehand. Furthermore, it is difficult to perform such simulations
in real-time, which does not fit our design goals.

What stems from this quick review of existing tools related to cache eval-
uation is that there does not exist a single tool that integrates all of these
three stages. Consequently, it is often necessary to have glue software inserted
between two consecutive steps. This also requires each piece of software to
be executed one after the other, complicating their use on a continuous (and
automated) basis. Finally, the diversity of tools used makes it difficult to have
them deployed easily on a wide range of platforms and environments.

In this report we present how Pandora [15], our flexible monitoring plat-
form, can be used to build a well-integrated tool for on-line efficiency mea-
surements of proxy caches, thanks to its component-based architecture and its

1Such software also usually integrates also base metric extraction step.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 5

intrinsic flexibility. It allows the collection unbiased metrics for an arbitrary
complex system of caches. Pandora uses passive traffic capture and on-line
HTTP trace extraction to monitor the behaviour of the caching system. To
correct the modifications introduced by proxies on the traffic, it performs ac-
tive probes. Then, this trace is analysed on the fly to compute the various
base metrics it uses to evaluate the efficiency of the system.

The rest of the report is organised as follows: first, Section 2 gives a rapid
overview of the architecture of Pandora. Section 3 shows how Pandora can
monitor a system of proxy caches. Section 4 presents the metrics used to
characterise caching systems. Next, Section 5 describes two experiments, re-
spectively in both real and artificial environments, that make use of these
measurements. Section 6 presents some related work concerning the various
techniques and tools developed to monitor and evaluate proxy caches. Finally,
Section 7 concludes this report and presents our future work with Pandora.

2 Pandora

Pandora [15] is a general purpose monitoring platform. It offers a high level
of flexibility while still achieving good performance. In this section we present
briefly the architecture of Pandora and its main characteristics.

Each monitoring task executed by Pandora is split into basic and self-
contained building blocks called components. These components are chained
inside stacks to constitute high level tasks. Stack execution consists of compo-
nents exchanging messages (data structures called “packets”) from the begin-
ning of the stack, to the end.

Pandora provides a framework dealing with (among others) packet demul-
tiplexing, timers, threads and communication. This allows programmers to
concentrate on the precise functionalities they want to implement and pro-
motes code reuse. During stack execution, components are created as neces-
sary and the resources they use are collected after some — user-specified —
time of inactivity.

Pandora may be configured in two different (and complementary) ways.
First, at run time, Pandora reads static configuration files either from disk
or from the network. Second, if told so, Pandora opens a control socket to

RR n° 4782

6 S. Patarin €& M. Makpangou

which commands can be sent.? These commands allow queries of the actual
configuration of the platform and to perform arbitrary modifications on it.
These modifications impact also the stacks being executed. Configuration
itself includes stack definitions and component library localisation. A stack
definition specifies the exact chaining of components while the localisation
of a component tells Pandora which library to load in order to create the
component.

A single Pandora process is able to execute several stacks concurrently.
Furthermore, an unique logical stack may be split into several substacks. These
substacks may be run either within distinct threads inside the same process or
within different processes, possibly on distinct hosts. Indeed, Pandora provides
communication components that allow such stack connections.

Concerning performance, experiments show that the overhead related to
component chaining is limited to 75 ns per component and per packet, on
a 1 GHz Pentium III processor. Pandora also achieves complete HI'TP ex-
traction at a sustained 300 Mb/s rate, when reading a packet dump from a
file.

3 Monitoring Proxy Caches

Our measurements are based on metrics extracted from HTTP traffic traces.
These metrics include latency and round-trip time improvements, bandwidth
savings, documents consistency and number of bytes used for cooperation. Be-
fore explaining precisely (in Section 4) how these metrics are used to compute
a measure of cache efficiency, we present in this section how Pandora captures
them. First, Section 3.1 considers the case of isolated proxy caches, then Sec-
tion 3.2 shows the extra steps necessary to handle the cooperation between
caches.

2Pandora provides an API with C++, C and Guile [23] bindings to ease the construction
of clients.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 7

3.1 Isolated Caches

To evaluate caching system efficiency, one needs to observe traffic both before
and after each cache in the system. The comparison of the traffic observed
around the caches lets us determine the biases they introduce in the traffic.

Therefore, one needs a stack located before the cache to collect a trace of the
traffic between the clients and the cache (called the client trace) and another
one located after the cache to collect the traffic between the caches and the Web
servers (server trace). These two traces are sent to a third analysis stack that
processes them. This last analysis step consists of detecting biases, correcting
them (querying from the originating HT'TP servers for any information missing
from the traces) and then producing the final unbiased trace as explained
below. The exact number of instances of Pandora needed to execute these
different stacks depends on the actual network configuration. Whenever this
is achievable, running all of these on a single machine seeing all the traffic
(e.g. by being connected directly to a border router) is the easiest solution.
However, it is always possible to run each of them on distinct machines, or
even to use several instances of the same stack (capturing different parts of
the traffic).

HTTP extraction has been described previously [15], and we focus on the
analysis stage that matches HT'TP transactions stemming from both traces.
To perform this, we first merge the transactions seen between clients and the
proxy cache and those emitted by the cache itself into a single flow. At this
point, a classifying component examines each request to determine whether
it has been made from a client to a cache or from a cache to a server. We
call them respectively client and server transactions. The precise information
the classifier looks at is the format of the URL (requests made to a cache
should start with http://server/, whereas those directed to servers should
start with / and use the Host header), the Via and X-Forwarded-For headers.
The component looks also at the destination port of the request (3128 or 8080
are assumed to be proxy ports and 80 server ports) to confirm the previous
checks. Additionally, it maintains a set of known proxy cache IP addresses (as
determined by the above checks) so that future requests to or from this cache
are immediately identified. Since the number of proxies in the system is likely
to be very small, this reduces drastically the time spent in this stage.

