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Abstract: This paper deals with the problem of detecting the change-points in
mean of a signal corrupted by an additive Gaussian noise. The number of changes
and their positions are unknown. From a nonasymptotic point of view, we propose
to estimate them with a method based on a penalized least-squares criterion. Ac-
cording to the results of Birgé and Massart, we choose the penalty function such
that the resulting estimator minimizes the quadratic risk. This penalty depends on
unknown constants and we propose a calibration leading to an automatic method.
The performances of the method are assessed through simulation experiments. An
application to real data is shown.
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Détection de ruptures dans la moyenne d’un
processus gaussien par une méthode de sélection de
modéle

Résumé : Le papier traite du probléme de détection de ruptures dans la moyenne
d’un signal gaussien. Le nombre de ruptures et leurs localisations sont supposés
inconnus. D’un point de vue non-asymptotique, nous proposons de les estimer
4 aide d’une méthode basée sur un critére des moindres carrés pénalisés. En
appliquant les résultats de Birgé and Massart, nous choisissons une fonction de
pénalité telle que l'estimateur pénalisé correspondant réalise le risque quadratic
minimal. Cette pénalité dépend de constantes inconnues et nous proposons de
les calibrer afin d’obtenir une automatique méthode. Une étude de simulations
est menée pour évaluer la performance de la méthode, et une application sur des
données réelles est réalisé.

Mots-clés : Détection de ruptures ; Contraste pénalisé ; Sélection de modéles
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1 Introduction

The following change-points in the mean model is considered:

yt28($t)+6t t=1,...,n (]..].)

where x; = % and the errors () are supposed to be zero-mean, identically dis-
tributed unobservable Gaussian independant random variables of common variance
o2. The function s to be recovered is assumed to be piecewise constant. Thus,

there exists some instants 7o = 0 < 71 < ... < 7k = 1 such that the function s
is constant between two successive change-points instants. In other words, there
exists a sequence (s1,...,Sk) such that, for any k > 1,
K
s = Zsk]l]k with I, Z]kal,Tk], (1.2)
k=1

This model means that K — 1 changes affect the mean of (y;) at some unknown
instants (tg,1 < k < K — 1) with ¢ty = [n7] where the number of change-points
(K — 1) is supposed to be unknown. The problem is to detect and locate the
change-points instants of y and to estimate the jumps of mean.

The change detection problem has been studied for more than fourteen years
in many frameworks. One can refer to the books of Basseville and Nikiforov [2],
Brodsky and Darkhovsky [6], Carlstein, Miiller and Siegmund [9] for a complete
bibliography.
In the case of multiple changes, the problem is more intricate and few approaches
are dedicated to this problem. Among them Bayesian techniques [15], and penalized
criteria [17], [16], [8] can be distinguished. This kind of criterion is now classical
(the first examples are the Mallows’C), within the framework of the regression [20],
the AIC [1] and the BIC [22] criteria within the framework of maximum likelihood
estimation) and has been studied by many authors in the particular problem of
detecting change-points in the mean, see for example Yao [23], Miao et al. [21] and
more recently Lavielle et Moulines [17]. Their purpose is to estimate consistently all
the change-points. In theory that requires the function s to be in the collection of
models considered for fitting and in practice the penalty must be chosen according
to practical considerations. Contrary to this point of view, we consider in this paper
a nonasymptotic approach. The problem is seen as a particular problem of fixed de-
sign Gaussian regression where the regression function s to be estimated is piecewise
constant. We consider the nonparametric model selection point of view developed
by Birgé and Massart [3]. Their aim is to choose s minimizing a quadratic risk, by
using as few prior information as possible, rather than to determine the true func-
tion s. This is a situation where it may be preferable to ignore some change-points
corresponding to small jumps of mean. While applying their results, we give in
Proposition 2.1 the penalty function involved in this approach and an upper bound
of the quadratic risk for the corresponding penalized estimator.
The penalty function depends on two constants whose optimal values are not acces-
sible theoretically, and on the noise variance o2 which is unknown in practice. We
propose a two-step procedure to estimate the penalty. First, the noise variance is
supposed to be known and the values of the two constants are calibrated by adapting
the simulation procedure proposed by Birgé and Rozenholc [5] in the density esti-
mation framework by histograms in model selection approach studied by Castellan
[7]. Then, the noise variance is seen as a penalty constant and it is estimated with
a method based on heuristic and theoretical ideas proposed by Birgé and Massart
[4]. This method is detailled in this paper. According to some difficulties occured
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4 Emilie Lebarbier

on simulated data with this method, a specific calibration is proposed.

In numerical experiments, our calibrated method is compared to the C, Mallows
[20] and the BIC criteria, see Schwarz [22], for which asymptotic properties have
been etablished. Then two others simulations studies are performed to assess the
method when the model assumptions are not valid. In the first one, the function s
is not a piecewise constant function and in the second one the noise is not Gaussian.

