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Les Champs Classique et Mécanique Quantique. Partie 1

Résumé : Ces notes de cours ont été finalisées & 'INRIA pendant ma visite du Projet ONDES
en Janvier-Février 2003. Elles correspondent & un cours d’'un semestre a I’Université de Vienne
en 2002. Le but de ces notes est une introduction & la Théorie Classique des Champs et Mé-
canique Quantique pour les mathématiciens. Nous commencons par la théorie de Lagrange et
Hamilton pour des systémes de dimension finie et des équations d’ondes non linéaires générales.
Nous démontrons ensuite le théoréme des Invariants de Noether pour les champs et exposons
I'Electrodynamique de Maxwell dans la forme Lagrangienne. Nous introduisons enfin ’Equation
de Schrédinger pour un électron soumis & un champ électromagnétique: 1’équation permet de
décrire les propriétés de type particule des rayons de cathode par l'intermédiaire des asymp-
totiques WKB pour les ondes courtes. Finalement, nous appliquons 1’équation de Schrédinger
pour la détermination de la spectre de I’atome d’Hydrogéne, la radiation dipolaire et les régles
de sélection dans le champ magnétique uniforme.

Mots-clés : équations de Lagrange, invariants, équations de Maxwell, équations de Schrodin-
ger, radiation, spectre, Hydrogéne, régles de sélection
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2 Alezander Komech

1 Lecture 1. Introduction

1.1 Missing “matter equation” and Quantum Mechanics

The Maxwell Theory (1865) describes perfectly the motion of charged particles in given electro-
magnetic fields and also the propagation of the electromagnetic waves generated by the given
charge and current densities p,j. However, generally it cannot describe the evolution of the
unknown densities and the fields since the microscopic evolution equation for the densities is
missing. The representation of the densities as the motion of the charged particles does not help
since the corresponding mass density p is unknown (the ratio p/u is unknown and even does
not have a reasonable meaning since the ratio e/m takes different values for different elementary
particles).

The situation is better only on the macroscopic level in the simple media with known electro-
and magnetic permeability and conductivity since then the densities p,j are the functions of
the fields (Ohm law etc). However this is not the case for the vacuum. Hence the Classical
Electrodynamics is not sufficient to explain the structure of matter at the microscopic level.

Quantum Mechanics just provides various matter equations: Schrodinger, Klein-Gordon Eqns
etc. The equations arise inside the Classical Electrodynamics, Thermodynamics, Optics and
Atomic Physics from experimental observations of various aspects of the field-matter interaction
and their theoretical interpretation. Let us sketch a history of the genesis.

1.1.1 Classical Electrodynamics, Thermodynamics and Optics

The cathode rays and the electron The cathode rays were discovered first in the vacuum
tube by Crookes in 1870. The rays demonstrate the continuous charge motion in the vacuum in
the presence of the Maxwell field. This is just the situation which is not covered by the Classical
Electrodynamics.

The deflection of the cathode rays in a magnetic field has been observed by Hertz, Lenard,
Perrin and many others.

Some physicists thought with Goldstein, Hertz, and Lenard, that this phenomenon is like
light, due to vibrations of the ether or even that it is light of short wavelength. It is easily
understood that such rays may have a rectilinear path, excite phosphorescence, and effect photo-
graphic plates. Others thought, with Crookes, J.J. Thomson, Perrin and others that these rays
are formed by matter which is negatively charged and moving with great velocity, and on this
hypothesis their mechanical properties, as well as the manner in which they become curved in a
magnetic field, are readily explicable.

Perrin (1895) collected the cathode rays, obtaining a negative charge.

In 1897 J.J. Thomson showed that the rays also are deflected by an electrostatic field. He has
systematized all previous observations and demonstrated the particle-like behavior of the rays
which corresponds to the Newton equation with the Lorentz force,

aZ%(EHxB), (L)

where — < 0. Respectively, he identified the cathode rays with a beam of particles with
negativgncharge and introduced the name the electron for these particles. This study led to the
first measurement of the ratio < close to its present value.

Kauffmann [10] also observg?i the magnetic deflection of cathode rays and obtained a ratio

£ which is close to the value of J.J.Thomson.
m
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Classical Fields and Quantum Mechanics 3

J.J. Thomson’s identification of the cathode rays led to many fundamental problems concern-
ing the size and the structure of the electron:

i) Abraham (1906) noted that the energy and mass of the electron are infinite if its radius is
zero, he introduced the model of the extended electron and calculated its radius.
ii) The extended electron cannot be stable because of the electrostatic repulsion (Poincaré 1908).

So the Classical Electrodynamics has to be complemented with a matter equation which could
describe i) the cathode rays and its particle-like behavior, and ii) the stability of the electron.
The black-body radiation In 1859 G.Kirchhoff stated the radiation law which predicts a
special character of the spectral density of the light waves radiated by a black body at a fixed
temperature. The light has been identified with the electromagnetic field by Maxwell in 1865.
Hence, the Kirchhoff law concerns the spectrum of the equilibrium distribution of the electro-
magnetic field at a fixed temperature. Therefore it provides a deep indirect information on the
interaction of the matter with the Maxwell field.

The experimental measurements have been performed by Tyndall in 1865, Crova in 1880,
Langley in 1886, Weber in 1887, Paschen in 1895-1899. Most precise measurements were made
in 1899 by Lummer and Pringscheim, and Kurlbaum and Rubens. They confirmed the Wien
formula

I(w) ~ w* exp(—7) (W)
Note that the traditional reference to the black body just means that its equilibrium radiation
coincides with the equilibrium Maxwell field since the absorption of the black body by definition
is zero.

The comparison of (W) with the general equilibrium Boltzmann-Gibbs distribution exp(— £)

kT
(where k is the Boltzmann constant) suggests the famous Planck relation (1901)

E =hw (P)

where E is the energy of the emitted “photon” and % = a/k ~ 1.05 - 10~%7erg - sec is the Planck
constant. Using the relation, Planck adjusted the formula (W) as

I(w) ~ ﬁLTaL (KP)
1- eXP(—?)

1.1.2 Optics and Atomic Physics

Photoeffect In 1887 Herz discovered the photoeffect (the "light electricity") as generation of
the electric charge by the sun radiation. Later the photoeffect has been observed with different
electromagnetic radiations by Stoletov, Elster, Geitel, Righi, Townsend, Rutherford, Compton
and lots of others. The experimental observations gave the relation

hw = Eq — A, (E)

where F is the (maximal) energy of the photoelectrons detached from the metal by the light of
the frequency w.

In 1905 Einstein proposed the theory of the photoeffect [5]: he identified the identity (E)
with the energy balance. Namely, Einstein
i) identified the quantity iw with the energy of the absorbed photon with frequency w in accor-
dance with the Planck relation (P) (which concerns the emitted photon !), and
ii) identified A with the escape energy of the metal.

RR n® 4736



4 Alezander Komech

This explanation treat the light as a collection of particle-like “photons” that cannot be
explained by only using a wave picture of light and the classical representation of the electrons
as particles.

Scattering of light by electrons In 1923 Compton, discovered that the scattered light has a
wavelength )\’ different from the wavelength A of the incident light:

me 2

where 6 is the angle between the incident and scattered waves. Similarly to the photoeffect, the
scattering also cannot be explained by only using a wave picture of light, where the wavelength
does not change.

The atom nucleus and the atom stability In 1913 Rutherford discovered the atom nucleus
in an experiment on the scattering of a-particles. This discovery suggested to him the classical
model of the atom as a finite number of electrons moving around the point nucleus with positive
charge. The electrons are governed by the classical Lorentz Eqn (L). However, the model is
unstable due to the radiation of the rotating electrons in accordance with the Maxwell electro-
dynamics. Therefore, the Maxwell theory is insufficient to explain the stability of the atoms.
Atomic spectra and quantum transitions Atom spectra provide an extremely important

information on the atom structure which gives new insight into the problem.

1 1
In 1885 Balmer has discovered the representation ws, = C (2—2 - —2) (n > 3) for a spectral
n

series in the Hydrogen atom spectrum. Later similar representations were found for another

. 1 1 1
series by Lyman (1909) wq, = Cl'(l —lﬁ) (n > 2), Paschen (1908) ws, = C<3—2 - ﬁ) (n>4)
and Brackett (1914) wy, = 0(4—2 - ﬁ) (n > 5). Similar structure
Wmn = Wm — Wp, (R)

has been discovered by Rydberg (1900) for all the lines in the several series of the same elements.
The importance of the observation was also stressed by Ritz (1908) so it is now commonly known
as the Rydberg-Ritz combination principle, and the numbers w,, are called the terms. In 1913
Niels Bohr rewrite (R) in the form

suggested by the comparison of the formulas (R) and (E). Moreover, Bohr interpreted (B)
generalizing the Planck and Einstein ideas:
I. (B) means the energy balance in the transition

between the stationary states |E,,) and |E,,) of the electron in the atom with the energies E,,, E,.
IT. the transition is followed by the radiation of light with the frequency wp,, and the energy
fiwmn in accordance with the Planck resp. Einstein identification of the quantum 7w with the
energy of the emitted resp. absorbed photon.

The role of the Planck constant % cannot be explained by the Maxwell theory as well as the
discreteness of energies F,, of the stationary states. The discreteness of the energies means a
restriction to certain stable orbits of the electron in the atom.

“0Old” quantum theory In 1913 Debye stated the guantum rule for the determination of stable
periodic orbits of the electrons in the atom,

AS =2mnh, n=1,2,3,... (D)

INRIA



Classical Fields and Quantum Mechanics 5

where AS is the action integral corresponding to the time-periodic orbit of the electron. The rule
was motivated by the Ehrenfest idea of adiabatic invariance. In 1916 Sommerfeld and Wilson
extended the rule to more general quasiperiodic orbits. The quantum rules allowed to find the

Hydrogen spectral terms w, = n = 1,2,... which exactly agree with the Lyman, Balmer

. n?’
series etc.

Atoms in magnetic fields In 1896 Zeeman discovered the splitting of the spectral lines of atoms
in a magnetic field. Lorentz explained the splitting by the Maxwell theory in the simplest case
of the normal Zeeman effect when the line w splits into three lines: w and w = w + Aw, where
Auw is proportional to the magnetic field. However the explanation of the general anomalous
Zeeman effect cannot be deduced from the Maxwell theory: for example, the double-splitting for
the spectra of the alkali atoms.

The Maxwell theory predicts a unique value 7 for the gyromagnetic ratio u/M, where p resp.
M is the magnetic resp. mechanical momentum of the electron in the atom In 1915 Einstein and
de Haas first measured the gyromagnetic ratio, however the observed ratio was 2r i.e. two times
larger than the theoretical.

In 1921 Stern and Gerlach observed the double-splitting of a beam of silver atoms in a strong
nonuniform magnetic field. It also means the splitting of the stationary state of the atom in two
states with different gyromagnetic ratios /M which again contradicts the Maxwell theory.
Wave-particle duality for free particles In 1911 Einstein suggested a possible description
of matter by waves in parallel to the particle-wave duality of light which is demonstrated by
the Maxwell theory and the photoeffect (£). In 1922 de Broglie in his PhD Thesis realized the
Einstein idea for the free particle beam with the energy-momentum vector (E, p). Namely:

i) the beam is identified with the plain wave by the following “wave-particle” relation:

"free particles"(E, p) < (¢, x) = e/x—b)
ii) the identity holds

which follows from the Einstein relativity principle and (P1).
iii) (dB) implies the famous de Broglie relation for the wave length A = 27/|k|,

y_ 2mh

Ip|

It implies also the relativistic dispersion relation

2 9
hw 2
5~ ="h k? + m2c?,
c

as for relativistic particles the energy F satisfies the relation

(1.1) — =p  +m’c,

where c is the speed of light.
iv) For small values of |p| < mc the nonrelativistic approximation holds,

(1.2) E = /p2c® + m2c* = mc® + L

2
2m
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6 Alezander Komech

Dropping here “unessential” additive constant mc?, one get the nonrelativistic dispersion relation

The dispersion relations imply the free Klein-Gordon resp. Schrédinger equations for correspond-
ing wave function ¢ from (W P):

S %) = [(~iV)? + (2, x), (KGy)

DOt x) = 5 (~iTx) (1) (50)

Wave equations for bound particles In 1925-1926 Klein, Gordon and Schrédinger extended
de Broglie’s wave equation to the bound electron in an external Maxwell field. Namely, the
free equations (K Gy) resp. (Sp) formally follow from the energy-momentum relations (1.1) resp.
(1.2) by the substitutions E — ihd;, p — —ihVx. For the electron in the external electrostatic
potential ¢(t,x) and static magnetic vector-potential A(¢,x), the (conserved) energy E is given
by (E —ed(t,x))?/c? = (p—£A(t,x))%? +m2c?, where e is the charge of the electron and ¢ := e/c.
Then Klein, Gordon and Schrédinger generalized (KGg) by

S0, — eg(t x))2p(t %) = (Vs — AR (%) + mp(t 0. (KG)

Schrodinger generalized also the nonrelativistic approximation (Sp) by means of E — e¢(t,x) =
(p — £A(t,x))%/(2m), which gives

(110, — et x))ib(t, %) = 5~V — fA(Lx))) (6, ). ()

The next crucial step of Schrédinger’s theory is the identification of the stationary states with
solutions of the type exp(—iwt)y(x) for the static Maxwell fields ¢(t,x) = ¢(x) and A(t,x) =
A(x). This identification is suggested by the de Broglie plain wave exp(—iwt) exp(ikx) where only
the spatial factor has to be modified since the external field twists the space but not the time.
The energy is again £ = hw. This identification leads to corresponding stationary equations
(eigenvalue problems),

clz(w — ep(x))*h(x) = (~ihVx — fAxX))*9(x) +m’c*(x), (KGy)

(w — ep(x))p(z) = %(—mvx — PAX))* (). (Sw)

for the determination of the energies E = hw and the amplitudes 1 (x) of the stationary states.
Schrodinger has calculated all solutions to (S,) for the Hydrogen atom. The agreement
with the experimentally observed spectrum was perfect. The calculation uses the standard
separation of variables in spherical coordinates which involves some integer numbers as in the
quantum conditions (D). Just this analogy suggested to Schrédinger an eigenvalue problem for
the determination of the stationary states of the atom.
Nonrelativistic theory of Spin In 1925 Uhlenbeck and Goudsmit introduced the hypothesis of
the existence of the spin of the electron, i.e. of its own magnetic and mechanical momentum with
the gyromagnetic ratio 2r, to explain the double-splitting of the spectral lines and the Einstein-de

INRIA



Classical Fields and Quantum Mechanics 7

Haas experiment. In 1927 Pauli obtained the wave equation which takes into account the spin
of the electron,

3
(1hd; — ep(x))(t, x) = ﬁ(—ﬂivx — PAX))*)(t,%) + pB Y ok Bi(t:x)(t,x).  (P)
1

le[7

Here up = Oy is the Bohr magneton, the wave function 9 (t,x) = (¢¥1(t,x),92(t,x)) with

the complex-valued functions y(t,x), By are the components of the magnetic field and oy are
complex 2x2 Pauli matrices. Pauli obtained the equation by just postulating the double-splitting
and covariance with respect to space rotations.

This equation describes the spin of the electron, i.e., it leads to the right gyromagnetic ratio
observed in the Einstein-de Haas experiment. It also allowed Pauli to explain the (anomalous)
Zeeman effect and the Stern-Gerlach experiment.

Relativistic theory of Spin In 1927 Dirac discovered the relativistic invariant equation which
generalizes the Pauli and Klein-Gordon equations,

3
> %a(iiVa — fAa(x)) — mlgp(z) = 0, z € RY,
a=0

where Vo = 8;/¢c, (V1,V2,V3) = Vx, Ao(z) = ¢(z) and Ay = —Ax(z), k = 1,2,3, 7, are the
Dirac- 4 x 4-matrices, and (z) € C* for z € R*.

The Dirac equation also provides the right gyromagnetic ratio and explains the spin of the
electron. It gives a much more exact description of the Hydrogen atom spectrum than the
Schrodinger and Pauli equations.

Interference of the electrons In 1927 Davisson and Germer observed the interference of the
electron beams. Later the experiments were repeated and confirmed by many authors: Thomson,
Rupp, Kikouchi and others. In 1949 Biberman, Sushkin and Fabrikant observed the interference
pattern with a weak beam with a very low rate of registration of the electrons.

The probabilistic interpretation of the wave function In 1927 Born proposed the following
interpretation of the wave function to explain the Davisson-Germer experiment: |t(t,x)|? is the
Density of the Probability.

1.2 On the contents of the lectures

The aim of these lectures is to give an introduction to Classical Field Theory and Quantum
Mechanics for mathematicians. We explain carefully the tools which are necessary for the intro-
duction:

i) The Lagrangian Theory for finite-dimensional dynamical systems, Noether Theorem I on the
invariants in the presence of the symmetry, the Hamilton-Jacobi equation (Lectures 2-5).

ii) The Lagrangian Theory for the classical fields, a new simple and complete proof of the Noether
Theorem II on the currents and its applications (Lectures 6-10).

iii) The Maxwell Theory in the Lagrangian form, the integral representations for the fields, the
role of the retarded potentals, and the Hamiltonian equations for the charge in Maxwell Field
(Lectures 11-14).

iv) The Lorentz theory of the Matter in Maxwell Field. We give a new rigorous introduction
of the Magnetic Momentum of a molecule (Proposition 15.9) and the proof of the Macroscopic
Limit in the sense of distributions (Lecture 15).

v) The Geometric Optics for free Schrodinger and Klein-Gordon Equations and the short-wave

RR n°® 4736



8 Alezander Komech

WKB asymptotics for the Schrodinger Equation in a Maxwell field (Lecture 16).

vi) We explain all details of the calculations with spherical functions using Lie algebra of angular
momentum (Lecture 18).

vii) Finally, we apply the Schrédinger Equation to the derivation of spectrum of the Hydrogen
atom, dipole radiation and selection rules in a uniform magnetic field (Lectures 17 and 19-21).

Remarks i) The short-wave WKB asymptotics allows us to justify the introduction of the
Schrédinger Equation as a matter equation suggested by the observation of the cathode rays.
Let us note that J.J.Thomson’s identification of the cathode rays with the beam of the electrons
means that the rays are the solutions to the Lorentz Eqn (L) with an appropriate factor e/m.
On the other hand, the rays arise in the short-wave WKB asymptotics of the solutions to Eqns
(KG) and (S). Namely, the asymptotics have the form

9(t,%) ~ alt, %) exp( S ). (WKB)

The phase function S(t,x) satisfies the Hamilton-Jacobi Eqn corresponding to the Lorentz Eqn
(L). Therefore, S(t,x) is given by an integral of the action along the trajectories of the Lorentz
Eqn. Furthermore, the amplitude a(t,x) satisfies the transport equations which means that,
roughly speaking, the amplitude is the translation of the initial amplitude a(z,0) along the tra-
jectories of Eqn (L). This analysis suggests that the cathode rays are the short-wave solutions
to the (KG) and (S) Equations.

ii) Thus the Schrodinger and Klein-Gordon Eqns “follow” directly from the particle-like behavior
of the cathode rays and the Planck Law (P) which fix the small parameter f. Let us note how-
ever that the introduction of the wave equations for the matter becomes necessary only after the
Einstein explanation of the photoeffect, the Bohr analysis of the Ritz combination rule and the de
Broglie’s formulation of the wave-particle duality. The introduction of the free wave equations
(KGy), (So) in the de Broglie Theory is motivated by the algebraic arguments of relativistic
invariance. Also the Schrédinger Eqns (KG), (S) formally follow from (KGy), (Sp) by the al-
gebraic arguments. More fundamental arguments rely on the central role of the action-function
S(t,x) which has been demonstrated by the Debye-Sommerfeld-Wilson Rule (D) in the “old”
quantum theory. Note that the quantum conditions (D) appear also in the Schrédinger theory
in the form of the Bohr-Sommerfeld relations, however with half-integer n.
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N.Mauser, A.Shnirelman, H.Spohn and M.I.Vishik for fruitful discussions and suggestions. The
author also wishes to thank the Institute of Mathematics of the Vienna University and the
Project ONDES (INRIA, Rocgencourt) for their hospitality.
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Classical Fields and Quantum Mechanics 9

2 Newton Mechanics

2.1 One-particle
2.1.1 Newton equation

The motion of one particle of the mass m > 0 is governed by the Newton differential equation
(2.1) md(t) = F(q(t),?), t€R.

Here q(t) € TR? is the particle position at time ¢ and F(-) is the force field. Let us assume
that F € C'(IR? x IR,IR?). Then the solution q(t) is defined uniquely by the initial conditions
q(0) = qo € R?, ¢(0) = vo € R? by the Main Theorem of Ordinary Differential Equations. The
solution exists for |¢t| < e, where € > 0 depends on initial data qg, vp.

2.1.2 Energy conservation

Let us assume that the force field F has a potential function (or simply potential) V() € C*(IR3 x
IR),
(2.2) F(q,t) = -VV(q,t), q€R3 teR.

Definition 2.1 i) £ := IR? xIR? is the phase space of the Newton equation, £T := R*xIR*x IR

is the extended phase space of the Newton equation,
i1) Energy E(q,v,t) is the function on the extended phase space,

2

(2.3) B(q,v,t) = 5 + V(g 1), (q,v.1) €€

Theorem 2.2 Let the condition (2.2) hold and the potential does not depend on t,

(2.4) V(q,t) =V(q), (q,t) € R®xIR.

Then for every solution q(t) € C%([ty,t1],IR3) to the Newton equation, the energy is conserved,
(2.5) E(t) := E(q(t),q(t)) = const, t € [ty,t1].