RR n° 4782

8 S. Patarin €& M. Makpangou

Transactions are then demultiplexed according to their URL. If we find
two transactions for the same URL, one client and one server, it means that
the document was not present in the cache (since a request has been sent to
the Internet) and we just need to generate a record merging the information
collected from both the client and the server trace. In other words, it means
rewriting the client transaction by replacing the cache address with the Web
server address and adjusting the other parameters to reflect what would have
been the request without the cache. Respectively, if we hold a client transaction
and no matching server transaction is found (after a specified timeout) then we
assume that the cache made a hit.? In the case of a cache hit, we still lack the
real characteristics of the request. In order to circumvent this, Pandora sends
standard requests to original servers for those documents. If such additional
requests are sent, they are extracted eventually by the HT'TP monitors and
follow the standard path up to the matching component. This component,
thanks to a private HI'TP header, recognises generated transactions as such,
and uses them to produce records like those in the cache-miss case. There may
be cases where several clients request the same URL from the same cache at
approximately the same time. In such cases, we make use of an heuristic based
on request timestamps to match the different transactions.

If there are several isolated proxy caches, two methods may be used. Either
the stacks described above are deployed around every cache and the output
of each analysis stack is merged into an single “unifying” stack. This merge
is done by using the Pandora’s general purpose network reader and writer
components. Otherwise, if vantage points exist that can capture the traffic for
all caches, then one can use the very same stacks since the matching component
will use of IP addresses of the caches to distinguish the requests made to each
one of them. Both solutions are equivalent (the same trace will be produced)
and the choice depends on the actual configuration of the targeted network.

3.2 Cooperating Caches

When several proxy caches are used within a single organisation, they are of-
ten configured to cooperate with each other. This means that when a cache

3We need to use a timeout since packet losses and clock skews might alter the original
request sequencing.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 9

misses a document it will first try to fetch it from one of the other caches
before sending a request to the server on the Internet. Caches are organised
hierarchically: all caches at the same level are called siblings and may be con-
nected to a higher level parent cache. Top level caches are connected directly
to the Internet. Cooperation involves an inter-cache protocol to let caches
know which documents are available from their peers. We consider here the
Internet Cache Protocol [26|, which is one of the most widely used. ICP is a
simple transactional protocol over UDP.

We need to parse ICP messages, extracted from UDP packets, and match
together the corresponding queries and responses. In order to do so, we first
demultiplex UDP packets according to their “connection” (same pair of source
and destination IP addresses, in indistinct order). Next, ICP messages are
extracted and then demultiplexed according to their unique identifier. Then,
all messages related to the same query (and no others) are passed to a single
“matching” component, whose work is to build a record describing this event.
The metrics we are interested in are: the latency of the request, the number of
bytes transferred, and of course the status of the request (peer’s hit or miss).

We have seen in the case of isolated proxy caches that a single client request
may generate either one (if it is a hit) or two HTTP transactions (if it is a
miss). Here, the total number of transactions is still at least one, but may be at
most n+1, where n is the number of levels in the hierarchy. Indeed, a request is
forwarded for each level in the hierarchy if no cache holds the document. This
counts for n — 1 “internal” requests. Additionally we must take into account
the request made from the client, plus the last request which may be directed
to the original web server or to a peer. All these transactions (for the same
URL) go through the classifying component seen previously. Now, there is
another category (in addition to the client and the server ones) corresponding
to requests made between peer caches, that we call peer transactions.

Then after demultiplexing according to the URL, the matching component
tries to build chains made of a client transaction followed by any number of peer
transactions and a last server transaction. These chains are made according
to IP addresses matching and the natural timestamp heuristic (assuming that
a cache cannot forward a request before it has received it). If we build a
complete chain, it means that the requests made a miss, otherwise the length
of the chain will tell whether the hit was a plain or a peer hit.

RR n° 4782

10 S. Patarin €& M. Makpangou

Finally, ICP and cache transaction records are merged into a single com-
ponent that extracts the suitable metrics from both types of events. This
produces an unified format event containing the values of the measured met-
rics. Such events are forwarded to the evaluation stack described in the next
section.

4 FEfficiency Measurement

This section discusses the method we use to compute the representation of the
efficiency achieved by a system of caches based on the traces produced by the
previous stage. First we describe the metrics we have used then we show how
these may be consolidated.

4.1 Metrics

As soon as the HT'TP traffic trace is collected, it is used to perform the mea-
surement of the efficiency of the system of proxy caches. To this end we define
a set of metrics that maps their input (cache or ICP transactions) into unitless
decimal numbers. Negative values indicate harmful configurations (i.e., those
that actually degrade efficiency), positive values denote improved quality of
service and 0 corresponds to a situation where caches were not present (which
should be the expected minimum of the function in real conditions).

Round-Trip Time Improvement Round-trip time is the time needed for
a request to be completed, from the first byte of the request until the last byte
of the response. To compute the metric, we consider the difference between
the round-trip time for the server transaction and the client transaction. In
the case of a miss, we expect this to be lightly negative, whereas it should be
largely positive in case of hit. Then we compute the ratio of this time with the
round-trip time of the server transaction. Hence the value computed is equal
to the percentage of improvement (or degradation) compared to the situation
without the proxy.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 11

Latency Improvement Latency is the time spent between the last byte of
the request and the first byte of the response. This corresponds to the time
a user will have to wait before seeing anything in her Web browser (assuming
that the browser starts displaying data as soon as it receives it). It captures
both the network latency and the latency of both servers: the Web server and
the proxy cache. This metric is computed like the previous one by considering
the percentage of improvement compared to the no-proxy case.

