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Change d’ordre d’une base de Grobner avec LLL: le cas
de deux variables

Résumé : Nous présentons un algorithme transformant une base de Grobner d’un idéal
pour un ordre donné en une base de Grébner pour un autre ordre. Cet algorithme est basé
sur une version modifiée de I'algorithme LLL. La complexité théorique, dans le pire des
cas, n’est pas meilleure que la complexité de ’algorithme FGLM mais on peut exprimer
cette complexité en fonction de paramétres dépendant de la taille de la sortie. Ainsi lorsque
les degrés de la base de Grébner finale sont petits ’algorithme devient plus efficace. Nous
présentons une premiére implémentation en Maple de 'algorithme. L’algorithme est restreint
au cas de deux variables mais est valide aussi en dimension positive.

Mots-clés : Bases de Grobner, LLL, Réduction de réseaux, Complexité.
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1 Introduction

One of the main tools for solving algebraic systems is the computation of Grébner bases [Buc65,
Buc70, Buc79, Buc85]. Grobner bases for any ordering can be computed in one step with
general algorithms [Buc65, Fau99, Fau02]. But, in practice, it is well known that it is of-
ten much faster to compute: a Grobner basis G; for an ordering <; ; then to transform
G into another basis for another ordering <, . When the ideal is zero—dimensional, the
FGLM algorithm [FGLM93] is such an algorithm. The number of arithmetic operations
of this algorithm is O(nN?) where n is the number of variables and N, the number of so-
lutions (with multiplicity). Transforming a Grobner basis from a Total degree to a pure
lexicographical ordering is the “natural way” for solving polynomial systems because, from a
complexity point of view, the best ordering is the degree—reverse-lexicographical (DRL) one
but it is easier to obtain the solutions (either numerically or symbolically) from a Grébner
basis for the lexicographical ordering. More surprisingly, experiments have shown that the
other way (from a lexicographical ordering to a total degree ordering) is also very useful in
many applications. For instance, to compute a decomposition into prime ideals it is often a
good strategy to compute a lexicographical Grébner basis of the projection on two variables,
compute a decomposition of this projection and then to return to a total degree ordering to
split the whole ideal (since it is a strong motivation for our algorithm we have included a
sketch of this algorithm in section 8).

On the other hand LLL[LLL82] is a well known algorithm for computing short vectors in
a lattice; since a Grébner basis can be seen as the smallest polynomials in an ideal wrt the
divisibility of their heading terms it is natural to compare the two algorithms. A possible
benefit of LLL is that the complexity of this algorithm is very sensitive to the output; so
one can hope that when the result is small the LLL algorithm should be faster than FGLM.

The difficulty in LLL is that it is difficult to “follow” symbolically. A standard algo-
rithm for implementing the arithmetic of Jacobian groups of the curves Cyp is LLL; but in
[BEFGO02], we have replaced LLL by FGLM so that we can compute the Grobner basis “by
hand” on an generic input (that is to say with symbolic parameters as coefficients); so we
were able to establish explicit formulas.

The plan of the paper is as follows. The section 3 is devoted to presenting the modified
LLL algorithm. The section 4 includes also the proof of the correctness of the algorithm.
The theoretical complexity of the algorithm is in 5 and the practical behavior of an im-
plementation of the algorithm in Maple can be found in 6. The necessary mathematical
notations are reviewed in section 2. For the sake of completeness we have also included a
description of a meta algorithm for decomposing ideals in Annex 8 but this part may be
omitted.

The name of this algorithm is simply algorithm LLL. In the rest of this paper LLL stands
for this modified version of then LLL [LLL82] algorithm.
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4 Abdolali Basiri, Jean-Charles Faugeére

2 Definitions

In this paper we will denote by K a field, by K[X,Y] the ring of polynomials in two variables
with coefficients in K and by I = (f1,..., fm) an ideal in K[X,Y] generated by f1,... , fm-

We recall now some definitions and properties of Grobner bases and lattice bases that
will be used in what follows.