Proof By the chain rule of the differentiation, the Newton equation (2.1) and (2.2),

(2.6) E(t) = ma(t) - 4(t) + VV(a(t)) - a(t) = [ma(t) + VV(a(®)] - a(t) =0, t € [to, ta]-

2.1.3 Well-posedness condition

Theorem 2.3 Let the condition (2.4) hold and the potential is bounded from below, by some
constant C € IR:

(2.7) V(q) >C, qelR3.

Then every solution q(t) to the Newton equation (2.1) exists globally in time, i.e. for all t € IR.

Proof The energy conservation (2.5) implies that the velocity is bounded, |q(¢)| <const. Then
also q(t) is bounded. This provides the existence of the global solution for all ¢ € IR. [ |
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10 Alezander Komech

2.2 Many particles

2.2.1 Newton equations

The motion of n particles of the masses m; > 0 is governed by the Newton differential equation
(2.8) m;iQ;(t) = Fi(q(t),t), teR, i=1,...,n.

Here
i) q;(t) € IR? is the position of the i-th particle at time ¢, ¢(t) = (qi(t), ..., qn(t)) € IR*" and
ii) F;(q(t),t) € R? is the force acting on the 4-th particle.

Let us assume that the force field F(q,t) := (Fi(g,t),...,Fy(g,t)) € C'(IR*" x IR,IR?").
Then the solution ¢(t) = (qi(t),...,qn(t)) to the system (2.8) is defined uniquely by the initial
conditions ¢(0) = g € IR*"*, ¢(0) = vy € IR3™ by the Main Theorem of Ordinary Differential
Equations. The solution exists for |¢| < e, where € > 0 depends on initial data go, vo.

2.2.2 Energy conservation
Let us assume that the force fiel4 F has a potential function (or simply potential) V(-) € C?(IR?"),
(2.9) Fi(g,t) = -V, V(g, 1), € R, i=1,...,n.

Definition 2.4 i) £ = IR x IR*" is the phase space of the Newton system (2.8), £ET :=
IR?" x IR3" x IR is the extended phase space of the Newton system (2.8).
i1) Energy E(q,v,t) is the function on the phase space,

’I’I’LZ‘VZ2
(210) E(g0,t) =Y =+ V(1) (gv) €8,

i

where v = (V1, ..., V).

Let us call the trajectory any solution ¢(t) to the Newton system (2.8)
Theorem 2.5 Let the condition (2.9) hold and the potential does not depend on t,
(2.11) V(g,t) =V(g), (g,t) € R*™ xR,
Then for any trajectory q(t) € C([to, t1],IR®"), the energy is conserved,
(2.12) E(t) :== E(q(t), q(t)) = const, t € [to,t1].
Proof By the chain rule of the differentiation, the Newton system (2.8) and (2.9) imply,

Bty = Zmiqim-qi(t>+quiV(q<t»-qi(w

(2.13) = Z[midi(t)+vqu(q(t))] cqi(t) =0,  te€ [ty t].

2.2.3 Well-posedness condition

Theorem 2.6 Let the condition (2.11) hold and the potential is bounded from below, by some
constant C € IR:
(2.14) V(g) > C, qeTR™.

Then every solution q(t) to the Newton equation (2.8) exists globally in time, i.e. for all t € IR.

Proof The energy conservation (2.12) implies that the velocity is bounded, |¢(¢)| <const. Then
also ¢(t) is bounded. This provides the existence of the global solution for all ¢ € IR. |

INRIA
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2.3 Symmetry theory

The invariance of the potential V' with respect to the translation in time, (2.11), provides the
energy conservation (2.12). Let us show that the invariance of the potential V(q) with respect
to some transformation of the configuration space @Q := IR?" leads to new conservation laws.

2.3.1 Translation group

Let us fix a vector h # 0 in IR? and consider the translations z +— z+ hs of IR? and corresponding
action in IR3":

(215) Ts(qh IR qn) = (ql + hS, 35 dn T hs): (qla 39 qn) € R?m'
Definition 2.7 The system (2.8) is invariant with respect to the translations (2.15) if
(2.16) V(Ts(9),t) = V(g,1), (¢,1) e R, VseRR.

Example 2.8 The Newton system (2.8) is invariant with respect to the translations (2.15) with
every h € R?, if the potential energy has the structure

(217) V(ql,---;qn;t) = W(ql —dQn,---,An-1 —Qn,t), (Qh---,Qn,t) € R3n+1
with a function W of 3n — 1 variables.

Definition 2.9 i) The momentum p; of the i-th particle is the vector-function on the phase space
&

(2.18) pi :=miv; €IR3 (q,v) €&.

i) the (total) momentum p of the system (2.8) is the vector-function on the phase space &,

(2.19) pi= Zpi = Zmivi eR?, (q,v) €€.
% %
iii) Center of mass of the system of n particles
1
(2.20) Q=37 Y migi, ¢=(q,--qn) € R,
%

where M := ), m; is the total mass of the system.

Theorem 2.10 Let (2.9) hold and the system (2.8) be invariant with respect to the translations
(2.15) along a fized vector h € IR®. Then for any trajectory q(t) € C?([to, t1],IR?"), the projection
of the momentum p(t) onto h is conserved,

(2.21) pp(t) :== p(t) - h = const, t € [tg,11]-
Proof By (2.9), the system (2.8) and the chain rule of the differentiation,

(2:22) pn(t) = Y midi(t) -h =~ 3V V(e t) h=—|  VTia(t)) =0, € lio,ti]
i i s=0

by (2.16). u
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12 Alezander Komech

Corollary 2.11 Let the Newton system (2.8) be invariant with respect to the translations (2.15)
along all vectors b € R3. Then for any trajectory, the momentum p(t) is conserved, p(t) = const,
and the center of mass Q(t) =Y, m;q;(t)/M moves uniformly: Q(t) = vt + Qo.

Proof Since (2.22) holds for every h, we have p(t) = const and
1 ..
= M Z m;Qq; = 0. |
i

2.3.2 Rotation group

Let us fix a unit vector 7 € IR® and consider the rotation round r in IR?® with angle s radian.
Let us denote by O,(s) € SO(3) the corresponding orthogonal matrix and define corresponding
transformation in IR*" by

(223) Rs(qla sty qn) = (O’l‘(s)qla ey OT(S)qTL)a (qla ey qn) € IR'3n'
Definition 2.12 The system (2.8) is invariant with respect to the rotations (2.23) if
(2.24) V(Rs(9),1) = V(g,1), (¢,t) eR™, Vs TR,

Example 2.13 The system (2.8) is invariant with respect to the rotations (2.15) with every
r € IR3, if the potential energy has the structure

(2.25)  V(Qiyees@n,t) = W({|ai —q;| : 1 < i <j<n}ht), (qi,edn,t) € R

Definition 2.14 i) The angular momentum M; of the i-th particle is the vector-function on the
phase space &,
(2.26) M;(q,v) :==q; xp; €R?, (g,v) € E.

i1) the angular momentum M of the Newton system (2.8) is the vector-function on the phase
space &,

(227) M(Q7U) = Z MZ = ZQZ X p; € IR'37 (Q7U) €g.
% %

Theorem 2.15 Let the Newton system (2.8) be invariant with respect to the rotations (2.23)
round a fized vector r € R3. Then for any trajectory q(t) € C?([to,t1],IR*™), the projection of
the angular momentum M (q(t), 4(t)) onto r is conserved,

(2.28) M, (t) :== M(q(t),4(t)) - = const, t € [to,t1].
Proof The differentiation gives,

Mr(t) = [Z QZ(t) X pz + qu X pz
= [Z qz(t) X min + qu X M t)] T

(2.29) = z[qz(t) x miq;(t)]-r = ZmzqZ - [r % q(t)].
i
Therefore, the Newton system (2.8) and (2.27) imply by the chain rule of the differentiation,
A d
(2.30)  M,( qulv )+ I x ai(t)] = —— 0V(qu( ),t) =0, t€ [to,t1]-
s=

INRIA
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by (2.24) since
(2.31) T X qi(t) = d% O (s)ai(t)-

s=0
This identity follows from the fact that the vectors in both sides are orthogonal to the plane
containing 7 and q;(t), and have the same length. Indeed, the length of the LHS is || |q;(%)] sin «,
where « is the angle between 7 and q;(¢), and the length of the RHS is the radius of the circle

{Or(s)q;(t) : s € [0,27]} which is equal to |q;(t)|sin a. [ ]
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3 Lagrangian Mechanics

3.1 One particle
3.1.1 Lagrangian function
We expose the Lagrangian variational form of the Newton Eqn (2.1) with the potential (2.2),
(3.1) mqg(t) = —-VV(q(t),t), teR.
Definition 3.1 Lagrangian L(q,v,t) of the system is the function on the extended phase space
Et =TR3 x R® x R defined by (cf. (2.3)),

2

(3.2) L(q,v,t) = % ~V(a,t), (q,v,t) €&

Exercise 3.2 Check that the Newton equation (3.1) can be represented in the Euler-Lagrange
form,

(3.3) d

%Lv(q(t% (:I(t), t) = Lq(‘l(t)a Q(t)a t): te R.
Let us consider more general Lagrangian systems with an arbitrary function L(q, v, ).

Definition 3.3 i) The Lagrangian system with one particle is the dynamical system described
by the Lagrangian equation (3.3) with a function L(q,v,t) € C*(ET).

it) The momentum of the Lagrangian system is the vector-function on the extended phase space
ET defined by

(34) P=Ly(q,v,?), (q,v,t) €ET.

iii) The energy of the Lagrangian system is the function on the extended phase space E1 defined

by

(3.5) E(q,v,t) =pv—L(q,v,1), (q,v,t) €ET.

Example 3.4 The Newton equation (3.1) is the Lagrangian system with the Lagrangian func-
2

tional (3.2), momentum p = mv and the energy E = % + V(q,t)

Theorem 3.5 Let the Lagrangian do not depend on time,

(3.6) L(q,v,t) = L(q,v), (q,v,t) €ET.

Then for any trajectory q(t) € C%([tg,t1],IR?), the energy is conserved, (2.5).

Proof The differentiation of (3.5) with q = q(t) and v = q(¢) gives,

(3.7) E({t)=pv+pVv—Lqq—Lyv =0

by the equations (3.3) and the definition (3.4). |

Exercise 3.6 Calculate the momentum and the energy for the Lagrangian L(q,v) = —mv1 — v2.

INRIA
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3.1.2 Action functional

Definition 3.7 C' = C'([0, ), R3) is the space of all paths in the 3D space.

We will consider the real-valued functionals F on C'!. By definition, F is a map C! — IR.
T
Example 3.8 F(q) :/ |a(t)|dt is the length of the path q(-) € C*, t € [0,T).
0
Definition 3.9 The Gateau differential DF(q) is the linear functional C' — IR defined by

(3.8) (DF(@)h) = L] Fq+eh), h()ed!

e=0

if the derivative in the RHS exists.

Let usfixaT > 0.

Definition 3.10 The action is the functional on C' defined by

T
(3.9) Sr(a()) = /0 L(a(t), a(t), t)dt, q() € C*.

Note that the functional is defined on the whole of C! if L(q,v,t) € C(é1). Moreover, the
functional is differentiable if L(q,v,t) € C*(£T):

Lemma 3.11 The Gateau differential DS7(q) ewists for q € C*.

Proof From definition 3.9 we get by the theorem of the differentiation of integrals,

d T .
Osr@.h): = | [ L)+ eno.a + b, o
e=0
T -
(3.10) — | 1aa.a@)he) + Lu(ale). a0, o)
since L(q,v,t) € C%2(£T) by our basic assumptions. [ |

3.1.3 The Hamilton Least Action Principle

Let us introduce the space of variations.
Definition 3.12 CY(T) = {h € C': h(0) = h(T) = 0}.

Definition 3.13 The function q € C' satisfies the Hamilton Least Action Principle (LAP) if
for any T > 0,
(3.11) (DSr(q),h) =0, Vh() € CY(T)

Theorem 3.14 For q € C?([0,00),1R?) the Hamilton LAP is equivalent to the Euler-Lagrange
Eqns (8.3) with t € [0,T].
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Proof The partial integration in (3.10) gives,

(3.12)  (DSr(q / [La(a(t),a(t),t) — —Lv(a(t),a(t),O)h(t)dt, h e Co(T).

Therefore, (3.11) is equivalent to (3.3) by the following lemma:

Lemma 3.15 Main Lemma of the Calculus of Variations (du Bois-Reymond).
Let a function f(t) € C[0,T] and fo (t)h(t)dt = 0 for any function h(t) € C[0,T] with the
boundary values h(0) = h(T') = 0. Then f(t) =0, t € [0,T].

Exercise 3.16 To prove the Main Lemma.

3.2 n particles
3.2.1 Lagrangian function

We extend the Lagrangian formalism to the Newton Eqns (2.8) with the potential (2.9),
(3.13) miQi(t) = —Vq,V(q(t),t), t €.

Let us introduce the Lagrangian L(q,v,t) of the system (3.13) as the function on the extended
phase space £T = IR?" x IR*" x IR defined by (cf. (3.2)),

mivz
(314) L(q,’l),t) = Z Tl - V(q,t)7 (Q7v7t) € g+7

%
where v = (v1,...vp).
Exercise 3.17 Check that the Newton equation (3.13) can be represented in the Euler-Lagrange
form,

(3.15) = Lo(a(t); 4(1),1) = Le(q(t),4(2),1), ¢ € R,

dt

Let us consider more general Lagrangian systems with the extended phase space €T :=
RY x RN x IR, where N = 1,2..., and an arbitrary function L(q,v,%).

Definition 3.18 i) The Lagrangian system in the extended phase space £ := R x RY x R
is the dynamical system described by the equations (3.15) with a function L(q,v,t) € C%(€).

it) The momentum of the Lagrangian system is the vector-function on the extended phase space
ET defined by

(3.16) p = L,(q,v,t), (g,v,t) €ET.

iii) The energy of the Lagrangian system is the function on the phase space ET defined by
(3.17) E(g,v,t) =pv — L(g,v,1), (g,v,1) €ET.

Exercise 3.19 Check that the Newton equations (3.13) are the Lagrangian system with the La-
grangian functional (8.14), momentum p = (p1, ..., Pn) where p; = m;v;, and the energy

V2
(3.18) E=Y" % +V(g,t).
7
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Theorem 3.20 Let the Lagrangian do not depend on time,

(3.19) L(gq,v,t) = L(q,v), (q,v,t) €ET.

Then for any trajectory q(t) € C?([to, 1], IRY), the energy is conserved, (2.12).

Proof The differentiation of (3.17) with ¢ = ¢(t) and v = ¢(¢) gives,

(3.20) E(t) =pv+pd — Ly — Lyo = 0

by the equations (3.15) and the definition (3.16). [ |

3.2.2 Action functional

Definition 3.21 C' = C'(]0, 00),IRY) is the space of all paths in the ND space.

We will consider the real-valued functionals F on C'. By definition, F is a map C' — IR.
T
Example 3.22 F(q) = / |§(t)|dt is the length of the path q(-) € C', t € [0,T].
0
Definition 3.23 The Gateau differential DF(q) is the linear functional C' — IR defined by

(3.21) (DF(g).h) = &

h
e F(q+eh)

e=0

for h(-) € C* if the derivative in the RHS emists.

Let usfixaT > 0.

Definition 3.24 The action is the functional on C(T) defined by

T
(3.22) Sr(q) = /O La(t), §(®)dt, o() € C".

Note that the functional is defined on the whole of C1(T) if L(q,v) € C(£). Moreover, the
functional is differentiable if L(g,v) € C1(€):

Lemma 3.25 The Gateau differential DSt(q) exists for q(-) € C*.

Proof From definition 3.9 we get by the theorem of the differentiation of the integrals,

d T : ;
Dsr@h)s = | | o + b)) + e
T .
(3.23) = /0 [Lq(a(t), q(t))h(t) + Ly(q(t), 4(t))h(t)]dt
since L(g,v) € C?(&) by our basic assumptions. [ |
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3.2.3 The Hamilton Least Action Principle

Let us introduce the space of variations.

Definition 3.26 CY(T) = {h(-) € C' : h(0) = h(T) = 0}.

Definition 3.27 The function ¢ € C' satisfies the Hamilton Least Action Principle (LAP) if
forany T >0

(3.24) (DSr(g),h) =0, Vh(-) € CY(T)

Theorem 3.28 For q € C*(|0, oo),IRN) the Hamilton LAP is equivalent to the Euler-Lagrange
Eqgns (3.15).

Proof The partial integration in (3.23) gives,
r d
(3.25) (DS(q), h) :/0 [La(a(2),4(8)) = - Lo(q(2), 4(2))]R(t)dt.

Therefore, (3.24) is equivalent to (3.15) by the Main Lemma of the Calculus of Variations. M

Remark 3.29 The expositions in Sections 3.1 and 3.2 formally are almost identical.
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4 E.Noether Theory of Invariants
The invariance of the Lagrangian L with respect to the translation in time, (3.19), provides the

energy conservation (2.5). Let us show that the invariance of the Lagrangian with respect to
some transformation of the configuration space Q := IRY leads to new conservation laws.

4.1 Symmetry and Noether Theorem I

Consider a group G = {g} of differentiable transformations g € C?(Q, Q) of the configuration
space @ of a Lagrangian system.

Definition 4.1 G is a symmetry group of the Lagrangian system if the identity holds

(4.1) L(g(q), dg(q)v,t) = L(g,v,1), (¢,v,t) €ET, Vg€ G,
where dg : RY — IRY is the differential of g.

Let us recall the definition of the differential:
(4.2) dg(q)v ==

if Q(0) = ¢ and Q(0) = v.
Consider a one-parametric subgroup {gs; € G : s € IR} of the symmetry group G,
(4.3) L(gs(q), dgs(v),t) = L(g,v,1), (g,v,t) €ET, Vs €.

Remark 4.2 Since g5 is the one-parametric subgroup, we have gog = Id, hence

(4.4) (90(q), dgo(v)) = (q,v), (g,v) € €.
Definition 4.3 The Noether invariant is the function on the extended phase space £ defined
by
(4.5 Hg,1) = Lo, ) 280 (g 0,0 e 6.
s=0

Theorem 4.4 (E.Noether [11]) Let q(t) € C?(IR,RYN) be a solution to the Euler-Lagrange Eqns
(8.15) and {gs : s € R} the a one-parametric symmetry group of the Lagrangian system. Then
I(t) := 1(q(t),q(t),t) =const, t € IR.

Proof Differentiation gives,

(W6) 1) = SLu(a(0,d(0,0) £ (o) + Lu(a(®),d(0),0) S0 gu(a(t).
s=0 5=0
For the first summand on the RHS the Eqns (3.15) give,
d . d d
(@) SLoa(®,d(0,) 7| 0s(a(0) = Lo(a®),d@,0) | gs(a(t).
5=0 s=0
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For the second summand we have

(@8 Loa®d0,0) S ga®) = Lu(a®,d0,0) | Lgat)
s=0 s=0
) ) 62 82
by the well known identity 585 — Dedt At last,
(1.9 2 0s(a(0) = dg(a($)i(1)

by definition (4.2) of the differential of the map gs. Now (4.6)-(4.9) gives by the chain rule and
(44),

9s(a(t)) + Lu(q(t), 4(t), t)d% dgs(q(t))4(t)
s=0 s=0

i) = Lol 9.0

(4.10) = =

according to (4.1). [ ]

4.2 Applications to n-particle systems

Let us apply the Noether Theorem to the Lagrangian systems of n particles i.e. with N = 3n
and ¢ = (qq,...,q,) where q; € IR?.

4.2.1 Translation group

Let us fix a vector h # 0 in IR® and consider the transformation Ty from (2.15). By Definition
4.1 the Lagrangian system is invariant with respect to the translations (2.15) if

(4.11) L(Ts(q),dT5(q)v,t) = L(g, v, 1), (¢,v,t) € ET, Vs € R.
Exercise 4.5 Check that for the translations T, s € IR, the differential is given by
(4.12) dTs(q)v = v, ¢,v € R,

Exercise 4.6 Check that the Lagrangian system is invariant with respect to the translations
(2.15) with every h € R3, if the Lagrangian has the structure (cf. (2.17)),

(413) L(qla"'7qn7v7t) :A(ql —Qn, -, An—-1 _Qny'l);t); (qla"'aqna’u7t) € £+'

Definition 4.7 i) The momentum p; of the i-th particle of the Lagrangian system is the vector-
function on the space T,

(4.14) pi(q,v,t) == Ly,(¢,v,t) € R®, (q,v,t) € ET.

ii) the momentum p of the Lagrangian system is the vector-function on the space £,

(4.15) p(a,v,t) ==Y pi=» Ly, €R?, (qv,t) €ET.
2 A
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Theorem 4.8 Let the Lagrangian system (2.8) be invariant with respect to the translations
(2.15) along a fized vector h € IR®. Then for any trajectory q(t) € C?([to, t1],IR?"), the projection
of the momentum p(q(t),4(t)) onto h is conserved,

(4.16) pr(t) := p(q(t), ¢(t),t)h = const, t € [ty,11]-

Proof 1 The conservation follows from the Noether Theorem for the one-parametric symmetry
group gs = T since ph coincides with corresponding Noether invariant. Indeed, the invariant
reads

d
4.1 I:=L,—
(417) v

d
Ts(q) = Z LViE
s=0 i s=0

Proof 2 By the definition 4.7, Euler-Lagrange Eqns (3.13), and chain rule of the differentiation,

ph(t>=Zm(t>h = —quiuq(t),q(t),t)h

(@i + hs) = pih = ph. m
7

(4.18) = L L (g), dTy (1), i) = 0, t € [to, 1]
s=0

by (4.12) and (4.11). [ |

4.2.2 Rotation group

Let us fix a unit vector r € IR® and consider the transformation R, from (2.23). By Definition
4.1 the Lagrangian system is invariant with respect to the rotations (2.23) if

(4.19) L(Rs(q), dRs(q)v,t) = L(g,v,1), (¢,v,t) €ET, VseRR.
Exercise 4.9 Check that for the rotations Rs, s € IR, the differential is given by
(4.20) dRs(q)v = Rsv, v € IR,

Exercise 4.10 Check that the Lagrangian system (2.8) is invariant with respect to the rotations
(2.23) with every v € IR3, if the Lagrangian has the structure (cf. (2.25))

L(di, ey Ons Vi e, Vs t) = Ai({as —qj| 11 <i<j < |vi| -1 <4 < n},t),
(4.21) (Q1y ooy Ay Vs ooy Vi, 1) € ET.

