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Abstract: Thsi paper investigates the geometry of non-zero constant mean
curvature surfaces with radial metric, putting an emphasis on the link be-
tween the Hopf differential and the extrinsic geometry. New asymptotic
estimations of the metrics are given at the umbilical point and at infinity.
The last section proposes an algorithm for numerical constructions.
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Géométrie et aspects numériques des surfaces
CMC à métriques radiales

Résumé : Ce papier étudie en détail la géométrie des surfaces à courbure
moyenne constante non nulle avec une métrique radiale, en mettant en lu-
mière le rôle la différentielle de Hopf dans la géométrie extinsèque. Nous
démontrons en particulier des estimations nouvelles de la métrique près du
point ombilic et à l’infini. Enfin, nous proposons un algorithme de construc-
tion numérique de ces surfaces.

Mots-clés : Surfaces CMC, différentielle de Hopf, ÉDO, équations de Gauss–
Mainardi–Codazzi, intégration numérique, visualisation.



Smyth Surfaces 3

1 Introduction
Shapes study and description are the main subject of the branch of Differ-
ential Geometry concerned with the theory of sub-manifolds. According to
the fundamental theorem of that field, the bulk of the work is the analysis
of the well-known Codazzi–Mainardi and Gauss–Codazzi equations. Right
now, there is no known effective methods to tackle the general problem of
shape description based on knowledge about the Gauss and Codazzi partial
differential relations — although some preliminary work have been done by
É. Cartan using his method of moving frame. In practice, the shapes under
study in specific contexts exhibit some particular geometry. That additional
information often proves to simplify the equations investigations. In this
article, we conduct that project for surfaces with constant mean curvature
with a 1-parameter group of intrinsic symmetries, ending up with an effec-
tive symbolic and numerical algorithm for the construction of such surfaces.

The interest in surfaces with constant mean curvature originates from
isoperimetric problems and variational problems. Classical geometers knew
that a smooth surface, with minimal area, that spans a given contour ought
to have opposite principal curvatures everywhere — such surfaces are called
minimal surfaces. Analogously, it can be shown that a closed surface, with
minimal area, that encloses a given volume has a non zero constant mean
curvature everywhere. The French geometer Gaston Darboux [5] pointed
out that the rôles played by Gaussian curvature in Geometry and mean cur-
vature in Physics give the greatest importance to the construction and study
of surfaces on which either of those curvature functions are constant.

The construction and the study of constant mean curvature surfaces have
prompted geometers to develop various representations. For minimal sur-
faces, the theory is relatively well understood thanks to works by K. Weier-
strass and A. Enneper who reduced the problem to an issue in the theory
of Complex Analysis and Algebraic Geometry, exploiting the holomorphic
character of the associated Gauss maps. For non-zero constant mean cur-
vature surfaces (CMC surfaces for short), the situation is dramatically less
understood because their Gauss maps are no longer holomorphic: They are
merely harmonic.
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4 Gabriel Dos Reis

It should be emphasized that the value of explicit (numerical) construc-
tion of such surfaces should not be underestimated. Apart from the CMC
surfaces of revolution — discovered and classified by Ch. Delaunay [6] more
than a century and half ago — and the trivial examples of round spheres and
cylinders, the theory of CMC surfaces remained stalled since the 1950s un-
til mid 1980 when H. Wente [15] positively answered a famous question of
H. Hopf by abstractly constructing a CMC torus. It is U. Abresch [1] who, in-
trigued by the appearance of the numerical constructions based on Wente’s
paper, was able to geometrically characterize Wente’s tori. That characteri-
zation then incitated U. Pinkall and I. Sterling [12], A.I. Bobenko [3] to apply
soliton theory to the study of CMC tori. In all those works, the numerical
simulations have played fundamental rôles in suggesting several possible
geometric facts that were eventually proved true.

Recently, J. Dorfmeister and his coworkers [7] have derived a device
(called DPW method) that theoretically constructs all CMC immersions of
simply connected domains; their methods heavily uses abstract theories of
loop group factorizations, starting with holomorphic potentials. However,
the factorizations steps — constructions happening in an infinite-dimensional
Lie group — still not well understood seriously hinder the derivation of ge-
ometric properties from the defining holomorphic potentials. Among the
rare geometric invariants one can read off from the DPW recipe, appears
the Hopf differential. We have settled to understand how that quadratic dif-
ferential influences the external geometry of a CMC surface. In the present
paper we carry out that project for CMC surfaces with internal rotational
symmetry.