Given an ideal I we will denote by (G,<) the reduced Grébner basis with respect to
an admissible ordering <. We will say that an element f € K[X,Y] is reduced by G if no
element g € G has a leading term that divides the leading term of f ; a Grobner basis is
reduced if each of its elements is reduced by the others. We use the notations of [BW93]

Definition 1 Let (G = (g1,--- ,9m), <) be a reduced Grébner basis for I, we denote by r;,
the degree of HT(g;) w.r.t Y. The indices (1,...,m) can be considered in such away that
r; < riy1. For any positive integer number Dy which is not less than degy (G), let

Bpy (G) ={Y7ig|1<i<m, 0<j; <rypg—r — 1}

where rmy1 = Dy. We denote by Mp, (G), the K[X] submodule of K[X,Y] generated
by Bp, (G) which is called Dy-th K[X] module associated to ideal I w.r.t <. In this case
Bp, (G) is called Dy —th basis of K[X] module associated to ideal I w.r.t <.

Let by, ... , b be the linearly independent vectors in K[X]PY over K (X), where l and Dy
be positive integer and [ < Dy. The lattice L C K[X]P¥ of rank m spanned by by,... ,b
is defined as

l l
L=>Y K[X]b={> \bi| i € K[X], 1<i<I}.
i=1 =1

We correspond to lattice L C K[X]Pv, the K[X] submodule M (L) of K[X,Y] which is
defined as

Dy
M(L) ={>_ &Y' o =(44,... ,py) € L}.
7j=1
Hence any vector o = (v1,...,0py) € L corresponds to v = ].D:Yl 0; Y771 € M(L).
Denote by B = (b; ;) the | x Dy matrix where b; ; is the j-th coordinate of b;, and by
B = (b;,;) the | x Dy matrix where b; ; = coeff(b;, Y7=1)Yi=! = p; ;YI=! . We define the
determinant d(L) of L to be the maximum of the determinant of [ x I sub-matrices of B
w.r.t order <. The orthogonality defect OD(by,... ,b;) of the basis by, ... , b for the lattice
L w.r.t order <, is defined as

HT(by)...HT (b)) — HT(d(L)).
Definition 2 The basis b, ... ,b; is called reduced if
OD(by,... b)) =0.

INRIA
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For 1 <14 <[ ai-th successive minimum of M (L) w.r.t order < is a minimum element
m; of M (L), such that m; do not belong to the K[X] submodule of M (L), generated by
my,...,m;—1. m; is independent of the choice of my,... ,m;_1. See [Mah41].

Proposition 3 Let by, ... ,b; be a reduced basis for a lattice L C K[X]P¥ of rank 1 < Dy,
Ordered in such away that b; < b; for 1 <i < j <1. Then b; is a i-th successive minimum
of M(L) w.r.t order < for 1 <i<I.

Proof: See [Len85]. O

Proposition 4 Let by, .. .~,Bl be a basis for a lattice L C K[X]PY of rank | < Dy. If the
coordinates of the vectors by, ... ,b; can be permuted in such a way that they satisfy

Oszb] fOI'lS”L<]Sl
.bi,j<bi,i2bi,k for 1<i<j<l, i<k<Dy
then the basis by, ... by is reduced.

Proof: See [Pau9g|. O

Theorem 5 Let (G = (g1,--- ,9m), <) be a reduced Gribner basis for I, Dy a positive
integer which is not less than degy (G) and Ip, be the set of all polynomials in I whose
degree respect to Y is less than Dy, then Mp, (G) = Ip, .

Proof: It is trivial that Mp, (G) C Ip,. If Mp,(G) # Ip,, let h be the minimum
polynomials(w.r.t <) in Ip, which do not belong to Mp, (G). Let HT'(h) = X*Y" and
for 1 <i<m, HT(g;) = X®%Y" we can consider r; < r;y1. Since G is reduced we have
r; < ripp and s > s;41 for 1 <i <m—1. (If r; = ri41 for some 1 < i < m —1 then
HT(9;)|HT (gi41) or HT(gi+1)|HT(g9:), and if s; < s;y1 then HT(g;)|HT (gi+1) because
i < Tig1- )Let

io = max{i <m | HT (g;)|HT (h)}

we clime that igc = m or r;;, < r < r;,4+1. Otherwise there exist r;, < r;+1 < r then since
Sig+1 < Sip < s we will have HT(g;,+1)|HT (h) which is a contradiction with choice of 4.