Bandwidth savings This is simply the number of bytes transferred for each
transaction, including the headers of the request and the response. The same
percentage is computed as for the above metrics, by making the ratio between
the number of bytes saved (or wasted) by the proxy and the total number of
bytes for the transaction without the proxy. One must note that proxy caches
usually add a few headers to the requests they emit. Also, they may transform,
in some circumstances, plain GET requests into “if-modified-since” ones.

Consistency This metric aims at capturing the freshness of the documents
returned by the cache. Indeed when a cache returns a document it holds, there
is no warranty that it has not been updated on the original server. Usually
Web servers include in their response a Last-Modified header giving the most
recent modification time of the document. When determining if a document is
stale, three timestamps are to be considered: ?,, the last modified timestamp
of the document returned by the proxy, ¢, the last modified timestamp of the
original document and ¢, the timestamp at which the request was made. If
t, = to, the document is consistent. If ¢, < ¢, < ¢, the document returned
by the cache is stale. If ¢, < ¢, < t, we cannot conclude anything. The last
case may happen because we cannot ask the server precisely at the time the
client request was done: there is always a small delay (necessary to decide
whether the lack of transaction between the proxy and the server is really a
hit). By reducing the delay, we reduce the probability of this case, but we

4These requests are emitted by caches that want to check if the document they hold is
still valid. They add a header looking like: If-Modified-Since: DATE where DATE is the
timestamp of the last modification of the document. Upon reception of such requests, the
server sends a response with a 304 Not Modified status code if the document has not been
modified or sends a standard 200 0K response along with the new version of the document.

RR n° 4782

12 S. Patarin €& M. Makpangou

cannot eliminate it completely.® Concerning this metric, we compute the ratio
of stale documents with the total number of hits.

Cooperation Efficiency When proxies are cooperating, they necessarily
exchange control information in order to know each other’s cache content. To
capture the efficiency of this cooperation, we compute the ratio of the number
of document bytes fetched between peers with the number of control bytes.

4.2 Consolidation

In order to smooth measurement variations, instantaneous evaluations (per-
formed each time a packet is received) are consolidated. There exist two
consolidation components in Pandora: with or without a notion of history.
Both components use a customisable consolidation function: it is specified
as a symbol loaded from a dynamic library. Common functions are provided
by Pandora (including mean, sum, maximum, minimum and last value) but
one can easily use another one by simply programming it in C. The compo-
nent without history is used to synthesize many individual measurements into
one, representative for a (usually short) specified period of time. The other
component holds past measurements in a fixed-size buffer and evaluates its
function over the whole buffer. This permits having a parameterisable window
width, allowing measurements covering large time scales to be updated more
frequently.

The values produced by the consolidation components can be displayed
as they are computed (e.g., for plotting) or can be used by a mechanism of
alarms which are triggered each time these values, either absolutely or rela-
tively, exceed specified thresholds. Any other exploitation of the results may be
considered: it only requires the implementation of the necessary components;
such more interesting applications are under development and are described in
Section 7.

5Currently, the delay used by Pandora is less than two minutes.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 13

5 Experiments

In this section, we show examples of Pandora’s use as presented above. The
first experiment was conducted at INRIA Rocquencourt during the month of
July 1999 and evaluates the behaviour of its isolated proxy cache. The second
one is a synthetic test run on a LAN to demonstrate the capabilities of our
tool concerning cooperating caches.

5.1 INRIA Proxy Cache Evaluation

distinct users 353
distinct servers 9618
total documents | 535643

Table 1: Characteristics of the INRIA cache trace.

INRIA Rocquencourt is connected to the Internet through a single border
router which sees all outgoing and incoming traffic. For Web access, users have
the choice to use a proxy cache or not.

In this analysis we are only interested in the traffic going through the cache
and we focus on a one week long trace, which corresponds to a usual working
week at INRIA. The characteristics of this trace are presented in Table 1.

Pandora was configured as described in Section 3.1. Figure 1 shows the re-
sults of the efficiency measurements based on this trace. For reasons explained
below, we have chosen not to use the latency metric for this evaluation. Fur-
thermore, we have chosen a time-aggregation factor of one hour together with
a 12 hour large window. Such parameters allow us to consider a sufficiently
large number of events, such that the measurements remain significant, and
they still outline trends in cache efficiency evolution occuring within a single
day of operation.

Efficiency measurements of the INRIA proxy cache are not encouraging.
Indeed, at the time the experiment was run, the proxy cache was still not per-
fectly configured and only a small fraction of outgoing requests (less than one
third) were seen by the cache. Furthermore, INRIA’s good network connec-
tivity makes the configuration of a Web proxy cache rather delicate. Further

RR n° 4782

14 S. Patarin €& M. Makpangou

Sat Sun Mon T

ue Wed Thu Fri
time (days)

Figure 1: Evaluation of the INRIA proxy cache from July 07 to July 13 1999

investigation explains why negative values are observed in both metrics. Con-
cerning bandwidth savings, as we noticed in Section 4.1, the proxy system-
atically adds two HTTP headers (Via and X-Forwarded-For) to the original
request which counts for about 60 bytes (which becomes not negligible for small
documents). Furthermore, the cache always finishes downloading documents
whose retrieval has been interrupted by the client, which is likely to happen
with large documents. The low hit rate does not allow compensation for these
losses. Concerning round-trip time, some delay is accountable to the cache’s
processing of requests, but the main overhead is related to name resolution:
with a standard request, as made by a Web browser without proxy, when the
first packet is seen by Pandora name resolution has already occurred and sim-
ple HTTP monitoring cannot tell how long ago the user typed the new URL.
In the case of requests made through a cache, the resolution of the cache’s
name is immediate and it is up to the cache to make the actual resolution of
the server’s name, and this delay is fully included in the observed round-trip
time. This is why we have not presented the evaluation of the latency metric,
since its results are not significant at all. Pandora is now able to monitor DNS
traffic and, from there, determine this additional latency, but unfortunately
this was not implemented at the time the trace was collected.