This paper investigates the geometry, algorithmic and numerics of con-
stant mean curvature surfaces with radial metrics discovered by Brian Smyth [13].
These surfaces have been studied by various geometers [13, 14, 4]. The
paper of Timmreck et al. [14] attempted to prove their properness, but it
contains a serious gap. The paper of Bobenko [4] investigated the cone
bounded-ness of these surfaces through the theory of Painlevé equations
but it didn’t address the properness of the immersions. In this article, we
give a complete proof of the properness of Smyth surfaces, hence providing
the first rigorous demonstration of that fact. By taking a global approach (as
opposed to [14] and [4]), we are able to give a correct proof, initiate a frame-
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Smyth Surfaces 5

work for investigating more general Smyth-like surfaces [8, 9], give new
asymptotics of the metric (therefore asymptotic behavior of both the intrin-
sic and extrinsic geometries). We also set up an algorithm, based on the
Gauss, Weingarten and Gauss–Codazzi equations, for numerical construc-
tion of Smyth surfaces. The pictures shown in this paper were obtained by
variations on that algorithm.

This paper is organized as follows. Section
�
2 recalls basic facts from the

classical theory of surfaces and settles notations; in particular it derives an
analytic representation (which we call Bonnet representation) of sufficiently
smooth immersions in the Euclidean � -dimensional space ��� in terms of
their underlying Riemann surfaces, metrics, mean curvature functions and
Hopf differentials. Section

�
3 reduces the problem of constructing constant

mean curvature immersions of the planes with intrinsic rotational symme-
try to that of solving a singular Differential Equation. In section

�
4 we prove

the existence and uniqueness of the solutions (with the obvious initial con-
ditions) to the equation obtained in the preceding section; that proves the
existence and uniqueness — up to rigid motions — of Smyth surfaces. The
section

�
5 gives an asymptotic expansion of the metric near the umbilical

point; this result appears to be new. The section
�
6 is devoted to carrying

out various asymptotic expansions at infinity, with a corollary that Smyth
surfaces are properly immersed. In section

�
8 we study the geometry of

the "legs" of Smyth surfaces. Finally, in section
�
9 we derive an algorithm

for numerical construction of Smyth surfaces; that section illustrates how a
combination of symbolic and numerical methods can lead to effective and
powerful tools of visualization and investigation in Differential Geometry.

2 Basic facts from classic theory of surfaces
Throughout this article, a surface is defined to be a smooth immersion of a
topological space in the Euclidean � -dimensional space. To every surface� � ���	��

������ ������� � � , there corresponds the so-called first fundamental form
defined by ���� ������� � � � � � � � �"!

RR n° 4763



6 Gabriel Dos Reis

on the tangent bundle � � � � . A local coordinate system
��� ��� �

is said isother-
mic for

� � �
if the following relations hold:

� � � ������ ��� ��� � � �� ��� ��� �
	 ����
�� � ��� � ������ ��� ��� � � �� ��� ��� ��	 and
��� � ������ ��� ��� � � �� ��� ��� ��	 �����

It is known that any twice-differentiable surface admits a local isothermic
coordinate around all points (see [11]). Furthermore, if

��

��� � � ���
is orientable

then there exists an isothermic local coordinate system for
� � �

. It follows
that any orientable twice-differentiable surface possesses an underlying Rie-
mann surface structure.

We define the Gauss map of an immersion
� � �

as the unit normal vector
field along

� � �
according to the identities� � � ������������ ��� �

where
� � ����� �"!#� � � � �� � � � � ��� ���"!#� � � � �� � �

The local deviation of
� � �

from its tangent plane is measured by the second
fundamental form � ���� ��� � � � � � � � � � � � ! �
This quadratic form is associated with the shape operator $ � � � (or Weingarten
map) relatively to the first fundamental form� � � � � $ � � � �&%% %����(''' � � � ��� � � �)% % % ��'' ' � � � � � � ��% % % � $ � � � �*' ' ' � � �
The principal curvatures (resp. directions) of the surface