Thus we have r —r;y < rjo41 — 14 + 1 0r r —r;y =71 —ry < Dy — rp, whence there is
b=Y" Tiog,;, into Bp, (G) such that HT'(b) = X% Y". Now if we put

p_,  HMM®), .,  HC(M)

~HMO) ORI

then we will have h belongs to Mp, (G) and HT(h) < HT(h) thus h < h, on the other hand
h belongs to Ip, , which is a contradiction with choice of h. Hence Mp, (G) = Ip, - O

RR n° 4746



6 Abdolali Basiri, Jean-Charles Faugeére

3 The algorithm.
In this section we present a new version of the LLL algorithm [LLL82] which compute a
Grdébner basis for some ordering from the Grébner base corresponding to another ordering

in K[X,Y].

Algorithm 6 (LLL-Paulus)

Input : (Goig = (91,--- ,9m), <oid) areduced Grobner basis for I, <,ey, and Dy a positive
integer sufficiently large
Output : Gpew = (a1,--. ,a;) a Grébner basis for I w.r.t <peq

(b1,...,b) + ModuleBasis(G o4, <otd, Dy)
k<0
while k <[ do

Choose ig € {k+1,... 1} st by =min,, {b; : k+1<i<I}, swap(bpi1,bs,)
Choose j € {1,... ,Dy} s.t HTpew(brt1) = HTnew(brt1,5)
if j <k then

HCrew(bk+1) ydeg(brt1,;)—deg(d;.; )
¢ bpy1 — m}( g(br+1,5)—deg(d;,5) - a;

p+max{0<s<k : as <pew ¢}
for i =k + 1 down to p+ 2 do b; < @;_1
bpi1 < €
k+<p
else
&+ byt
G4l < C
Permute (k? + ]., .. ,TL) s.t. HTnew(akH,kH) = HTnew(ak+1)
k—k+1

The sub-algorithm ModuleBasis compute the Dy-th K[X] module associated to ideal I
w.r.t <, ld.

ModuleBasis 7

Input: (G = (91,..-,9m), <) a reduced Grobner basis for I and Dy, a positive integer
sufficiently large

Output: Bp, (G) = (b1,-..,b)

<Dy —-r+1
k+0

INRIA
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Permute the coordinates (1,...,m) s.t r; < r;41 where HT (g;) = X%Y™
for ¢ from 1tom —1do

for jfromOtor;y; —r;—1do
k—k+1
bk(—ngi

for j from 0 to Dy —r,, do

k+—k+1
bk(—ngm

4 Correctness

Theorem 8 The algorithm 6 computes a Grobner basis Grew in K[X,Y] such that Id(Goiq) =
1d(Grew ).

Proof: Let Dy be a positive integer such that

Dy = max{degy (Goa),degy (G)}

where G is a Grobner basis for I w.r.t. <pew. For example we can consider Dy =
2max deg(Go1q) — 1 if the old ordering is the lexicographical ordering and the new ordering
is the degree—reverse-lexicographical ordering, see [Buc83, Laz83]. Also if the degree of the
new ordering w.r.t Y is at most equal to the degree of the old ordering w.r.t Y then we can
consider Dy = degy (Goiq)-

Termination: The number of passages in the principal loop is finite because in the k-th
step

HT(a1)...HT (ag)HT (bgy1) --- HT (by)

becomes smaller when k becomes also smaller or k stays unchanged, and it stays unchanged
when k is increased by 1, and algorithms terminates when k& = [ or equivalently when

HT(a1)...HT(a;) = d(L).

Hence the number of passages in the principal loop is finite, and algorithms terminates
when k = 1.