Definition 4.11 4) The angular momentum M; of the i-th particle is the vector-function on the
space ET,
(422) Mi(Q7IU7t) ‘= q; X Ppi; (Q7U7t) € £+'

ii) the angular momentum M of the Newton system (2.8) is the vector-function on the space £,

(423) M(q;'U;t) = ZMZ = ZQz X Pis (Q7v)t) € 5+'
1 7

Theorem 4.12 Let the Lagrangian system be invariant with respect to the rotations (2.23) round
a fized vector r € R3. Then for any trajectory q(t) € C*([to,t1],IR?"), the projection of the
angular momentum M (q(t),§(t)) onto r is conserved,

(4.24) M, (t) := M(q(t), ¢(t))r = const, t € [to,t1].
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Proof 1 The conservation follows from the Noether Theorem for the one-parametric symmetry
group ¢gs = Ry since Mr coincides with corresponding Noether invariant. Indeed, the invariant
reads

d
I: = L, v Zvad (Or(s)as)
5=0 =0
(4.25) = sz rXq) = Z (@i X p;) =M
according to (2.31). [ |

Proof 2 By the definition 4.11, Euler-Lagrange Eqns (3.13) and chain rule of the differentiation,
M(t) = [ a(t) xpi(t) + Zqz x pit
i
= [Z 4;(t) X Lv, (g )+ Zch q(t),4(t)]r
i
(4.26) = 30 % &)Ly (at), d()) + 2 % Qa(1)) Ly a(t), (1),

However, (2.31) and (4.20) imply that

(4.27) rx Qi) = dii Ov()ai(t), 7 xai(t) = dii 4O, (s); (1),
s=0 s=0
Therefore, (4.26) implies by the chain rule and (4.19),
(4.28) VI (1) = % LR (a(0)), B (4(6))i (1)) = 0. .
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5 Hamilton Mechanics

5.1 Legendre transform

Let us consider a Lagrangian system with the extended phase space £t := IR x R" x IR and
the Lagrangian functional L € C?(£1). We will identify IRY with its dual space.

Definition 5.1 i) The Legendre transform corresponding to the Lagrangian L is the map of the
extended phase space ET into itself which is defined by X : (q,v,t) — (q,p,t) with p := Ly(q,v,1).
ii) The Legendre transform of the function L(q,v,t) on ET is the function on AET defined
by (AL)(q,p,t) = pv — L(q,v,t) with (¢,v,t) = X\ (q,p,t), if the Legendre map X is a C'-
diffeomorphism €T — AET.

Exercise 5.2 * Prove that A : ET — AT is a Cl-diffeomorphism iff the following inequality
holds: |Lyy(q,v,t)| # 0, (g,v,t) € ET.

Example 5.3 The inequality holds for the Lagrangian (3.14) because then the Jacobian matriz
J 1= Lyy(q,v,t) is diagonal and |J| = my...my # 0 since all m; > 0.

Example 5.4 Av? =p?/4, Avt = 3v* = 3(p/4)4/3,...
Exercise 5.5 Prove that A(AL) = L if A : EY — AT is a Cl-diffeomorphism.

Theorem 5.6 Let the Legendre transform A be a C'-diffeomorphism €t — AET. Then A
transforms the Euler-Lagrange Eqns (8.15) into the Hamiltonian form,

(5.1) q(t) = Hp(q(t),p(t),t),  B(t) = —Hq(a(t), (1), 1),
where H(q,p,t) is the Legendre transform of the Lagrangian,
(52) H(Q7p7t) :pU—L(q,v,t), p= Lv(Qavat)'

Proof The first equation of (5.1) follows by differentiation of the identity H(q,p,t) = pv —
L(g, v, t):

(5.3) H,=v+pv,—Lggy — Lyvp, =v =4

since p = L, by definition, and ¢, = 0. The second equation of (5.1) follows from the Euler-
Lagrange Eqn (3.15):

(5.4) H, =pgv+pvg— Ly — Lyvg = —Lg = —p.

since p = L, by definition, and p, = 0. |

Remark 5.7 In (5.3) and (5.4) the derivatives L, mean the derivative with fized v and t but in
all other terms the derivatives in q mean the derivatives with fixed p and t.

Example 5.8 For the Lagrangian (3.14) the energy has the form (3.18), hence H(q,p,t) =
2

> pii + V(g,1).

' 2m;

Exercise 5.9 Calculate the momentum, energy and the Hamilton function for the Lagrangian
(5.5) L(q,v) = —mvV1—-v2, (q,v) € R® x R3.

Solution:

(5.6)p :=mv/V/1—v2 v =p/vV/m? + p?, E=m/V1-+v? H = +/m? + p2.
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5.2 Hamilton-Jacobi Equation

Let us consider the Lagrangian function L(g,v,t) € C?(E1) with the corresponding Hamilton
function H (g, p,t) € C*(£T) on the extended phase space £ := RN x IRY x IR and the Cauchy
problem of the type

~S(t,z) = H(z,VS(t,z),t), (t,z)ec RNt
(5.7)
Sli=o = So(z), z€RN,

where Sp(z) € CY(IRY) is a given function. Let us describe the Hamilton-Jacobi method of the
construction of the solution to the problem (5.7).
First, consider the corresponding Cauchy problem for the Hamilton system,

655) q(t) = Hp(q(?),p(1),1), p(t) = —Hg(q(t),p(?),t)
5.8
qli=0 = 4o, pli=o = VSo(qo)

with go € IRY. Let us denote the solution by (g(%,qo),p(t,q0)). The solution exists and is
C'-smooth for small |¢| depending on gq. Let us define the function S by the action integral

t
(5.9) S(t, a0) = Solao) + /0 L(q(s, o), 4(5, q0), 8)ds

for o € RN and small |¢|. At last, let us express o in q(t, go) for small |¢|: this is possible since
the Jacobian gy, (t,q0) = E for t = 0. Thus, go = qo(t,q) where go(t,q) € C'(IR x RY), hence
we can define

(5.10) S(t,x) = 8(t, qo(t,z)), € RN
for small |¢|.

Theorem 5.10 Let T > 0 and the map qo — q(t, qo) be C-diffeomorphism of RN fort € [0,T].
Then the function S(t,z) from (5.10) is the unique solution to the Cauchy problem (5.7) for
t€[0,T].

Proof The theorem follows from the properties of the differential 1-form w' = pdg — Hdt in
RN+ called as the Poincaré-Cartan integral invariant [1].

Step i) Let us consider gp,qo + Ago € RY and 7,7 + A7 € [0,T]. Let M, denote two-
dimensional submanifold in the extended phase space £.

(5.11) M, ={q(t, q0 + sAq), q(t, g0 + sAqo),t) : s € [0,1],¢ € [0, 7 + sAT]}.

The boundary dM, is the union a Uy, U 8 U 9, where

a = {(go + sAqo, VSo(qo + 5Aq0),0) : s € [0,1]},
(5.12) B = {(q(t + sAt, (g0 + sAqo)),p(t + sAT,(qo + sAqp)),t + sAT) : s € [0,1]},
. Yo == {(Q(ta QO))ap(ta QO)at) 1t e [O’T]}a
71 = {(q(t, 90 + Aqo)), p(t,q0 + Aqo),t) : t € [0,7 + AT]}

are oriented according to the increment of the parameters s,t. Therefore by the Stokes Theorem,

(5.13) /dwlz/wl—}—/wl—/wl—/wl.
M. o g B 70
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Step ii) Central point of the proof is the observation that the restriction of the form dw! onto
the submanifold M vanishes,
(5.14) dw'|m, = 0.

This follows from two facts: i) the Hamilton vector field H := (Hp, —Hy,1) in the extended
phase space £ is tangent to M, at every point, and ii) dw!(H, V) = 0 for every vector field V
in £1. The last identity follows by the following calculations: first, dw! = dp A dg — dH A dt =
dp N dq — (Hpdp + Hydg) A dt is the antisymmetric bilinear form with the matrix

0 E H,
(5.15) A=| -E 0 H |,
~H, -H, 0

where F is the identity N x N-matrix. Second, AH = 0, hence
(5.16) dw' (H,V) = (AH, V) = 0.
Step 4ii) Now (5.13) reads,
(5.17) / (pdg — Hdt) = / VSo(q)dg + / Ldt — / Ldt
B a 7 Yo

since dt|q = 0, ploa = VSo(g) and w'|,, = Ldt. The first term in the RHS of (5.17) equals to
So(qo + Aqo) — So(go). Therefore, (5.17) becomes by the definitions (5.9), (5.10),

/ (pdg — Hdt) = Solao + Ago) + / Ldt — (Solao) + / Ldt)
B 031 Yo

(5.18) = S(¢+Aq, 7+ A7) —S(q,7)

where ¢+ Aq = ¢(7+ A7, g0+ Aqp) and ¢ = ¢(7, qo)- Finally, (5.18) implies LS"(t, q) = —H(q,p,t)
and VS(t,q) = p, hence the equation (5.9) follows. [ |
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6 Euler-Lagrange Field Equations

6.1 Nonlinear Klein-Gordon and Schrédinger Equations

Let us define zy = ct, x = (21, %2, 23), £ = (29, x) and consider the nonlinear Klein-Gordon and
Schrédinger Equation

(ihVo — ¢¢(@))*9 ()
(6.1) = (~ihVx — pA(2))*9(z) + m**p(z) - F(y(z)), =€ R,

where the function v(z) takes complex values and F € CY(C,C). Let us consider also the
nonlinear Schrédinger Equation

(thVo — ed(x))(z)

(6.2) = %(—iﬁvx — fA(2)))*9(z) — F(3(2)), z € R,

where g :=t.

6.2 Lagrangian density

Definition 6.1 We will identify the complex vectors ¥ € CY with the real vectors Ry :=
Ry, SY) € R2M gnd the multiplication by a complez number with an application of the cor-
responding matriz. We will denote by - the real scalar product in IR?M

This definition implies the formulas

(6.3) Ru - Rv = R(uv),

(6.4) VRy(u-iv) =iv, Vgy(u-iv) = —iu, Vieu(iu - v) = —iv, Vgy(iu-v) = iu,
for u,v € Csince u 40 = —iu v and 4w - v = —u - tv. We will assume that
(6.5) F(y) =-VyU(¥), ¢ €C,

where U € C?(C) and Vy stands for the gradient with respect to the real and imaginary part of

.
Let us introduce the Lagrangian density L for the Eqn (6.1) resp. (6.2) as the function defined
resp. by (cf. (2.3), (2.10)),

' — BN O |(—i _ Nol?
Lz, v, V) = (1A Vo 2¢¢( )Y _kz_:l|( AV 2¢Ak( N
(6.6) _m2c2@ —UW),
@AV —ed(@)p P 1 O [(—ih Vg — pA(2))9)
Ls(z,9, Vi) = 0 : _%kgl k : K
(62) ~U).
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We will demonstrate below that the field equations (6.1), (6.2) can be represented in the Euler-
Lagrange form,

3
(6.8) Ly(,9(x), Vip(2)) = Y VaLly,y(@ $(z), Vi(z)) =0, =€ R?,

a=0
where L is the corresponding Lagrangian density.

Remark 6.2 In (6.6) — (6.8) the x and v,V 1 are considered as independent variables with
the values in R* and IR? respectively.

Definition 6.3 The Lagrangian field v(z) with values in RY is the dynamical system described
by the N real scalar equations (6.8) with a given Lagrangian density L(z,v,Vy) € C*(IR?* x
RY x R*Y),

Definition 6.4 The canonically conjugate fields 7, (z) are defined by

(69) Wa(ib) = ﬁva¢($>¢($)a V¢(I))a o = 07 a3
With these notations the Euler-Lagrange Equations (6.8) read
(6.10) Vama(z) = Ly(z,9(z), Vip(z)), =€ R™

Here and below we suggest the Einstein convention V,m,(z):= )", Vam,(z) etc. Also
a=0,1,2,3 and k =1,2,3.
6.3 Free linear equations

First consider free linear equations without Maxwell Field and nonlinear selfaction, and with
h=1:

Viv(z) = Viy(z) —m’c*p(z), zeRY,

(6.11) ~iVopla) =5 Vi() v e R,

Then the Lagrangian densities (6.6), (6.7) become

Vo2 3 V02 2
(6'12) £0KG($,¢aV¢) = %—;%—m262%,

(6.13) LY (x4, V) =

Vo p 1 i”:lvkw
2 2m — 2

Exercise 6.5 Check the Euler-Lagrange form (6.10) for the Klein-Gordon and Schridinger Equa-
tions (6.11), (6.11).

Solution
I For the Klein-Gordon Eqn (6.11): by the formulas (6.4) we get
(6.14) mo(z) = Vop(z), mp(z) = —Vigh(z), Ly = —m*.

Hence (6.10) is equivalent to (6.11).
IT For the Schrédinger Eqn (6.11): by the formulas (6.4) we get

i (x) 1 iVoy(z)
(6.15) mo(z) = ——5 = m(z) =~ Vip(z), Ly=-—""—
Hence (6.10) is equivalent to (6.11).
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6.4 Nonlinear equations with Maxwell Field

Exercise 6.6 Check the Euler-Lagrange form (6.10) for the Klein-Gordon and Schrodinger Equa-
tions (6.1), (6.2).

Solution
I For the Klein-Gordon Eqn (6.1): by the formulas (6.4) we get

6.16 { mo(x) = —ih(1hVo — £d())P(z), mk(x)=—ih(—hVE—fAk(2)) (),
6.16
Ly =—¢(@)(ihV0 — fd(x))(x) + fAR(2) iRV — LAk (2))9(z) —mP ¢+ F ().

Hence (6.10) is equivalent to (6.1).
IT For the Schrédinger Eqn (6.2): by the formulas (6.4) we get

mo(e) =T () = o (T~ fA@) (),
(6.17) |
Ly =eplple) — VD Ly @) (Vi - pANE) () + FW).

Hence (6.10) is equivalent to (6.2).

6.5 Action functional

Definition 6.7 For k = 1,2,... and ¢ > 0 the space C¥ is the set of the functions 1 (t,x) €
C*(]0,00) x R3,IRYN) with the space-decay

(6.18) DIVt x)| < Cr(1+x))77, (t,%) € CF([0,T] x RY).

la|<k
We will consider the real-valued functionals F on C}. By definition, F is a map C} — IR.

Definition 6.8 For ¢ € C} the Gateau derivative DF (1)) is the linear functional defined by

(6.19) (DF (%), h) = % F(4 +¢€h)

e=0

for h(-) € CL if the derivative exists.

We will assume the following bounds for the Lagrangian density,

(6.20) [L(z, 9, V)| < C(J9] + |Vp|)?
. |Ly(z, 9, V)| + |Lyy(z, 9, V)| < C(9| + |V|)

Let usfixa T > 0.

., |Y|+| V| < const.

Definition 6.9 The action for the field is the function for the field is the functional on C,
o > 3/2 defined by

(6.21) sr) = [ [ | £lew(o), Vo@)ixidss, ¥() € CL
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Note that for o > 3/2 the action is defined on the whole of C} by (6.18) and the first inequality
of (6.20). Moreover, the functional is differentiable:

Lemma 6.10 The Gateau derivative (DSt (%), h) exists for 1p,h € CL if o > 3/2.
Proof From definition 6.8 we get by the theorem of the differentiation of the integrals,
T
/ [ / L(z,9(x) + ehz), Vip(a) + eVh(z))dxldao
co’/0 /R

T 3
622) = [[[] (£olet@. V@) + 3 Lr,ple bla), V(@) Vah(a) ) dxlda
a=0

(DSr(9), h) == —

since the integrals converge uniformly by (6.18) and (6.20). [ |

6.6 The Hamilton Least Action Principle

Let us introduce the space of wvariations.

Definition 6.11 C(T) is the space of functions h(-) € C1([0,T] x R3, RY) such that

(6.23) h(0,x) = h(T,x) =0, x € IR?,

(6.24) h(t,x) =0, |x| > const, t € [0,T].

Definition 6.12 The function 1 € CL satisfies the Hamilton Least Action Principle (LAP) if
for any T > 0,

(6.25) (DSr(4),h) =0, Vh(-) € CY(T).

Theorem 6.13 For ) € C2 with o > 3/2 the Hamilton LAP is equivalent to the Euler-Lagrange
Eqgns (6.8).

Proof (6.22) implies by partial integration in z,, @ =0, ...,3,
(DS7 (), h)
628 [ 1] | (Eotevo), V)i Z Va5, . (), V() ) @)l da

Therefore, (6.25) is equivalent to (6.8) by the Main Lemma of the Calculus of Variations. [ ]

Remark 6.14 The expositions in Sections 3.1, 3.2 and 6.3 formally are similar.
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7 Energy and momentum currents

Let us show that the invariance of the Lagrangian density with respect to translations in time
and space leads to the energy and momentum conservation.

7.1 Energy and momentum

Let us fix a 0 > 3/2.

Definition 7.1 (cf. Definitions 3.3, 3.18) i) The energy of the Lagrangian field y(z) € CL is
defined by

(71) B(®) = [ | [role)Vod(a) - £, b(2), V(o))

tdx, t € IR.

To=C

i1) The momentum of the Lagrangian field at time t is the vector with the components

dx, k=1,2,3, t€R.

(7.2 R == [ | [m@vw)]| _,
Remark 7.2 By definition, mo(z) Vit (z) = wg(w) Vi (z).

Note that by (6.18) and (6.20) the energy and momentum are well defined for the solutions
(t) € CL since o > 3/2.

Example 7.3 The linear one-dimensional d’Alembert Eqn
(7.3) P(t,x) =9"(t,x), x€R

is a particular case of the nonlinear Klein-Gordon Eqn (6.1). Then the Lagrangian density L is
given by (6.6), i.e.

. 7|2 112
(7.4 cltx i) = - L
Then the canonically conjugates are mg = zp and T, = —Vi. Hence the energy and momentum
are given by

i 2 / 2
R
(7.6) Pl = - / P W (G x) dx, e
R

7.2 Invariance in time and energy conservation

Theorem 7.4 Let the Lagrangian density L do not depend on xg := ct,

(77) £($7 ¢7 V¢) =L (X, ¢7 V¢)

Then for any trajectory ¢(z) € C2 of the equations (6.10) the energy is conserved, F(t) =const.
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Proof for a particular case Let us prove the theorem for the d’Alembert Eqn (7.3).
By definition (7.5), E(t) = limr_,oc Er(t) where

R j x)|2 (. x)|2
(758) ER(t)z/_R[W(t’z W W (t2, )| ]dx.

Differentiating, we get

. R . .
(7.9) En(t) = / D003 + 9 (1,300 (1.3 .

Substituting ¥ (t,x) = 9" (t,x) from (7.3), we get by partial integration,

(7.10) Br(t) = [0 ()] | =P, ~R) - PG, B),

where P(t,x) := —9)(t,x)9'(t,x). Now (6.18) implies that for every fixed ¢ we have Eg(t) — 0
as R — o0, hence E(t) =const. Indeed, for any 7' > 0,

T
(7.11) Ba() - Er(0) = | Ea(t)dt
0
hence in the limit R — oo,
T
(7.12) E(T) — E(0) = / lim Ep(t)dt = 0. m
0 R—o0

Remark 7.5 The identity (7.10) means that the momentum density P(t,x) coincides with
the energy current density.

Proof for the general case By definition (7.1), E(t) = limg_,o, Er(t) where

(7.13) Ba0)= [ [roe)Vupte) ~ Lo v, Vo) | i
Differentiating, we get
Ba(®)= [ [Tomo(@)Vow(z) + mo(e) Vi(a)
|x|<R
3
(7.14) ~L (e, b(2), Vib(@)) Vot ()~ Y Ta(2) Vo V)] .
a=0

By (6.10) we have Vomo(z) = Ly(z, (), Vip(z)) — Zi’ Vim(z). Substituting into (7.14), we
get by the Stokes Theorem,

dx

xo=ct

3 3
Ba(t) = [ [ Vim(@) VoY ma(s)VaVad]
xj<r ! o=l

:—/ ka[ﬂk(x)vo¢(x)]

Ix[<r !

dx

xTo=ct

3
(7.15) = — / an(x)[m(w)vozﬁ(w)]

xi=r !

ds,

xo=ct
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where ng(x) := xx/[x| and dS is the Lebesgue measure on the sphere x| = R. Now (6.18)
implies that for every fixed ¢ we have Er(t) — 0 as R — oo, hence E(t) =const. |

Remark 7.6 The identity (7.15) means that the vector-function
(7.16) S(x) = m(2) Vo (z) := 7l (z)Voy’ (z), k=1,..,3, ze€R*

is the energy current density in the field ¢ (z).