The paper is organized as follows. In Section 2 the estimation procedure is
described and the form of the penalty function and an upper bound of the quadratic
risk for the corresponding penalized estimator are given. When the variance of
the noise is known, the two penalty constants are calibrated in a optimal way in
Section 3. Then the heuristic method to estimate the noise variance is presented
and a calibration of this method is proposed in Section 4. Section 5 shows different
simulations studies to assess the performance of our calibrated method. Finally the
method is applied to detect change-points in the monthly number of tests HIV in
France on several years. A short discussion ends the paper.

2 Estimation procedure

In this section, the estimation procedure is presented. The principle is the following
one: A collection of least-squares estimators is designed and the best according to
a penalized least-squares criterion is chosen. The form of the penalty function and
a nonasymptotic risk bound for the corresponding penalized estimator are given.

2.1 Collection of estimators and ideal one

Let M, be the set of all the partitions on the grid {z1,z2,...,z,}. There is the
need to visit all partitions as possible since no prior information on the location of
the change-points instants is available. We consider the collection {S,,,m € M,}
where for a given partition m of dimension D,,,, m = {I}x=1,....D,., Sm is the linear
subspace of the functions which are piecewise constant on the partition m,

D,
Sm = {U = Zukﬂlk, (ug)k=1,..D,, € RP™ } .

k=1

Denoting S = |J,,,c M, Sm, we consider the least-squares criterion, defined for any
u€S,

) = 3l @) = lly— ull,
t=1

where ||.||n denotes the normalized Euclidean norm on R™. Associated to the col-
lection {Sp,m € M,}, we construct the collection of least-squares estimators
{8m,m € M,,} where for m € M,, :

D,
b = argminya(u) = 3 gy,
UESm 1

where gy is the empirical mean of y on the interval I, i.e. g = nl—k Zi’;tk_ﬁl Yt,
with ny, is the number of z; belonging to the interval I}, and let recall that ¢, = [n7y].

INRIA



Change-Points in the Mean and Model Selection 5

The estimation problem of s reduces to choose the best partition, say m and
take §,;,. Considering the loss function, which is associated to the empirical contrast
function ~,, for any u € S by the relation

I(5,u) = E[yn(u) —va(s)] = lIs — ully, (2.3)

and taking the loss mean of the least-squares estimator §,,, leads to its quadratic
risk which is decomposed as follows:

A _ D
E, s = $ml2] = lls = mll2 + 0%, (24)

where 5, is the orthogonal projection of s on S,;:

D, 1 123
Sm = argmin I(s,u) = Z — Z s(ze) | Ly,
UESm k=1 \ "% =ty 41

In this decomposition (2.4), the term ||s —3,,||? is a bias term measuring the quality
of approximation of s by S,,,, whereas the term DT"‘O'Q is a variance term representing
the estimation error in S,,.

The ideal partition, say m(s) is minimizing the risk (2.4) over M,

On(s,8) = mier}\f/ln E; [|Is — 8ml2] - (2.5)
Unfortunately, m(s) is unknown since it depends on the unknown function s. The
purpose of the proposed estimation procedure is to provide a data-driven criterion
selecting an estimator 5 having a risk as close as possible to the risk of 5,5 (5), namely

such that
Es[l(s,8)] < C On(s,S), (2.6)

for a nonnegative constant C.

2.2 The proposed estimator

Given some penalty function pen,(m) : M, — R', the penalized least-sqares
estimator is defined by:
3 =8m, (2.7)

where 7 minimizes the penalized least-squares criterion over M, defined by:
critn(m) = v (8m) + peny(m). (2.8)

The problem is to choose a convenient penalty function which selects § leading to
an inequality of the type (2.6). We will see that the choice of this penalty function
depends on the richness of the collection of partitions M,,.

The following proposition gives the form of the penalty function and a risk bound
of the associated penalized estimator.

Proposition 2.1. There ezists two positive constants ¢; and co such that if the
penalty is defined for all partition m € M,, by

D,
peny(m) = 702 (cl log (DL> + Cz) , (2.9)

RR n° 4740



6 Emilie Lebarbier 2

then there exists some constants C(c1,c2) et C'(c1,c2) such that the risk of the
penalized estimator 3, defined in (2.7), satisfies

E[i(s,8)] < Clev,e) inf [ls =5l + penn(m)]
02
+C’(c1,cQ);. (2.10)

Proof. The problem can be embedded into the Gaussian process framework and
we use a result of Birgé and Massart [3]. First we recall the theorem giving the
general form of the penalty function and a risk bound of the associated penalized
estimator.