� � �
are the eigenval-

ues (resp. eigen-directions) of the shape operator. Moreover, the algebraic
invariants + � � ���-,.0/21 $ � � � and 3 � � ��� �4� / $ � � �
are actually geometric invariants and called the mean and Gaussian cur-
vatures of the surface

� � �
. The interested reader may consult [5] for further

details.
If, in an isothermic local coordinate

�&� �5� �
, the second fundamental form

is written � � � � ���76 � � 
98 .;: � � � � 8=< � � 
 �
INRIA



Smyth Surfaces 7

then the second variations of the vector position
� � �

and the first variations of
the normal field are respectively given by the Gauss equations��������� ��������

� 
 � � �� � 
 � ���� � � � � �� � � ���� � � � � �� � 8 6 � � �� 
 � � �� � � � � ���� � � � � �� � 8 ���� � � � � �� � 8 : � � �� 
 � � �� � 
 � � ���� � � � � �� � 8 ���� � � � � �� � 8=< � � �
�

(1)

and the Weingarten equations���� ��� � �
� �� � � � �;!(
�� � 6�� � � �� � 8 : � � � �� � 	� � � �� � � � � !(
�� � : � � � �� � 8�< � � � �� � 	

�
(2)

For future reference, we will set up some general equations (following
[8] which contains expanded details), using the complex coordinate � �� 8�� � �
	 ����


derived from an isothermal local coordinate
�)� � � �

. Firstly, let
us consider the complex-valued function � defined by� � � � � 6 � <. � � : �
It is easily seen that the object � � � 
 is a quadratic differential on

��

� � � � �"�
and that its zeros precisely correspond to the umbilical points of the surface� � �

. Secondly, a curve ���� � � � ��� ��

� � � � �"�
drawn on the surface

� � �
is a line of

curvature if and only if it is a solution the differential equation

� ��� � � � � � � � � � �� � 	 
�� ��� � (3)

Thirdly, the geodesic curvature of the curve
� � � � � � � � � is given by the formula

(see [8]) ��� � � � ��� !#��� ��� � � � 8 ������ � 	 � (4)

RR n° 4763



8 Gabriel Dos Reis

where

���
designates the curvature of the plane curve � � � � and � � its outer

normal.
Finally, the compatibility conditions for the systems of partial differential

relations (1) and (2) are respectively given by the Codazzi–Mainardi equa-
tions � �� � � � 
�� � +� � and

� �� � ��� 
�� � +� � (5)

and the Gauss–Codazzi equation
� � 8 + 
���
�� ��� � � 
 �;!(
�� ��� � (6)

That the first and second fundamental forms suffice to describe com-
pletely the local geometry of a surface is the content of Fundamental Theo-
rem of the theory of surfaces:

Theorem 1 (O. Bonnet) Given two real-valued functions � ,
+

and a quadratic
differential � � � 
 defined on a Riemann surface � , all subject to the differential
relations (5) and (6), there corresponds a unique immersion — up to rigid motions
of � � — of its universal cover

� � � ���� ��� � � with fundamental forms

� ��� 
�� � � � � 
 and
� � � � . � � 
98 + � 8 � . � � 
 �

3 CMC surfaces with radial metrics
In a remarkable paper published in 1841, Ch. Delaunay [6] determined and
classified all CMC surfaces of revolution. He identified the embedded (resp.
immersed) ones as the roulette of ellipsis (resp. hyperbola). Nearly a cen-
tury and a half later, B. Smyth [13] set the project to determine all complete
CMC surfaces with a continuous group of intrinsic symmetries — the exter-
nal rotational symmetry is not necessarily assumed. He came to the follow-
ing conclusions:

1. To every natural number � ��� corresponds a , -parameter family of
complete, isometric conformal immersions

� � � 
	 ��
 ��� � � with mean
curvature , of the plane such that the induced metric is invariant by

INRIA



Smyth Surfaces 9

rotation through
� � 


corresponding to the (unique) umbilical point
(of order � ).

2. Any complete CMC immersion admitting a continuous , -parameter
group of intrinsic isometries is contained in the associated family of a
Delaunay surface or of the above mentioned surface.

We will denote by
� �� �� � 	

the surfaces discovered by B. Smyth [13]. The
approach taken in this paper to study the geometry of the immersions

� �� �� � 	
is

fundamentally different from that of [13] since our main concerns are:

• the rôle played by the Hopf differential;

• algorithmic (numerical) construction of
� �� �� � 	

;

• properness of the immersions and what they look like.

