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Abstract: The forward electro-encephalography (EEG) problem involves finding a potential
V from the Poisson equation V - (¢VV') = f, in which f represents electrical sources in the
brain, and ¢ the conductivity of the head tissues. In the piecewise constant conductivity head
model, this can be accomplished by the Boundary Element Method (BEM) using a suitable
integral formulation. Most previous work is based on the same integral formulation, based on
a double-layer potential. In this article we detail several alternative possibilities. We present
a dual approach which involves a single-layer potential. Finally, we propose a symmetric
formulation, which combines single and double-layer potentials, and which is new to the
field of EEG, although it has been applied to other problems in electromagnetism. The
three methods have been evaluated numerically using a semi-realistic geometry with known
analytical solution, and the symmetric method achieves a significantly higher accuracy.
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Formulations intégrales pour le probléme de ’'EEG

Résumé : Le probléme direct de 1’électro-encéphalographie (EEG) consiste & résoudre
I’équation de Poisson V- (cVV) = f, ou f représente les sources électriques dans le cerveau,
et o la conductivité des tissus constituant la téte. Avec un modéle de conductivité constante
par morceaux, ce probléme peut étre résolu par éléments finis surfaciques, a partir d’une
formulation intégrale appropriée. Les travaux antérieurs ont systématiquement utilisé la
méme formulation intégrale, basée sur un potentiel double couche. Dans cet article, nous
détaillons d’autres formulations possibles. Nous présentons une formulation duale avec un
potentiel simple couche. Puis nous proposons une formulation symétrique, qui combine
des potentiels simple et double couche, et qui est nouvelle dans le domaine de 'EEG, bien
qu’ayant été appliquée & d’autres problémes en électromagnétisme. Une comparaison de la
précision des trois méthodes exposées a été mise en ceuvre, pour une géométrie semi-réaliste,
et démontre la supériorité de la méthode symétrique.

Mots-clés : Eléments finis surfaciques, équation de Poisson, méthode intégrale, EEG
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1 Introduction

Electroencephalography (EEG) [1] is a non-invasive method of measuring the electrical ac-
tivity of the brain. To reconstruct the sources in the brain, an accurate forward model of
the head must be established. The so called forward problem addresses the calculation of
the electric potential V' on the scalp for a known configuration of the sources, provided that
the physical properties of the head tissues (conductivities) are known. Note that the same
forward model can be directly used for magnetoencephalography (MEG) [2, 3] as well, since
the magnetic field B can be calculated from the potential V' by simple integration [4].

1.1 Problem definition

The quasi-static approximation of Maxwell equations [5] in a conducting environment yields
the fundamental Poisson equation

V- (oVV)=f=V-J° inR (1)

where V (in Volts) is the unknown electric potential, o [(Q2 - m)~1] is the conductivity, and f
is the divergence of the current source density J® [A/m?], all supposed known in the forward
problem.

We shall concentrate on a piecewise constant conductivity head model, such as shown
in Fig. 1, with connected open sets );, separated by surfaces S;. Note that for the sake
of notational simplicity, in this article we only consider nested regions with interfaces S; =
0Q; N 0;4+1. However, extension to other topologies is possible and straightforward.

The outermost volume Q1 extends to infinity and in the EEG/MEG problem treated
here the corresponding conductivity oy 41 (the conductivity of the air) is considered to be 0.
This implies that there can be no source in Qxy41. The extension to oy 41 # 0 is trivial.

1.2 Notation

We use the notation 8,V = n - VV to denote the partial derivative of V' in the direction of
a unit vector n, normal to an interface S;, 5 = 1,...,N. A function f considered on the
interface S; will be denoted fg,. We define the jump of a function f : R® — R at interface
S; as

the functions f~ and f* on S; being respectively the interior and exterior limits of f:
forr € §;, fgz (r) = lim f(r + am).
’ a—0%

Note that these quantities depend on the orientation of n, which is taken outward by default,
as shown in Fig. 1.

RR n® 4735



4 Kybic, Clerc, Abboud, Faugeras, Keriven, Papadopoulo

Figure 1: The head is modeled as a set of nested regions 1, ...,Qxy4+1 with constant con-
ductivities o1,...,0n+1, separated by interfaces Si,...,Sy. Arrows indicate the normal
directions (outward).

1.3 Connected Laplace problems

Thanks to the piecewise constant conductivity, we can factor out o from (1) to yield a set
of Laplace problems connected by boundary conditions:

oAV =f inQ;foralli=1...N+1 (2)

[V];=[00.V],=0 onSj forallj=1...N (3)

Physically, the boundary condition [V]; = 0 imposes the continuity of the potential across

the interfaces. The quasi-static assumption implies the continuity of the current (charge) flow

across the interfaces, which is expressed by the second boundary condition [00,V]; = 0, as

00,V = n-oF is precisely the density of current. Mathematically, both boundary conditions
come from considering (1) on the boundaries.

1.4 Boundary Element Method

The Boundary Element Method (BEM) [6, 7] is today a classical way of solving the forward
problem. The advantage of BEM with respect to FDM (finite difference method) or FEM
(finite element method) resides in the fact that it only uses as unknowns the values on
the interfaces between regions with different conductivities, as oposed to considering values
everywhere in the volume. This reduces the dimensionality of the problem and the number
of unknowns, and only requires the use of surface triangulation meshes, avoiding the difficult
construction of the volume discretization needed for the FEM.