Theorem 2.2. (Birgé, Massart) [3]. Let {Ly}mem, be a family of weights, i.e.
nonnegative real numbers, satisfying the condition

Y= Z e~ ImDm <« 4o
{m€eM|D., >0}

Let us then consider o penalty function such that

pen(m) > K02Dn—m(1 +/2L,)?*  for allm € M,, and some K > 1,  (2.11)

the corresponding penalized estimator § exists almost already and is unique. More-
over it satisfies

E,[l(s,9)] <C(K) _inf [U(s,5n) +pen(m)] + (K)o,

We need to choose a convenient family of weights { L, }menm, - Taking L,, as a
function of the dimension, L,, = L(D,,) = Lp,, leads to

b

Z e—LmDm _ zn: e~PLrCard{m € My, D, = D}

D=1
TL n
—DLp
()

—DLp @)D
¢ (D

3
Mm
<

IN

M+ 21§

—D(Lp-1-log (%))

< e .

]
Il

1

Consequently, if we take Lp = 2+ log (%) then ¥ < 1 and this leads to a penalty
function of the form (2.9). Then we get Proposition 2.1 deduced from Theorem 2.2.
|

Remark 1. The penalty depends on the partition m only via its dimension D,,.
The factor log (DL appearing in this penalty results from the complexity of the
considered collection of partitions M,,, i.e. the number of partitions having the

1) for a fixed dimension D). This

n—
same dimension in this collection (here ( D_1

INRIA



Change-Points in the Mean and Model Selection 7

factor can be regarded as surprising: for instance, it does not appear in the penalty
of the C, Mallows’s criterion [20]. Birgé and Massart [3] show that this term is
necessary in the risk given by (2.10) from a minimax point of view.

Remark 2. Note that the considered collection of partitions, M,,, depends on the
size of the sample n contrary to the Cp Mallows [20] or AIC heuristics [1].

Remark 3. According to the inequality (2.10), the risk of the penalized estimator
is bounded by
E[l(s,8)] < C log(n) On(s,S). (2.12)

That means that, in terms of risk, § is as good as the best of the §,, with a factor
logn.

In the theoretical approach, the penalty function is depending on a known vari-
ance 2. However in practical implementation the variance must be estimated.
Moreover the penalty function depends on two constants ¢; and ¢z which optimal
values are unknown. To deal with both problems, we proceed in two steps. First in
Section 3, the variance of the noise o2 is supposed to be known and a calibration
of the optimal values of ¢; and ¢y from a model selection point of view is proposed
by a simulation procedure. Then in Section 4, with ¢; and c» fixed to the previous
values, o2 is estimated by a heuristic method and a calibration of this method is
proposed.

3 Choice of ¢; and ¢y in the penalty function

In this section, o2 is supposed to be known. Before describing the simulation

procedure to approximate the optimal values of ¢; and ¢y, we define an appropriate
reference of quality of the penalized estimator since the classical one given by (2.5)
appears to be unreliable in our framework.

3.1 What is the good reference of quality ?

Recall that the aim is to provide a penalty function such that the risk of the corre-
sponding estimator, say §(c1, ¢2), is as close as possible to the minimum one O, (s, S)
(2.5). It is then natural to evaluate the performance of §(c1, ¢2) by the measurement
of the following ratio Es[||s — §(c1,c2)||2]/On(s,S). We are looking for the values
of ¢; and ¢ that minimizes this risk ratio uniformly for all function s and sample
size n. According to (2.12), this ratio is bounded by a quantity depending on n.
Consequently the penalty can not be calibrated with respect to n.

We have chosen a new reference of quality to be the following one:

O, (s,5) inf El|s - 3pll7], (3.13)

T D=1
where §p is the best least-squares estimator of dimension D:

§p = argmin Yn(u) = argmin v, (8
{v€Sp=U e M, ,jm|=D Sm} {meMn,/m|=D}

RR n° 4740



8 Emilie Lebarbier ®

since the penalty function depends on the partition only via its dimension. The
least-squares estimators {§p,D = 1,...,n} are computed using a dynamic pro-
gramming with a computationnal complexity of order of O(n?) (we refer the reader
for more details about this algorithm to the book of Kay [14]). The final estimator
is § = 5, where D minimizes the penalized criterion (2.8).

The performance of the penalized least-squares estimator is then measured with the

risk ratio . 5
Es [l|s — 3(c1,¢2)[12]
O(n,r) (878)

This ratio seems to be more appropriate since it is expected to be bounded inde-
pendently on s and n. This is true as soon as

F.(s,c1,¢2) = (3.14)

Es[||ls — ép||?] = inf — sml|3
dls=dplEl = inf  flls=sallt +pena(m)},
but we have no proof for that guess which has been confirmed by simulations in the
next subsection.

3.2 Simulation procedure

We consider a collection of values of n denoted by N = {20, 50, 100, 300, 500,
1000, 5000} and a collection of 35 piecewise constant functions denoted by £ and
randomly simulated in the following way. We simulate

e the number of pieces nseg = X + 1 where X follows a Poisson distribution
with parameter 5.

e cach change-point instant 7%, kK = 1,...,nseg — 1 follows an Uniform distri-
bution on ]0, 1].

e cach mean sg, k = 1,...,nseg follows a standardized Gaussian distribution.