7.3 Invariance in space and momentum conservation

Theorem 7.7 Let the Lagrangian density L do not depend on x1,

(717) ‘C($7¢7 VTP) = 'CQ((‘T07‘T2)‘T3)J¢7V¢)'

Then for any trajectory 1(x) € C% of the equations (6.10) the first component of the momentum
is conserved, P;(t) =const.

Proof for a particular case Let us prove the theorem for the d’Alembert Eqn (7.3). By
definition, P(t) = limp_, o Pgr(t) where

R
(7.18) Pr(t) = — / Wt X)) (1 x)dx.
-R
Differentiating, we get
. R . - -
(7.19) Palt) = = [ [t 09/ (t:30 + (e, 2098, 3)] x.
-R
Substituting (¢, x) = ¥"(t,x) from (7.3), we get,
- xR, 0P
(7.20) Pr(t) = [P35 + 22| =€ -R) - £t B),
-R
/ 2 j 2
where £(t,x) = [ (t2,x)\ + W}(t;x)‘ . Now (6.18) implies that for every fixed ¢ we have
Pr(t) — 0 as R — oo, hence P(t) =const. [ |

Remark 7.8 The identity (7.20) means that the energy density E(t,x) coincides with the
momentum current density.

Exercise 7.9 Prove Theorem 7.7 for the general case.

Exercise 7.10 Calculate the current of Py in the field.
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8 Angular momentum and charge currents

The energy and momentum conservation holds for the Lagrangian fields with values in IRY for
any N > 1. These conservations are related to the invariance of the Lagrangian density £ with
respect to the translations in time and space. Now consider the Lagrangian densities £ which
are invariant with respect to different rotation groups.

8.1 Space rotations and angular momentum conservation

Let us consider the rotations O3(s) of the space IR round a unit vector e := (0,0,1) € IR? with
the angle of s radian. Let us consider the Lagrangian densities which are invariant with respect
to the space-rotations round the vector es:

L(z, (), Vip(2)) = Lu(2o, (21, 22) ], 23, [¢(2)];
(8.1) [(Varp(2), Varp(2))], 21 V19p(z) + 22V 21)p(2), 22 V1tp(z) — 21 Vaip(z), Vih(x)).

Let us fix a o > 2.

Definition 8.1 (cf. Definitions 2.1/, 4.11, 7.2) The angular momentum of the Lagrangian field
at time t is the vector with the components

(52 M0 = [ [mo@) e x V(e

dx, k=1,2,3, t€R,

xo=ct
where Vx := (V1, V9, V3): for ezample, (x X V)3 := 21V — 29V etc.
Note that the integral converges for the solutions 9 (t) € C} with ¢ > 2 by (6.18) and (6.20).

Remark 8.2 By definition, mo(z) (x X Vx)xtb(z) = Wg(m) (x X V)’ (z).

Theorem 8.3 Let the Lagrangian density satisfy (8.1) and o > 5/2. Then for any trajectory
P(x) € C2 of the equations (6.10) the third component of the angular momentum is conserved,
M3(t) =const.

Exercise 8.4 Prove Theorem 8.3.
Exercise 8.5 Calculate the current density of the M3 in the field.

Exercise 8.6 Calculate the angular momentum for the Klein-Gordon and Schrodinger Equations

(6.1), (6.2).

8.2 Internal rotations and charge conservation

Consider complex-valued fields ¢ with Lagrangian densities which are invariant with respect to
the rotations in :

(8.3) L(z,¢(x), Vip(x)) = Lu(z, [(2)], Voo (z)], [V19(2)], [Varp(z) |, [Vt (z)])-
Exercise 8.7 Check that (8.3) holds for Eqns (6.1) and (6.2) if U(v) depends only on |9|.

Let us fix a 0 > 3/2.
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Definition 8.8 The charge of the Lagrangian field at time t is defined by

dx, t € 1R,

xo=ct

(8.4) Q) = [ | [ro(o) - iv(o)]

where wo(x) and ith(x) are identified with the real vectors from IR?, and - is the real scalar product

in IR? (cf. (6.4)).
Note that the integral converges for the solutions (t) € C} by (6.18) and (6.20) since o > 3/2.

Theorem 8.9 Let the Lagrangian density satisfy (8.3) and o > 3/2. Then for any trajectory
P(x) € C2 of the equations (6.10) the charge is conserved, Q(t) =const.

Proof for a particular case Let us prove the theorem for the free linear 1D Klein-Gordon Eqn

(6.1), )
(85) P(t,x) = 9" (t,x) — m*y(t,x), x€R.

Then 7 = ¢ and Q(t) = limp_.oc Qr(t), where

R .
(8.6) Qrlt) = / () (e 0.

Differentiating, we get

R R
(5.7 Q)= [ 9% it xdx+ [ )i x)dx
—R -R
The second integral in the RHS is zero since z; - 422 is an antisymmetric bilinear form in C

by (6.4). Hence, substituting 9(¢,x) = 9" (t,x) — m2(t,x) from (8.5), we get by the partial
integration,

Qr(t)

R R
W) ip| = [ ) i exix—mt [ )it x)ax
(88) = ’lﬁ,(t, X) ’ iw(ta x)‘}_ZR = j(ta _R) - j(ta R)7 j(t’x) = _wl(ta X) ’ ’i’lﬁ(t, X)'

since both integrals are zero by the antisymmetry. Therefore, (6.18) implies that for every fixed
t we have Qg(t) — 0 as R — 00, hence Q(t) =const. [ |

Remark 8.10 The identity (8.8) means that j(t,z) is the charge current density for the 1D
Klein-Gordon Eqgn.

Exercise 8.11 Prove the Theorem 8.9 for the nonlinear 1D Schridinger Eqn (6.2),

(59 W(6%) = 54" (%) + F(9), x€R,

where F(¢) = —VU([¥|), ¥ € C=TR>.

Exercise 8.12 Prove the Theorem 8.9 for the general case and check the formulas for the charge
current

(8.10) i(t,x) := =Vxp(t,x) - igp(t, x).
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9 E.Noether Currents Theory

9.1 Field Symmetry and Noether Theorem II

Let us consider a generalization of the symmetry theory to Lagrangian fields. Consider the
one-parametric group of transformations g, : IR* x RY — IR* x R" of the form

T Y as(z) )
91 M — =
(8:1) wi(5)= (0 )= (o
where as resp. bs are some differentiable transformations as : R* > R* resp. bs : RY — RV,
Let us define the corresponding transformations of the fields

seR

(9.2) P(z) = Ps(y) := bs(¥(2))-

This definition implies corresponding transformation for the derivatives: by the chain rule,
._ 9z(y)

(9-3) Vip(z) = Vyths(y) := Viybs(4(2)) Vi (2) o

Remark 9.1 At s = 0 all transformations are identities since g9 = Id for the group g5 (cf.
(4-4)):
(9.4) (agz, botp) = (z,%), (z,%) € R* x RN,

Definition 9.2 The transformation g5, s € IR, is a symmetry of the Lagrangian field with the
Lagrangian density L(x,, V) if the following identity holds,

dy(z) ‘
oxr I

(9.5)  L(z,9, V) = L(y, s, Vy¥bs) (z,, V) € R x RN x ROV,

Example 9.3 Time-translations Consider the time-translations along eq = (1,0,0,0),

o a(2)n () () e

Then
(67) $oly) =l + se), Vyrly) = (V9)(y +seo), |

o,

Hence, (9.5) for the transformations is equivalent to (7.7).

Example 9.4 Space-translations Consider the space-translations along e1 = (0,1,0,0),

o we() () () e

Then
dy(z)

(9.9) Bs(y) = Py — se1), Vys(y) = (V)(y — ser), \W\EL

Hence, (9.5) for the transformations is equivalent to (7.17).
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Example 9.5 Space-rotations Consider the rotations,

e (5)=(1)- (o)

where O3(s) is the rotation of IR? around e3 with an angle of s radian. Then

s €R,

(O11) $u5) =0, 0s59), Tal)= (T, 0o ) [ =1

Hence, (8.1) implies (9.5) for the transformations.

Example 9.6 Internal rotations For ¢ € CV: consider the internal rotations,

0.2 wi( ) (2)= (5 )] sem
o Uol) = ), Vaols) = V), [ =1,

Hence, (8.3) implies (9.5) for the transformations.

Definition 9.7 For a given one-parametric group of transformations (9.1) and a given trajectory
P(x) let us define the vector fields

_ Oaz _ OYs() d+1
(9.14) v(z) = s , w(z) = 95 , z e R,
s=0 s=0
Definition 9.8 The Noether current, o = 0,...,3,
(9.15) Sa(x) = 7o ()w(x)+L(z, $(x), V(x))va(z), =€ R

Theorem 9.9 (E.Noether [11]) Let (9.5) hold for s € R. Let ¢(z) € C?2(IR*, IRY) be a solution
to the equations (6.10), and w(z) € CY(IR*, RY), v(x) € C' (IR, R*) are defined by (9.14).

Then the continuity equation holds,
(9.16) 0aSa(z) =0, z € IR

Corollary 9.10 Let all conditions of Theorem 9.9 hold and additionally, the bounds (6.20) hold
and ¢(z) € C2, w(z) € CL with a 0 > 3/2, and v(z) € C}. Then the conservation law holds,

(9.17) So(t) :== / So(t,x)dx = const, t € IR.
RS

Proof We have S(t) = limp_, sk(y) Where

(9.18) SE(t) := / So(t,x)dx, t€R.
Ix|<R
Differentiating, we get by (9.16) and the Stokes Theorem,
(9.19) SR() = — / Ve Skt x)dx = — / e () Sk (L, x)d%, ¢ € TR,
Ix|<R x|=R
where ny(x) := zj/|x| and dX is the Lebesgue measure on the sphere [x| = R. Therefore,
SE(t) — 0 as R — oo since Si(r) € CL with o > 3. Hence (9.17) follows. [ |
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Remark 9.11 The integral identity (9.19) means that the vector field Sk(t,x) is the current
density of the field Sy(t,x).

Proof of Theorem 9.9 (cf. [7]) Consider an arbitrary open region Q C IR? with a smooth
boundary. Integrating the symmetry condition (9.5) over Q, we get

©020) [ L@@, V@) = [ L) Vb seR
where Q; := a5(2). Let us make the change of variables y = as(z) in the RHS. Then we get the
identity

(9.21) /Q L(as(z), bs((2)), Dy (2))Iy(z)ds = const, s € IR,

where I (z) := ‘8(1573(55)‘ and

(9.22) [Dy(2)]a = qu;(y) , a=0,..d
* ly=as(2)
Differentiating (9.21) in s, we get by (9.4),
| [atevt@). Vota) - | a@)+ Lo b@). Vi) - | bl
s=0 s=0
(908, 9(2), V(@) | Dyt Lo, (o), V() | L (0h(a))] da=0.
s=0 s=0

Let us calculate the four derivatives in s.
i) By the definition (9.14),

(9.24) e

ii) By the definition (9.2), the chain rule and (9.14), (9.4),

[¢s(a0z) + Po(asz)] = w(z) + V() - v(2).

s=0

d
"ps(asx) = %

s=0

(@) =

s=0

d
2
(9 5%

00 (@)) _ Oulas(a)
Oas(z)]a Olas(z)]a

iii) Formally [Dy(x)]q : . Hence the same arguments imply formally

al o d] o)
ds S_O[DS( e ds‘s:o Olas(z)]q
= i 3%(@0(56)) +3¢0(fls($)) +a’l/1()(a0(.’1,‘))
ds| _ | Olao(@)]a ~ dlao(z)]la  Olas(z)]a
(9.26) = Vow(z) + Vo (Ve (z)v(z)) +di5 78[‘215((3]0.
s=0
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To calculate the last derivative, let us use the matrix identity

(9.27) Op(z) Olas(z)]g _ 0(x)

Olas(z)]pg  Ozq Oz,

Differentiating in s, we get by (9.4),

d

a| o) | ) du
ds N

2 o Tas@la " de 02

Therefore, the last derivative in (9.26) equals —V#V ,v. Hence (9.26) becomes,

(9.29) dis [Ds(z)]a = Vaw(z) + V(Vath(x)) - v(z).

s=0

iv) Finally, the derivative of the determinant I, of the Jacobian matrix is the trace of the
derivative,

d d dag(x)|  d dag(x)  Ov(r)
(9.30) o Ii(y(z)) = o ‘ e ‘ = trds = tr e V- u(x)
s= s= s=0
since the Jacobian matrix is diagonal: 80(33) =F.
x

Collecting all calculations i) — iv) in (9.23), we get

/Q [ﬁx(w,¢(x),v¢(w)) ~v(z) + Ly(z,9P(z), Vip(z)) - (w(z) + Vip(z) - v(2))
+7a(2) - (Vaw(z) + V(Vaip(z)) - v(2))
(9.31) Lz, (), Vip(z))V - v(x)]dx = 0.

Since the region 2 is arbitrary, the integrand is zero by the Main Lemma of Calculus of Variations.
We rewrite it as follows,

(9.32) Ly - w(®) + Ta(@) - Vo (o) + V- | £(z, (), Vih(@))o(z)| =0.

Finally let us substitute £y = Vo7q () from the Euler-Lagrange Equations (6.10). Then (9.32)
becomes,

(9.33) Vo [ra(@) - w(@)] + V- [£e,9(2), Vi) ()] =0

which coincides with (9.16) by (9.15). [ |
Remark 9.12 The justification of the formal proof (9.26) — (9.28) of (9.29) follows from the
identity of type (9.27),

(9.34) [Ds(w)]ﬁa[as(a:)]ﬁ ~ 0Y(asx)

0,  Ozg
by differentiation similar to (9.28) and (9.26).
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10 Applications of the Noether Theorem

10.1 Four Conservation Laws for Classical Wave Fields

Let us apply the Noether Theorem to the four groups of the examples 9.3 — 9.6.
I. Proof of Theorem 7.4 For the group (9.6) the definition (9.14) implies by (9.7),

(10.1) v(z) = —eq, w(z) = Vip(z)eg = Vop(z), z € R%.
Hence, the Noether current (9.15) becomes,

So(z) = mo(x)Voy(x)—L(z,¥(z), Vi(z)),
(10.2) { i) = m(@)Vopl(e), k- 1,25

The identity (7.7) implies that the Lagrangian density satisfies the invariance condition (9.5) with
the group (9.6). Therefore, Theorem 9.9 implies the continuity equation (9.16) for the current
(10.2), and Corollary 9.10 implies (9.17) which means the energy conservation by Definition (7.1).

I1. Proof of Theorem 7.7 For the group (9.8) the definition (9.14) implies by (9.9),

(10.3) v(z) = ey, w(z) = =Vy(z)er = —V1¢(z), r € R%
Hence, the Noether current (9.15) becomes,

So(z) = —mo(z)Vie(z),
(10.4) Si(z) = —m(z)Viy(x)+L(z, ¥ (z), Vi(z)),

Sp(z) = —mp(z)Vip(z), k=2,3.

The identity (7.17) implies that the Lagrangian density satisfies the invariance condition (9.5)
with the group (9.8). Therefore, Theorem 9.9 implies the continuity equation (9.16) for the
current (10.4), and Corollary 9.10 implies (9.17) which means the conservation of the first com-
ponent of the momentum by Definition (7.2).

ITI. Proof of Theorem 8.3 For the group (9.10) the definition (9.14) implies by (9.11) and
(2.31),
(10.5) v(z) = (0,e3 x x), w(z) = Ve(z)(0,e3 x x) = (x x Vy)39(z), =z &R
Hence, the Noether current (9.15) becomes,
(10 6) SO(J:) = 7TO("I")(X X Vx)3¢(x)a
) Sk(:c) = Wk(w)(x X Vx)31ﬁ(33) + Leg xx, k=1,2,3.

The identity (8.1) implies that the Lagrangian density satisfies the invariance condition (9.5) with
the group (9.10). Therefore, Theorem 9.9 implies the continuity equation (9.16) for the current
(10.6), and Corollary 9.10 implies (9.17) which means the conservation of the third component
of the angular momentum by Definition (8.2).

IV. Proof of Theorem 8.9 For the group (9.12) the definition (9.14) implies by (9.13),

(10.7) v(z) =0, w(z) =1i(z), =R
Hence, the Noether current (9.15) becomes the charge-current densities,
(10.8) So(z) = ma(x) - ip(x), a=0,..,3.

The identity (8.3) implies that the Lagrangian density satisfies the invariance condition (9.5) with
the group (9.12). Therefore, Theorem 9.9 implies the continuity equation (9.16) for the current
(10.8), and Corollary 9.10 implies (9.17) which means the charge conservation by Definition (8.4).
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10.2 Nonlinear Klein-Gordon Eqn

Let us substitute the expressions (6.16) and (6.6) into (10.2), (10.4), (10.6) and (10.8). Then
Theorem 9.9 implies for solutions to the equation (6.1):
I. Energy flux The continuity equation (9.16) holds for the energy- and energy current densities

[ So(z) = —ih(ihVo—¢d(x))p(z) - Vorp(z) - L(z, (), Vi (z))
_ ((hVo—£d(x))(x) - (iAVo+£d(x))¢(x)
2 )
(10.9) ¢ , . ,
43 |(‘Zhvk_¢f;1k($))¢($)| 7
k=1
| Sk(z) = —ih(=hV—$Ak(z))¢(z) - Vop(z), k=1,2,3.

if the potentials ¢(z), A(z) do not depend on time zy = ct.
For free linear equation (6.11):

2 4 2 lb@l

3
k=1

(10.10)

Sp(z) = —Vip(z) - Voy(z), k=1,2,3.

II. Momentum flux The continuity equation (9.16) holds for the first components of the
momentum- and momentum current densities

( So(z) = iW(ihVo—f(z))Y(z) - Vi(x),
Si(x) = ih(=ihV1—fA1(2)) () - Vig(z) + L(z, P(z), Vi (2))

_ |GV —gé(x))¢(z)]? L ERVL— A1 (@))9(x) - RV + A (2))9 ()
(10.11) 4 = 2 9

RN SIAY: —fAr(2)Y ()
— 2
k=2

b

( Sk(x) = iA(—ihiVy—fAR(2))P(z) - Vih(z), k=2,3.

if the potentials ¢(z), A(z) do not depend on z.
For free linear equation (6.11):

[ So(z) = —Voip(z) - Vigp(z),
T 2 €T 2 T 2 - 2
(10.12) { Si(z) = |V°¢2( )l +|V1¢2( ) ) |Vk¢2( )| _m2|¢(2>| ,

k=2,3
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ITI. Space-rotations The continuity equation (9.16) holds for the third components of the
angular momentum- and angular momentum current densities

o) { So(z) = —ih(ihVo—£¢(z))y(x) - (x X Vx)39(z),
10.13
Sk(w) = —Zh(—‘bhvk—ﬁAk(.’B))’gb(x) . (X X Vx)gdl(.’ﬂ) + £(63 X X)k, k= 1,2,3

if (8.1) holds for the density (6.6).
For free linear equation (6.11):

{ So(z) = Vop(z)(x X Vx)3tp(z),
(10.14)

Sk(x) = —Vip(z) - (x X Vx)s(z) + L(es X X)g, k=1,2,3.

IV. Internal rotations The continuity equation (9.16) holds for the charge- and charge current
densities

{ So(z) = —il(ifiVo — gb(x))(z) - ih(x),
(10.15)

Sk(z) = —iW(—ihVi — fAk(2))Y(z) - ip(z) k=1,2,3

if the “nonlinear” potential energy U(v) depends only on [].
For free linear equation (6.11):

(10.16) So(z) = Vop(z) - igp(z), Sp(x)= —Vip(z) -ith(z) k=1,2,3.

10.3 Nonlinear Schrodinger Eqn

Let us substitute the expressions (6.17) and (6.7) into (10.2), (10.4), (10.6) and (10.8). Then
Theorem 9.9 implies for solutions to the equation (6.2):
I. Energy flux The continuity equation (9.16) holds for the energy- and energy current densities

[ So) =~ 9yp(0) L@, pla), V()
3 .
RICIE R CICRICIS (6.0 A HEE
k=1
| Si(@) = —%m(—mvk— FAL(2)b(x) - Vor(z), k=1,2,3

if the potentials ¢(z), A(z) do not depend on time zy = ct.
For free linear equation (6.11):

Sa(e) — L3 IVHE@F
(10.18) = ?

1
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IT. Momentum flux The continuity equation (9.16) holds for the first components of the
momentum- and momentum current densities
( iy (z)

So(z) = T'VN/J(”C),

Si(z) = %ﬂi(—iﬁw — AL (2)P(z) - Vigp(z) + L(z,9(x), Vi (2))

ep(@)p(x) - P(z) 1 ihVi—fA(@))P(z) - CihVi+EA (@)Y ()

(10.19) < = 9 om 9

1 G |(—ihiVy — pAL(z z)|?
__ZK k — £Ak(2))Y(2)|

2 ?

|Sk(@) = ﬁm(—mvk A (@) () - Vih(z), k=2,3

if the potentials ¢(z), A(z) do not depend on z;.
For free linear equation (6.11):

[ So0) = 0 v,),

Vo) #) | 1 V@R L g~ D)
2 )

1
(10.20) ¢ Si(z) = 5 o 2 am

=2,3

Si(e) = 5 Vidla) Vit(a), k=23,

\

ITI. Space-rotations The continuity equation (9.16) holds for the third components of the
angular momentum- and angular momentum current densities

So(e) = ~ P00 (x x Vr)si(a),

(10.21)
Si(r) = —5 - iB(~iDVe— AR(@)P(e) - (x X Vodath(a)+ Lles x X)g, k=1,2,3

if (8.1) holds for the density (6.7).
For free linear equation (6.11):

So(e) = D (x Vguta),
(10.22)
Sp(z) = —% Vith(2) - (x x Vo)sth(z) + Lles x ), b =1,2,3.