INRIA
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1.5 Inaccuracy of BEM implementations

So far the main disadvantage of using BEM in the EEG/MEG forward problem has been
that in all known implementations the precision drops unacceptably when the distance d of
the source to one of the surfaces becomes comparable to the size h of the triangles in the
mesh. This seriously hinders the usefulness of the BEM, as the sources which are measured
by EEG/MEG are often supposed to lie in the cortex, which is only a few millimeters thick.
Although the problem is widely acknowledged [8-11], no satisfactory solution has been
found so far. Replacing the collocation by the Galerkin method [8,12] for the resolution of
the integral equations improves the precision only partially. The problem has largely been
disregarded, or sometimes avoided at the expense of excessively simplifying the model: some
authors propose to omit either the outer cortex boundary, or the skull, claiming that these
simplifications are inconsequential for the localization accuracy [13,14]. Unfortunately, our
experiments do not support this claim and there is direct and indirect evidence [15,16] to
show that accurate models are essential for accurate reconstruction. Note however, that the
MEG reconstruction is reported to be less affected by modeling errors compared to EEG.

1.6 Proposed new integral formulation

As far as we know, all variants of the BEM applied to the EEG/MEG forward problem are
based on the same integral formulation, introduced by Geselowitz [17] in 1967. However,
this integral formulation is by no means the only one available. We show that the classical
formulation corresponds to a double-layer potential approach. We propose a dual formula-
tion using a single-layer potential. Finally, we present a new formulation, combining single
and double-layer potentials. This new approach leads to a symmetric system and turns out
to be numerically significantly more accurate than the other two formulations.

1.7 Existing work

There is a large body of literature describing BEM implementations using the double-layer
potential formulation for forward and inverse EEG/MEG problems [8,12,18-22].

The symmetric formulation has existed in the BEM community for some time [7,23-25],
and the single-layer potential formulation has been used for solving elasticity problems [6, 7].
However, to the best of our knowledge, neither the symmetric approach nor the single-layer
formulation have so far been applied to the EEG/MEG problem.

1.8 Organization of this article

We start in Section 2 by presenting the mathematical results needed for the Boundary
Element Method. Section 3 presents the classical double-layer potential formulation together
with its dual formulation in terms of a single-layer potential, and the new symmetric integral
formulation, which combines single and double-layer potentials. The discretization and
implementation are described in Section 4, followed by experimental results in Section 5.

RR n° 4735
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Technical justifications and remarks relative to Section 2 are relegated to the Appendix and
can be skipped at first reading.

2 Representation theorem

The power of the Boundary Element Method is in its conciseness, since it only requires to
solve for values defined on surfaces instead of values defined in the volume. The key to this
dimension reduction resides in a fundamental representation theorem [6, 7], which we recall
in this section.

We define a Green function (see Appendix A)

1 1
CAnlr|| 4w

G(r) satisfying - AG =46 . (4)
Given a regular boundary (surface) 9Q, we introduce four integral operators D, 8, N, D*

which map a scalar function f on 90 to another scalar function on 912 :

(Df)(x) = / B G(x — ) f(') ds(x') , (8£)(x) = / G(r — ) f(') ds(r') |
a0 o0

(Nf)(r) = /an,,,,G(r —r)f(r')ds(r) , (D*f)(x) = /8,,G(r 1) f(r")ds(r) .
£ a0 )

where n, resp. n’ are the outward normal vectors at points r, resp. r'. Note that the
operator D* is the transpose (adjoint) of D with respect to the L?(9Q) scalar product
(f.9) = Joq f(r) g(r)ds(r’). With a slight abuse of notation, we will also consider the
values of the above-defined (Df)(r) and (8f)(r) at any point in R®, not necessarily at
r € 90. The same generalization can be defined also for (Nf)(r) and (D*f)(r), choosing
an arbitrary smooth vector field n(r).

To simplify the treatment and avoid ambiguity, we choose to work with potential func-
tions vanishing at infinity; more precisely, we say that a function u satisfies a condition 2,
if simultaneously

lim rju(r)| < oo

r—00
. Ou 9
Tlingo rg(r) =0
where r = ||r|, and 3%(r) denotes the partial derivative of u in the radial direction. The

Green function G in (4) satisfies 7. The hypothesis about the condition # corresponds to
the physical intuition that a static field far away from all charges is zero. This goes together
with the hypothesis we need to make in order to make our initial physical problem uniquely
solvable, namely that we are only interested in the field due to sources inside our bounded
volumes, i.e. inside the head.

INRIA
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Sy

Figure 2: Two-dimensional slice through a volume Qs with a hollow ball topology. Arrows
denote the normal orientation.

We are ready now to state the fundamental representation theorem on which the Bound-
ary Element Method is based.

Theorem 1 (Representation Theorem) Let 2 C R® be a bounded open set with a reg-
ular boundary 9. Let u : (R3\0Q) — R be a harmonic function (Au = 0) in R3\0Q,

satisfying the J# condition, and let further p(r) &ef hwu(r). Then

—p= +NT[u] —D*[p] for r & 90}
u= —D[u] +38[p] ©)
_pt = N[u]  +(xL - D*)[p] for r € 99
uwt = (F3-D)[ +8p]

where J denotes the identity operator. The equations (6) also hold for disjoint open sets
01,0y, Q3 such that O, U Qs U Q3 = R3, separated by regular boundaries 9, N 00y = S1,
0y NN = SQ, and 021 N 93 = @, if we set 000 = S; U S,.

Theorem 1 shows that any harmonic function u in R3\OQ satisfying J# is determined
everywhere by its jump and the jump of its derivative across the boundary 92, whether
0N is a single surface, or two surfaces as in the case of a nested topology Fig. 2. This is
a very deep result, showing the strong constraints imposed by the harmonicity. It helps
us to understand why we can solve a 3D problem by considering only quantities on a 2D
surface. For additional notes and a sketch of a proof, we refer the reader to Appendix 2.