We fix 02 = 1 and the maximal dimension of the partition D,,, = 40 since in
practice it is not necessary to compute the partitions having a too large dimension.

We search for the values ¢; and ¢y performing as well as possible for all the
functions on L. It leads choosing ¢; and ¢y minimizing

F,(c1,¢2) =sup F,(s,c1,¢2)- (3.15)
seEL

For any n, any s and several values of ¢; and ¢z, E, [||s — 3(c1, ¢2)||2] and Oy, 1 (s, S)
are evaluated by the empirical means obtained over 250 simulations. The supre-
mum (3.15) is then calculate for n in A'. This leads to a large set of values
{F,(c1,¢2),¢1,¢2 > 0,n € N} summarized in Figure 1 by the functions ¢; —
F,(c1,ca) for three values of ¢; = 0, 5, 8.

Let ¢f(n,cz) be the minimizer of Fj,(c1,c2). The idea is to declare as optimal value
of the constant ¢z, say ¢}, the one which makes ¢} (n,cq) stable with respect to n.
The optimal value of ¢; will be ¢} = ¢f(n, ¢3) for any n.

Some comments are in order:

INRIA
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251

05 4 osf B

L L L L L
0 1 2 3 4 5 6

Figure 1: ¢1 — Fyp(c1,0) (in the left on the top), ¢1 — Fn(c1,5) (in the right on the top) and
¢1 — Fr(ci1,8) for each n.

e ¢;(n,0) decreases with n.
e ¢} (n,8) tends to increase with n.

e for ¢y in [4.8,6], ¢f(n,c2) seems to be stable around 2 for any n.
Table 1 summarizes numerical values of different risk ratios. For each n, it gives

o F,(ct(n),cs(n)) where (cf(n),ci(n)) are the minimizers of Fj,(c1,cs) and
F,(2,5).

e the average of F},(cf(n, s),c3(n, s)) over s € L denoted by M F,, where (c}(n, s),c3(n, s))
are the minimizers of F), (s, 1, ¢2) and the average of F,(s,2,5) over s denoted
by ME>®.

The risk ratios appear to be close. For example, the difference between F;,(2, 5) and
FE,(c(n),c(n)) for all n is lower than 0.132.

Thus, it seems to be reasonnable to choose

(c1,¢3) = (2,5).

Remark that the different risk ratios are smaller than 2 and tends to 1 with n.
This result confirms the statement that the risk ratio F, (s, ¢1,c¢2) given by (3.14) is
bounded independently of n and so that our choosen reference of quality given by
(3.13) appears to be adequate in our framework.

RR n° 4740



10 Emilie Lebarbier *

Fo(ci(n),c5(n)) | Fu(2,5) || MF, | MFZ®
n =20 1.397 153 || 1.0654 | 1.213
n =50 1.424 1477 || 1.0588 | 1.17
n =100 1.3 1379 || 1.0657 | 1.142
n = 300 1.31 1.426 || 1.0588 | 1.127
n = 500 1.185 1193 || 1.022 | 1.082
n = 1000 1.26 1.28 1.026 | 1.077
n = 5000 1.132 1186 || 1.024 | 1.048

Table 1: Estimation of different risk ratios for each n.

4 Estimation of the penalty constant

Since the constant ¢; and ¢y are now determined, only the noise variance o2 is

unknown. A method based on theoretical and heuristics ideas proposed in Birgé
and Massart [4] is considered. It is employed in Letue [19] for the adjustment of
a regression function in the Cox model. In Subsection 4.1 the general method is
presented and its calibration is proposed in Subsection 4.2.

4.1 The method

Consider the general penalty function
peng n(D) = Bf,(D) forall D >1, (4.16)
where f, is a suitable penalizing function. The associated penalized criterion is
critg n(D) = vn(5p) + peng,n(D). (4.17)

The principle of the basic heuristic for choosing 8 is the following one: for large
D, vn(8p) is linear with respect to f,(D) and the estimated slope is —3/2. In
Subsection 4.1.1, this heuristic is sketched and performed in Subsection 4.1.2. In
this subsection, difficulties of this heuristic are described. In Subsection 4.1.3, an
extension of it proposed by Birgé and Massart is presented.

4.1.1 The basic heuristic

Identifying (4.17) with the C, Mallows criterion [20], which has the form
crit(D) = vu(5p) +2 Elll3p - 5pll7], (4.18)
leads to E[||3p — 5p]|2] = af, with 8 = 2a. Moreover, we have

Es[vn(8D) = 1n(8)] = Es[vn(8D) — 1n(8)] + Es[vn(5D) — 7n(5D)]
= Es[vn(8D) — n(s)] — afn(D).
By simulation, E, [y, (3p) — 7,(s)] is of the order of E,[||3p — s||2] from a certain
D. When the considered partition is high-dimensional, one can consider that the

bias term, E,[||5p — s||2], is close to zero. If v,(5p) is concentered around its
expectation, then +,(8p) is of the order of —af, (D) and the slope of v, (5p) with

INRIA



Change-Points in the Mean and Model Selection 11

respect to fn(D), say —@&, is an estimator of —a. Finally the penalized estimator §
is 5 where D minimizes the criterion critas,, (4.17).