Correctness: It is clear that Bp, (G) and (a1, ... ,q;) generate the same K[X] submodule
M of K[X,Y]. By Theorem 5, M = Ip, . On the other hand by Proposition 4, (a,... ,a)
is a reduced basis for the lattice L with basis (b1,...,b;), because the following invariants

are valid in the k-th step

e ag;<ajforl<i<j<k

RR n°® 4746



8 Abdolali Basiri, Jean-Charles Faugeére

CakaijI‘k<jSl
® a;j<aj;>aforl<j<i<kandi<t<Dy

Hence by Proposition 4, a; is a i—th successive minimum of M and HT (a;) < HT (a;y1).
(otherwise HT (a;) = HT(a;t+1) thus ¢’ = a;41 —a; € M and HT(a') < HT(ai4+1) which
implies a' is dependent with a4,... ,a;, so a;41 = a’ + a; is also dependent with a1,... ,a;
which is a contradiction with choice of a; 11 ). Now let f be a polynomial in Ip, = M, then
there are \1,...,\; € K[X] such that

l
F=Y"\a;
i=1

but for 1 <i < j <1, HT(X\a;) # HT (\ja;) because otherwise there are t;,t; s.t.
Xt"HT(az-) = HT()\za,) = HT()\,az) = thHT(aj),

but HT (a;) < HT(a;) implies t; > t; (if t; < t; then X*HT(a;) < X' HT(a;), and if
t; = t; then HT (a;) = HT (a;) )hence @’ = X%~ tia;—a; € M and HT (a') < HT (a;) which
implies @’ is dependent with ai,...,a;_1, so aj = a' — X%t qa; depends with ai,...,a;_1
which is a contradiction with the choice of a;;1. Finally there is a unique 1 < j <[ such that
HT(f) = HT()\ja;), so HT(a;)|HT(f) which shows that (a1,... ,a;) is a Grobner basis for
I wrt <pew- O

Remark. Unlike FGLM, this algorithm is not limited to zero dimensional ideals.

5 Complexity

We are now ready to compute the complexity of the algorithm 6 in terms of arithmetical
operations in K. By an arithmetical operation in K, we mean addition, subtraction, multi-
plication or division of two elements of K. We use the notation of the algorithm 6. Denote
by

e Dy = max{degy (Goa), degy (Gnew)}
e | =Dy — 1, where r; = degy HT(g1)
e dx = max {degx(g;) |1 <i<m}

e Dx = max {degx(a;) |1 <i <1}

Theorem 9 Algorithm 6 takes O(D3%.D%) arithmetical operations in K to compute a Grob-
ner basis Gpey in K[X,Y] such that Id(Goq) = Id(Grew)-

INRIA
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Proof: Every pass of the main loop consists of O(l.Dx) operations in K Let us look at,
in the worst case, the number of passages in the loop. In every pass of the principal loop,
either k increased by 1 or OD(@y, ... , @k, bpt1,-.. ,b) decreases(w.r.t <pew), in the other
word in this case we have

ML(I)’“‘H)Xdeg(bk+l,j)—deg(aj,j) . i
chew (a]‘) 7

and HT (a1) ... HT (ag)HT (¢)HT (byy2) ... HT (by) , with respect to <pew, is less than
HT(a1)... HT(ar)HT (bg41)HT (bg42) - . . HT (b;). Hence

¢=bry1 —

degyx (HT(c)) < degx (HT (br+1)) + Dx

and
degy (HT(¢)) < Dy.