IV. Internal rotations The continuity equation (9.16) holds for the charge- and charge current
densities

hap(x)

(10.23) So(a)= —=5

@), Sula)= 5 VL + ALY @) k=123
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if the “nonlinear” potential energy U() is a function of [¢].
For free linear equation (6.11):

P(z)

(10.24) Soa)= ~ 22 p(a), Su(a)= %Nw(w) p(z) k=123
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11 Maxwell Field

11.1 3D Electromagnetic Fields and Potentials

In 1862 Maxwell completed the Coulomb, Faraday and Biot-Savart-Laplace equations by the
displacement current and wrote the complete system of Classical Electrodynamics. In Gaussian
units it reads,

1.-
div E(t,x) = 4mp(t,x), rot E(t,x) = —EB(t,x),
(11.1) (t,x) € R™.

div B(t,x) =0, rot B(t,x) = %E(t,x) + ZJ%Wj(t, x),
where p(t,x) resp j(t,x) stands for the charge resp. current density.
Remark 11.1 The Mazwell Equations imply the charge continuity equation,
(11.2) p(t,x) +div j(t,x) =0, (¢,x) € R

Let us introduce scalar and vector potentials to rewrite (11.1) in a relativistic covariant four-
dimensional form. Namely, div B(t,x) = 0 implies that B(¢,x) = rot A(t,x). Thenrot E(t,x) =

—EB(t,x) implies rot [E(t,x) + E A(t,x)] = 0 hence E(t,x) + E A(t,x) = =V, ¢(t,x). Finally,
c c c
(11.3)  B(t,x) —rot A(t,x), E(t,x) = —Vid(t,x) — L A(t,x), (£, %) € R
c

The justification of all the relations follows from the Fourier transform. The choice of the
potentials is not unique since the gauge transformation

(11.4 BE%) > 9(6,3) + - X(1%), A(1%) = (%) — V(%)

does not change the fields E(t,x), B(t,x) for any function x(¢,x) € C*(IR*). Therefore, it is
possible to satisfy an additional gauge condition. Let us choose for example the Lorentz gauge

(11.5) éq's(t, %) + div A(t,x) = 0, (£,%) € R:.

Let us express the Maxwell Equations (11.1) in the potentials. Substitution of (11.3) into the
1 .

first Maxwell Equation gives 4mp(t,x) = div E(t,x) = ——div A(¢,x) — A¢(t,x). Eliminating
c

, 1 ,
div A(t,x) by the differentiation of (11.5) in time, - #(t,x) + div A(t,x) = 0, we get

(11.6) O(t, x) = [61233 — AJg(t,x) = dmp(t,x), (£,%) € R,

Similarly, substituting (11.3) into the last Maxwell Equation, we get

1. 4 1 1 . 4
(11.7) rot rot A(t,x) = - E(t,x) + %Tj(t,x) =3 A(t,x) — - Vx(t,x) + %j(t, X).
Example 11.2 Prove the identity

(11.8) rot rot = —A + Vxdiv
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1_ .

Substituting (11.8) into (11.7) and eliminating — Vx¢(¢,x) by application of Vy to (11.5), we
c

get

(11.9) OA(t,x) = %j(t,x), (t,x) € R™.

Remark 11.3 The arguments above show that the Mazwell Equations (11.1) are equivalent to
the system of two wave equations (11.6), (11.9) for the potentials with the Lorentz gauge condition
(11.5).

11.2 Light and relativity

The wave equations (11.6) and (11.9) have been found by Maxwell in 1864 and led to the following
two great discoveries of Maxwell and Einstein respectively:

I. The electromagnetic nature of the light Let us note that Maxwell derived the equations
from the system (11.1) written in the MKS system of units:

4 .
div E(t,x) = 6—” p(t,x), rot E(t,x) = —B(t,x),
0

_ (t,x) € R%.
div B(t,x) =0, rot B(t,x) = uo[E(t,x) + 4mj(t, x)],

(11.10)

The equations contain the dielectric permittivity and magnetic permeability of the vacuum,
g0 and po, and do not contain the speed of light ¢. Maxwell deduced (11.6) and (11.9) with the
coefficient 1/(gopo) instead of ¢* and calculated the value 1/,/2op0 since it was known that this
value is the spread velocity for the wave equation. He discovered that 1/,/€ofig is very close to
the speed of light ¢. Furthermore, he found that the electromagnetic waves are transversal like
the light waves. This is why Maxwell suggested to identify the electromagnetic waves with the
light.

II. The Relativity Theory The discovery of Maxwell led to a new very difficult question. The
spread velocity can be equal to ¢ only in a unique distinguished frame of reference: in other
frames the velocity is the sum of ¢ and a vector of the relative velocity of the frame of reference.
This is why Michelson and Morley started around 1880 the famous experiment to check that the
spread velocity depends on the frame of reference. They compared the wavelengths of the light
along and against the velocity of the Earth motion around the Sun. However, the result was
negative and very discouraging: the wave lengths were identical, hence the spread velocity does
not depend on the frame of reference! Astronomical observations of double stars by de Sitter
(1908) confirmed the negative result of Michelson and Morley. Also the experiment of Trouton
and Noble confirmed the negative result.

Various partial explanations of the negative results were proposed by Ritz, Fitzgerald, Lorentz
and others. The complete explanation has been provided in 1905 by Einstein who was able to
cumulate the Maxwell and Lorentz ideas into a new complete theory. The main novelty was the
following postulate of the Einstein theory:

the time in a moving frame is distinct from the time in the rest frame!

Namely, the transformation of space-time coordinates from the rest frame to the moving frame
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of reference is given by the Lorentz transformation

( v
t— —2.’E1
t - # = —c

V-7

(11.11) 4 , z1 — vt
I e T

V1B
zh = T9
zh = T3

L2
T3

—
—
\

where (t,21, 2, z3) stands for the time-space coordinates in the rest frame and (¢, 2}, %, %)
corresponds to the moving frame if the relative velocity is (v, 0,0), |v| < ¢ and f:=v/c .

Exercise 11.4 Check that the wave equation
1
(11.12) O(t,x) == (55 0 = A)p(t,x) = 0, (t,%) € R*

is invariant with respect to the transformations (11.11).

Hints: i) Set ¢ = 1 and use that 8, = 0, 03 = 0}. i) Check that the 1D equation (0} —
Op(t,x) = 0, (t,z) € IR? is equivalent to [(85)? — (0})?)]%(t,z) = 0 where t' = at — bz and
z' = ax — bt, and a® — b = 1.

Exercise 11.5 Check that the wave equations (11.6) and (11.9) are not invariant with respect
to the standard Galilean transformation

t — t = i
U — —
(11.13) oL gy = 2 -t
Ty F— Ty = Z9
T3 > Ih = 3
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12 Dynamics of Maxwell Field

Let us state in an appropriate form a convolution representation for solutions to Maxwell Eqns
(11.1). Let us consider the Cauchy problem for the equations with the initial conditions

(121) E|t:0 = E(](X), B|t:0 = Bo(X), x € IR3.

We assume (FEy(x), Bo(x)) € L? ® L?, where I? = L*(R?) ® R?, p(t,x) € C(IR,L*(IR?)),
j(t,x) € C(IR, L?) and also (E(t,x), B(t,x)) € C(IR, L?> & L?). Then the system (11.1) leads to
the identities

(12.2) div Ey(x) = 47p(x, 0) div By(x) =0, x € IR3,

which are necessary constraints for the existence of solutions to the overdetermined system (11.1).

Theorem 12.1 Let Ey(x), Bo(z) and p(t,x),j(t,x) satisfy all conditions mentioned above and
the constraints (11.2) and (12.2). Then

i) The Cauchy problem (11.1), (12.1) has a unique solution (E(t,x), B(t,x)) € C(IR, L? ® L?).
ii) Let j(t,x) = 0. Then the energy is conserved:

(12.3) [E%(t,x) + B%(t,x)]dx = const, t € IR3.
IRS

i11) The convolution representation holds

(12.4) (ggg ) = M * ( gg ) —|—47r/0tgt_s* ( %/)J(Z) >d3, t e IR,

where E(t) := E(t,-) etc, and My resp. g is 6 X 6- resp. 6 X 4- matriz valued distribution
concentrated on the sphere |x| = |t|,

(12.5) Myi(x) =0, gi(x) =0, for |X| # ‘t|

Proof ad i) We introduce the complex field C(¢,x) = E(t,x) + iB(t,x) and rewrite (11.1) as

1 . 4
(12.6) ~C(t,%) = —irot O(t,x) - 7” j(t, %), Climo = Co(x),
(12.7) div C(t,x) = 4mp(t, x),

where Cy(x) = Ey(x) + iBy(x). Fourier transform C(k,t) = /exp(z’k -z)C(t,x)dx leads to the
equations

A~

(12.8) O(t, k) = eMK)O(E k) — 4n(t, k), Clio = Co(k),
(12.9) —ik - C(k,t) = 4np(k, 1),

where M(k) denotes the 3 x 3 skew-adjoint matrix of the operator —kx in €. The solution

~

C(t,k) is defined uniquely from the first equation (12.8) of the overdetermined system (12.8),
(12.9),

t
(12.10) C(t, k) = exp(cM(k)t)Co(k) — 4n /0 exp(eM(k)(t — $))j(s, k)ds, k € IR®.
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We still have to show that (12.10) satisfies the constraints (12.9). Indeed, the Fourier transformed
equations (12.2), (11.2) are

(12.11) —ik - Cy(k) = 4np(k, 0), k € R3,
(12.12) p(t,k) —ik-j(t, k) =0, kelR? telR.

With S(t,k) = 47j(t, k) + ik - C(t, k) they imply by (12.8)
(12.13) S(k,0)=4mp(k,0)+ik - Co(k)= 0, S(t k)=4mp(t, k) —4mwik - j(t,k)=0, ke IR®.
since k - M(k)C(t,k) = 0. Therefore, S(t,k) = 0 which means (12.9). Since M(k) is a skew-

adjoint matrix, its exponent exp(cM(k)t) is the unitary one. Now i) follows from (12.10).
ad i) The Parseval identity implies that

(12.14) / [E%(t,x) + B*(t,x)]dx :/
]R3

]R3

1Ot %) [2dx = (27r)_3/ 16t k) 2dk.
RS
Therefore, (12.3) follows from (12.10) since j(¢,k) = 0 and exp(eM(k)t) is the unitary matrix.
ad 1ii) We have to transform (12.10) back to position space in order to check (12.5). We have
M= M(k) = —kx, M? = —k? + |k >< k|, M3 = —|k|?M,.... Hence
MPFL = (“1) k[P M = (-1)! 7 |k|23+1 for j >0,

2
M = MY M = (1P R M? = —(-1) (|Ak4|) AREE

which yields by Euler’s trick for the exponential

(12.15) exp(M(K)T) =) (Mr)"/nl = (M7)% /(25)! + Z(Mf)%+1 /(25 +1)!
0 0
MY —cos k|7 Msm T = cos |k|T Sm|k|T — cos 77|k><k|
— 14 (1) 0 cosliln) 4 skl = cos il + AT (1 cos ) K5

Let us denote by / the derivative in 7 and K-(k) = sin|k|7/[k|, M (k) = K/ (k) + MK (k),
D.(k) =1 — cos |k|7. Then we obtain finally,

(12.16) exp(M(k)7) = M, (k) + [k > |k(|§{) < k|.

Inserting into (12.10) and using the constraints (12.11) and (12.12)

(12.17) Clt,k) = Mu(k)Co(k) + 4milk > D|k|(2) 5(k,0)

o 3 . ﬁc(tfs)(k) A
(12.18) —m [ Wt 003010 = ik > =4 ks,

which through integration by parts becomes

A~

. D' k
(12.19) C(t,k) = M (k)Co(k) —47rc/ M-y (k)i (s, k) — ik > Cﬁ;ir;()ﬁ(s,k)]ds.
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Using D’ (k) = |k|sin k|7 = |k|>K, (k), we get

(12.20) ME™(x) = FIM, (k) = K. (x) — irot o K,(x),
(12.21) gem(x) = F’l(ﬂk > K, (k), —MT(k)) = (-VK,(x), —M>™(x)),

where K, (z) denotes the Kirchhoff kernel

. 1
12.22 K. (x):=F 'K (k) = —&(]x| — |7|).
(12:22) ) (k) = 76| ~|rl)

With these notations, (12.19) implies then (12.4) in the “complex” form

! cp(s)
(12.23) C(t,x) = MZ™ % Co + 47r/ Geltss) * ( . ) ds telR.
0 i(s)
Separating into real and imaginary parts we obtain
(12.24) E(t,x) = Eq)(t,x) + Eq)(t,x), B(t,x) = B (t,x) + By (t, x),

Eo)(t,%) E, Kl ot oK E
O)\% _ com 0 - ct et 0
(12.25)( Boy(t, %) ) =M * ( B, ) = ( —rot o K K} ) * ( By ) )

Eqy(t,x) /t ~VEKyi sy —Kiy cp(s)
12.2 (r) = (t-s) c(t—s) _
( 6) ( B(T)(t’x) ) Am 0 0 rot o K * J(S) ds
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13 Scattering and Long-Time Asymptotics

Let us discuss an outstanding role of the retarded potentials which are particular solutions of
wave equations and Maxwell Eqns.

13.1 Retarded fields and local long-time asymptotics

The formula (12.26) may be rewritten as
1 .
(13.1)  Eg(t,x) = =Vg)(t,x) — — Aq)(t, %), By (t,x) = rot A)(tx),

where the potentials are given by

Otrer) .
( Tet).](treta}’)dy,
Ix -yl

6 TE
(132) ¢yt x) = / |X(t_ ;)|p(tret,Y)dY> Ay (t,x) = % /

where t,¢t =t — |x — y|/c. Let us assume that the charge and current density are continuous
and space-localized,

(13.3) p(t,x) =0, it x) =0, |x| >R, telR.

Then (13.2) for large ¢ > 0 become the standard retarded potentials [8],

by (t%) = draltx) = /p(t—IX—YI/c,y)dy

x =yl
(13.4) t> R+ |x|.
L[l —yl/ey)
Ap () = Araltx) = [HEE T gy

Respectively, the fields (13.1) become the standard retarded fields

(13.5) { By (t,x) = Bgy(t,x) = =Vra(t, x) — Arer(t,x),

By (t,x) = Byy(t,x) =rot Aper(t,x), t> R+ |x].

An outstanding role of the particular retarded solutions (13.4) to the wave equations (11.6),
(11.9) is justified in the Scattering Theory. Namely, the solutions to the wave equations (11.6),
(11.9) are defined uniquely by the initial conditions at time zero:

(136) ¢|t:0 = ¢0(X), §2.5|t:0 = 7T0(X), X € R3.

(13.7) Ali—o = Ao(x), Ali—o = IIg(x). x € R3.

However, the asymptotic behavior of the solutions for ¢ — 400 and any fixed point x does
not depend on the initial data ¢g, o, Ao, IIp and coincide with the retarded potentials (13.4).

13.2 Space-localized initial data

For example let us consider the initial functions with compact supports.

INRIA



Classical Fields and Quantum Mechanics 51

Proposition 13.1 Let (13.3) hold, and let the initial functions ¢o(z), mo(z), Ao(z),o(x) be
continuous and space-localized,

(13.8) po(x) = mo(x) =0,  Ao(x) =Ilp(x) =0, x| > R.

Then for large time the solutions to the Cauchy problems (11.6), (13.6) and (11.9), (13.7) coin-
cide with the retarded potentials (13.4):

(13.9) d(t,x) = bret(t, x), A(t,x) = Arer(t,x), t> R+ x|

Proof Let us prove the proposition for the scalar potential ¢(¢,x). The Kirchhoff formula for
the solution reads

(13.10) ¢(t,x) = / ( )Wo(y)dS(y) + 813/ ( )c,zSO(y)dS(y) + bret(t, x), t>0, x€IR3
St(x St(x

where S;(x) denotes the sphere {y € R3 : |x —y| =t} and dS(y) is the Lebesgue measure in

the sphere. Now (13.9) follows from (13.8). [ |

Similar theorem holds for the Maxwell Equations.
Theorem 13.2 Let (13.3) and the conditions of the Theorem 12.1 hold, and

(13.11) Ey(x) = By(x) =0, |x| > R.

Then

(13.12) E(t,x) = Epet(t, x), B(t,x) = Byet(t,x) t> R+ [x].

Proof (13.12) follows from (12.24) and (13.5) since E(q), B(gy vanish for ¢ > R + |x| by (13.11),
(12.25) and (12.5). m

13.3 Finite energy initial data

For the free Maxwell Eqns the energy is conserved, (12.3). For the wave equations (11.6) and
(11.9) the energy conservations read (see (10.9)),

(13.13) /]R3[cl2|¢'5(t,x)|2+\V¢(t,x)|2]dx:c0nst, /lRa[Cl2|A(t,x)|2—|—|VA(t,x)|2]dx:c0nst.

For the finite energy initial solutions (13.9) and (13.12) hold in the local energy seminorms in
the limit ¢ — +o0.

Theorem 13.3 Let (13.3) hold and ¢(t,x) resp. A(t,x) resp. E(t,x), B(t,x) are finite energy
solutions to the wave equations (11.6) resp. (11.9) resp. the Mazwell Eqns (11.1). Then for any
R >0,

" / |<R[| q.s(t; X) - q.bret(t; X)|2 + | V(;S(t,x) — V¢Tet(t,x)|2]dx =0

(13.14) < / | [|A(t,x) = Apes(t,%)|? 4+ |[VA(t, x) — VAres(t,%)[?]dx — 0 t — +o00.
x|<R

/ _VBE) = Bt + |Bt,x) = Bra(t,x)dx — 0
\ x|<R

Proof Let us split the initial functions in two components: first, space-localized similar to
(13.8),(13.11), and the rest. For the solutions corresponding to the localized components, the
convergences (13.14) follow from (13.9) and (13.12). The contributions of the rest components
are uniformly small in time by energy conservation. |
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14 Lagrangian theory for the Maxwell Field

14.1 4D vector potential

Let us introduce the four-dimensional notations

(14 1) zg=ct, x= (.770, ...,:(:3), BM = VM = ( Oy, 01, O9, 83),
) Juv = diag(la_la_la_al)a ot = gp,uau = (80,—81,—82,—63).

Let us also introduce the 4D fields and currents

(14 { At(z) = ((t, X)f A(z)), Au(z) = g A" (z) = (¢(2), —zil(w)),
JH(z) = (p(z), (@), Tu(@) := g T"(2) = (p(2), = j(2)).

Then the Maxwell equations (11.6), (11.9) become

(14.3) OA#(z) = 4n M), =€ R

Similarly, the charge continuity Eqn (11.2), gauge transformation (11.4) and the Lorentz gauge
(11.5) become

(14.4) 0T (x) =0, Au(z)— Au(z) +0"x(z), O A*(xz)=0, =zecIR"

z € R

14.2 Tensor field

Definition 14.1 The Mazwell tensor F* (z) = O* A¥(z) — 0¥ A*(z), = € R,
Proposition 14.2 The Mazwell Equations (14.8) are equivalent to

(14.5) O FM (z) = 4nJ"(z), =€ RL

Proof The Maxwell tensor does not depend on the choice of gauge since 9*9" x(z) — 0" x(x) =
0. Therefore, we can assume the Lorentz gauge (11.5) without loss of generality. Then (14.3)
implies

(14.6) 0, F" (z) =0, (0" A (x)—0" A (z)) = 0,0" A (z) =0A" (z) =41 J"(z), = € R [ |

14.3 Lagrangian density

Definition 14.3 The Lagrangian density for the Maxwell Equations (14.5) with the given charge-
current densities JV(x) is defined by

(14.7) L(z,A,, VA,) = —16% F Foy — T (2) A, (2,4, VA,) € R* x R* x R'S.

where F* := O*A” — 0V A* and F, = 0, A, — O, A,.

Proposition 14.4 The Mazwell Equations (14.5) with the given charge-current densities J"(x)
are equivalent to the Euler-Lagrange Eqns (6.10) with the Lagrangian density (14.7) for the fields
Ayu(z).

Proof ¥, F*¥ is the quadratic form in V.A. Therefore, the canonically conjugate fields 7, with
the components 7,5 are given by

1

1 1
— — __— TW - af _ rBay _ _ _— rap
(14.8) Top = Vo,As L 8 FHN oy A5 F 8 (F Fre) in F.
Therefore,
1
(14.9) VaTas(z) = = VoF(z), zeRL
s
On the other hand, 94,£ = —Js(), hence (14.5) is equivalent to (6.10). [ |
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14.4 Lagrangian for charged particle in Maxwell Field

In a continuous Maxwell field the motion of the charged particle with small velocity |q(t)| < ¢
is governed by the Lorentz equation (L) from the Introduction,

(14.10) mq(t) = e[E(t,q(t)) + %fl(t) x B(t,q(t))], teR,

where m is the mass of the particle and e its charge. For large velocities |q(t)| ~ ¢ the equation
must be replaced by

(14.11) p(t) = e[E(t,q(t)) + %d(t) x B(t,q(t))], teR,

where p := mq/+/1 — (q/c)? is the relativistic momentum of the particle (see (5.6)). Let us
assume that the fields E, B are C' vector-functions in IR*. Then the dynamical equations
(14.10), (14.11) define the corresponding dynamics uniquely. Let us define the charge-current
densities J"(t,x) corresponding to the trajectory q(-): by (14.2),

(14.12) J°(t,%) = eb(z - q(t)), THE%) =~ aDeb(e - a(e), k=1,2,3.