Remark 4. When the collection of partitions M, has one partition per dimension,
then E;[v,(8p) — vn(s)] is equal to ||5p — s||3.

4.1.2 Application

The heuristic is applied on three particular realizations, chosen to show various
situations, with

a=02 and fo(D)= g (log (%) + 2.5) for all D > 1.

We will see that this heuristic is easy to apply as soon as v,(8p) is linear with
respect to f,(D).

Consider a function g plotted in Figure 2 (g). We set 02 = 1. Three realizations,
noted y(a), y(b) and y(c), are simulated from the three following cases and are
plotted in Figure 2 :

e (a) : difficult detection and small n : s = g and n = 60;
e (b) : difficult detection and large n : s = g and n = 300;

e (¢) : easy detection and small n : s = 3g and n = 60.

(9)
=)
T

y()
=)
T
{

y(b)
l}‘ o

(39)
=)
T

y(©)
o
T
?

-5 L L L L L L L L I

Figure 2: The three realizations and the functions from they are simulated.

The associated graph of (f,,(D),vy»(8p)) are plotted in Figure 3. For large n, v,,(8p)
is linear with respect to the function f,(D) in large dimensions (see Figure 3 (b)),
and the choice of the points to estimate the regression coefficient is not sensitive.
But this is not the case for small n (see Figure 3 (a)) for which ~,,(§p) has rather a
logarithmic behavior with respect to f,(D). Thus, the estimation of the regression
coeflicient is highly depending of the chosen interval. When the change-points are

RR n° 4740



12 Emilie Lebarbier ®

(a) ™ ®) .

(e)

Figure 3: Graph of (fn(D),1n(5p)) for D = 1,...,40 for the three realizations.

very sharp (see Figure 3 (c)), the graph shows a marked elbow for dimension 5.
Remark that L — curve methods (see for example [13], [12]...) can be applied in this
particular configuration without any difficulty. A more complete simulation study
done in [18] is showing the influence of the chosen dimensions to estimate the slope
particulary for small n.

The question is then how to choose the dimension interval to get an honest
estimate of the regression slope.

4.1.3 Selecting the dimension range values to apply the heuristic

An extension of the heuristic developed, by Birgé and Massart [4] is considered here.
They show in [3] that a too small penalty value leads to select a high-dimensional
partition (K < 1 for (2.11)). The penalty with K > 1 close to 1 is called minimal
penalty. It is associated to the penalty af,(D) and leads to a reasonnable dimen-
sion. Their idea is to consider different values of « from 0 in pen, ,, (4.16) and select
the associated dimension, say D(a), minimizing crity, (D) (4.17). This procedure
leads to a finite increasing sequence of temperatures

ap=0>a>...>ak,
and a finite decreasing sequence of dimensions associated to the temperatures
Di=n>Dy>...>Dg =1,
where for i = 2,..., K

_ . 'yn(gj) - 7n(§Di—1) _ 7”(§Di) - ’Yn(gDi—l)
a; = min

i<Di1 fa(Di—1) — fa(§) — fa(Dic1) — fa(Ds)

The passage to the minimal penalty is expected to be marked by a sudden fall
of the dimensions of the associated partitions, phenomen observed in practice. The

INRIA



Change-Points in the Mean and Model Selection 13

method consists of selection the value & of (ai)1<z’< K associated to the highest jump
of dimensions observed in (D;)1<i<k-

4.2 Calibration of the method

Here are presented some important practical problems on the estimation of a which
can have consequence on the performance of the final estimator. A calibration of
the method, which is expected to perform well in most situations, is proposed.

1. If the maximal jump of dimension of the sequence (D;);=1,....x is attained by
several values of (a;)i=1,.. .k, which one is to be chosen?

2. Does the maximal dimension of the considered partitions D,,,, affect the
choice of a?

Among several values of a reaching the maximal jump, we decide to consider
the smallest one since it is associated to the first abrupt change of dimensions. This
choice appears to be reasonable from simulation not reported here.