RR n° 4735
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2.1 Single and double-layer potentials

From the equations (6) in Theorem 1, we see that the harmonic function u can be represented
using two functions g = —[u] and £ = [p] defined on 9. Historically, the 8¢ part of (6)
is called a single-layer potential. The single-layer potential is continuous when crossing 912,
while its normal derivative is not; [8¢],, = 0, [0a8¢] ,, # 0. On the other hand, the second
part, Dy, called a double-layer potential, jumps over 0f2, while its normal derivative does not;
[Du] a0a 7 0, [8nD,u] aq = 0- Refer to Appendix G for more detail on single/double-layer
potentials.

To apply the single/double-layer potentials to our nested-region model in Fig. 1, we
simply add up the contributions from all interfaces, us =), 8&s; resp. uq = >, Dug,. This
yields single, resp. double-layer, potentials with the same jump properties as in the single
interface case (see Appendix H). Further on, we shall need in particular the following two
relations, easily obtainable from (6) by additivity:

N

Opui(r) = :F% + ZD;iggi forr e S; (7)
=1
s | o

uf(r) :j:TJ-I-ZDﬁ,uSi forre S;. (8)
i=1

The operators D;‘-i and Dj; are restrictions of D* and D: they act on a function defined on
S; and yield a function defined on S;. This convention is used consistently in the remainder
of this paper.

3 Integral formulations

Let us use Theorem 1 to obtain integral formulations for the original multiple interface
problem (3). We now need to cope with the presence of sources which make the solution
non-harmonic. We shall start from a homogeneous solution v that takes the source terms
into account, but does not necessarily respect all boundary conditions. Then we add to
v a harmonic function u to obtain a complete solution V which simultaneously respects
the Laplace equation oAV = f and the boundary conditions (3). Three different ways of
achieving this are described in this section. We shall always assume V to satisfy condition
€, which amounts to imposing a zero potential infinitely far from all sources.

3.1 Dipole source

The source most commonly used to represent electrical activity in the brain is a “current
dipole”! [3]. Tt represents an infinitely small oriented source of current positioned at rq, with
dipolar moment q, and is defined by Jgip(r) = qér,(r). The corresponding source term in

I This is a traditional name, used because the quantity q has the units of [A - m)].

INRIA
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the Laplace equation is fqip = V - Jgip = q - Vér,, which yields the homogeneous domain
potential
1 q-(rg—r)
i =—T—— = 9
Vq P(r) An ||1'0 — I‘||3 ( )

3.2 Homogeneous solution

We decompose the sources f from (1) into domains as f = Zf\il fa, such that fo, = f-1q,,
where 1q, is the indicator function of ; (hence fq, = 0 outside ;). Recall that no source
lies in Q2 41; we also assume that no source lies on any boundary S;.

For each partial source term fo, we calculate the homogeneous medium solution vg, (r) =
—fa, * G (r). The convolution theorem shows that Avg, = —fq, * AG (r) and Avg, = fq,
follows from the properties of the Green function (4). Thanks to the choice of G in (4), the
functions vg, satisfy the J# condition, provided that the fq, are compactly supported. This
is true by construction for 4, ...,y since each of these domains is bounded.

3.3 Multiple domains

There are various ways of combining the individual homogeneous solutions vg, from domains
2; into a global homogeneous v. First we consider a function v, constructed as:

N
Vs = ZUQ,/Ui . (10)
=1

We easily verify that it solves the Laplace equation o Avg = f:

N N N
fa .
aAv UZ vg, /o O'Z = ngi f ineach
=1 =1 =1

The function v, and its derivative d,vs are continuous across each S;. In other words,
vs satisfies the boundary conditions [vs]j = 0 and [8,11)5]]. = 0 for all j, but not the
boundary condition [aénvs]j = 0. The function v; will be used in the single-layer approach,
Section 3.4, whence the subscript s.

In a dual fashion, we would like to consider the function 94(r) = o !(r) Zfil vg, that
satisfies 0 ADy = f and the boundary condition [aa,,zvd]j = 0. Unfortunately, 94 is not
properly defined in Q41 where o = 0. Instead, we introduce a function

N
Vg = ngi (11)
=1

that satisfies the Laplace equation Avy = f and the boundary conditions [vd]j = 0 and
[and}j = 0 on each surface S;. This function will be used in the double-layer approach,
Section 3.5.

RR n° 4735
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3.4 Single-layer approach

A natural approach to solving (1) consists of representing the potential V' in a way which
automatically satisfies [V]; = 0 and then adjusting the harmonic part so that the remaining
boundary conditions, [09,V]; = 0, are satisfied as well. We consider u, = V' — v, with v,
defined by (10). By construction, us is harmonic in 2 = Q; U...U Qy, since in each Q; we
have 0;Aus = 0;AV — 0;Avs = fo, — fa, = 0. It is also harmonic in Qx 41, as both V' and
vs are harmonic there. Since [V]; = 0 and [v,]; = 0 (Section 3.3), we conclude that [us]; =0
across all surfaces S;. This means that u, is a single-layer potential for 2 = Q; U... U Qy
with the corresponding boundary 92 = S; U...U Sy ( cf Section 2.1).