Since the time we performed these measurements, the INRIA Web caching
infrastructure has been greatly reworked. We are currently waiting for the
necessary administrative authorisation to make a new series of tests, that we
hope will exhibit better performance.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 15

5.2 Cooperating Squids with Web Polygraph Evaluation

In the second experiment, we would have liked to evaluate the quality of service
provided by a complete system of cooperating proxy caches. Unfortunately,
we did not have the opportunity to perform this test in real conditions. Thus,
we have used the Web Polygraph [24] benchmark suite by The Measurement
Factory to simulate HT'TP clients and servers. This platform has been in use
for 3 years by many Web proxy cache vendors (including Lucent Technolo-
gies, IBM, Compaq, Dell and Microsoft) to compare the performance of their
products.

Controlling both the clients and the servers makes Polygraph able to sim-
ulate a real environment with great accuracy. Indeed, this allows:

e unlimited URL space without any disk storage constraints (documents
are created by the servers “on the fly”);

e representative content type distribution: static and dynamic documents,
embedded images, etc.;

e fine grained control over document life cycles (creation and expiration
time);

e server and client “think” time: documents are not returned immediately
by the servers and clients do not request unrelated documents without
delay, while embedded image requests are performed immediately after
the main document has been fetched.

Technically speaking, the Web Polygraph benchmark is split into two pro-
cesses that share the same configuration file: one implementing the clients
and one implementing the servers. Each of these processes is able to simulate
many different instances of either clients or servers. Each of these instances
is assigned an unique IP address. In order to keep the number of different
machines small, we make heavy use of IP aliasing that allows several addresses
to be bound to the same network interface.

By default, explicit “Expires” headers are systematically included in the
server responses, letting the caches have an optimal consistency policy. This
was done because some cache vendors felt that consistency was not right a
metric to expose to their users. We do not share this point of view and, as
it will be explained below, we have run some tests with a modified version of
Polygraph web server that do not add this header. Besides, Web Polygraph

RR n° 4782

16 S. Patarin €& M. Makpangou

was not designed to benchmark cooperating caches. We had to trick it to
split clients into two halves running on two distinct machines. Each of those
contacts a different proxy cache, but shares the accessible URL space (making
it possible to have cache peer hits).

We used also IP DummyNet [18] to introduce an artificial latency between
the proxies and the servers. As The Measurement Factory did for their own
benchmarks, we used a 40 ms additional delay in both directions (resulting in
a 80 ms total latency) and introduced an average packet loss of 0.5%.

We chose a switched architecture. This means that any communication
between any pair of machines goes through a single router. This allows us to
run a single DummyNet (on the router) and it reduces drastically the amount
of ARP traffic. Furthermore, this configuration is similar to the one now used
at INRIA: proxy caches are located on a different network to the clients, so the
requests to the caches flow through the router, and then requests to the servers
flow through the same router again to reach the external network. Finally, this
allows us to concentrate the vantage points, needed to capture packets, on a
lightly loaded machine (compared to the others involved).

For this experiment, client machines are 500 MHz Pentium III, running
GNU/Linux. The two proxy caches are Squid [25] version 2.4 each running a
1 GHz Pentium III GNU/Linux box. Servers are located on two machines with
the same kind of hardware as the proxies. The router is a FreeBSD 4.4 on a
400 MHz Pentium II. The machine running Pandora is also a 1 GHz Pentium
ITT GNU/Linux that sees all the traffic flowing through the router. Finally, the
network interconnecting all these machines is a switched 100baseTX Ethernet.

Only one instance of Pandora was needed to perform the complete analysis,
running both the cache and the ICP stacks described in Section 3.2.

A typical Polygraph benchmark starts with a cache filling stage. This step
is done in order to perform further measurements with a cache in its usual
(filled) operating state. Then, two successive measurement phases take place.
Each of these steps is separated by idle periods. Our reference experiment
has been set up with the characteristics described in Table 2. Other tests are
variations of this one, and the modifications to the reference one are stated in
Table 3.

Figure 2 shows the evaluation of our three base metrics (round-trip time,
latency, and bandwidth) for our reference experiment. Furthermore, we have

INRIA

On-line Measurement of Web Proxy Cache Efficiency 17

Number of Clients 2 %X 63
Number of Servers 2 x 258

Request Rate 50 req/s
Cache Size 1 GB
Servers Latency 80 ms

Servers Think Time 2.5s
Proxy Cooperation true

Table 2: Reference Web Polygraph experiment.

Name Characteristic
size X2 size 2 GB
think time /2 | server think time 1
no coop. proxy cooperation false
clients /2 | request rate 20 req/s

Table 3: Other tests, compared to the reference.