Let us show that the dynamical equations (14.10), (14.11) follow automatically from the Hamilton
LAP applied to the Lagrangian density (14.7) with the fixed fields E(¢,x), B(t,x). Namely, let
us consider (14.10) for concreteness. Let A(t,x) be the 4-potential corresponding to the fields
E(t,x), B(t,x). The Lagrangian density (14.7) consists of two parts: the field part £ and the
field-matter interaction part Lgp,. Substituting (14.12) into Ly, we get the field-matter action
in the form

T
S?m :o= / \ JV(t,x)A,(t,x)dx dt
0 R

T
(14.13) = . /0 [6t,a()) — ~ a(0) - A(t,a(0)] e

The interaction term corresponds to the following Lagrangian function for the nonrelativistic

particle,

mv2

(14.14) L(q,v,t) = — ed(t,q) + ¢v - A(t,q),
where ¢:=e/c.

Theorem 14.5 Let the potential A(t,x) be fized. Then the Lorentz Equation (14.10) for the
trajectory q(-) is equivalent to the FEuler-Lagrange equations corresponding to the Lagrangian

(14.14)

Proof First let us evaluate the momentum. By the definition, p:= Ly = mv + ¢ A(¢,q), hence
(14.15) p(t) == Lu(alt), 4(t), 1) = ma(t) + f AL, a(0)).

Now (3.15) becomes,

(1416)  pr(t) = Lqe(at),a(t),0) = —eViplta) + - ViA(t@), k=123
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Let us calculate the derivative in the LHS:
} d, . .. . )
(14.17) Pr(t) = E(m%(t) + £ Ap(t,a(t))) = max + £[Ax(t, @) + V; Ak (2, @)q;]-

Substituting this expression into the LHS of (14.16), we get

(1418) m(.ik + fé [Ak (t7 q) + VJAk (ta q)qj] = _evk¢(t> q) + féq]vaJ (ta q)

Let us rewrite it as follows:
.. 1. )
(14.19) may, = e[~V o(t,q) — - A(t, Q)] + £4;[ViA; — V;Agl.

The first square bracket in the RHS is E(¢,x) by (11.3). Hence it remains to check that q;[V;A4;—
V;Ai] = q x rot A(t,x). Let us note that VyA; — V;A4p = (rot A)iex;; where ey is the
antisymmetric tensor. Therefore, q;[ViA4; — V;jA;] = qj(rot A)erji = [ x rot A(t,x)]x by
definition of the vector product. |

Remark 14.6 The derivation of the expression for the Lorentz Force from the Maxwell Equations
is not very surprising since the expression follows also from Coulomb and Biot-Savart-Laplace
equation.

14.5 Hamiltonian for charged particle in Maxwell Field

14.5.1 Nonrelativistic particle

We evaluate the Hamilton function as the Legendre transform of the nonrelativistic Lagrangian
(14.14): first,

2 mv2

mv
(14.20) H:=pv—L=pv———+ed(t,q) —fv-At,q) = ed(t,a) +v(p — fA(t, q)) — ——.
Next we eliminate v by the relation p — £A(¢,q) = mv. Then we get finally,

mv2

(14.21) H = eglt,q) + 5 = edlta) + 5 (b — A )

14.5.2 Relativistic particle

Let us consider relativistic Lagrangian (cf. (5.6))

(14.22) L(q,v,t) = —mc’y/1 — B2 — ed(t,q) + ¢v - A(t, q),

where 3 := |v|/c. Let us note that the first term in the RHS is asymptotically —mc? +mv?/2 for
B < 1. First we evaluate the momentum: by the definition, p:= Ly = mv/y/1 — 32+ £ A(t,q),
hence

H: = pv—szv-l—ch\/l—ﬂ2+e¢(t,q) — ¢v - A(t,q)

(14.23) = ed(t,q) + v(p — fA(t,q)) + mety/1 — (2.
Next we eliminate p by the relation p — ¢A(¢,q) = mv/4/1 — 3%2. Then we get,
mv? mc?
H = e¢(t,q)+\/17_—ﬁ2+m02\/1—ﬁ2:e¢(t,q)+\/17_—ﬁ2
(14.24) — ep(t,a) +me/T (p— FAGL Q) (o).
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We can rewrite this relation in the following standard form
(14.25) (H/c—¢o(t,)* = m*c® + (p — fA(t,q))” .

Remark 14.7 This expression coincides with (1.1) for ¢ =0, A = 0.
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15 Maxwell Field in Matter

15.1 Missing matter equation

The Maxwell equations (11.1) define correctly the electromagnetic field generated by a given
charge and current distribution. On the other hand, the Lorentz Equations (14.10), (14.11)
define the motion of the charged particles in a given Maxwell field. However the classical theory
cannot explain the structure of the matter i.e. the stability of particles, constitution of the atoms
and molecules, solid state etc. This is related to the fact that the coupled system (11.1), (14.10)
(or (11.1), (14.10)) is not well defined. Hence, we miss a correct dynamical equation for the
matter.

15.2 Point charges

In 1897 J.J. Thomson suggested the existence of the electron as a point charged particle. Consider
the coupled system (11.1), (14.10) for the point charge i.e. with charge and current densities
(14.2). The coupled system is not well defined. Namely, the fields .A”(¢,x) satisfy (11.1) hence
they are singular functions at the points x = q(t), A(¢,x) ~ |x — q(t)|~!. For example, the
static solution to the stationary Poisson equation —Ad¢(x) = 47d(x) is the Coulomb potential
#(x) = |z|~!. Therefore, the RHS of the Lorentz Equations (14.10), (14.11) are not defined at
the points x = q(t). Thus, the dynamical description of the self-action for the point electron in
the Classical Electrodynamics is impossible.

15.3 Abraham’s extended electron

Abraham introduced the model of extended electron with a rigid charge shape p(x — q(t)) where
the function p(z) is fixed. Then the Lorentz Equation (14.10) is replaced by

(15.1) mq(t) = /IR3 [E(t,x) + %Q(t) x B(t,x)]p(x —q(t)) dx, teIR.

Now the coupled equations (15.1), (11.1) are well defined if we set p(t,x) := p(x — q(t)) and
j(t,x) := q(t)p(x — q(t)). However the problem arises on the right choice of the function p(z).
The Maxwell theory does not give any suggestion for the choice. So the dynamical description
of the electron in Classical Electrodynamics requires additional hypothesis.

15.4 The Lorentz Theory of the molecular structure

Similarly, we have to introduce external hypothesis concerning the molecular structure, the charge
and current distributions in the molecules etc., to describe the matter in the Maxwell field. Let
us consider the matter as the collection of identical small cells called as molecule and let us
analyze the Maxwell field generated by the charge and current distributions of a molecule at
rest.

15.4.1 Dipole approximations

Let us denote by a > 0 the size of the molecule and choose the origin ’in its center’, i.e. assume
that

(15.2) p(t,y) =0, j(t,y) =0, |[z[>a, teR.
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Let us assume that
(15.3) p(t,") € L'(IR?), j(t,-) € L'(R*) @ R?®, tcIR.
Static fields First let us consider the static case when the densities do not depend on time.

Then the equations (11.6), (11.9) become the stationary Poisson equations and its solution is
the Coulombic potential

(15.4) $(x) = / ”(y_)(z, Ax) = % / j}({y_)dg, x € RY.

[x |

Let us expand the 1/|x — y| in the Taylor series for small |y| < a:

1 1 1 1
(15.5) = =—+ y_x3 +0 (—3) , |x| — oc.
x-yl /x2+y2—2yx |x[ | x|
Then (15.4) becomes,
_ Q| px 1
0= g i O P
(15.6) |x|/a — oo,
J Mx 1
A(x):—+—+(9<—>
cx| = [x[? [x[?

where we denote

Q:=/p(y)dy, pz:/yp(y)dy,
(15.7)

. 1 3
J = /J(y)dy, My = p /Jk(Y)YZdY-

We will identify the molecular fields with first two terms in the expansions (15.6) since |x|/a > 1
in all macro-observations.

Let us note that the remainder in (15.5) is also O(y?). Therefore, first two terms in the
expansions (15.6) correspond to the following dipole approzimations for p(y) and j(y):

(15.8) pa(y) = Qé(y) — p- Vyd(y), ja(y) = Jo(y) — eMVyé(y).

Let us note that @@ = 0 for the neutral molecule and then the main part of the molecular field is
defined by the dipole electric momentum p. For the ijons the charge @ # 0.

Nonstationary fields It is easy to see that asymptotics of the type (15.6) hold for the
retarded Kirchhoff potentials (13.4)) generated by nonstationary localized densities satisfying
(15.2). Similarly to (15.8), we will identify the molecular charge and current densities with their
dipole approximations

(15.9) pa(t,y) = Q(1)é(y) — p(t) - Vyb(y), Ja(t,y) = J(£)6(y) — cM(t)Vyé(y),
where M(t) is a real 3 x 3-matrix.
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15.4.2 Multipole approximations

Let us note that it is possible to continue the Taylor expansion (15.5) and obtain a complete
asymptotics of the type (15.6) including all negative powers of |x — y|. The asymptotics corre-
spond to the following multipole approzimations for p(y) and j(y):

{ pm(t,y) = Q(t)6(y) — P(t) - Vyb(y) + X052 Pa(t) V5E(y),
(15.10)

In(t,y) = J()8(y) — cM@)Vyb(y) + 3 a2 Ja(H) VFE(y)-

The coefficients are defined by

patt) = [ 2 e v)ay

(15.11) ©

jott) = [ 2 50y

al

Let us justify the convergence of the series (15.10) in the sense of distributions.

Definition 15.1 The space H,(IR?) consists of the test functions 9(y) which are real analytic
o

in the ball B, = {y € R? : |y| < a} and the Taylor series ¢(y) = E y—'ip(a)(O) converge
aa!

uniformly in B,.

Proposition 15.2 Let (15.2) hold and p(t,-),j(t,-) € L*(IR?). Then the series (15.10) converge
and coincides with p(t,y) resp. j(t,y) in the following sense:

(p(t,y),¥(y)) = (Q()6(y) — P(t) - Vyb(¥) + Xoja>2 Pa(t)VFE(y), ¥ (9))
o { (), ¥(y)) = (J()o(y) — M) Vyd(y) + 21452 Ja(H) Vyi(y), ¥(y))
for every test function from the space 9 € Hq(IR?) resp. ¥ € H,o(IR?) ® IR3.
Corollary 15.3 The multipole approzimations (15.10) satisfy the charge continuity equation
(15.13) pm(t,y) + Vy - jm(t,y) =0, (t,y) € R™.

Exercise 15.4 Prove the corollary. Hint: Use the identity (pm(t,y) + Vy - im(t,y), ¥(y)) =
(p(t,y) + Vy - 5(t,¥),9(y)) for § € Ha(R?).

Substituting the series (15.10) into (15.13), we get

(15.14) QE)S(Y) — b(1) - Vyd(y) + J(1) - Vyb(y) + Y Calt)Vyély) = 0.

=2

Therefore, we have

(15.15) Q(t) = 0, J(t) = p().

Exercise 15.5 Prove the Propositon 15.2. Hint: Substitute the Taylor expansion for 1 into the
LHS of (15.12) and use (15.2).
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Exercise 15.6 Check that the function 1x(y) := 1/|x —y| belongs to the space Hq(IR3) for any
fired x € R?\ B,.

Now the static potentials (15.4) become the converging series

6= ) = e+ o Y e
|| >2
(15.16) < |x| > a.
) = (). ey)) = o + o 3 e
\ MR 2

Exercise 15.7 Check that the converging series also are asymptotic ones as |x| — oo.

Exercise 15.8 Let (15.2) hold and the functions p(t,x), j(t,x) be continuous. Prove the long-
range asymptotics of type (15.16) for the retarded potentials (13.4)) and calculate first terms.

15.4.3 Magnetic momentum of a molecule at stationary state

Let us consider a molecule in a stationary state, i.e. p(t,y) = p(y) and j(t,y) = j(y). Then also
the multipole expansions (15.10) do not depend on time, i.e.

pm(t,¥) = pm(y) = Q8(y) — P Vyb(y) + X5 452 Pa V5 b(y)
(15.17)
im(t,y) = jm(y) = J8(y) — eMVy8(y) + 32 0152 JaVSO(Y)-

Proposition 15.9 Let the multipole charge-current densities (15.17) correspond to a stationary
state of the molecule. Then the matriz M is skewsymmetric, and

(15.18) MVy =m x Vy,

where m € IR? is the magnetic momentum of the molecule, i.e. of the current density j(y),
in the stationary state.

Proof Substituting (15.17) into (15.13), we get
(15.19) Vy in(y) =0, yeRS

Therefore in particular Vy - [MV,6(y)] = 0. Then My, + M = 0 and the vector m € R? is
defined by the following matrix identity:

(15.20) M= ms 0 —Im |

The formulas (15.20) and (15.7) imply that

1

15.21 =
(15.21) m= -

/y X j(y)dy.
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Remark 15.10 The integral does not depend on the choice of the origin if J::/j(y)dy:O.

Adiabatic Condition Let us assume that the molecular dynamics can be described as an
adiabatic evolution of the stationary states with corresponding magnetic momentum my(t).

Finally let us assume that the molecule is neutral, i.e. @ = 0, then (15.9) becomes by (15.15)
and (15.18),

(15.22)  pa(t, %) = =V - p(t)é(x), Ja(t, %) = p(t)6(x) + cVx x m(t)6(x).

15.5 Maxwell Equations in Matter
15.5.1 Macroscopic Limit

The total molecular fields are generated by the sum of the charge-current densities pf} (t,x), pi¥ (,x)
of all molecules concentrated at the points x” € IR3:

prnai(t,x) = X, p3(x) = — T, Vi - P(H)8(x — x7)
(15.23)
imol(t,x) =X jtx) =3, [p"(t)&(x ~ XM 4 Vx x m™(£)6(x — x")]

Let us assume that for every fixed ¢ we have the following asymptotics in the sense of distributions
of x:

2 PM()é(x —x") — P(t,x)
(15.24) . @ — 0.
Yo pM(t)o(x —x") — P(t,x), Yo, m(t)o(x —x") — M(t,x)

Then by the continuity of the differentiation of the distributions, we have in the limit a — 0,

Pmol(t,x) =~ —Vx- P(t,x)
(15.25) _
Jmol(t,x) = P(t,x) + cVx x M(t,x)

Definition 15.11 The vector-function P(t,x) resp. M(t,x) is called the electric polarization
resp. magnetization of the molecules at point x and time t.

15.5.2 Dielectric Displacement and Magnetic field Intensity

Definition 15.12 D(t,x) = E(t,x)+4nP(t,x) is called the dielectric displacement and H (t,x) =
B(t,x) — 4w M (t,x) is called the magnetic field intensity.

Let us separate the macroscopic and molecular charge and current densities:
(15'26) p(t, X) = pmac(tax) + Pmol(ta X): j(t, x) = jmac(ta X) +jmol(t> X)

where the molecular densities are identified with the macroscopic limits (15.25). Let us substitute
the expressions (15.26), (15.25) into the Maxwell Equations (11.1) and express the fields E, B in
D,P,H, M. Then we obtain the Mazwell Equations in the matter:

1.
div D(t,x) =47 pmac(t,x), 1ot E(t,x)= _EB(t’ X),
(15.27) (t,x) € R™.

1 4
div B(t,x)=0, rot H(t,x)=— H(t, x)+—7rjmac(t, x)
c c
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15.5.3 Constitutive Equations

The equations (15.27) contain two additional unknown vector fields D, H. Therefore, we need
two additional vector equations. For isotropic materials there are the constitutive equations

(15.28) D(t,x) = eE(t,x), B(t,x) = pH(t,x),

where ¢ is called the permittivity and p is called the permeability of the matter. The
constitutive equations are equivalent to

(15.29) P(t,x) = x.E(t,x), M(t,x) = xmH(t,x),

where x. is called the electric susceptibility and x., is called the magnetic susceptibility
of the matter. The following relations follow from Definition 15.12:

(15.30) e =1+ 4myxe, =1+ 4xp.
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16 Schrodinger Eqn and Geometric Optics

Wave equations of type (11.12) describe the wave propagation in electrodynamics, acoustics and
many other fields. They describe well the diffraction and the interference of waves. On the other
hand, the wave processes also demonstrate the straight-line propagation of waves which justifies
Geometric Optics. The mathematical description of this feature by the wave equation has been
discovered by Hamilton around 1830 and developed by Liouville in 1837, Debye in 1911, Rayleigh
in 1912, Jeffreys in 1923, and Schrédinger, Wentzel, Kramers and Brillouin in 1926.

16.1 Straightline Propagation for the Free Equations

Let us analyze the straight-line propagation in the concrete example of the free Klein-Gordon
Equation

(16.1) { ¥(1,%) = Ay, x) — m(t, ) (t,x) € R x R®.

’lﬁ(O, X) =1o (X), ¢(07 X) =70 (X)
Let us choose the initial data 9o(x), 7o(x) from the Schwartz space S(IR?) of test functions.

Definition 16.1 S(IR?) is the space of functions 1(x) € C®°(IR3) such that

(16.2) sup (1 + |x|)N\Vﬁzp(x)| < 00
x€R?

for any N =1,2,... and multiindices o = (a1, a9, a3).

Definition 16.2 For ¢ € S(IR®) the Fourier transform is defined by
(16.3) Fap(k) == (k) := (2m) 3 / e®y(x)dx, ke R3.
R3

Proposition 16.3 Let 1y, 7o € S(IR?). Then the Cauchy problem (16.1) admits a unique solu-
tion ¥(t,x) satisfying the bounds

(16.4) sup (1 + [x)¥[Vi°V(t,x)| < Clag,a, N)(1 + [th)V, teR
x€R?

forany N=1,2,..., ag =0,1,2,... and multiindices a = (a1, a2, a3).

Proof Let us calculate the solution to (16.1) with v, 7g € S(IR?) by using the Fourier transform.
Let us apply the transform to the equations (16.1) using well-known formulas

(16.5) (Foy9)(t, k) =—ik1(t, k),  (FAY)(t k)=—k>*P(t, k), (t,k) € R x R®.
The bounds (16.4) imply also that (F4)(¢, k) = @Z(t,k) and (F1)(t, k) = ;Z(t, k) hence (16.1)
becomes .

: o T
(166) { %(mk) - ,\ k Ilp(takk) m jp(ta k) (t, k) cR x ]R3.

w(oa k) :"pO(k)a ¢(0= k) :WO(k)
This is the Cauchy problem for the ordinary differential equation which depends on the parameter
k € IR3. The solution is well known,

(16.7) P (t, k) = tho(k) cos wt + 7o (k) SiILWt, w=w(k) := VEkZ+ m2.
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Therefore, the solution 1(¢,x) is given by the inverse Fourier transform,

in wt
sin w ]dx

P(t,x) = /]R3 e~ixk [1&0 (k) cos wt + 7p(k)

_ 1 /IRS o ixk [em (1/30(1{) n 7Afol(k)) +e—iwt(¢0(k) B 7Aro(k)ﬂdk

2 iw w
(16.8) = (%) +y_(¢,%).
The representation obviously implies the bounds (16.4) since qﬁo, T €S (]R?’). |

Now let us choose the initial functions 1y, mp with a localized spectrum, i.e.

(16.9) supp 4o, supp o C Br(k.),

where B, (k,) is an open ball with a center k, € IR* and a small radius 7 < |k,|. Then the same
is true for the spectra of the functions ¥4 (¢,x) by (16.8):

(16.10) supp 9+ (t,-) C By(k,), t € RR.

The solutions of type 1+ (t,x) are called wave packets.

Theorem 16.4 Let 1y, m9 € S(IR®) and (16.9) holds. Then the corresponding wave packets
Y1 (t,x) are localized solutions moving with the group velocities vi = £Vw(k,) in the following
sense:

i) For a constant a > 0 and any N > 0,

ar

(16.11) e (t,x)| < Cn(L+ [t +[x)7N, |x—vit] > K ||t|.
it) For any constant A > 0,

iy Ar
(16.12) 9=, x)| < O+ [¢))7, [x = vat] < m‘“'

Proof Let us prove the theorem for 1, since for 1_ just the same arguments hold. Let us
consider the function 1, (¢, x) along a ray x = vt with an arbitrary v € IR®: by (16.8),

(16.13) Yo (t,vt) = / e+ (k)dk.

Here the phase function is given by ¢ (k) := vk — w(k) and the amplitude ¥ (k) := to(k)/2 +
#o(k)/(2iw(k)). Let us apply the method of the stationary phase [6] to the integral (16.13). Then
we get that the asymptotics for £ — oo depend on the existence of the critical points k € supp ¥4
of the phase function ¢, (k),

(16.14) Véi(k) =vFVwk)=0, kesupp V.

In other words, v = Vw(k) with a k € supp ¥,. Now let us take into account that supp ¥, C
B, (k) by (16.9). Then the system (16.14) admits a solution iff v € V,(k,) := {Vw(k) : k €
B, (k)}. Now let us analyze two distinct situations separately.

i) First let us consider v ¢ V,(k,). Then the asymptotics of the integral (16.13) is |[¢t|~"V for any
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N > 0 which corresponds to (16.11). Let us deduce the asymptotics by a partial integration in
(16.13) with the help of an obvious identity

. D .
(16.15) e+t — —,te_z¢+(k)t, k € supp ¥,

—1

where D is the following differential operator, D = (Vé(k)/|Vé(k)|?) - V. It is important that
V¢(k) # 0 for k € supp ¥ since v ¢ V,.(k,). Applying N times the identity (16.15) in (16.13),
we get by partial integration,

(16.1694 (t,vt) = (—it) N / DN +Mty | (k)dk = (—it) / e+ DN T (k)dk,

where D*¥(k) = V - [Vp(k)¥(k)/|Vp(k)|?] is the adjoint operator to D. Therefore,

(16.17) Py (t,vt) < COn(v)A+ )™V, teR
if v ¢ V,(ky). Hence, for any B > 0,
(16.18) Yy (t,vt) < COn(B)A + [t|+ |vt]) ™V, teR

if v g V,(ky) and |v| < B.