We use equation (7) for the normal derivative of a single-layer potential. We then use
the second set of boundary conditions, [0, V] = 0, implying that [Onus] = —[00nvs]. We
express [00nus] as a function of known quantities:

[a@nus]j =— [oanvs]j = —(0j —0j41)0nvs on S (12)

since Onvs does not “jump” (Section 3.3). Equation (7) yields

N-1
_ 0;+0; «
[Uanus]j = Ujanus - 0’j+18nu;|' = %gsj —+ (O'J — 0']+1) Z D]zgsz
1=1
on all S1,...,Sx. Combining this result with (12) we obtain
o; + 0, ey

O, = 2 T e Dils, onall S; . 13
2(0j41 — Uj)€SJ ; s ’ (13)

This is a system of N integral equations in the unknown functions g, . Its solution is unique
up to a constant [7] (see also Section J). Once it is solved, the potential u, for r € S; is
determined from

N
us(r> = 2811651 )
=1

and the values of V follow from V = v, + u,.

We observe that V' is expressed as an exactly calculable homogeneous medium potential
vs plus a correction term u;. If the medium is close to homogeneous, the correction is small,
which helps to improve the accuracy of this method. This method is to be favored if we
are interested in calculating the flow or the current. However, to obtain the potential V', an
additional computation is necessary.

3.5 Double-layer approach

The double-layer approach is dual to the single-layer approach. We use a representation
satisfying [00nV]; = 0 by construction and then find conditions on the harmonic part to

INRIA
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satisfy [V]; = 0 as well. Consider a function ug = oV — v4, with vg given by (11). By
construction, ug is harmonic in = Q; U ... U Qpy_1, because in each 2; we have Auy =
g, AV — Avg = fa, — fao, = 0. It is also harmonic in Qy, as both V' and v4 are harmonic
there. Since [00,V]; = 0 and [Oyv4]; = 0 (Section 3.3), we conclude that [Onuq]; = 0
on all surfaces S;. This means that us is a double-layer potential for @ = Q; U... U Qy
with the corresponding boundary 9 = S; U...U Sy. We use (8) to express the values
of the the double-layer representation. We then use the second set of boundary conditions,
[V]; = 0, implying that oj41(uq + va)~ = 0j(ug + vg)t for all S;. (This is equivalent to

aj_l(ud +vg)” = O'j__|_11(ud +v4)T for o # 0 and a natural extension thereof for o = 0.) We
can also express ug, = —[V] = (0i41 — 04)Vs,, where Vg, is the restriction of V' to S;. This
yields
o;+o v
. -
Vg = %VS]- — Z(O’H_l — U'i)‘DjiVS,; on each S]'. (14)
=1

The function vg (11) is the solution of Avy = f, corresponding to a homogeneous medium
with conductivity equal to one. Recalling that D;; Vs, (r) = [, s %G(r — ) V(") ds(x")
for r € S;, we recognize in (14) the classical integral formulation used for EEG and MEG
[2,3,17,19,20]. The advantage of this approach is that it solves directly for V' and no
additional post-processing step is therefore necessary. As in the single-layer approach, the
solution of the system (14) is unique up to a constant [7].

3.6 Symmetric approach

The third, symmetric approach, uses both the single and double-layer potentials. It is based
on the theory of Nédélec [7] and is also closely related to algorithms in [23,24]. However,
as far as we know, it has so far never been described for the EEG/MEG problem. In this
approach, we consider in each Q4,...,Qy the function

V—’I)Qi/o'i in Qi
U’Qi = . 3\ O
—vq,/0; in R3\Q; .

Each ug, is harmonic in R*\92;. The boundary of ©; is in our case 9Q; = S;_1 U S;. With
the orientations of normals indicated in Fig. 3, the jumps of u; satisfy the relations

[uQi]i = Vs, [uQi]’i*I =—Vs,_,, (153‘)
and the jumps of their derivatives

[Onuq;]i = (GaV)g,, [Onuq;]i-1 = —(aV)E _ (15b)

1t

We define ps, = 0;[0nuq,]; = ai(anV)gi. Note that since [00,V] = 0 from (3), we have
ps; = oi(anV)gi = 0i+1(8nV)§i at the interface S;. As ug, is harmonic in R¥\9%; and

RR n° 4735
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Sit1

Figure 3: A detail of the nested volume model. Normal vectors are oriented globally outward,
as shown. However, when considering for example the surface S; as the boundary of Q;1,
the orientation needs to be reversed.

satisfies the condition ¢, we can apply Theorem 1 to obtain the internal limit on S;:

_ [wai .
(uQi)Si = T - ‘DBQ,: [UQ,] 89 + SBQi [anuﬂi] a9,
If we break down the jump terms across 92; = S;_1 U S; into two parts, corresponding
to S;—1 and S;, and if we take into account identities (15a), we obtain

- Ve ~ B
(uQi)Si = (V—”Qi/ai)si = 5’ +Dsi-1Vei_y —DiiVs, — 07 '85i1psi_, + 0 '8ips, (16)

A similar analysis applies to ugq Theorem 1 gives as an external limit on S; with respect

to Qi+11

i1”

[40:11] 9,
(“Qi+1)5i =" e Dogiys [u9i+1]8§2i T 80911 [anu9i+1]69i 1
2 + +

We substitute for the values of [ug, ] and [Onuq,,,] from (15a) and break down the terms
on Q41 = S; U S;41, to obtain
+ + VS,- -1 -1
(u9i+1)5i = (V _in+1/0'i+1)Si ) +D’i’iVSi - Di,i+1VSi+1 _0-1;+]_Si'ip5i +Ui+181,i+1p5i+1
(17)

INRIA



Integral Formulations for EEG 13

We subtract (16) and (17); given that the functions V, vg
and their internal and external limits hence coincide:

41> VQ,; are continuous across S;