& & & &
S N e P’
0os O Q SR K S ®
O e S T s St D S B e R Tl LR
Axﬁmfﬁf\‘»—’_\W% L
0.15
g2 o1
0.05
ol
rtt
bytes
latency - ---

-0.05

time (hours)

Figure 2: Evaluation of the three base metrics for the reference Polygraph
experiment with explicit benchmark phases. Phases of the Web Polygraph
benchmark are shown above the frame. The increase and decrease stages cor-
responds to 15 minutes phases where the request request falls from 50 req/s
down to 5 req/s and rises from 5 req/s up to 50 req/s. The two measurement
phases are those called top.

RR n° 4782

18 S. Patarin €& M. Makpangou

indicated in the figure the separations between the various phases. In this
figure the origin for the time axis corresponds to the end of the cache filling
phase, and thus the beginning of the interesting part of the measurements.
Hence, for the following tests, we show only the evaluation performed after
this time. Furthermore, we used for all measurements a one hour-large window
over 5 minutes samples.

The general layout of this graph is rather intuitive: the higher the hit rate
(which corresponds to both so-called top phases), the better the efficiency.
The fact that improvement is seen before the actual end of the cache filling
phase is due to the window on which measurements are averaged: in our case,
each computed value takes into account the measures made 30 minutes before
and 30 minutes after it. One might also wonder why round-trip time and
latency efficiency are substantially inferior to bandwidth efficiency. This may
be easily explained by analysing the way these metrics are computed, using a
very simple model. In this model, we consider that:

e the time ¢; needed to perform a complete HT'TP transaction can be split
into two parts: the time ¢, spent by the proxy to retrieve the document
(either from the server or from its cache) and the time ¢, accounting for
the treatment of the request by the proxy and the transmission of the
document between the proxy and the client: t; = t, + t,;

e when a miss occurs, the time ¢° needed to retrieve a document without
any proxy cache is equal to the time spent by the cache to retrieve the
same document : 0 = ™5,

e the time needed by the cache to process a request is the same whether
this was a miss or a hit: ¢/ = ¢ = ,;

e in case of a cache hit, t" < t™%% and t"! may be neglected.

In the following ¢, denotes the round-trip time cost, N the total number
of documents considered, N the total number of hits among them, H R the
observed hit rate, and ¥ the arithmetic mean of x.

6This implies naturally that each value can only be displayed 30 minutes after the times-
tamp it shows.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 19

~
o
|
et
*3
s
w
V)
|
_@i‘k
3
w
W

£)2
[z ())
(

L misses

=

L misses

Lmisses

Nhits 1 tp
- N N 2 <_t_0)

documents
tp

If we suppose that the byte hit rate is roughly equal to the hit rate (which has
been verified afterwards for our tests), we can see that round-trip time cost
should be lower than bandwidth cost. Indeed, the difference between plain hit
rate and round-trip time cost is the ratio of the average cache processing time
of requests over the average time needed to download documents from their
original location. This tends towards 0 as cache overhead diminishes.

In this figure, we can also see that round-trip time and latency costs are
almost identical and this holds for all the experiments we have made. This is
due to the fact that, with our benchmark settings, average latency is almost
negligible compared to the time it takes to transfer a document over the net-
work. Thus, in the following discussion we will only focus on the round-trip
time cost as the same conclusions apply for latency.

For all different configurations, we show on Figure 3(a) the evaluation of
the bandwidth metric and on Figure 3(b) the evaluation of the round-trip time
metric. This allows us to analyse the influence of the different configuration
variations that we have tested.”

"Of course, one must keep in mind that the conclusions we draw from these experiments
only apply to the specific benchmark we have run and that few generalisations could be
done.

RR n° 4782

20 S. Patarin €& M. Makpangou

035 = 035

03 [yt XY E——

0.2 H

cost

cost

0-2! I R WING o T

015 |-/ 015 o . s
reference /’ reference ———
§. 0.1 i —

0.1 Sizex2 -------- S T e e e S s eI 7.2-3 7R
think time /2 -

N0 Cooj

o coop.
dlients/2 ————-

clients/2 —--—- i
0.05 - . - 0.05

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
time (hours)

time (hours)

(a) Bandwidth (b) Round-trip time

Figure 3: Evaluation of round-trip time and bandwidth metrics.

The two best performing configurations are those with more disk space for
one and with fewer clients for the other. If more space improves hit rate, it
seems that there is a problem with the configuration of the cache. Indeed,
assuming that the replacement policy does not make trivially wrong choices,
this means that the number of stored documents is too small to catch up with
the time period between two accesses to the same document: they must be
discarded beforehand in order to store those freshly downloaded. This could
also explain why the configuration with a smaller number of clients performs
well. Indeed, if there are fewer clients (hence fewer requests made), the time
needed to fetch the same number of documents increases, which allows us to
keep a document longer in the cache. Furthermore, in the latter case, the cache
overhead is smaller since there are fewer simultaneous connections.®

Next we can see that, in our configuration, cooperation was really useful.
Naturally, this improves hit rate, but we can observe that cache request han-
dling is not significantly impacted by this. Looking at the round-trip time
metric indicates even that possible time improvements do not compensate the

hit losses.

8Results that could not be presented here, due to space limitations, confirm this obvious
fact.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 21

Last, the configuration where server think time had been reduced to 1
second exhibits equivalent byte cost compared to our reference configuration,
but worse round-trip time cost. This result is quite straight forward: cache
overhead is almost the same in both cases, meaning that the improvement —
which we measure — is higher when it takes more time to download documents.