Note that for two extremes order, the degree reverse lexicographical ordering(<prr),
and the lexicographical ordering(<r.;) we have

o X0 <poi. <Lep X1
o XMV <rew v. <Lex XY

o X™0Y2 <0 <Lep X"31Y2

o XmdyoYldy—1l «p = <pep XTMdy1Yldy—1
° X'nlcly+1,0YldY <Lew - <Lex X'nlcly+1,1YldY

thus the number of passages in the loop, in this case, is

ldy +1
S = Z N1 — N40
i=1
but degx (HT'(c)) < degx (HT (bg+1)) + Dx implies that
UZR! S Ni+1,0 + DX fori=1... ldy

and hence
S <Migy+1,1 +ldyDx —nig

thus the number of passages in the loop, in this case, is bounded by S = l.dy.Dx.
In the other hand

e X <prrY

RR n°® 4746



10 Abdolali Basiri, Jean-Charles Faugeére

° dex—lym <DRL dex—2Ym+1___ <DRL dex—Dy—IYm-‘rDY

° dexym <DRL dex—lym—i-l ... <DRL dex—Dme-‘,—Dy

thus the number of passages in the loop, in this case, is bounded by S = l.dx.Dy.
Hence the number of passages in the loop, in the worst case, is bounded by

S = D3 Dx.

and the total complexity is O(D3,.D%). O

Let I be a zero dimensional ideal and denote by N, the dimension of the K vector
space M In this case Dx = N, and Dy < /N, thus algorithm 6 takes O(NZ®)
arithmetical operations in K to compute a Grobner basis Gpe, in K[X,Y] such that
Id(Go1q) = Id(Grew)- The best case for this algorithm is when Dy is small.

6 Experiments

We have implemented the algorithm 6 in Maple V Release 5. In tables 1 and 2 we give the
timings for some well known examples (Pentium 3 at 800 Mhz). Some words of caution are
necessary: the quality of the computer implementation of Grébner bases computations may
have a dramatic effect on their performance. On the other hand, a Maple implementation of
such an algorithm is not an efficient implementation even if it is useful to test the correctness
of the algorithm and to give a rough idea of its practical behavior. Of course this implemen-
tation can not be compared with a low level implementation in C (as in FGb for instance).
Another consequence is that we must restrict ourselves to middle size benchmarks. For all
this reasons we add also in tables 1 and 2 the number of arithmetical operations (namely
the number of multiplications): this number does not depend on the implementation and so
can give an estimate of the intrinsic practical complexity of the algorithm. We add also the
values of the parameters 1, dx, Dx, Dy and S for each examples.

From this table, a first conclusion is that: this not optimized implementation of LLL is
always faster than the standard implementation of FGLM in Maple. It is also clear that the
best case of the algorithm is when [ is small for example: (examples rand50-17, rand100-34
and rand150-51 in the table) [ becomes 3 and hence the complexity of the algorithm 6 is
simply O(I3N7).

INRIA
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DRL — Lex Nb * Ny FGLM LLL 1 dx | Dx | Dy S
in LLL (sec) (sec)
Cyclich 45 55 1.7 0.9 9 12 15 8 29
cyclic6 50,938 126 458.5 194. 13 24 48 12 1,056
katsura7 1,970,0234 | 128 | > 13,000 6293.5 16 16 128 15 7,687
fabrice24 21,232 40 141.9 53.1 9 9 40 8 488
dessinl 42,431 46 315. 71. 10 10 46 9 752
dessin2 27,089 42 148.5 44.7 9 9 42 8 560
benchmarkD1 575 48 17.3 0.6 3 25 48 2 49
benchmarkil 177,908 66 576. 424.9 12 11 66 11 1,792
UteshevBikker 18,267 36 43. 41.2 9 8 36 8 460
rand50 49, 647 50 413.2 125.2 10 10 50 9 807
rand100 756, 530 100 > 5000 2070. 14 14 100 13 4,217
rand150 4,051,692 150 | > 24,000. | 11,937. | 17 | 17 150 16 12,054
rand50-17 1,632 50 11.3 3.5 3 34 50 2 51
rand100-34 6,666 100 153.8 21.4 3 67 | 100 2 102
rand150-51 14,798 150 917.1 63.4 3 101 | 150 2 150

Table 1: Comparison FGLM/LLL (from DRL to Lex) modulo p.