Exercise 16.5 Prove that the bounds (16.18) hold for all v & V,(k.) with a uniform constant
Cn instead of Cn(B).

Hint: Consider the function ¥ (t,x) along the ray t = wr,z = vr with |w| < 1, |v] =1
and apply the same partial integration with the phase function kv — ww(k) and large parameter
T — 00.

Finally, the bounds (16.18) with Cx instead of Cn(B) imply (16.11) since the diameter of the
set V,(k,) does not exceed ar/|ks|. The last follows from the bound |VVw(k)| < a/|k| which

is obvious since I
16.1 k) = —.
(16.19) Vw(k) (0

ii) It remains to consider v € V,(k,). This means that v = Vw(k) with a point k € B, (k)
which is the solution to the system (16.14). Then the integral (16.13) is called the Fresnel integral
and its asymptotics is ~ [t|~3/2 (see [6]). [ |
Remark 16.6 The asymptotics (16.11), (16.12) mean that the energy of the field 14 (t,x) out-
side a ball |x — vit| < ar|t|/|ks| decays rapidly, while inside it is about constant since the
energy is a quadratic form. Therefore, the wave packet ¥1(t,x) of the free Klein-Gordon
Equation (16.1) move like free particle of increasing size ~ r|t|/|k«| and with the group ve-
locity vy = *Vw(ky). The formula (16.19) means that the wvelocity vy corresponds to the
relativistic momentum Lk, of the particle.

Exercise 16.7 Analyze the wave-packets propagation for the free Schrodinger equation
. 1
—‘l"(ﬁ(t,X) = 2_ A/lp(t,x)
(16.20) m (t,x) € R x R3.
P(0,x) = o(x),

Prove that the packets move like free nonrelativistic particles of increasing size ~ r|t|/|ks| with
the mass m and momentum k..
Hint: w = k%/2m hence the group velocity v equals Vw = k/m.
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16.2 WKB-method for Schrédinger Eqn with a Maxwell Field

Let us write the Lorentz Eqn (14.10) in the Hamilton form with the Hamiltonian (14.21):

~(p—$A( ),
b = Hq(ap,1) = —eda(t:) + - fAq(t, ),

(16.21) P

where ¢ := e/c, e is the charge of the particle and m its mass. E.Schrédinger associated with
the Hamilton system the wave equation (S) (see Introduction):

(16.22)  (ih0y — ep(t,x))h(t, x) = %(—mvx A X)) (%), (hx) € R

Let us demonstrate that the short-wave solutions to (16.22) are governed by the Hamilton Eqns
(16.21). More precisely, let us consider the Cauchy problem for (16.22) with the initial condition

(16.23) Dlico = ag(x)e!S0X/T 4 e R3,

where Sp(x) is a real function. Let us denote by (q(¢,qo), P(¢,qo)) the solution to the Hamilton
Eqns (16.21) with the initial conditions (5.8):

(16.24) qlt=0 =qo,  Plt=o = VSo(qo)-
The solution exists for |t| < T'(qo) where T'(qo) > 0.

Definition 16.8 The curve x = q(t,qo) is the Ray of the Cauchy problem (16.22), (16.23)
starting at the point qp.

Definition 16.9 The Ray Tube or Ray Beam emanating from the initial function
(16.23) is the set T = {(t,q(t,qo)) € R*: [t| < T(qo), Qo € supp ao}.

The following theorem means roughly speaking that for & < 1 the set 7 is the support of the
wave function 9 (t,x), the solution to the Cauchy problem (16.22), (16.23). Let us assume that
the potentials $(t,x), A(t,x) € C®(IR?) and ag, Sy € C*®°(IR3). Then the map qg — q(¢,qq) is
a local C*°-diffeomorphism of IR? for small |t|. We will construct the formal Debye ezpansion

(16.25) P(t,x) ~ (ihkak(t, x)) X/,
k=0

Theorem 16.10 Let the map qo — q(t,qo) be a diffeomorphism of R? for |t| < T. Then the
formal expansion (16.25) exists for |t| < T and is identically zero outside T, i.e.

(16.26) ar(t,x) =0, (t,x)¢7T, |t|<T, £=0,1,2,...
Proof First let us define the phase function S(t,x) as the solution to the Cauchy problem (5.7)
with N = 3: )
-S(t,x) = H(x,VS(t,x),t), xR, |t|<T,
(16.27)

S|t:0 = SO(X)> X € IR°.
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The solution exists by Theorem 5.10. Further, let us substitute ¥(¢,x) = a(t,x)ei‘s’(t7 X) /P into
the Schrédinger equation (16.22). Then the equation (16.27) implies the following Transport
Equation for the amplitude a(t,x):

(a(tx) — —%[vsu, x) — A(t,%)] - Val(t,x)
+2L[A5(t, x) + V- A(t, x)]a(t,x) + ;—hAa(t, X)
(16.28) ! mn it "
=: —La(t,x)+ B(t,x)a(t,x) + %d(t,x), lt] < T,
{ ali=0 = ao(x), x €IR3,

1
where L is the first order differential operator La(t,x) := po [VS(t,x)—f£A(t,x)]-Va(t,x), B(t,x)

1
is the function %[AS(t, x)+V-A(t,x)] and d(t,x) := Aa(t,x). Let us note that (16.21) implies

d
(16'29) d(ta X) + La(ta X) = Ea(ta Q(t, qO))'
Let us express all the functions in the Ray Coordinates (t,qo): a(t, qo) := a(t, q(t,qo)), B(t, qo) :=
B(t,q(t,qp)) etc. Then (16.28) can be rewritten as

~ ~ 1
Ea(ta qO) = B(t, qO)a‘(ta qO) + Z_d(ta qO)a |t‘ < Ta
(16.30) m

a(0,q0) = ao(qo), qo € R®.
X Lk
Let us substitute in the first equation the formal expansion a(t,qg) ~ Y. % ax(t,qo). Equating

k=0
formally the terms with identical powers of &, we get the recursive Transport Equations

d . .
EGO(ta qo) = B(t,qo)ao(t, qo),

d . - 7
am(t, qo) = B(t,qo)a1(t, qo) + %do(t,qO)a

(16.31) |t| < T,

d . ~ . 7
Eak(ta qo) = B(t,qo)ax(t,qo) + %dk—l(%%),

where dy(t,qo) is the function do(t,z) := Aag(t,z) expressed in the ray coordinates, etc. It
remains to substitute the same expansion into the initial conditions (16.30) which gives

(1632) &0(07 qO) = a’O(qO)a &1(0) q()) = 07 ERS) ék(oa qO) = 07

Now (16.31) and (16.32) imply that ao(t,q0) = 0, || < T, if qo ¢ supp ap. Hence, also
do(t,qo) =0, |t| < T, if qo & supp ag. Therefore, (16.31) and (16.32) imply that @1(¢,qo) = 0,
|t| < T, if qy & supp ay, etc. [ |
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Exercise 16.11 Prove the transport equation (16.28). Hint: Substitute i) = ae"S/P into the

Schrédinger Equation (16.22) and devide by S/ Then the equation (16.27) formally follows
by setting fi = 0, and afterwards, (16.28) also follows.
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17 Schrodinger Equation

17.1 Schrédinger Equation for the Electron Field

The Electron has been discovered by J.J.Thomson round 1897 in the Cathode Rays. He sys-
tematized the observations of the deflection of the rays in the Maxwell Field. The observations
demonstrated that the deflection corresponds to the Newton dynamics (14.10) or (16.21) with
a fixed ratio e/p close to its present value. Later Kauffmann [10] confirmed the observations
with a high accuracy e/pu ~ —1.76 - 108C/g. The charge of the electron can be evaluated from
the Faraday Electrolyze Law e ~ —96500C/6.06 - 1022 ~ 1.6 - 10—19C ~ —4.77 - 1071% esu. In
1913 Millikan confirmed the result e ~ 1.60 - 1071°C~x —4.77 - 10710 esu, then the electron mass
i~ 9.1-10"28g. Therefore, by Theorem 16.10, the cathode rays can be also described by the
Schrodinger Eqn (16.22) with the mass g > 0 and negative value e < 0.

Remarks 17.1 i) Let us note that the coefficients e,m are determined from the erperiments
with the cathode rays of an arbitrary charge. Therefore, the experiments fiz the ratio e/m and
do not fir the charge e. Hence, the corresponding Schrodinger Eqn (16.22) describe rather the
dynamics of the Electron Field than the dynamics of a particle with the charge e.

i1) Theorem 16.10 means that the Schrodinger Equation (16.22) with any small h < 1 agrees with
the classical Newton Eqns (14.10) or (16.21). The actual value of the constant is fized by the
Planck relation b = a/k ~ 1.05-10 2"erg-sec. Here a is the parameter in the Wien experimental
formula (W) (see Introduction) and k is the Boltzmann constant. This identification of the
constant h in the Schrédinger Equation follows from the development of the quantum mechanics
given by Planck, Einstein, Bohr, de Broglie and Schrodinger (see Introduction).

17.2 Static Maxwell Field
Let us consider the case of static Maxwell Field with the potentials ¢(¢,x) = ¢(x) and A(t,x) =
A(x):

(17.1)  ihOup(t,x) = Hep(t,-) == i(—mvx A2 (E x) + ep(x)p(t,x),  (t,x) € R

Then the energy is conserved (see (10.17)):

(17.2) E(t)::/IRS [%K—fﬂivx—;ﬁfl(x))d}(t,x)\2+e¢(x)\¢(t, x)|2]dx:E, t € R.

Definition 17.2 Quantum Stationary States for the Eqn (17.1) are nonzero finite energy
solutions of type

(17.3) h(t,x) = thu(x)e .
Substituting (17.3) into (17.1), we get the Stationary Schrédinger Eqn
(17.4) hwip,(x) = Hipy(x),  x €IR3,

which is the eigenvalue problem. Substituting (17.3) into (17.2) and using (17.4), we get the
energy in the form

(17.5) E=E,= hw/ |1, (x)|2dx.
]1:{3
Let us assume the standard Normalization
(17.6) / [ (x)|dx = 1.
IR3
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Then (17.5) becomes (cf. (P) from Introduction)
(17.7) E, = hw,

and (17.4) takes the form

(17.8) E ¥, (x) = Hy,(x), x€IR3
Remark 17.3 The energy (17.2) can be represented as

(17.9) E(t)= (p(t,-), Hp(t, ),

where (-,-) stands for the scalar product in L*>(IR?).

17.3 Hydrogen Atom

Let us consider the Hydrogen Atom. This is the atom with a unique electron of the negative

charge e. Rutherford experiment shows that the positive charge —e is concentrated in very

small region called “nucleus”, so its Maxwell field is Coulombic ¢(t,x) = —e/|x|. We assume the

magnetic field of the nucleus be zero: A(¢,x) = 0. Then the Schrédinger Eqn (17.1) becomes
I e?

(17.10) ihoup(t,x) = Hap(t,x) := —ﬂAw(t,x) - m¢(t,x), (t,x) € R™.

Respectively, the stationary Schrodinger Eqn (17.8) becomes,

2
h e2

(17.11) E b, (x) = Hp(x) = —ﬂmpw(x) Yo(x), x€R”.

||

Theorem 17.4 The quantum stationary states 1, of the Hydrogen Atom exist for the energies
E, = E, := —R/n?, where R := ue4/(277,2) is the Ridberg Constant and n = 1,2,3,.... For
other energies the states do mot exist.

We will prove the theorem in next two Sections.

17.4 Spectral Theorem for Spherical Laplacian

Let us express the Laplacian operator A in the spherical coordinates r, ¢, 6. By the definition
(17.12) 3 =7rcosf, r1 =rsinfcosy, T3 =rsinfsinp.

The operator A is symmetric in the real Hilbert space L2(IR3). Hence it is defined uniquely by

the quadratic form (A, ), where ¢ € D := {3 € L*(R®) : %(® € L2(R?) N C(R?), |o| < 2}.
In the spherical coordinates

00 T 2w
(17.13) (A, ) = —(Vop, Vo) = —/0 dr/o dH/O dp|Vep(r, 0, @)|*r?* sin .

Geometrically is evident that

\V \Y%
(17.14) Vip(r,0,¢) = e,V + e v e, oY ,
T rsinf
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where e, ey, e, are the orthogonal unit vectors proportional to V., Vg, V,, respectively. There-
fore, (17.13) becomes

n Vop|? 2
(17.15)  (Ad, ) = / dr/ de/ do ‘vﬂp‘ +‘ ‘ ‘ )r sin 0.
rsmﬂ
Integrating by parts, we get

Vg sin 0V
¢ sin 91/1+ 2

[es) T 2T
_ -2 2
(A,9) = /0 dr/o da/() dplr VeV r2sin 6 r2 sm2 )¢T sinf
- VosindVeyp — Viyp
17.1 = 2V, r? 4 .
(17.16) (r Ve Vi + 72 sin 72 sin20’¢)

Therefore, we get the Laplacian operator in the spherical coordinates,

Vosin0Veyp Vg

r2siné r2 sin? 0

(17.17) Ay = 172V, 12V, + =772V, Vet + 2¢ ;

where A is the differential operator on the sphere S with the coordinates 8, :

Vo sin 0V g1 + % ¢

sin 6 sin?@ "’

(17.18) A=

Definition 17.5 A is the Spherical Laplacian operator.
Exercise 17.6 Check the integration by parts (17.16).

Let dS denote the Lebesgue measure on the sphere S. Then the norm of the Hilbert space
L?(S,dS) is invariant with respect to rotations.

Theorem 17.7 There exist a representation L*(S,dS) = @°,D(l) where D(I) C C*(S) are
the orthogonal subspaces of L2(S,dS) of the odd dimension 21 + 1, and Alpgy = =1l +1).

We will prove the theorem in next two Lectures. Here we apply it to the eigenvalue problem
(17.11).

17.5 Spectrum of Hydrogen Atom

Here we deduce Theorem 17.4 from Theorem 17.7. Let us consider a nonzero finite energy
solution 9, (x) € L(IR?) to the problem (17.11). We will prove that E, = E, := —R/n?. First,

expand
o

(17.19) (%) =D Ri(r)Yi(6, ),

0

where Yj(6, ¢) € D(I). The expansion exists and converges in L?(IR?) by Theorem 17.7. Then
the series converge also in the sense of distributions of 7 > 0, (6, ¢) € S, hence

Euu(x) = Hypu(x) =Y H(R(r)Y)(0,¢)
0
00 2 e2
(17.20) = (- e Ver) - R - S ) i, ),
0
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where the series also converge in the sense of the distributions. The orthogonality of Y; implies
for each 1 =0,1,2, ...,
2

2uE, 1
(17.21) - ‘;Q“R,(r):r—szr?er,(r)—l(l:g )Rl(r)+

2, Ry(r), r>0.

For r — oo the equation becomes

(17.22) -

This suggests that E,, < 0 and the asymptotics holds R;(r) ~ e 7", r — 0o, where
(17.23) vy=+/—2uE/h > 0.
Respectively, let us write R;(r) = e~ F(r). Substituting into (17.21), we get

(17.24) j o [% _ 2,),] P [C;l _ I(1+1)

2 ]F:O, r>0,
T

where d = b — 2y with b = 2ue? /712. Finally let us introduce new variable p = 2yr, then (17.24)

becomes 5 N1 11
(17.25) f”+[——1]f’+[ — <+2 )]f:(), p>0,
p p p

where f(p) = F(r) and A = b/(27v). Now let us seak the solution f in the form

(17.26) f(p) = p*(ao + a1p + asp® + ...) = L(p)p*

with ag # 0. We will find two linearly independent solutions: one with s > 0 and another with
s < —1. Only the solution with s > 0 is appropriate. For s < —1 corresponding eigenfunction
() is not the function of finite energy since Vi, (z) ¢ L*(IR®) and /¢(x)|¢(x)|2dx = oo0.
Substituting (17.26) into (17.25), we get

(17.27)  L"p* + L'+

2 +[2 1] 2
sp+|=—1|p
p

s(s—1)+ [%—l]sp-i- [)\;1 —l(ltl)]pQILZO

for p > 0. After some evaluation, we have
(17.28) P’L" 4+ p[2(s +1) = plL' + [p(A =1 —s)+s(s+1) =11+ 1)]L =0, p>0.

Setting p = 0, we get formally s(s + 1) —I(l + 1) = 0. Hence, s = since — — 1 < —1. With
s = [, the equation becomes

(17.29) pL" +[2(s+1) —p]L'+ A —1—-5]L=0, p>0.

Let us substitute here L(p) = ag + a1p + a2p? + ... and equate the coefficients with identical
powers of p:

(% 2(0+1)+(AN=1—-1Dag=0,
pl: 2a2—|—2(l+1)2a2—al—l—()\—l—l)al=0,
(17.30) ) pr: 3-2a3+2(1+1)3a3 —2as + (A —1—1)ay =0,

o (h+ 1)k 20+ 1)(k + 1 _k D —
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Therefore, we get the recursive relation

k—(A—1-1)

(17:31) ST R D)k + 20+ 2)

ag.

It implies axy1/ar ~ 1/k if all ay # 0. Then we have |L(p)| > Ce? = Ce®" with a C > 0.
Hence, Ri(r) = F(r)e™"" — o0 as r — o0, which is impossible. Therefore, a1 = 0 and ay # 0
for some £k =0,1,2,.... Thenk—(A—=1-1)=0, so

b
(17.32) A=—=k+Il+1=n=1,2,..
2y

Substituting here b = 2ue2/ﬁ2 and v = +/—2uE/h, we get finally,

R

(17.33) E=E, =,

n=1,2,..,

where R := /1,64/(2712). [ |
Let us note that L(p) = p'(ag + ... + agp*) is a polynomial of the degree k +1 =n — 1. The

value of n — 1 equals the number of the zeros of the function L(p), p > 0, and n is called the

principal quantum number.

Corollary 17.8 The eigenfunctions 1, for w = E, = —R/n? have the following form in the
spherical coordinates:

(17.34) thy = Ce™ V" Py (r) Fypn (0)™™.

Here v = y(w) > 0, Py(r) is a polynomial of the degree n — 1 > 1, Fy,(0)e™ € D(l) and
m=—1,..1.

Exercise 17.9 Deduce (17.21) from (17.20).

Exercise 17.10 Calculate the multiplicity of the eigenvalue E,.
Hint: it is equal to the D <<, 1(20 +1).
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18 Spherical Functions and Lie Algebras

Here we prove Theorem 17.7.

18.1 Spherical Symmetry and Angular Momentum Conservation

The basic idea in solving the eigenvalue problem (17.11) is its spherical symmetry which is
equivalent to
(18.1) .9, =0,

where ¢ is the angle of rotation of the space IR? around an arbitrary unit vector e € IR3. The
commutation holds by (17.11) since the Laplacian A and the Coulombic potential are invariant
under all rotations of the space IR®. Namely, the rotation invariance and (17.11) imply

(18.2) HRe(p) — Re(p)H =0, ¢€R,

where (Re(9)1)(x) = ¥(Oe(p)x) (see (9.11)). Differentiating (18.2) in ¢ at ¢ = 0 we get (18.1)

d
since V, 1= — R.(y).
d<)0 (p:O
Let us show that the commutation implies the conservation of the projection M,(t) = M(t)-e

of the angular momentum defined by (8.2). Let us fix an arbitrary unit vector e € IR? and choose
the coordinates in IR? in such a way that e = e3 := (0,0,1). Then according to the first equation
in (10.21),

(183)  M()=" [ #(630) Gx x Vaguit 0 = o [, 9(t)- Vg,

ih
Let us introduce the differential operator M, := ?V(p and the Euclidean resp. Hermitian scalar

product (-,-) resp. (-,-) in the real resp. complex Hilbert space L?(IR?):

(184) (10, 02() = [ 1) daCldx, (0. a(0) i= [ ol

Then (18.3) becomes
(18'5) Me(t) = (w(t)aMedJ(t)) = <¢(t)>Me¢(t)),

where 9(t) := ¥(t,-).

Theorem 18.1 For the solutions to the Schrodinger equation (17.10) the angular momentum

M, is conserved,
(18.6) M, (t) = const.

Proof I The Lagrangian density (6.7) for the equation (17.1) satisfies the invariance condition
(8.1). Hence, (18.6) holds by Theorem 8.3. |
Proof II The conservation (18.6) follows directly from the commutation of the operators H and
M, ~ V,: (18.1) implies

(18.7) [H,M,] = 0.

Therefore, differentiation of (18.5) gives by (17.10),
M(t) = ((t), Mctp(1)) + ((2), M3 (t))

= (—iH(), Mop(1)) + ((8), Mo (—6H(2))
(18.8) = ($(t),i[HM, — M H](t)) =0
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since H is the symmetric operator in L?(IR?). |

Exercise 18.2 Check that H is the symmetric operator in L?(IR3).

Further we identify the operators V, and M, with the differential operators on S. Then the
commutation (18.7) implies that

(18.9) [A,V,] = [A, M,] =0, e € IR3.

18.2 Spectral Theorem for Spherical Laplacian

Lemma 18.3 The Spherical Laplacian A is an elliptic second order operator, positive definite
and symmetric in L?(S,dS).