In practice, some big dimension jumps are observed for too small values of a and
a partition of too high-dimension can be selected. This is the situation in case (a) :
in Figure 4 (a), the values a; and as are the values of a respectively associated to
the two biggest jumps. If D,,,, = 40, then & = a; and D = 15, while if D,,,4, = 25,
then & = ay and D = 4. To answer the second question, D,,., can play a role in
the selection of the penalized estimator. In practice, the user will have to choose
D ez according to information he get. But our objective here is to propose an
automatic method. A universal value of D,,,, is not relevant since it depends on
the problem. We propose to eliminate the high-dimensionnal partitions by forcing
a to be bigger than a noted threshold agp,. Since in this framework a = o2, we
put o; = 02B;. Then it suffices to choose B, and put azn, = 02Bnr. Since the
variance o is unknown, it is substituate by one of its estimators. Since the number
of change-points as well as their locations are unknown, the classical regression
estimator cannot be used. One can find in the literature several good estimators of
the variance ([15], ....). We decide here to take the estimator proposed in Hall et
al. [11] which can be quickly computed:

2

n—M M
7 =n-M)"" " Y iy | (4.19)
k=1 \j=0

such that E?io d; =0 and Z;‘io d? = 1. Following Hall et al., we chose M = 3

and the associated sequence is

(d})j=0....3 = (0.1942,0.2809, 0.3832, —0.8582).

Choice of the threshold ;.. We propose to choose the threshhold S, from
a null hypothesis test Hy : "no change-point is present" against the alternate
hypothesis H; : "there exists at least a change-point". Let 3, be the first value
of the sequence (f;)i=1,...,x for which the partition of dimension 1 is selected. The
test is

Hy 27 Binr > By” against Hy : 7 Bipr < By”.
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Figure 4: Function a — Do, for the three realizations.

Let z be the level of the test,
ﬂthr = qlfz(ﬂv);

where q;_,(8,) is the quantile of order 1 — z of 3,. It is estimated as its empirical
version obtained on 2000 simulations. This procedure is performed 10 times for each
n and the threshold Bip-(n) is the average of the resulting 10 values. We consider
two values of z according to n < 200 and n > 200 since the behavior of the function
a — D, shows a certain stability for large n. The results are given in Table 2.

[ Tmm ] ]
[20 [ o611 [ 0.5 ]
[0 [ o625 [ 015 |
[60 [ o062 [ o15]
[ 100 [ o603 [ 015 ]
[200 | o762 | 0.05 |
[300 | 0743 [ 0.05 |
[500 [ 07 [ o005]
| |

1000 | 0714 || 0.05

Table 2: Estimations of 8;p,,(n) for each n and two different test levels z.

It seems to be reasonnable to choose

B = 0.62 if n < 200
thr 0.76 if n > 200.
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An upper bound for a. In practice, it happens that ag, is too large: o? is

overestimated, either By, is too large, and the minimal penalty cannot be detected.
This is the case of the realization y(c) (see Figure 4 (c)). By applying the method
with threshold , & = a2, the partition of dimension 1 is selected. To avoid this
problem, a is bounded by 2.

Finally, the calibrated method can be summarized as follows: the constant « is
restricted to [agpy, 2] and

e in the case where there exists at least a jump of dimension,

&= argmax {Dit+1 — D;} (4.20)
{i=1,...,K;D;11—D; >0}
e clse
& = oy (4.21)

Applications. Let us come back to the three realizations. The calibrated and the
nocalibrated methods are respectively denoted CM and NCM. For comparison,
the method with known and estimated variance (for which o2 in the penalty is
substituted by 62 (4.19)), noted respectively VC and NV C, are applied for the three
realizations described in Subsection 4.1.2. In Figure 5 are plotted the estimators
selected by each method and Table 3 gives the dimensions of these estimators with
their associated loss function (2.3).

| | | CM | NCM | vc | NVC | infD21||s—§D||% |

y(a) D 4 15 1 1 4
lls— 352 | 0.196 | 0.643 | 0.386 | 0.386 0.196

y(b) D 6 6 5 5 6
lls—épl12 | 0.165 | 0.165 | 0.208 | 0.208 0.165

y(c) b 1 1 1 1 1
lls —3pl2 | 0.142 | 0.142 | 0.142 | 0.142 0.142

Table 3: Dimensions selected by the calibrated and the nocalibrated methods, and the methods
with known and estimated variance with their loss. The last column provides the best one in terms
of loss.

For these particular realizations, the calibrated method works well since it selects
the minimal loss estimator. For y(a), since a1 < aypr < a2, CM selected 34, and for
y(c) the upper bound for « allows the method to select 8. Moreover, this calibrated
method works better for y(a) and y(b) than the method with known and estimated
variance.

5 Simulation experiments

In this section, some simulations experiments are performed to assess the perfor-
mance of the calibrated proposed method. The first one compares the performance
of some estimators selected by this method to the ones selected by other penalized
criteria such that the C), Mallows criterion and the BIC criterion. The second one
proposes to assess the behavior of the method when the assumptions of the model
are not valid. In the first case, s is not a piecewise constant function and in the
second case, the noise is not Gaussian.
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Figure 5: Penalized estimators selected by the calibrated method (a — 1), (b — 1) et (c) and the
ones selected with known and estimated variance (a — 2), (b — 2) et (c).