Lex —+ DRL Nb * Ny FGLM LLL 1 Dx | dy | Dy S
in LLL (sec) (sec)

cyclich 279 55 2.8 2.2 9 15 7 8 66

cyclic6 11,070 126 82.5 51.6 13 | 48 6 12 707
katsura? 1,941,523 | 128 | > 12,000. | 5,776. | 16 | 128 1 15 | 16,138
fabrice24 56, 550 40 295.4 111.5 9 40 1 8 1,524
dessinl 94,325 46 622.6 1919 | 10 | 46 1 9 2,174
dessin2 62,588 42 359.5 131.9 9 42 1 8 1,608

benchmarkD1 1,200 48 9.6 1.5 3 48 1 2 76
benchmarkil 285,970 66 3,353. 656.2 | 12 | 66 1 11 4,572
UteshevBikker 46,111 36 247.1 86. 9 36 1 8 1,354
rand50 110, 774 50 361.02 2359 | 10 | 50 1 9 2,383
rand100 905, 447 100 | >5,000. | 2,192. | 14 | 100 1 13 9,601
rand150 3,052,423 | 150 | > 18,000 | 8,599. | 17 | 150 1 16 | 21,436

rand50-17 4,896 50 16.6 6.6 3 50 1 2 115

rand100-34 19, 760 100 235.6 37.2 3 | 100 1 2 230

rand150-51 44, 394 150 1617.6 112.2 3 | 150 1 2 346

Table 2: Comparison FGLM/LLL (from Lex to DRL) modulo p.

7 Conclusion

We have presented a new version of the LLL algorithm for computing Grébner bases by
changing the ordering. We give a proof and the theoretical complexity of the algorithm.

RR n° 4746



12 Abdolali Basiri, Jean-Charles Faugeére

A first implementation in Maple is also presented and the first experimental results are
encouraging. An open issue is to generalized this technique to more than two variables.

8 Appendix: meta algorithm for decomposing an ideal
into primes

We give now the sketch of an algorithm to speed up the decomposition of an ideal given by a
finite set of generators into a prime ideals. More precisely if I is an ideal the decomposition
into primes is:

VI=PNn---NP,

then the output of the algorithm algorithm is [G4,...,Gg] where G; is the Grobner
basis of Py, for any ordering. The following algorithm is in fact a “meta algorithm”: it calls
a general decomposition algorithm DEC (see for instance [BW93]) but the idea is to apply
this general algorithm DEC after decomposing as much as possible the initial ideal. Hence, in
the worst case, this algorithm is not more efficient than DEC but in practice it is often much
faster when the dimension is < 1. In [Fau0l] we have used a similar method to decompose
the cyclic 9 problem (dimension 1 degree 6156).

Input
F a finite subset of k[z1,... ,Zy]

Output
a decomposition into primes of the ideal generated by F'.

1) Grobner
G a Grobner basis of F' for a DRL ordering.

2) Elimination

Compute, by changing the ordering, G, a Grobner basis for a block ordering [z1, . .. ,Z, 2]
[Zn—1,%,]. This is an elimination ordering and so G. = Gy U Gy where G, €
k[mn—laxn]-

3) Lexico

Compute, by changing the ordering, Giex a lexicographical Grobner basis of G

4) Decompose (2 variables)
Use [Laz85] to compute a decomposition into prime components:

Go=PN---NPk

(each P; is a lexicographical Grobner basis). The main tool to obtain this decomposi-
tion is to compute ged of polynomials (see [Laz85]) so this can be done efficiently.

INRIA
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5) DRL in two variables
For each prime components compute, by change of ordering, a Grébner for a DRL
ordering:
P! = Grébner(P;, DRL) i =1,... ,k

6) DRL
G = Grobner(G. U P{,DRL) i =1,... ,k
7) Decompose (general)

DEC(G) U -DEC(G},)
For all G} compute a decomposition into primes of G}.

Key points for the efficiency of the algorithm are steps 1, 3 and 5. Steps 3 and 5 can be
done with the algorithm LLL presented in this paper.
Acknowledgements: We would like to thank Guillaume Hanrot for our motivation for
studying LLL and its application in Grobner bases. We thank Andreas Enge and Nicolas
Gurel for interesting discussions on LLL.
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