We would like to emphasize that none of those points were addressed in
B. Smyth’s paper.

From the Codazzi–Mainardi equations (5), it is easily seen that the mean
curvature function of a surface

� � �
is constant if and only if its Hopf differ-

ential is holomorphic. Therefore a simply connected CMC surface is com-
pletely determined — up to rigid motions — by a holomorphic quadratic
differential � � � 
 and a function � solution of the Gauss–Codazzi equation
(6). It may be observed that if the pair

� � � � � solves equation (6) then so
does the pair

� � � � ��� � � for � ���
. Therefore, a constant mean curvature

surface always pops up as part of a family of isometric immersions; that
family is called the associated family. Furthermore, if we require the metric� � � 
�� � � � � 
 to have a rotational symmetry, then after an eventual trans-
lation, the function Q is monomial. It may be shown (see [8, Chapter 4])
that after a possible change of isothermal coordinate, the function � may be
written � � � � � + � 	 , with � � � .

As noted at
�
2, the lines of curvature of a surface are the trajectories of its

associated Hopf differential. For the Smyth surfaces, it is readily seen that
the lines of greatest curvature are given by

� ��� �	��

���� ��� 
���� / � 	 ��

�� ����� � 8 .. �
RR n° 4763



10 Gabriel Dos Reis

whereas the lines of the smallest curvature are given by

� � � � ��

�� � � � 
���� / � 	 ��

�� � 
�� � 8 .. � �
Each foliation contains

� � 8 . � critical rays that meet at the umbilical point,

n = 0 n = 1 n = 2 n = 3

Figure 1: Horizontal trajectories of � 	 � � 

the angle between two consecutive rays being ��� � � 8 . � . This pattern is pre-
served by conformal parameterization. Before getting into the core details
of determining the metrics of

� ��� /�� 	 , let us remark that the quantity
+ 
 � 
��

is invariant by rigid motions and scaling transformations in ��� . Therefore,
we define � � + � �
	���
 �
We will see later that

�
is the initial velocity of the geodesic emanating from

the origin.
With the above data, the construction of complete CMC surfaces with an

intrinsic rotational symmetry is essentially an exercise in integration of the
singular differential equation (reduced form of the Gauss–Codazzi equa-
tion) � 
 �� 	 
 8 ,	 � �� 	 8 + 
���� 
�� � 	 
 	 � !(
������ � � (7)

with the natural initial conditions� � � � ��� � �+
and

� �� 	��������� � � � � (8)

INRIA



Smyth Surfaces 11

4 Existence and uniqueness
Since the differential equation (7) is singular at the origin, the theorem of
Cauchy–Lipschitz is no longer directly applicable. However the theory de-
veloped by Baouendi and Goulaouic [2] ensures the existence and the unique-
ness of a maximal solution � 	 defined on an interval � � ��� 	 � , satisfying the
initial condition (8). As a consequence, we get the existence of CMC immer-
sions of � ��� ��� 	 �

with intrinsic rotational symmetry. We want to prove that� 	 � 8��
. To that end, we define the following functions on 	 � �
� 	 �

� 	 � 	 � � � 	 � 	 � � � . � � 	 � (9)

� 	 � 	 � � ,. 	 	 � � � 	� 	 	 
 8 . + 
 � � � � 
 � 	 � (10)

The function
� 	

may be thought of as a reduced energy function. We ob-
serve:

Lemma 1 The function
� 	

has a (finite) limit at
� 	

.

Proof. The change of dependent variable (9) transforms the differential equa-
tion (7) into � 
 � 	� 	 
 8 ,	 � � 	� 	 8�
 + 
 	 	 � � � � � 	 � 
�� � � 	 � � �
from which we conclude that� � 	� 	 � � � 8 .. 	 	���� � � � 	� 	 	 
 � (11)

So, the function
� 	

is decreasing; therefore, being non-negative, it has a limit
at infinity. �

For future reference, we denote by
� 	 � � �

the value of the limit of
� 	

at
infinity. We are now prepared to state:

Theorem 2 The differential equation (7) has a unique solution defined on all
� �

satisfying the initial conditions (8).