5.1 Comparison with other criteria

The studied criteria are penalized least-squares criteria with the different following
penalties :

e (), Mallows
D
penc, (D) = 20°—.
n
e BIC
2D
pengrc(D) =o . log n.
e The penalty obtained in our framework given by (2.9) with known variance
D n
penp ,(D) = 025 (2 log (B) + 5) )
e The penalty with estimated variance (given by (4.19))
. n
penp,, (D) = 2= (2 log (—) + 5) .
e The calibrated penalty

penpg,, (D) = d% (2 log (%) + 5) .

where & is obtained by the calibrated method.

We consider o2 = 1, n = 60, 300 and six different functions s (numbered from s; to
s¢) plotted in Figure 6. Proceeding as in Section 3, for each n and each function s,
the risk ratio F, (s, 2,5) (3.14) is estimated over 500 simulations and the percentage
of the number of times, denoted %pmin, that the considered criterion leading to the
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Figure 6: Fonctions s; i =1,...,6.

minimal loss estimator over the 500 simulations is calculated. The results are given
in Table 4. Moreover, in Figures 7 and 8 are represented the distribution of D for
the different s, n and for each penalty function. The two last column correspond
respectively to the dimension realizing Oy, ,)(s,S) (3.13), denoted Do, and the true
one, denoted D

Some comments are in order:

e The C, Mallows works really bad, particulary for large n. It tends to under-
penalize and selects partitions with too large dimensions. The logn term in
the other penalties improves dramatically the results. The C, Mallows is not
suitable for selecting a partition from a large collection of partitions (as it is
suspected in theory [3]).

e The risk ratios associated with P,2, P;2 and Pgjs are smaller than the one
associated with BIC' whatever n and s. The BIC criterion selects partitions
with larger dimensions. The penalty function defined by (2.9) with ¢; = 2
and c¢p = 5 appears to be more accurate than BIC.

e For the penalty P,2, Ps;2 and Pgjs the risk ratios are close and tends to 1
with n : the estimators approach the best one when n increases.
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Figure 7: Distribution of D for s1, 82 and s3, for each penalty function. The two last column

correspond respectively to the dimension realizing O, ,)(s,S) (3.13) and the true one.
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n =60 n = 300

Cp BIC P, Pjs2 Poum Cp BIC P2 Ps2 Pour

s1 | Fn(s1,2,5) | 1.73 1.22 1.15 1.17 1.1 3.0 1.24 1.003 1.005 1.003
PoPmin 0.2 12.8 182 16.6 21.6 0 5.2 22 21.8 21.2

s2 | Fn(s1,2,5) | 2.18 1.32 1.18 1.3 1.16 5.8 1.76 1.06 1.07 1.08
ToPmin 0.2 13.8 20.8 11.4 20.2 0 10 52.2 50.4 52.4

s3 | Fn(s1,2,5) 1.9 1.27 1.13 1.15 1.1 3.3 1.26 1.08 1.09 1.03
ToPmin 0.4 12 22.6 19.6 23.6 0 9.8 17.8 18.4 26.2

s4 | Fn(s1,2,5) 2.9 1.8 1.13  1.07 1.16 5 1.52 1.06 1.06 1.05
PoPmin 0.4 13.8 69 74.6 62.8 0 7.4 27 26.6 31.4

s5 | Fn(s1,2,5) 3.1 1.74 1.19 1.19 1.22 9 1.9 1.16 1.16 1.13
ToPmin 0 13 28.8 23.8 26.2 0 6.2 30 30 33.2

se | Fn(s1,2,5) | 3.19 1.78 1.07 1.05 1.092 | 8.16 2.26 1.1 1.13 1.16
ToPmin 0 12 40.8 39 39.4 0 6.6 69.8 69.6 60.8

Table 4: For each function s; and each n, estimation of the risk ratio of the penalized estimator
obtained by each criterion and percentage of the number of times that the considered criterion
leading to the minimal loss estimator over the 500 simulations.

e The calibrated method can do better than the method with known and esti-
mated variance, even if the risk ratios are very close. The calibrated method
seems to correct the constant penalty in order to select the minimal estimator
in terms of risk. The constants ¢; = 2 and ¢a = 5 have been chosen to be
optimal in most situations and can be suboptimal for specific n and s values.

e Figures 7 and 8 show that on these particular exemples the minimal risk
dimension, ﬁo, is not equal to the true one Dr. The BIC criterion seems
to select a dimension close to Dt while Poyr a dimension close to ﬁo which
is the aim here. That confirms the difference between the aim here which is
to select the minimal risk estimator and a asymptotic approach in which the
estimator tends to the true.

5.2 Case of a function s no piecewise constant

Here we want to answer to the following question : what happens if the function s
does not belong to no S, 7

Two realizations are simulated with n = 1000, a variance 02 = 0.1 and from the
functions denoted by s7 and sg and plotted respectively in Figures 9 (a) (left) and
9 (a) (right). The two penalized estimators selected by the calibrated method are
respectively plotted in Figures 9 (b) (left) and 9 (b) (right) with the realizations.
Note that these estimators realize the minimal loss.