0.006

0.005

0.004

cost

0003 -

0.002

reference ——
Sizex2 -
clients/2 -
0 1 2 3 4 5 6 7 8 9
time (hours)

Figure 4: Consistency metric

Figure 4 presents the evaluation of our consistency metric for the reference
configuration and the two configurations that exhibit higher hit rates. The first
thing to see is that the percentage of stale hits remains low for all configurations
(less than 0.6%). However, this figure shows significantly higher stale hit ratios
for the last two ones (more disk space and fewer clients) than the reference.
We explain this phenomenon by the fact that in these configurations document
time-to-live in the cache is longer, which naturally increases the probability of
inconsistency. This transforms a little bit the vision one could have of the
efficiency of these cache settings. Deciding which one is the most suitable for
end-users remains the privilege of the system administrator.

Finally, we show on Figure 5 the results of our measurements of cooper-
ation efficiency. It appears that sibling hits are always much bigger in size
than the traffic generated by the ICP protocol. Then we can see that the
longer the time-to-live of the documents in the caches, the more efficient the
cooperation, which is not surprising. The configuration with server think time
reduced to 1 second is more interesting. The figure shows that in this case
cooperation is less efficient. As the average time needed to fetch documents

RR n° 4782

22 S. Patarin €& M. Makpangou

efficiency

SZEX2 ——mmem
think time /2 -+~
dlients/2 -

0 1 2 3 4 5 6 7 8 9
time (hours)

Figure 5: Cooperation efficiency metric

from servers decreases, cooperation is less used by the proxies because there
are fewer benefits.

What we would like to retain from these tests is that Pandora’s evaluation
lets us analyse precisely the different configurations we tried. It also appears
that examining the different metrics in parallel is much more instructive than
combining them with some sort of compromise function. The accuracy it shows
leads us to think that it could be used efficiently to evaluate real systems. Its
measurements are detailed enough to show small but significant variations that
could have been overlooked otherwise. Of course, with such real systems, one
could not test several configurations and just pick up the best. Yet, Pandora
provides a very convenient and reactive way to inform the administrator of the
cache that some parts of the configuration are to be modified. Furthermore,
one can observe very quickly how the corrections made impact the behaviour
of the cache.

Furthermore, these tests allowed us to validate Pandora in conditions that
we had not met in a real environment. In 12 hours, a single instance of Pandora
analysed about 4 million transactions, representing more than 40 GB of traffic.
For comparison, this number of requests represents about one week of traffic at
INRIA (which counts about 1000 distinct Web users), or more than twice the
number of page views over the same period of time (12 hours) for the whole
OSDN network (which includes sites like Slashdot, SourceForge, Freshmeat
and NewsForge). Furthermore, the machine on which Pandora was running
was at least 80% idle (about 5% in user mode and 15% in kernel mode —

INRIA

On-line Measurement of Web Proxy Cache Efficiency 23

mainly spent in interrupt, handling network frames arrival). During the tests,
the memory footprint of Pandora was around 40 MB.

These experiments also helped us to discover problems that had remained
uncovered beforehand. For example, in our configuration, we noticed that a
single stack was not sufficient to reemit requests in cases of cache hits. Indeed,
given the number of such requests — between 5 and 10 per second — you have
at most 200ms to establish the connection with the server (after this phase,
all open file descriptors are handled by a single select(2) and documents
are read as they are received). Since there exists a 80ms latency between the
clients and the servers, and that it takes a least one round-trip to establish a
connection, very few spare time remains. As the server becomes loaded, this
becomes totally unmanageable and requests are queued, up to the moment
(which arises quickly) when requests are emitted several dozens of minutes
after they are received. At this time, the transactions had been flushed a
long time ago by the component that were interested in it and the request is
perfectly useless. We found that distributing the requests in 8 distinct threads
solved the problem. Doing this with Pandora was only the matter of creating
a new stack, composed by 3 components, all of which existed already.

6 Related Work

Many other studies have been made and many tools exist concerning the mea-
surement of the performance of proxy caches. In this section we focus mainly
on the metrics that have been used in the past to perform such evaluation,
together with the techniques needed to extract them.

We have selected some of these pieces of work that we consider representa-
tive of what has been done in this field. We present them in a concise form in
Table 4. We have also included Pandora at the bottom so that it can be easily
compared to the others. In this table we have shown for each of these studies
the goals that motivated the measurements, the software technique used to
extract the metrics and the exact metrics that were used.

Two metrics are very widely used: hit rate (HR) and byte hit rate (BHR).
Indeed, these have become over time de facto standards to compare various
cache configurations. This comes from the fact that while still being good

RR n° 4782

24 S. Patarin & M. Makpangou
| Reference Goal | Technique | HR [BHR | RTT | Other
Cao [2] policy simulation v/ vV v/ | hops
Rizzo [19] policy simulation v vV
Maltzahn [12] | implementation | simulation v | CPU, mem-
ory, I/0
Wolman [27] | evaluation simulation N v v
Feldmann [6] | evaluation simulation v vV vV
Menaud [13 evaluation simulation v/ V v/ | cooperation
Krishnan [9 evaluation simulation v cooperation
Mahanti [10] | evaluation simulation v/ V
Pierre [16] configuration simulation Vv vV v/ | cooperation,
consistency
Calamaris [1] | characterisation| log analysis N v
Sparks [22] evaluation log analysis v v money
Rousskov [20] | characterisation| instrumentation | / v v | CPU,1/0
Pandora evaluation trace analysis Vv vV v/ | cooperation,
consistency,
latency

Table 4: Comparison of previous cache efficiency measurement tools and met-

rics.