RR n° 4763



12 Gabriel Dos Reis

Proof. This follows from the previous lemma and the following classical
result in the theory of Differential Equations (see [10]):

If the function
� � 	 �����

is locally Hölderian in the first variable
and locally Lipschitzian in the second variable and the function� ��� 
 � � � ��� � � is a maximal solution of the differential equation� 
 ���	 
 8 ,	 � �� 	 8 � � 	 ����� ���

� � � � ���
and

� �� 	 ���� ��� � � � �
then either

•
� � 8��

; or else

• there exists a real number ���
�

such that
� � �
�
	���


� � � 	 � � � 8��
and

� � �
�
	���


����
� ���	 ���� � 8�� �

Let us assume that
� 	

is finite; then, the relation (10) defining the reduced
energy

� 	
and the lemma 1 imply that both � 	 and

� � 	 � � 	 are bounded near�
, but then that contradicts the result quoted above. �

So, we have proved the existence of CMC immersions of the plane with
intrinsic rotational symmetry. Their completeness will be proved later. It
may be observed that when � � �

, then the trivial solution � ��� � is the
only constant solution: It corresponds to the round cylinder of radius , � . + .

5 Asymptotics near the umbilical point
The behaviour of Smyth surfaces near the umbilical point has not received
much attention in the literature. Here we prove the following result (which
seems to be new):

INRIA



Smyth Surfaces 13

Theorem 3 Any solution � 	 of the equation (7) with the initial conditions (8) has
the asymptotic expansion� 	 � 	 � � � � �+�� , 8 ��� �
 � 
�� 8�� � 	 
 	 � (12)

near
	����

.

Proof. We may remark that since � 	 is analytic and we are looking for its
Taylor expansion up to order

. � , the right hand side of the equation� 
 �� 	 
 8 ,	 � �� 	 8 + 
 � 
�� � + 
 	 
 	 � !(
��
may be safely neglected and the resulting equation — with the stated initial
conditions — is that defining the function appearing in the right hand side
of asymptotic expansion (12). �

We would like to point out that the metric

�	� � � 
+ 
 � � � � 

 , 8 � ��� � �
 � 
�
 

is that of a round sphere, and since a CMC surface is uniquely determined
by its metric, it appears that

� �� �� � 	
is asymptotic to a sphere at the origin, and

that the accuracy improves as � gets high.

6 Asymptotics at infinity
A corollary of lemma 1 is the following estimations:

� 	 � 	 � ��� � , � and

� � 	� 	 ��� � 	 	�� 
 � � 	 � � �
(13)

We may conclude that for ��� , , the surfaces
� � � / � 	 are complete. For the

purpose of deriving better asymptotic behaviours, we may state

RR n° 4763



14 Gabriel Dos Reis

Figure 2: Smyth surfaces near the umbilic for � � � and � ���
INRIA



Smyth Surfaces 15

Lemma 2 The function 	 �� ,	 	 ��� � � � 	� 	 	 

is integrable at infinity.

Proof. Indeed, according to the relation (11), we have
� � �
���

,	 	���� � � � 	��	 	 
 � 	�� .� 8 . � � 	 � � � � � � 	 �
� 
 � � �

The assertion claimed in the lemma is therefore equivalent to that of the ex-
istence of a limit for

� 	
at infinity; something lemma 1 already ensures. �

The next assertion we make is:

Lemma 3 The function 	 �� � � � � 
 � 		
is integrable at infinity.

Proof. Consider the quantity' �
�
� �
� 
 � � � � �

���
,	 	���� � � � 	� 	 	 
 � 	#�

An integration by parts yields' �
�
� �
� 
 � � 
 � 		 	 ��� � � 	� 	 
 � �

���
8 � � �

���
� � 8 .	 � � 	� 	 8 
 + 
	 ����� � � 	 � 
�� � � 	 	 � 	 ��	#�

However, the estimations (13) imply
� � �

� � 	
� � 
 � 		 	 ��� � � 	� 	 
 � �

���
� � � 	

�

	���� � � 	�
�

�
The same estimations give� 8 .	 	 � 
 � � 	� 	 � 	 ��� � ,	 
 	 �
RR n° 4763



16 Gabriel Dos Reis

thus the integral � �
�

� 8 .	 	�� 
 � � 	��	 � 	 � 	
is well-defined and has a finite value. Since lemma 2 implies that the quan-
tity
' �

�
� �
� 
 � has a limit as � 
 goes to infinity, one concludes the integrability

of the function 	 �� � 		 � � � � � 	 � 
 � � � 	 �
But then, the function � 	 being bounded at infinity — according to estima-
tion (13) — one sees that the claim of the lemma follows at once. �
Now, it is obvious that according to the identity (10) and the two lemmas
we just proved, we have established the following result:

Theorem 4 The function
	 �� � 	 � 	 � � 	 is integrable at infinity.

