F. J. Alauzet-et-p and . Frey, Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. Partie I : aspects théoriques, 2003.

E. F. Azevedo, Are bilinear quadrilaterals better than linear triangles?, SIAM Journal on Scientific Computing, vol.22, issue.1, pp.198-217, 2000.
DOI : 10.2172/10179134

F. Bernardini, Building a digital model of Michelangelo's Florentine Pieta, IEEE Computer Graphics and Applications, vol.22, issue.1, pp.59-67, 2002.
DOI : 10.1109/38.974519

M. Berzins, SOLUTION-BASED MESH QUALITY INDICATORS FOR TRIANGULAR AND TETRAHEDRAL MESHES, Proc. 6th International Meshing Roundtable, pp.427-436, 1997.
DOI : 10.1142/S021819590000019X

J. D. Boissonnat-and-b and . Geiger, Three dimensional reconstruction of complex shapes based on the Delaunay triangulation, RR-INRIA, 1967.

J. D. Boissonnat, R. Chaine, P. J. Frey, G. Malandain, S. Salmon et al., From medical images to computational meshes, Proc. MS4CMS, Rocquen- court, 2002.
DOI : 10.1051/proc:2002001

URL : https://hal.archives-ouvertes.fr/inria-00615907

J. Boissonnat-and-f and . Cazals, Smooth Surface Reconstruction via Natural Neighbour Interpolation of Distance Functions, Computational Geometry -Theory and Application, vol.22, issue.1, 2002.

H. Borouchaki, F. Hecht, and P. J. Frey, Mesh gradation control, Mesh gradation control, pp.1143-1165, 1998.
DOI : 10.1002/(SICI)1097-0207(19981130)43:6<1143::AID-NME470>3.0.CO;2-I

H. Borouchaki, Simplification des maillages de surfaces bas??e sur la distance de Hausdorff, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.329, issue.7, pp.641-646, 2000.
DOI : 10.1016/S0764-4442(00)80017-8

J. R. Cebral-and-r and . Löhner, From medical images to CFD meshes, Proc. Int meshing roundtable, pp.321-331, 1999.

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, 1978.

J. Cohen, M. Olano-and-d, and . Manocha, Appearance-preserving simplification, Comput. Graphics, Proc. Siggraph'98, pp.115-122, 1998.

P. J. Frey, B. Sarter-and-m, and . Gautherie, Fully automatic mesh generation for 3-D domains based upon voxel sets, International Journal for Numerical Methods in Engineering, vol.32, issue.16, pp.2735-2753, 1994.
DOI : 10.1002/nme.1620371604

P. J. Frey and H. Borouchaki, Finite element meshes by means of voxels, Lecture Note in Computer Science, DGCI, pp.1176-115, 1996.
DOI : 10.1007/3-540-62005-2_10

P. J. Frey and H. Borouchaki, Geometric surface mesh optimization, Computing and Visualization in Science, vol.1, issue.3, pp.113-121, 1998.
DOI : 10.1007/s007910050011

P. J. Frey and H. Borouchaki, Surface mesh quality evaluation, International Journal for Numerical Methods in Engineering, vol.43, issue.1, pp.101-118, 1999.
DOI : 10.1002/(SICI)1097-0207(19990510)45:1<101::AID-NME582>3.0.CO;2-4

P. J. Frey and H. Borouchaki, Simplification of terrains by minimization of the local deformation, Proc. Curves and Surfaces fitting, 2002.

P. J. Frey and H. Borouchaki, Surface meshing using a geometric error estimate, International Journal for Numerical Methods in Engineering, vol.7, issue.2, 2003.
DOI : 10.1002/nme.766

P. J. Frey and P. L. George, Mesh generation : application to finite elements, Hermès Science Publ, vol.816, 2000.
DOI : 10.1002/9780470611166

P. J. Frey, Yams : A fully Automatic Adaptive Isotropic Surface Remeshing Procedure, RT-0252, 2001.

P. L. George-et-h and . Borouchaki, Delaunay triangulation and meshing. Application to finite elements, Hermès Science, vol.432, 1997.

P. L. George, Premières expériences de maillage automatique par une méthode de Delaunay anisotrope en trois dimensions, RT-0272, 2002.

J. A. Gregory, SMOOTH INTERPOLATION WITHOUT TWIST CONSTRAINTS, Computer Aided Geometric Design, pp.71-87, 1974.
DOI : 10.1016/B978-0-12-079050-0.50009-6

A. Guéziec, Surface simplification inside a tolerance volume, IBM Research Report, p.20440, 1996.

B. Hamann, Curvature approximation for triangulated surfaces, in Geometric Modelling , Computing Suppl, 1993.

E. Hartmann, A marching method for the triangulation of surfaces, The Visual Computer, pp.95-108, 1998.

P. S. Heckbert-and-m and . Garland, Survey of polygonal surface simplification algorithms, Proc. Siggraph'97, 1997.

H. Hoppe, New quadric metric for symplifying meshes with appearance attributes, Comput. Graphics, Proc. Siggraph'00, 2000.

A. E. Johnson and M. Hebert, Control of Polygonal Mesh Resolution for 3-D Computer Vision, Graphical Models and Image Processing, vol.60, issue.4, pp.261-285, 1998.
DOI : 10.1006/gmip.1998.0474

A. D. Kalvin-and-r and . Taylor, Superfaces: polygonal mesh simplification with bounded error, IEEE Computer Graphics and Applications, vol.16, issue.3, pp.64-77, 1996.
DOI : 10.1109/38.491187

L. Kobbelt, S. Campagna, and H. P. Seidel, A general framework for mesh decimation, Proc. Graphics Interface'98, pp.43-50, 1998.

M. Levoy, The digital Michelangelo project, Proceedings of the 27th annual conference on Computer graphics and interactive techniques , SIGGRAPH '00, 2000.
DOI : 10.1145/344779.344849

R. Löhner, Regridding Surface Triangulations, Journal of Computational Physics, vol.126, issue.1, pp.1-10, 1996.
DOI : 10.1006/jcph.1996.0115

W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, ACM SIGGRAPH Computer Graphics, vol.21, issue.4, pp.163-169, 1987.
DOI : 10.1145/37402.37422

D. P. Luebke, A developer's survey of polygonal simplification algorithms, IEEE Computer Graphics and Applications, vol.21, issue.1, pp.24-35, 2001.
DOI : 10.1109/38.920624

J. Montagnat-and-h and . Delingette, A review of deformable surfaces: topology, geometry and deformation, Image and Vision Computing, vol.19, issue.14, pp.1023-1040, 2001.
DOI : 10.1016/S0262-8856(01)00064-6

G. Taubin, Curve and surface smoothing without shrinkage, Proceedings of IEEE International Conference on Computer Vision, pp.852-857, 1995.
DOI : 10.1109/ICCV.1995.466848

G. Turk, Re-tiling polygonal surfaces, Computer Graphics, Proc. Siggraph'92, pp.55-64, 1992.

D. J. Walton and D. S. Meek, A triangular G1 patch from boundary curves, Computer-Aided Design, vol.28, issue.2, pp.113-123, 1996.
DOI : 10.1016/0010-4485(95)00046-1

I. Unité-de-recherche-inria-rocquencourt-domaine-de-voluceau-rocquencourt-bp, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38330 Montbonnot-St, pp.105-78153, 2004.

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399