HR: hit rate, BHR: byte hit rate or bandwidth savings, RT'T: round-trip time

or response time improvement

INRIA

On-line Measurement of Web Proxy Cache Efficiency 25

indicators of cache behaviour, they are very cheap to obtain: these discrete
quantities are the most visible effect of the cache on its environment and they
can be directly extracted from log files. Round-trip time improvement (RTT)
is also commonly used, but it does not appear as-is in log files. Without simu-
lation, one can only make statistical assumptions for such a metric (comparing
mean response time for hits and for misses). These assumptions could be in-
correct if requests making cache hits are substantially different from the others.
This will be the case if the byte hit rate is different from the hit rate (meaning
that hit documents are bigger in size) or if these hits come from closer servers
than the average.

Besides, we see that few measurements account for alternative metrics: in
particular, consistency is almost never taken into consideration. Although this
is achievable in a simulation environment, very few traces contain the necessary
information to study this issue. Saperlipopette [16] is an exception: originally,
Saperlipopette used proxy log files collected once a day. Immediately thereafter
a crawler asked original servers the last modification date of document hits.
Since this phase took place up to 24 hours after the actual hit, a non-negligible
part of the documents had been modified in the meantime, preventing any
conclusions from being drawn (see discussion in Section 4.1). The project
leading to Pandora has been started precisely to circumvent this drawback
and Saperlipopette is now able to use traces produced by Pandora.

Little work has been done to evaluate cooperation between proxy caches,
and no specific metrics emerge to characterise the performance of such systems.
Standard metrics are used instead with little insight into the overhead that
cooperation introduces compared to its benefits.

Simulation holds a preeminent share of the software used to obtain cache
performance metrics. A survey of Web cache evaluation techniques [3] by
Brian Davison, which covers most of the studies published about single cache
performance, emphasises this fact. Simulators are indeed very valuable because
they can capture metrics that are not present in log files. However, these tools
are not designed to evaluate caching systems on a continuous basis: they look
much more like batch processing systems.

RR n° 4782

26 S. Patarin €& M. Makpangou

7 Conclusion and Future Work

We showed how Pandora can be used to measure the efficiency of a system of
cooperating Web proxy caches. In particular, we showed how it could extract
pertinent metrics by monitoring raw HTTP traffic in the presence of caches
and evaluate in real-time a specific configuration. We illustrated these issues
with two examples that assess Pandora’s usability in a real environment.
Compared to existing software, Pandora proposes a well integrated support
for the collection, analysis and evaluation stages of efficiency measurement.
Moreover, it easy to take into consideration new metrics for this evaluation
thanks to the flexibility of Pandora. It is usually the matter of a few lines of
code to add a new component that will extract the information and format it
for Pandora. Moreover, the fact that Pandora operates on-line allows one to
evaluate running systems with no perceptible perturbations for their users.
We are now working on a flexible cache project, which will be able to use
monitoring information provided by Pandora to reconfigure itself as the con-
ditions of utilisation change. We have already built a prototype, based on
a flexible cache named C/NN. This cache runs on top of the YNVM [17]: a
dynamic compiler with C semantics. Among many other features outside the
scope of this report, the underlying platform makes heavy use of dynamic
library loading. For example, this can be used to replace a function imple-
mentation at run time, or — which is our case — to pass callbacks between
two distinct programs. Pandora has been adapted to run on the YNWM and
C/NN utilises Pandora’s API to control its execution. Our early prototype au-
tomates the construction of a “site exclusion list”. This list is used by the proxy
to avoid caching documents coming from “close” sites, thus preventing wasting
disk space for documents to which the cache would offer little benefit. In the
prototype, C/NN and Pandora are intimately coupled,® so that the cache can
configure the monitoring performed by Pandora, while being able to receive
its notifications. More precisely, Pandora evaluates a latency based efficiency
metric of the sites seen in the HT'TP requests. When this metric falls below
a low-water mark, C/NN is requested to exclude this site from caching. Later
on, if the metric rises above a high-water mark, the site is removed from the
exclusion list. These marks are dynamically configurable and C/NN sets them

9This piece of software received the name of C/SPAN: C/NN in Symbiosis with PANdora.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 27

according to its internal state (disk utilisation, load). Our goal is to extend
this to permit a complete dynamic reconfiguration of the cache, including its
policies (replacement, consistency).

In the longer term, we are interested in building a system where applications
will be able to contract guaranteed “deals” in spite of the dynamics of the
Internet. These “deals” can be seen as constraints on the quality of the service
that an application requires for its users. In this context, Pandora will help in
evaluating in real-time the achieved quality of service and will request system
reconfiguration when “deals” cannot be guaranteed any longer.

Pandora is publicly available under the GPL license. See http://www-sor.
inria.fr/projects/relais/pandora/ for release information.

References

[1] Cord Beermann. Calamaris. software. http://Calamaris.Cord.de/.

[2] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In Pro-
ceedings of the 1st USENIX Symposium on Internet Technologies and Systems, Mon-
terey, California, December 1997. http://www.usenix.org/publications/library/
proceedings/usits97/full_paplers/cao/cao.pdf.

[3] Brian D. Davison. A survey of proxy cache evaluation techniques. In Proceedings of
the 4th International Web Caching Workshop, April 1999. http://www.ircache.net/
Cache/Workshop99/Papers/davison2-final.ps.gz.

[4] Brian D. Davison. Web traffic logs: An imperfect resource for evaluation. In Proceedings
of th INET’99 Conference, June 1999. http://www.isoc.org/inet99/proceedings/
4n/4n_1.htm.

[5] Anja Feldmann. BLT: Bi-Layer Tracing of HTTP and TCP/IP. In 9th International
World Wide Web Conference, Amsterdam, The Netherlands, May 2000. http://www.
www9.org/w9cdrom/367/367 .html.