As a corollary, we have � 	 � � � � � � �
�
	
� � 	 � 	 � � �

(14)

� 	 � 	 � � � � , ��� � � 	� 	 � � � 	 	�� 
 �
and � 	 � 	 � � � . � � 	 8�� � , � � (15)

We may observe that all Smyth surfaces corresponding to � � � have funda-
mental forms asymptotic to those of the round cylinder with radius , � . + .

For the purpose of obtaining further asymptotics, we will use a varia-
tion on the Prüfer method. To that end, it will be helpful to introduce the
functions �

	
and �

	
defined on

����
according to the relations

�
	 � ,� 	 � � 	� 	 �

(16)� � 	� 	 � ��� . 	 	 � 	 ��� � � 	 and � . + � � � � � 	 � � � 	 � 
�� � 	 � (17)

Then, it follows by differentiation that

�
	 � 	 � � � � 8 .	 � � � 
 � 	 (18)�

�
	

��	 � . + 	 	�� 
 � 
 � � � 	 � � 8 .. 	 ��� � � . � 	 � � (19)
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Smyth Surfaces 17

Since we know that the function � 	 tends to zero at infinity, if follows from
the above equality that the following estimation holds:�

�
	

� 	�� . + 	 	 � 
 � 	 � � �
As a consequence we have the following lemma:

Lemma 4 There exists real positive numbers
� 	

and �
	

such that the function �
	

is a diffeomorphism from � � 	 � � � onto ��� 	 � � � . In particular, the function � 	 is
oscillating.

We are now prepared to understand the rate of attenuation of the re-
duced energy function

� 	
.

Theorem 5 The function

� �� � �
� �

� 
�� � . � 	 �	 � 	
has a limit at infinity.

Proof. Take a real number �
�
�
�

such that
�
�
	
� ��	 � � for all

	 � �
�
; set

� 	 � 	 � � 	 � � 	� 	 �
Then for � 
 � �

�
, an integration by parts yields

� � �
���

� 
�� � . � 	 �	 � 	 � 
 � � � � . � 	 �. � 	 

� �
���
8 ���

�

� � 	��	 ����� � . � 	 �. � 
	 ��	#�
The first term of the right hand side behaves as follows

� � �
� � 	
� 
 ��� � � . � 	 �. � 	 


� �
� �
� � ����� � . � 	 �. � 	 � � � � �

The second term may be dealt with by observing that� � 	� 	 � + � � 8 . � 	 	�� 
 � , � . � 
�� � . � 	 � � � 
�� � � 	8 � � 8 . � 

 	 � � � � 
 � 	 � � 	 	���� � 	 ����� � . � 	 ���
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18 Gabriel Dos Reis

from which we deduce, 8�� � , �. � 
	 � � 	� 	 � � 8 .. + , � . � 
�� � . � 	 �	 	�� 
 � 
 � 
 � � � 	8 � � 8 .. + 	 
 ����� � 
 � 	 �. 	 	�� � � � � � � . � 	 �. + 
 � 		
� � � � � � . � 	 �. + 
 � 		 8 � � ,	 
 	 �

Then, it is easily seen that the limit
� � �
� � 	
� � � �

�

� � � 	��	 ��� � � . � 	 �. � 
	 � 	
exists; the claim then follows at once. �

We arrive at the key estimation of this section:

Theorem 6 There exists a positive real number
�

such that� � �
�
	
� 	 ��� � � � 	 � 	 � � � �

Proof. By definition — equation (16) — we have

� 	 �
� 
 � � � 	 �

�
� � ��� � � � �

���
�
	 �

for � 
 � �
�

and �
�

large enough. But then equation (18) yields
� � �
���
�
	 � � � � �

���
� 8 .. 	 � , � � 
�� � . � 	 � � � 	

� � � 8 .. � � � 

�
� 8 � 8 .. � � �

���

� 
�� � . � 	 �	 � 	#�
And theorem 5 asserts that the second term of the right hand side has a finit
value as � 
 goes to infinity. �
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Smyth Surfaces 19

Theorem 7 For all positive real number � , the limits of the functions

� �� � �
� �

� 		 and � �� � �
� �

� 
�� . � 		 �
exist as � approches infinity.