-1 -1
oiv1(va,)s, —o; (va,)s, = Dii1Vsioy — 2DiVs, + Diiy1 Vs,

— 0785 ic1psi, + (07 + 0;11)314'1751- - 0;1131',1'+1PS,-+1 fori=1,...,N (18)

Using the same approach, we evaluate the quantities (0i0nuq;)y = (p — duve;)y and

(0it10nuq, +1); = (p— Onva, +1); using Theorem 1, subtract the resulting expressions and

obtain '

(Onv041)s: — (Onve;)s; = 0iNii—1Vs,_, — (05 + 0i41)NiiVs; + 0541 Ni 41 Vs, 4y
- 'D:f,iflpSi—1 + 2'D:Fip5i - ‘Dj,i+1p5i+1 for ¢ = 17 ceey N (19)

Here (and in (18)) the terms corresponding to non-existing indices (0, N + 1) are to be set
to zero, as there are no corresponding surfaces. Terms involving py must also be set to zero,
since oy 4+1 = 0 implies py = 0.

Observe that, unlike in the previous approaches, each surface only interacts with its
neighbors. Equations (18) and (19) thus lead to s a block-diagonal symmetric operator
matrix, which is displayed in Fig. 4. Note that the vanishing conductivity oy4; = 0 is
taken into account by effectively chopping off the last line and column of the matrix.

4 Discretization and implementation

The discretization of all the exposed integral methods can be divided into three steps:
discretization of the boundaries, discretization of the unknowns, and choice of the test
functions, corresponding to the choice of the error measure to discretize the equations.

4.1 Discretization of the boundaries

The first step is to approximate the boundaries by surface meshes. Triangulation is used in
the vast majority of cases. Higher-order elements [22] are rarely used for the EEG/MEG
problem, despite their potential to improve the modeling accuracy, because of the lack of
algorithms to generate meshes with high-order elements from the available data (mostly
volumes of anatomical MRI [26,27]). As a triangulated surface is not regular, some caution
is needed in the application of the continuous equations derived above, (cf Appendix K).

4.2 Discretization of the unknowns

The second step consists of approximating the continuous unknowns V, p or £ using a finite
number of basis functions ¢;, for example V' =Y. v;¢;. The classical choice is the space PO,
where a basis function 1); equal 1 on triangle T; and 0 elsewhere. The second possibility is
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the space P1, with basis functions ¢; equal 1 on vertex ¢, 0 on all other vertices, and linear
on each triangle. Let us denote by N, the number of P1 basis functions and by N; the
number of PO basis functions, where N, (resp. N;) is the number of vertices (resp. triangles)
in the mesh. For closed meshes, N; = 2(N, —2). Higher-order basis functions are not useful
with triangular meshes, the additional precision being wasted since the total error of the
method becomes dominated by the geometrical error.

4.3 Test functions

Third, to convert the continuous equations of discrete variables into a set of discrete equa-
tions, we integrate each of them against a set of test functions ¢;. For example, if the
continuous equation is AV = Vj, then the discrete equations will be (AV,&;) = (Vo, @;)-
The simplest choice of test functions is a Dirac mass, ¢; = dx,. For our model equation, this
leads to (AV)(x;) = Vo(x;), imposing the equality at a set of points. This method, called
“collocation”, is comparatively simple and fast, but often not very accurate. One normally
chooses as many collocation points x; as there are unknowns v;. Special care is needed
to evaluate the functions at non-regular points of the surface, such as vertices, (see also
Appendix K).

4.4 Galerkin methods

Galerkin-type methods replace the pointwise equality by an equality in the mean sense. The
test functions {@;} are often chosen equal to the basis functions {p;}; this leads to square
system matrices. There is an extra integration involved which most of the time needs to be
performed numerically. Many times the integrand is singular which augments the difficulty.
Galerkin methods are hence more difficult to implement and slower than collocation, but
usually more accurate. We shall therefore concentrate on Galerkin methods in the detailed
treatment of the three integral formulations that follows.

4.5 Single-layer formulation

The continuous equation (13) obtained in the single-layer approach (3.4) is discretized using
a Galerkin method, described above. The single-layer density {s, on Sk is represented as
€ (r) =, (k) E )( ), where @, can be either a PO or P1 function. Taking the scalar
product of equation (13) (in which £g, has been discretized) with the same functions gogk)
yields the following set of equations:

R (Zw““ (9,6) = S Dl ) (o)

2(0k+1 — oK) =5
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The explicit matrix form is

i+ DTI DT2 Dis s DI,N X1 b,
D3, Ja + D5, D3, R D§’N X9 bs
D3, D3, Js+D3 ... D3, X3 | = | bs (22)
D}‘V,l D}‘\,’2 D?v,3 oo I+ D}‘V’N XN by
A

where the matrices J (which are almost diagonal) are given by

_ Okt Ok41 (k) (k)
(Jk)ij - 2(0k+1 _ o_k)<901 7(»03 >7

the elements of D* by

( Zl)ij = _<‘DZZQO§'I)7LIQEIC)>7

and the vectors b and x by

(bk)i = (8,1@5,@5’“)), (Xk)i = xgk) :

Care is needed in calculating the elements (Dj k)ii because of the singularity of the operator
D* (see (5)). Some authors adjust the diagonal values to compensate the numerical errors
of the rest of the elements using the fact that the sum of the columns of D, is known (see
[10] for the double-layer approach). This arises from the fact that the total solid angle
w=d4r (Dil) (r) must be equal to 47 for all interior points, and from the physical necessity
of obtaining a singular matrix (see Appendix J). However, we prefer to set (DZk)ii =0,
which is exact at regular points of flat surfaces (triangles), trivial to compute, and unlike
the former approach does not obscure potential accuracy problems. We did not observe
a significant difference in accuracy between the two choices.