Proof The ellipticity follows from (17.18). A is positive definite and symmetric in L?(S,dS)
since A is positive definite and symmetric in L2(IR?). [ ]
This lemma and the Elliptic Theory [13] imply the Spectral Resolution

(18.10) L*(S,dS) = @52, L(j),

where L(j) C C*(S) are finite dimensional orthogonal subspaces of L?(S,dS) and Az = A;
with A; # X; for j # 4. It remains to prove that dimL(j) = 214+ 1 and \; = 20 + 1 with an
1=0,1,2,... .

Lemma 18.4 All spaces L(j) are invariant with respect to the rotations of the sphere.
Proof The invariance follows from the invariance of A.

Corollary 18.5 For each unit vector e € IR?, all spaces L(j) are invariant with respect to the
operator H, := —iV ,, where ¢ is the angle of the rotation around e.

18.3 Lie Algebra of Angular Momenta

Let us denote by Hy, k = 1,2, 3, the operators H,, corresponding to the vectors e; = (1,0,0)
etc. Then the linear span (Hy, Ho, H3) is a Lie Algebra since

(18.11) [Hy, Hy] = iHs3, [Hy, H3] = iH\, [Hs, Hy] = iH,.
Exercise 18.6 Check the commutators. Hint: Hy = —i(x X V), as in (18.3).

Lemma 18.7 For each k =1,2,3,
i) The operators Hy are symmetric in L%(S,dS).
i1) All spaces L(j) are invariant with respect to Hy.

iii) [A, Hy] = 0.

Proof ad i) Hj are symmetric since the rotations around ey are the unitary operators in
L%(S,dS).

ad i) The invariance holds by Corollary 18.5.

ad iii) The commutation holds by (18.9). [ |

Definition 18.8 H:t = H1 + ’LH2
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Lemma 18.9 i) All spaces L(j) are invariant with respect to H .
i) [A, Hy] = 0.
iii) [Hy, Hy] = +H,.

Proof i), i) follow from Lemma 18.7, i4¢) follows from (18.11). [ ]

Let us fix an arbitrary j. Theorem 17.7 follows from

Theorem 18.10 There exists an | =0,1,2, ... such that:

i) There ezists a basis {en, : m = —1,...,1} in the space L(j).
it) Hyem = mep,.

iii) A = —I(1+1).

Proof Hj is a symmetric operator in L(j), hence H3 admits a diagonal form in a basis of its
eigenfunctions v, in L(j):

(1812) H3/US(95 <P) = _ivtpvs(ea (P) = SUS(Ha (P)
Therefore, v,(0,¢) = F(0)e**?, so s = m is an integer number.

Lemma 18.11 Let m be an eigenvalue of Hs in L(j): Hzv,(0,9) = muy,(0,¢) where v, €
L(j), v#0. Then

i) —m also is an eigenvalue of Hs in L(j).

i1) Either wy := Hyivy, = 0, or wy is an eigenfunction of Hs in L(j) with the eigenvalue m +1.

Proof ad i) The function v,,(0, —¢) is the solution to (18.12) with s = —m. It belongs to the
same space L(j) since the operator A is invariant under the symmetry ¢ — —¢p by (17.18).
ad ) By Lemma 18.9 7i7) we have Hyw = H3H v, = Hy H3v,, £ Hy v, = mwy + wy. [ |

Corollary 18.12 The set of all eigenvalues of the operator Hs in L(j) has the form —I,...,1
where | =0,1,2, ....

It remains to prove that each eigenvalue is simple and A; = —I(l +1).
First consider the lowest eigenvalue m = —I. Then H_v_;(#,¢) = 0 by Lemma 18.11. We
will prove below that in the spherical coordinates,

(18.13) H_=—e [Vy—icotf V]

Taking into account that v_;(8,¢) = e " F_;(0), we get from H v_;(#,¢) = 0 the differential
equation (Vg —cot 0l)F_; = 0. Hence F; = C sin‘ @ which means that —I is a simple eigenvalue.
By definition of the space L(j), we have Av_;(8,¢) = Ajv_i(f,¢). Substituting v_;(8,¢) =
e~ % sin' § and using (17.18), we get A\; = —I(I +1).

Next consider the eigenvalue m = —I+1. For corresponding eigenfunctions e!(""*D?F_; ()
we have H_v_;11(0,¢) = Cv_i(0,¢) with a C € C by Lemma 18.11. Moreover, C' # 0: oth-
ervise, we would have j = —(I — 1)l as above. However, this contardicts previous calculation
Aj = =l(l +1) since I > 0. Therefore, we can assume C' = 1 and get the differential equation
(Vg+cot@(—1+1))F_;11 = F_;. If the bounded solution exists, it is unique since the solution to
the homogeneous equation corresponds to different eigenvalue A;. Hence, —I 41 also is a simple
eigenvalue, etc. |
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Corollary 18.13 In D(l) there ezists a basis {Fy,(0)e*¥ : m = —1,...,1}.

Remark 18.14 The stationary state 9(z) = C Ry (1) Fyun(0)e*% is an eigenfunction of the an-

gular momentum Mg = %V(p. Corresponding eigenvalue is equal to —mh /2.

18.4 Angular Momentum in Spherical Coordinates

We prove (18.13). First, let us rewrite (17.14) as

Vv Vv
(1814)  V4(r,0,0) = &, Vo + g ﬁ%% oV

=e1 V19 + e3V3y + e3 V3,

7sinf

wher e; := (1,0,0), etc. Then it is evident geometrically that

er = (e1 cos p + egsiny) sin @ + ez cos b,
(18.15) ep = (e1cosp + ez sinp) cos — egsin b,
ey, = €08 — e1sing.

Substituting into (18.14), we get

' V1 =sinfcos ¢V, + cosf cos @% — sin<pTZI“;0,
(18.16) 4 V3 =sinfsinpV, +cosﬂsin<p% +Cos<pTZﬁ0,
\ V3= cos0V, — singo?.
Substituting (18.16) and (17.12) into Hy = —i(x X V)i, we get
H, = i(sin pVy + cot O cos ¢V )
(18.17) Hjy = i(—cos Vg + cot @sinpV )
H; = —iV,
Finally, two first formulas imply (18.13). [ |
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19 A uniform external Magnetic Field

19.1 Hydrogen Atom

Now let us consider the Hydrogen Atom in an external uniform static magnetic field B with the
vector potential A(x) = Bxx/2. Let us choose the coordinates in such a way that B = (0,0, |B]).

1
Then A(x) = §|B|(—x2,w1, 0). Therefore, we have the static Maxwell field with the potentials

(19.1) x € IR3.
1
A(x) := 5| B|(—x2,%1,0)
Then the Schrédinger Eqn (17.1) becomes
1 e?

(19.2)  howp(t,x) = Hpp(t,-) := ﬂ(—mvx — pA(x))2(t,x) — m¢(t,>c), (t,x) € R™.
Remark 19.1 Now (18.6) holds for e = e3:
(19.3) Ms5(t) = const

which reflects the azial symmetry of the equation (19.2).
The stationary Schrodinger Eqn (17.8) becomes,

Eutpo(x)=Hptp(x) = — %ﬁ%% (%) + Z'%[(Vx - AX)Pu (%) + 2A(x) - Vit (x)]

2
(19.4) ~ 5 AR () - L, xeTR.

Let us note that Vx - A(x) = 0 and A(x) - Vx = |B|V,/2 where ¢ is the angular coordinate of
the rotation around the vector ez := (0,0,1), i.e. around B. Then (19.4) becomes

Fotho(x) = Hpp(x) = —i#m(x) gV ()
1.2 4 e? 3
(19.5) _ﬂh A% (%), (x) — mibw(x), x € R?,

where wy, 1= h¢|B|/(2u) is the Larmor Frequency. Finally, let us assume the field B be small:
(19.6) |B| < 1.
Then we can neglect the term with A? in (19.5) and get the equation

Ew'ww(x) = Hllﬂpw(x) = _iTRAQ/Jw(X) + 'L.‘*)Lvtp'ww(x) T

(19.7) = Htpy(x) + iwp Vpihy(x), x € IR3,
Therefore, Theorem 17.4, Corollary 18.13 and (17.32) imply the following theorem.

Theorem 19.2 i) The Quantum Stationary States 1, of Hydrogen Atom in magnetic field ezist
for energies E, = Epp = —R/n* + mwr, where n = 1,2,3... and m = 0,+1,...,+(n —1). For
other energies the states do not exist.

i1) The eigenfunctions 1, have the form (17.34) in the spherical coordinates.
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19.2 A Radial Scalar Potential

Let us consider more general equations of type (19.1) with a static radial external potential ¢(|z|)
and the static uniform magnetic field B. Then corresponding eigenvalue problem of type (19.7)
becomes

Boho(x) = —ih%«/}w(x) w1V b (%) + e(1x])ho ()

(19.8) = Hopy(x) +iwp V1, (x), x € R?,

where H, the Schrédinger operator with the radial potential. The following theorem can be
proved by the same arguments as Theorems 17.4, 19.2.

Theorem 19.3 i) The Quantum Stationary States ,, of the electron in the static central static
electrical and uniform magnetic fields correspond to the energies E, = Epny of the form Eyp,, =
By, + mwp,, wheren=1,2,3..., 1 =0,1,... and m = —1,...,1.

i1) The corresponding eigenfunctions 1, have the following form in the spherical coordinates (cf.

(17.84)): .
(19.9) P = Rin(7) Fim (0)e™?,

where Fyy, (0)e™? € D(1).

INRIA



Classical Fields and Quantum Mechanics 79

20 Coupled Maxwell-Schrodinger Equations

Let us determine the dynamics of Maxwell Field in presence of the wave field 1 governed by the
Schrodinger Equation. The Lagrangian density of free Maxwell Field is known from (14.7), so
we have to modify only the interaction term in (14.7). The interaction term gives the dynamics
of Maxwell Field in presence of given charge-current densities (14.7), so it remains to express the
densities in the wave field .

On the other hand, we have shown that the interaction from (14.7) term determine uniquely
the Lorentz Dynamics (14.10). The Schrédinger Equation (16.22) substitutes the Lorentz Dy-
namics (14.10). This suggests to identify the Maxwell- Schrodinger interaction with the inter-
action term from the Lagrangian density Lg of the Schrédinger Equation (16.22). Namely, we
add the Lagrangian density Lg of the Schrodinger Equation (16.22) to the density L£; of the
free Maxwell field and get the Lagrangian density Ljss of the coupled Maxwell-Schrédinger
Equations,

3
: 1 .
(20.0)  Lass(@,9, Vi) = [iRVe—ed(@)y - = 52 > |(~ihVi—fAu@)y] - faﬂfaﬁ
k=1
Corresponding Euler-Lagrange Equations read,

([ihV, — ed(t, )(t,x) = i[—mvx — BA(t %)t %),

(20.2) < p = ely(t, x)?, B=0,
ﬁ vt = |
L ? = p[_ﬂiv,@ - ’éAﬁ(ta X)W(ta X) ' ¢(t7x)7 /8 =1,2,3,

where the tensor field F*? corresponds to the potentials ¢(¢,x), A(t,x). The system (20.2)
describes the dynamics of the wave field % in its “own” Maxwell field ¢(t,x), A(t,x) generated
by by the charges and currents of the wave field.

Remark 20.1 The charge-current densities from (20.2) coincide, up to a factor, with the Noether
currents (10.23) corresponding to the group of internal rotations (9.12).

Now let us introduce static potentials ¢®<*(¢,x), A®**(¢,x) of the Maxwell field generated by
some external sources. We formalize the introduction through the Lagrangian density

Lus(@,9, Vi) = [ihVy — e(d(z) + ¢™ (¢, %))]y - ¥

3
(20.3) —2i Z [=ihVi — H(Ar(z) + AT (2)]9* ~ f‘”ﬂfaﬁ

Then corresponding equations read,

( [mvt—e<¢<t,x>+¢m<t,x))hp(t,x):i[ﬂ'ﬁvx—;é(A(t,xHAext(t, x))[24(t, %),

(20.4) | pi= el (t, x)[%,

1 Bl o) —
i Vo F*(t,x)= s

=§Hhvﬂ—¢mﬁ<u )+ A (1, )t %) (1, ),
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20.1 Charge Continuity Equations

The Lagrangian density (20.3) is invariant with respect to the internal rotations (9.12). Fur-
thermore, the densitites p,j from (20.4) coincide with the corresponding Noether currents of the
form (10.23)) up to a factor. Therefore, the Noether Theorem II implies

Lemma 20.2 For any solution to the Schrodinger Equation (20.4), the corresponding charge-
current densitites p,j satisfy the continuity equation (11.2).

Let us prove a more general relation:

Lemma 20.3 For any two solutions 1 (t,x),1%2(t,x) to the Schrodinger equation from (20.4)
the following identity holds:

(205) ﬂ12(t> X) +div j12(t= X) = 07 (ta X) € IR47

where ) _
P12 (ta X) = €¢1 (ta x)¢2 (ta X),

o) { ()= ST A X) + A ) () X)

+i[mvx — (A(t, x) + AP (t, %))y (8, )91 (£, X).

\

Remark 20.4 For 91 = 1y the expressions (20.6) become (20.4) by (6.3), and the identity
(20.5) becomes (11.2).

Proof of Lemma 20.3 Let us write (11.2) for ; and ,:

1720y — ep(x)]9h1 (¢, %) = %[—iﬁvx — A(A(t %) + A% (8, %)) (8, %),
(t,x) € IR
[—ih0 — ed(x)]thy(t, %) = i[iﬁvx — AA(t, %) + A% (2, %)) Py (t, %)
(20.7)

Let us multiply first equation by i1),(t,x) and add second equation multiplied by —it (¢,%).
Then we get,

ihatwl (t’ X) ) @2 (ta X) + iﬁata2 (t’ X) - i¢1 (t, X)
= %[—iﬁvx — H(A(t, x) + A% (t, %)) 201 (8, X) - 14D (2, X)

1 _
(20.8) +ﬂ[ﬂivx — H(A(t,x) + A% (2, %)) (8, %) - i1 (¢, %).
It is possible to rewrite in the form

— O [ip1 (£, %)y (¢, %)]
= 57 (29— A3 + A% (8303 (%)t %)
(20.9) + [ = HA(LX) + A% (1,30 (%) (1,%) ). =

INRIA



Classical Fields and Quantum Mechanics 81

20.2 The Born Approximation

Let us assume that the own Maxwell fields are small with respect to the external field. Then we
can neglect the own field in the first equation of (20.4) and consider the approximate equation

(20.10) [ihV — ed™" (t, x)](t,x) = i[—mvx — APt %)% (t, x).

Its solution is an approximation to the wave field 9 from (20.4). Let us solve the equation and
substitute the solution % into the RHS of the second equation of (20.4):

1 p = elp(t, %)%,
(20.11) _ Va]:aﬂ(t,x) _ )
47 J?ﬂ = é[—ith — ,éAeﬂxt(t,X)]iﬁ(t,x) - p(t, x),

Then the solution F*?(t,x) gives an approximation to the Maxwell field radiated by the atom.
The process of the approximations can be iterated and the obtained fields are known as the Born
approxrimations.
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21 Atom Radiation and Selection Rules

21.1 The Dipole Radiation

Let us apply the Born approximations to the calculation of the radiation of an atom with the
electrostatic potential ¢®**(¢,x) = ¢***(x). Let us put the atom in a static magnetic field with a
vector potential A®**(x). Then (20.10) becomes

(21.1) [iAV, — ed™ (x)]9(t,x) = i[—mvx — AT (x) 22, ).

21.1.1 The dipole approximation of the retarded potentials

Consider the atom in the thermodynamical equilibrium with a thermostate at a fixed temperature
T > 0. Then the wave function (¢, x) admits an eigenfunction expansion

(21.2) P(t,x) = Z cr(T)r(x)e"*" + /OO o (T)o(x)e “dw
k 0

Let us analyse the Maxwell field produced by the corresponding charge and current densities
from (20.11). The potentials of the field satisfy the Maxwell equations (11.6), (11.9) and their
large time asymptotics for bounded |z| is given by the retarded potentials (13.4):

HE%) ~ Bpenlt x) = /p(t‘—lx—yl/c,y)dy

x -yl
(21.3) e W
1 j(t — |x — c,
A(tax) ~ Aret(t,x) = — /']( | yl/ y) dy
¢ x -yl

Let us assume that the atom is located at the point y = 0. Then the densities p(¢,y), j(¢,y) are
localized in a ball |y| < @ < 1. Therefore, any macroscopic observation at a distance |x| ~ 1
coincides with a high precision with the dipole approzximation

¢(tax) ~ p(t_ |x_y|/67Y)dy
x| Jiyi<a
(21.4) t— o0, |x|<R.

At x) ~ it —Ix—yl/cy)dy

clx| Jiy/<a

Let us calculate the charge-current densities corresponding to the wave function (21.2). By
(20.11) and (6.3), we have

p(t,y) = edp(t,y)v(t,y),
(21.5)

ity) = ® [(i[—mvy — A (L, y) ) P y>] :

The oscillatory integral in (21.2) over the continuous spectrum converges to zero for large ¢ and
bounded |y|. Hence 9(t,y) ~ va(t,y) := Y cx(T)¢r(y)e ™+, t — oo, for the bounded |y].
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Substituting the asymptotics for 9(¢,y) into (21.5), we get for ¢ — oo, and bounded |y|:
pt = x —yl/e,y) = R Y gy apg (T)e™ s w3y (y) g (y),
it—|x-vyl/cy) =
R g Apgr (T)e@r—win)t ([—mvy - ﬁAeXt(y)]'wk(y)e*iwk‘X*Y‘/C) D (y)e wwbeyl/e,

If we substitute the asymptotics into (21.4), we get the spectral expansion of the radiation in
the dipole approximation:

¢(ta X) ~ H%Z Ak (X, T)efi(wk*wkl)t,
kk'
(21.6) t oo, X <R
A(t) x) ~ %?RZAkk,(X’ T)e*i(wkfwk,)t
C|X
kk'

Corollary 21.1 The Rydberg-Ritz Combination Principle holds: the spectrum of the atom radi-
ation is contained in the set {wgr = wg — wp' }.

Further, the limiting amplitudes in (21.6) are given by
agr (%, T) = agp (T') Y e~k XY I/ey (v (y) dy,
y|<a

(21.7)

Apr (%, T) = by (T) / . e~ XYy — pA (y)|n (3 Yobwe () dy
Y sa

with an error of order fiwy/c in the last formula.

21.1.2 Selection Rules in the Cylindrical Symmetry

Let us consider the case of a radial electrostatic potential ¢*™*(x) = ¢***(|x|) and a static
uniform magnetic field B. Then the vector potential A®**(x) = B x x/2. Let us consider a
fixed spectral line wyyr # 0 where wy, resp. wy correponds to the eigenfunction (see (19.9))

(21.8) VY = Ruy(r)Fim (0)€"™¢,  tesp.  thy = Ry (1) Fppy (0)e™ 9.

Let us assume that
(219) |wkk:|a/c << ].

which means that the wave length A\gp = 27c/|wii | > a.
Theorem 21.2 Let the condition (21.9) hold, ¢*<*(x) = ¢***(|x|) and A™*(x) = B xx/2. Then
for the dipole approzimations of the limiting amplitudes with wy # wg we have: i) agr (x,T) =0

and i) Agg(x,T) #0 only if ' =1+1 and m' =m,m £ 1.

Proof Under condition (21.9) the exponent in the integrands of (21.7) is close to a constant
exr' () 1= exp(—iwgrrx/c) since |y| < a. In addition, the ball of integration |y| < a can be
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substituted by the whole space since the eigenfunctions )y, 1 are well localized. Therefore,
(21.7) becomes

arr (%, T) = agg (T)exp (x)/wk(}’)iﬁk' (y)dy,
(21.10)
Ao (5, T) = by (T e (@) / iRV — A (y) ey Vi (3 .

Now ag(x,7T) = 0 by the orthogonality of different eigenfunctions since we consider wy # wy.
To analyze A (x,T), let us use the identity (20.5) for the solutions 1y (x)e ™™kt 4hpr(x)e™*n't
to the equation (20.10). For this Born’s approximation we have A(t,x) = 0 hence the formulas
(20.6) give the densities

([ prr (1, %) := e rreqpy (x) 1y (%),

(21.11) { dww(t,x) = e’i“’kk’t(i[—iﬁvx—ﬁAeXt(X)hﬁk(X)d)kl(X)

e . < —
+ 5 [ihVx = A () (X (x))
x p

Then (20.5) becomes

(21.12) —iwpp Pt (£, X) + div g (£, %) = 0, (t,x) € R

By partial integration we see that the integral in the second formula of (21.10) is proportional
to the integral of jxxr(¢,x). Therefore, it remains to prove

Lemma 21.3
(21.13) / (x)dx =0,  teR,

if either I' 21+ 1 or m' #m,m + 1.

Proof Let us multiply (21.12) by the coodinate xP, p = 1,2, 3, and integrate over IR®. Then we
get by partial integration,

(2114) —iwkk/ /prkk/ (t, x)dx - /jZk’ (t, X)dx = 0,

where jik, is the p-th component of jix. Hence,

(21.15) / (1, x)dx ~ / XPapy (%) - g (%) .

Let us rewrite last integral in the spherical coordinates. Then we get by (21.8),
[0 - i

o - D A -
(21.16) = / Rt (r) R (r)rdr / = Fu (0)6™ Fye (0)e7 7S,
0 S

Obviously, the last integral is equal to zero if m' # 0, m+1. For I’ # [+ 1 this property is proved
in [3, Appendix XXI]. [ |
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