7 Symmetries
In this section, we establish the existence of extrinsic reflectional symmetries
of Smyth surfaces. We begin with the following properties of the radial lines
through the umbilical point: The curves � � � 
�� � / are geodesic curves on a
smyth surface. That follows at once from the formula (4). Next, we have the
following geometric facts:

Proposition 1 The curves � ��� ��� � � 8 . � drawn on a Smyth surface of order� are planar curvature lines, congruent to each other through a rotation of angle��� � � 8 . � about the normal at the umbilical point.

Proof. We may first observe that such a curve is a line of curvature. Since it is
also a geodesic, it is planar and its containing plane is orthogonal to

� ��� /�� 	 .
Since the immersion is conformal, it preserves angles between the defining
curves at the umbilical point. �

The two geometric properties shown above may be summarized in the
following:

Theorem 8 Any Smyth surface of order � � � admits � 8 . plans of symmetry,
meeting along a normal line at the umbilical point.

We would like to emphasize how the geometry of the Hopf differen-
tial, coupled with an intrinsic symmetry, gives rise to extrinsic symmetries.
Those symmetries will be used to reduce the numerical construction of a
Smyth surface to an angular sector of measure ��� � � 8 . � .
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20 Gabriel Dos Reis

8 The Geometry of the legs
The planar curves characterized in proposition 1 are the curves along which
the chordal-distance function

� � 
 1 � � � � ��� � �� �� � 	 � � ��� � �� �� � 	 � � � � from the um-
bilic to an arbitrary point on

� �� �� � 	
grows the fastest or the slowest. Such

curves are called the legs of
� �� �� � 	

. They are images by rigid motions of the
two planar curves � � � �	 � � �� �� � 	 ��� � � �

and � � � !	 � � �� �� � 	 ��� � ��� � � 8 . � � . To fix the
ideas, we consider the instance of

� �� �� � 	
that satisfies the initial conditions

� �� �� � 	 � � � � �
� � � � � � �� �� � 	� 	 ���� ��� �
� �+ �� ,����	 and

� � � 	 � � � � �� �� , �	 �
The curves � � � �	 and � � � !	 are defined by the differential relations

0

2

4

6

8

–1 0.5 11.5

Figure 3: Planar curvature lines for
� � , � � and � � ,
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� 
 � � � �	� 	 
 � � �� 	 � � � � �	� 	 8 + � � 
�� 8 	 	 � � � � �	
� � � � �	��	 � � + � , 8 	 	 � !(
�� � � � � � �	� 	 �

� � � � �	� 	 ���� ��� �
� �+ �� ,�� �	 (20)

and ���� ���
� 
 � � � !	� 	 
 � � �� 	 � � � � !	� 	 8 + � � 
�� � 	 	 � � � � !	
� � � � !	� 	 � � + � , � 	 	 �"!(
�� � � � � � !	� 	 �

� � � � !	� 	 �������� �
� � �+ �� ,�� �	 � (21)

For a fixed mean curvature
+

, the value of the parameter
�

is the magnitude
of the initial speed of the geodesics � �	 and � !	 .

Proposition 2 The curvature of the planar curves � � � �	 and � � � !	 tend to
. +

and zero
respectively as one goes to infinity.