The system matrix A is full and non-symmetric. The elements of the matrices D* involve
double surface integrals over triangles of the meshes. The inner integrals can be calculated
analytically for both PO and P1 basis functions [19, 28, 29], the outer integral must be cal-
culated numerically, which is most efficiently done using a Gaussian quadrature adapted to
triangles [6,30].

Once x is known, the potential V is calculated directly as

V(r) =va(r) + 2 Zasgl) (8116992”) (r) for re Sy . (23)

Note that no approximation is involved here; if x is known exactly, V' can be calculated
exactly too.
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4.6 Deflation

An important point to note is that the matrix A as presented in (22) is singular (see Ap-
pendix J). We “deflate” it [31] using the condition (£,1) = 0 (see Section J). For the
commonly used basis functions satisfying the partition of unity property?, this is equivalent
to ixgk) = 0 on each S, and thus )", xgk) = 0. To impose this, we replace A with
A’ = A + w1”1, where w is chosen such that A’ is well conditioned. The optimal choice w
is too costly to calculate but the value is not very critical and can be approximated [12, 32].
We use the fact that A is approximately diagonally dominant and we assume that the very
first element is representative, which leads to w = (A)11 /M, where M is the total number
of unknowns. This was found to perform acceptably well. The deflated matrix A’ is regular
and square and can be inverted by the usual methods.

4.7 Double-layer formulation

The double-layer formulation (14) is discretized using the same approach as the single-layer
(k) (k)

one, with Vg, on Sj represented as Vs, (r) = >, z; "¢, '(r), where ¢; is either PO or P1.
Taking the scalar product of (14) with <p§’“) yields
N o +0 al
k K+ Okt1 k), (k) (k 1 ) (k
(X vy = 2L (370l (0, o)) = D (014 = 01) 3o (Dl )
=1 7 =1 7
(24)
or, in a matrix form
Ji +Dn D12 D13 e Di,n X1 b;
D21 J2 + D22 D23 “e D2,N X2 b2
D3 D32 J3+ D3z ... D3~ X3 | = | by (25)
Dy, Dy, Dys ... Jv+Dwnn]| |xn by

A
where

+
(Jk)ij _ ok 20'k+1 <(p5k)7(p§1)>
O] (k)>

= —(0141 = ){Duep;’, ¢

N
(bk)i = <Z UQ“<.0§I)>, (X}c)i = xgk)
=1

2Their sum is equal to 1 everywhere.

—

O
B
=

~—
|

RR n°® 4735
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As in the single-layer case, and thanks to the duality between D and D*, the inner in-
tegrals needed to calculate elements of matrices D;; have an analytical solution for both
PO and P1 basis functions [19, 28], while the outer integrals are calculated numerically [8].
The matrix is again full, non-symmetric, and needs to be deflated, this time because the
potential V is only defined up to a constant (see Appendix J). Imposing the condition J#
is impractical, we therefore impose instead either that the overall mean of the potential be
7ero, Zszl > xgk) = 0, or that the mean of the potential on just the external layer be zero,

> ng) = 0. In the latter case we propose to modify (deflate) only the bottom-right block
of A, namely Jy_; + Dy_1,n—1. The basis functions are assumed to satisfy the partition of
unity property.

The continuous V is directly accessible from the discretization equation V(r) = 3", xﬁ’%ﬁ"’
forr € S;.

4.8 Symmetric approach

The specificity of the discretization of the symmetric case is that both V' and its derivative p
are simultaneously involved as unknowns. The approximation errors for the two quantities
should be asymptotically equivalent, so that the overall error is not dominated by either
one. For this reason, we choose to approximate V using P1 basis functions as Vg, (r) =
> xgk)qbgk)(r), while p is represented in the space PO, pg,(r) = >, ygk)wl(-k)(r). Similar
concerns guide our choice of test functions. We notice that the operator § behaves as
a smoother: it increases the regularity of its argument [7] by one. The operators D, D*
do not change it, while N has a derivative character: it decreases the regularity by one.
The regularity is closely tied to an approximation order [33]. To balance the errors, all the
scalar products should have the same approximation order. To ensure this, we multiply the
equation (18) for the potential (a P1 function) by test functions ¢; from PO

-1 -1 k
<‘7k+1va+1 — 0y va?¢§ )> =

3 (D1l ) —2Zx<’°)<D ko o)+
J
+Zx§k+1) ¢(k+1) w(k) 71 Zy(k 1) ’k_1w§k—1)’¢§k)>+

J
+ (o7 +opty) Zy§k)<8kk¢§k), ¢§k) ol Z y(/c+ )8 ¢§k+1),¢§k)>7
J
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and the equation (19) for the flow (a PO function) by test functions ¢; from P1

<6nv9k+1 - 811”91;7‘]55’“)) =
(k1) (k=1) L (k)y _ (k) (k) (k)
Ok ij <:Nk,k—1¢] ,(ﬁl > (O'k +0'k+1 Zx <Nkk¢] 7¢z >+
J

+orn Z x§k+1) <Nk Z y(k 1)
J
+ 2Zy§k)<D*k¢(k) (k) Z

J
both to hold on all interfaces k = 1,...,
concisely in the matrix form

18P gy Di e 103, M)+
* k k
(Df a0, Uy,

N. This set of equations can be expressed more

[(c1+02)N11 —2D7; —aaN12 12 INESY
—2D11 (er 405 HS11 D12 —o71S12 Y
—o2Nas D3, (02+03)N22 —2D3, —o3Nag D3s X2

D21 —o5'Sa1 —2D3s (o5 '+o3)S22 D23 —o3'Sa3 Yo| —
—o3N32 D3, (03+04)N33 —2D3; X3
D32 —o3'S32 —2D33 (63 +o71)Sa3 Y3
L . 1L
A w
(26)
with
(Nkl )ij = <Nkl¢(-l) ¢('k)> (Sk)ij = <Skz¢§l)7¢§k)>

(le - <D ¢§l)7,¢(k)>
) <0k+1v9k+1 T va7¢,(-k)> (ck), =
( k) x(k) (Yk)

The matrix A should be truncated® as in (20), to account for the zero conductivity oy 41 = 0.