[6] Anja Feldmann, Ramon Caceres, Fred Douglis, Gideon Glass, and Michael Rabinovich.
Performance of Web proxy caching in heterogeneous bandwidth environments. In Pro-
ceedings of the INFOCOM °99 conference, March 1999. http://www.research.att.
com/~anja/feldmann/papers/infocom99_proxim.ps.gz.

[7] Syam Gadde, Jeff Chase, and Michael Rabinovich. A taste of crispy Squid. In Pro-
ceedings of the Workshop on Internet Server Performance (WISP’98), June 1998.

http://www.cs.duke.edu/ari/cisi/crisp/crisp-wisp.ps.gz.

RR n° 4782

28

S. Patarin €& M. Makpangou

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Maciej Kozifiski. Squeezer. software. http://www.geocities.com/maciej_kozinski/
w3cache/squeezer.html.

P. Krishnan and Binay Sugla. Utility of co-operating Web proxy caches. Computer
Networks and ISDN Systems, 30(1-7):195-203, 1998.

Anirban Mahanti, Derek Eager, and Carey Williamson. Temporal locality and its
impact on web proxy cache performance. Performance Evaluation Journal: Special
Issue on Internet Performance Modelling, 42(2-3):187-203, September 2000. http:
//www.cs.usask.ca/grads/anm474/papers/perf00.ps.

G. Robert Malan and Farnam Jahanian. An extensible probe architecture for network
protocol performance measurement. In Proceedings of ACM SIGCOMM ’98, Van-
couver, British Columbia, September 1998. http://www.eecs.umich.edu/"rmalan/
publications/mjSigcomm98.ps.gz.

Carlos Maltzahn, Kathy Richardson, and Dirk Grunwald. Performance issues of enter-
prise level Web proxies. In ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, June 1997. http://www.cs.colorado.edu/
“carlosm/sigmetrics.ps.gz.

Jean-Marc Menaud, Valerie Issarny, and Michel Banatre. Improving the effectiveness
of web caching. In Advances in Distributed Systems, pages 375-401, 1999. http:
//www-rocq.inria.fr/solidor/doc/ps00/Caching.ps.gz.

Mark Nottingham. Weblog. software. http://www.mnot.net/scripting/python/
WebLog/.

Simon Patarin and Mesaac Makpangou. Pandora : A flexible network monitoring
platform. In Proceedings of the USENIX 2000 Annual Technical Conference, San
Diego, June 2000. ftp://ftp.inria.fr/INRIA/Projects/SOR/papers/2000/PFNMP_
usenix2000/pandjora-usenix.ps.gz.

Guillaume Pierre and Mesaac Makpangou. Saperlipopette!: a distributed Web caching
systems evaluation tool. In Proceedings of the 1998 Middleware conference, pages 389—
405, September 1998. http://www-sor.inria.fr/publi/SDWCSET_middleware98.
html.

Tan Piumarta. YNVM: dynamic compilation in support of software evolution. In Pro-
ceedings of the Engineering Complex Object-Oriented Systems for Evolution Workshop,
Tampa Bay, Florida, October 2001.

Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Review, 27(1), January 1997. http://info.iet.
unipi.it/~luigi/dummynet.ps.gz.

Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy cache. IEEE/ACM
Transactions on Networking, 8(2):158-170, 2000. http://wuw.iet.unipi.it/~1luigi/
1rv98.ps.gz.

INRIA

On-line Measurement of Web Proxy Cache Efficiency 29

[20] Alex Rousskov and Valery Soloviev. A performance study of the squid proxy on
HTTP/1.0. World Wide Web, 2(1-2):47-67, 1999. http://www.cs.ndsu.nodak.edu/

“rousskov/research/cache/squid/profiling/p/apers/wwwj99.ps.gz.

[21] Junho Shim, Peter Scheuermann, and Radek Vingralek. Proxy cache design: Algo-
rithms, implementation and performance. IEEE Transactions on Knowledge and Data
Engineering, 11(4):549-562, 1999. http://www.ece.nwu.edu/"shimjh/publication/
tkde98.ps.

[22] Michael Sparks, George Neisser, and Richard Hanby. An initial statiscal analysis of the
performance of the UK national JANET cache. In Proceedings of the 4th International
Web Caching Workshop, San Diego, California, March 1999. http://workshop99.
ircache.net/Papers/sparks-final.ps.gz.

[23] Maciej Stachowiak. Guile. software. http://www.gnu.org/software/guile/.

[24] The Measurement Factory. Web polygraph. software. http://www.web-polygraph.
org/.

[25] Duane Wessels. The Squid Internet object cache. National Laboratory for Applied
Network Research/UCSD, software, 1997. http://www.squid-cache.org/.

[26] Duane Wessels and K. Claffy. Internet Cache Protocol (ICP), version 2. National Lab-
oratory for Applied Network Research/UCSD, Request for Comments 2186, September
1997. ftp://ftp.isi.edu/in-notes/rfc2186.txt.

[27] Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Neal Cardwell, Anna R. Karlin, and
Henry M. Levy. On the scale and performance of cooperative web proxy caching. In
Proceedings of the 17th ACM Symposium on Operating Systems Principles, pages 16-31,
December 1999. http://www.cs.washington.edu/homes/nitin/Papers/sosp99.ps.

[28] Roland P. Wooster and Marc Abrams. Proxy caching that estimate page load delays.
In Proceedings of the 6rd International WWW Conference, April 1997. http://www.
scope.gmd.de/info/www6/technical/paper250/paper250.html.

RR n° 4782

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