Proof. These are direct consequences of the estimations (15). We will give
the proof for thr curve � � � �	 ; that proof for � � � !	 is similar. If we denote by�

a differentiable determination of the angle between the running tangent
vector

� � � � �	 � ��	 and the initial direction, then we know the curvature of � � � �	 is
given by the expression� � � � ��

�

� � �� 	 � 	�
�

� + � , 8 	 	 �;!(
�� �
where � is the arclength parameter along � � � �	 . Hence the claim. �

9 Numerical constructions
The algorithm for effective (numerical) construction of a surface

� �� �� � 	
is based

on the fundamental theorem of the theory of submanifold. Let us recall that
the vector position and the normal are subject to the following systems of
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22 Gabriel Dos Reis

partial differential equations (Gauss and Weingarten equations) written in
polar coordinates��������� ��������

� 
 � �� �� � 	� 	 
 � � � 	� 	 � � �� �� � 	� 	 8 +�� � 
�� � 8 	 	 � 
�� � � 8 . � ��� � � � 	, 	 � 
 � �� �� � 	� 	 � � � � ,	 8 � � 	� 	 	 ,	 � � �� �� � 	� � � + 	 	 � � � � � 8 . � � � � � 	,	 
 � 
 � �� �� � 	� � 
 � � � ,	 8 � � 	��	 	 � � �� �� � 	� 	 8 + � ��
�� � � 	 	 � 
�� � � 8 . � � � � � � 	
(22)

���� ��� ,+ � � � �
	� 	 � � 
 , 8 	 	� 
�� � 
�� � � 8 . � � 
 � � �� �� � 	� 	 8 	 	 ! �� 
�� � � � � � 8 . � � � � �� �� � 	� �,+ 	 � � � � 	� � � 	 	� 
�� ��� � � � 8 . � � � � �� �� � 	� 	 � 
 , � 	 	� 
�� � 
�� � � 8 . � � 
 ,	 � � �� �� � 	� �

�
(23)

In general, there is no a priori reasons why systems of PDEs should have
solutions. They ought to satisfy compatibility conditions. In our cases,
those integrability equations are preciely the Mainardi–Codazzi and Gauss–
Codazzi equations. As we have seen in section

�
3, the Mainardi–Codazzi

equations express the holomorphic character of the associated Hopf differ-
ential, which is already folded in the above systems. The Gauss–Codazi
equation is the differential equation that defines � 	 .

Concretely, the algorithm proceeds as follows:

1. Integrate the ODE (7);

2. Compute the functions
� �� �� � 	

and
� � � 	

— with their first partial derivates
— along the planar curvature line defined by � � �

by integrating
ODE (20).

3. For fixed
	
, integrate (for � ) the systems (22) and (23).

Some of the above steps may be conducted synchronously. Although we use
a Runge–Kutta solver to integrate the ODEs appearing in the algorithm, any
other ODE solver allowing a single step derivation is equally admissible.
Here is a folded version of the algorithm:
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Input
�
�
�
, � � � and

	��
��� �

�
.

Output
� �� �� � 	 � 	 � � � � with

	 � � � � 	�� ��� 	 and � � � � � . � 	 .
Body 1. Set initial conditions:

� �� �� � 	 � � � � �� ��� �	 � � � �� �� � 	� 	 ���� ��� �
� �+ �� ,�� �	 � � � � 	 � � � � �� �� , �	 �

� 	 � � � � � � �+ � � � 	� 	 �������� �
��� �

2. For � in � � � . � 	 , set

� �� �� � 	 � � � � � � �� ��� �	 �
This corresponds to the fact that the curve

	�� �
is reduced to the

umbilic point.

3. For
	

running over 	 � � 	�� ��� 	 do:

• compute both the values
� � 	 � � � 	 � ��	 � and the point � � � �	 � 	 � �� �� �� � 	 � 	 � � �

by performing a Runge-Kutta step of the ODE sys-
tems (7) and (20).

• For the above fixed
	
, compute the � -curve

� �� �� � 	 � 	 � � � for �
running over � � � . � 	 by solving the PDE systems (22) and (23).

4. Output the surface
� �� �� � 	

.

10 conclusion
The effective numerical algorithm exposed in this article has enabled us to
gain highly invaluable insights into the geometry of Smyth surfaces. For
example, numerical experiments suggest that the legs form an angle (see
figure 3) function only of the parameter

�
. The detailed invesgitation of that
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24 Gabriel Dos Reis

Figure 4: A Smyth surface for � � , , view from "below"
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behavior will be the subject of a forthcoming article based on algebraic and
numerical analysis of the ODE (7). The generalization of some of the meth-
ods used here to the case where no a priori symmetry assumption is made
on the metric (but retaining a monomial Hopf differential) is also under in-
vestigation.
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