Note that the matrix is larger than in the single or double-layer cases. However, it is
is symmetric and block-diagonal, which means that the actual number of elements to be
stored is comparable or even reduced, depending on the number of interfaces. Deflation
is needed to avoid the indetermination of V. To impose a zero mean of the potential on
the outermost surface, only the bottom-right block with Ny, n is modified to Ny y + wl”1,
using the heuristics w = (NN,N)H/MN, as in Section 4.6.

<@W—@WH¢@>

4

4.9 Acceleration

As the number of mesh elements M grows, the matrix assembly time O(M?) becomes
dominated by the time needed to solve the resulting linear system O(M?), e.g. by LU

3Bottom-right corner of A is not shown here for space reasons.
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Table 1: The different methods implemented and their associated labels.

| Label | Formulation | ¢ | ¢ |

la Single Layer | PO | Dirac
1b PO | PO
1c P1 P1
2a Double Layer | PO | Dirac
2b PO | PO
2c P1 P1
3 Symmetric | PO | P1

decomposition. Iterative solvers [8,9,34] can be used instead, reducing the computational
time and only accessing the matrix by matrix-vector multiplications Az. This brings other
optimization opportunities such as calculating these products approximately using a fast
multipole method (FMM) [11], precorrected-FFT [14, 35] or SVD-based methods. Multires-
olution techniques permit to reduce the number of expensive iterations on the finest level by
solving first a reduced size problem and using its solution as the starting guess. Multigrid
algorithms combine iterations on fine and coarse levels for even faster convergence.

Parallelizing the assembly phase is straightforward as the matrix elements can be cal-
culated independently. Parallel techniques also exist for non-iterative algorithms (SCALA-
PACK library).

5 Experiments

We have implemented the single-layer, double-layer, and symmetric approaches described
in this article. The single and double-layer approaches exist in three discretization variants:
with the collocation method (¢; = ;) using the P0 basis functions ¢, and with the Galerkin
method (@; = ¢;) using both PO and P1 bases. The symmetric method is discretized using
P1 basis functions for V and P0 basis functions for p. Table 1 summarizes the different
discretization choices, and indicates the labels by which they are referenced in the text and
figures.

5.1 Speed

The speed depends strongly on the optimization and acceleration techniques applied and
on the precise task. For example, one may consider that the matrix, once assembled, can
be used to solve many problems involving the same geometry. In our experiments, the time
needed for the direct assembly of the matrix was of the order of 10s for our smallest head
mesh of 3 x42 vertices, and up to about 10 min to assemble the matrices of about 5800 x 5800
elements, corresponding to the meshes of 3 x 642 vertices, using a parallel code on a cluster of
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workstations. The time needed to solve the linear system of equations varied between 10 ms
and 2min for the same cases. Generally, the assembly time grows quadratically with the
number of degrees of freedom, and the solution time as a cube. Collocation methods can be
10 or more times faster than the Galerkin method, depending on the numerical integration
method used and the number of integration points needed to get the required accuracy. The
single-layer method is about twice as costly as the corresponding double-layer method, as
two matrices need to be assembled, the matrix A in (22) in order to solve for the single-layer
density, and an additional matrix in order to integrate the potential from equation (23).

5.2 Test cases

Our tests were performed on triangulated spherical surfaces. The choice of a spherical
geometry has the advantage that an analytical solution is available [20, 36, 37], thus making
it possible to evaluate the accuracy of the different methods. The spherical surfaces were
triangulated with progressively finer meshes of 42,162,642 and 2562 vertices. We performed
two types of experiments. First, using a single surface of radius 1.0, delimiting an inside
volume of conductivity 1.0 and an outside volume of zero conductivity. Second, we used three
concentric spheres* with radii 0.87, 0.92, and 1.0, delimiting volumes with conductivities 1.0,
0.0125, 1.0 and 0.0, from inside towards outside. The sources were unitary current dipoles
oriented as [1 0 1]/v/2 and placed at distances r = 0.425,0.68,0.765,0.8075, and 0.8415 from
the center on the x axis.

We chose to evaluate the analytical solution at the triangle centers for the PO meth-
ods and at vertex points for the others. (This admittedly disadvantages Galerkin methods
but it is close to actual use.) We then calculated the relative f5 error as ¢ = ||vana —
Vnum || /|| Vanal ||, , making sure that both v,na and vpym have zero means prior to compar-
ison. Note that some authors linearly scale Vyum to obtain the best fit [10]. This obviously
reduces significantly the reported error but is difficult to justify in the context of evaluating
the accuracy of a method.

5.3 Error versus dipole position

The first set of experiments (Fig. 5) shows how the accuracy decreases when the current
dipole source approaches the surface of discontinuity. We observe that the symmetric ap-
proach is much less affected than the other methods in the three-sphere case.