These results suggest that the method leads to estimators giving good approxi-
mation performances.

5.3 Case of a no Gaussian noise

Now the method is applied when the signal noise is not Gaussian. Two different
noises were considered:
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Figure 9: Fonction s7 (a) and penalized estimator (b) (left) - fonction sg (a) and penalized
estimator (b) (right).

e ¢ is a Laplace (symetric Exponential) noise (marked by Lap).

e ¢ is a Bernoulli noise with parameter 1/2 (marked by Ber).

Recall that under the Gaussian assumption, the penalty form comes from a con-
trol of a Gaussian process. By comparing the Laplace distribution to the Gaussian
distribution in the tail, one can suspect that for Laplace, a stronger penalty should
be prefered to get a similary control. For the Laplace noise, the estimator associ-
ated to the double of the penalty estimated by the calibrated method is considered
(marked by Lap — 2) since from simulations it seems to be more appropriate.

We consider n = 500, and five simulated constant functions s. For each noise, the
risk ratio (3.14) is estimated over 500 simulations. The results are given in Table 5.

| L s [ o2 [ o [ sa [ 55 ]
Lap 2.56 | 215 | 2.63 2.4 1.89
Lap—2 || 129 | 134 | 15 1.13 1.1
Ber 1.0008 | 1.004 | 1.002 | 1.0005 | 1.0003

Table 5: Risk ratio for different functions s and different noise.

For the Bernoulli noise, the risk ratio is close to 1 whatever s, the method works
well since the noise is small and the change-points are marked. It is not the case
for the Laplace noise (Lap) and a correction of its penalty decreases the risk ratio
(Lap—2) as suspected. The penalty is too small to penalize correctly (the constants
are certainly not adapted), one underpenalizes and a partition of too large dimension
is selected.

6 Application : detection of the changes in the
monthly number of tests HIV in France

Data considered here are the number of tests HIV executed every month in France
between February 1987 and October 1991 (see Figure 11). The data are supposed
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to be Gaussian and independent. We want to detect change-points in the mean
revealing some changes in the behavior of French people facing the virus.

The function o — D(a) is represented in Figure 10. By applying the calibrated
method, the dimension 13 is selected but the biggest jump, which is associated to
az, does not belong to [aynr,6?] and the minimal penalty is not considered. This
jump leads to the estimator of dimension 3 plotted in Figure 11. That reveals three
time intervals of constant mean of the number of tests with a clear increase between
October 1991 and August 1995. This period seems to correspond to the conscience
hold of the seriousness of the virus. Next a light decrease is observed.
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35 \T—LL h
30 4
251 T

20 b

15| b

L [ i
10
sk |
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0 05 ! 15 2 25 3
a 8
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Figure 10: Function o — D(a) .

Moreover a second big jump of dimension, associated to a1, is present (see Figure
10). This jump will be never considered by the method since it is smaller that the
one associated to as. However, it could be interesting to look for its associated
estimator which has the dimension 27 and is plotted in Figure 11. That brings a
more precise segmentation and so an additionnal information. It seems to reveal the
existence of an annual cycle showing an increase between the beginning of spring
and the end of summer.

7 Discussion

We have proposed a calibrated penalized least-squares criterion for the change-
points problem via a nonasymptotic approach. This leads to an automatic method
which works well and better that the C}, Mallows and the BIC criteria particulary
for small samples. However it is difficult to obtain a calibration working well in all
situations and in practice it could be interesting to take into account the informa-
tion available from an user. Indeed, as we have seen in the previous application,
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Figure 11: Penalized estimators of dimensions 3 and 27.

the calibration can be prove to be too stringent in the sense that the true minimal
constant penalty does not belong to the interval of calibration [ap,,52]. For one
application, the user can perform the nocalibrated method and consider the esti-
mator associated to the biggest jump, and may be the different ones associated to
different big dimension jumps if any. A difficulty occurs when the biggest jump is
too small to be considered as signifiant. This situation can be explained by the fact
that the two constants ¢; = 2 and ¢, = 5 are not the optimal ones for this particular
application. Moreover, in practice one can remark that a multiplicative constant
different but close of 2 can work better. Indeed 2& can be close to one of values in
(@i)i=1,...,x and could be interesting in this kind of configuration to be considered.

One of the aim of this study was to assess the heuristic method proposed by Birgé
and Massart for the penalty constant estimation, and to calibrate it in the particular
Gaussian regression framework. Numerical experiments have clearly shown that the
calibrated proposed method performs well in terms of quadratic risk. That allows
to hope it will be useful in more complex situations in the sense that the penalty
constant « is not explicitly known, as for example in the CART framework [10].
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