5.4 Error versus mesh density

For a fixed source position (r = 0.765), the error decreases as the mesh is refined (Fig. 6).
In the three-sphere case we observe that while both collocation variants produce the largest
errors (results are completely unreliable), Galerkin methods based on PO approximations
are better, and the best results are provided by the P1 methods, namely by the symmetric

4The three-sphere case could not be tested with the finest mesh of 2562 vertices for lack of memory.
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Figure 5: The relative error € versus the dipole position r for meshes with 642 vertices per
sphere. Top: The three-sphere case. Bottom: the one-sphere case. The label 1 (resp. 2)
refers to single-layer (resp. double-layer) potential, and the label 3 refers to the symmetric
formulation, as explained in Table 1.
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formulation. Moreover, the slope of the decrease of the error with mesh size is steeper for
P1 methods case, a benefit of their higher approximation order.

5.5 Error versus conductivity

The accuracy of all implemented methods depends on the ratio of conductivities between the
second layer (representing the skull) and the neighboring volumes (representing brain and
scalp). To display this behavior, we have created additional head models with conductivities
of the three volumes 1.0, 0,1.0, with o ranging between 1/2 and 1/1000. The one-sphere
results presented above correspond to a conductivity ratio o equal to 1. Figure 7 shows that
when the conductivity ratio ¢ becomes small, the precision of the single and double-layer
methods drops. The symmetric method displays a clear advantage over the others since, on
the contrary, its accuracy increases as ¢ — 0. This is a valuable result in the context of
human head modelling where o = 0.01.

5.6 Discussion

Meaningful comparison of the various techniques is difficult. First, one must bear in mind
that they use different number of degrees of freedom to perform the calculations, which
moreover is not necessarily identical to the number of degrees of freedom needed to express
the solution. More specifically, for a (closed) mesh with N vertices, P1 methods involve
N unknowns, PO based methods use about 2N of them, while the symmetric method with
P0/P1 discretization uses about 3N unknowns, but only N degrees of freedom to express
the solution V.

The choice of mesh generation (inscribed over circumscribed, regularity and pole treat-
ment) influences the results. The choice of a spherical geometry itself favors some methods
over others. This is why we avoid excessive assumptions about the smoothness of the surface.

The specificity of the single-layer method of representing the solution as an exact term
plus a correction makes its performances decrease less drastically than the others. The
symmetric method is disadvantaged in the single sphere case, where only the N operator is
used. Finally, the choice of the error measure and the choice of the norm itself (5 over £,)
may favor certain methods over others.

A number of other experiments were performed, only the most relevant are shown here
due to space restrictions.

6 Conclusions

We have shown that the classical integral formulation that has been used during the last
thirty years in EEG and MEG calculations by the BEM is not unique. We have presented
an alternative approach, appealing by its symmetry and its superior accuracy in many
cases, and yielding computational savings. The precise theoretical analysis of the accuracy
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Figure 6: The relative error versus the number of the degrees of freedom of the solution for
the dipole source at » = 0.765. The three-sphere case is shown on the top, the one-sphere
case on the bottom. Both PO collocation methods in the three-sphere case are outside their

area of applicability and do not provide meaningful results. Refer to Table 1 for the meaning
of the labels.
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Figure 7: The relative error versus the ratio of conductivities between neighboring layers,
for dipole at r = 0.8075 and mesh of 642 vertices. Refer to Table 1 for the meaning of the
labels.

performance of the different methods is difficult because of the number of factors involved
and remains to be done, although some partial results are already present in [7, 25, 38].

The main benefit from using the proposed approach is that the error now increases much
less dramatically when the current sources approach the surface of conductivity disconti-
nuity. This implies that we will be able to reduce the number of elements in the mesh for
a usable model of the human cortex with a realistic geometry [39], which brings the project
of accurate electromagnetic simulation of the human brain much closer to the limits of avail-
able technology. Nevertheless, advanced acceleration techniques have to be used both at the
algorithm and implementation levels before it becomes viable.

Future work includes better understanding of the accuracy improvements and consequen-
tial further development of the method.
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APPENDIX: REPRESENTATION THEOREMS

We recall basic identities between surface and volume integrals involving vector fields, lead-
ing to the Representation Theorem 1. Note that in this appendix we use an explicit integral
notation for didactic purposes, while in the body of the article we have privileged the con-
ciseness of the operator notation (5).

A Green function

Consider a simplified version of Problem (1): the Laplace problem Au = f. It is well-known
that the so-called Green function (4) is its fundamental solution, i.e. —AG = §; in R? in
the distributional sense, where g is the Dirac mass at the origin. By translation invariance,
we have

—AG(r—1")=6p(r — 1) = by, (27)

where the notation A, signifies that partial derivatives are taken with respect to the variable
r, and 6, is a Dirac mass centered at r’.

There are many fundamental solutions to the Laplace problem, but the Green function (4)
is the only one with radial symmetry (a function of the radius r = ||r||) and vanishing at
infinity (r — 00).

B Green identities

Given a bounded and compact open set 2 C R® with a regular boundary 9Q which may not
be connected, the divergence theorem [, V - g(r)dr = [, g(r) - ds(r) relates the integral
over a volume 2 with a surface integral over its boundary 9S). For scalar distributions u, v,
substituting g = u Vv yields the first Green identity [, u Vv-ds(r) = [, Vu-Vo+u Av dr.
Exchanging u, v and subtracting the resulting equations gives the second® Green identity [40]

/ uAv — vAudr = / (u Vv —vVu) - ds(r) = / U — vOqu ds(r) ,
Q 80 89

where n is normal to 99, pointing outward (from Q to its complement Q¢ = R3\Q). We now
choose u to be a harmonic function (Au = 0) in ©, and v(r) = —G(r —r'). Using (27) we
obtain the third Green identity [6] below, in which (O,u)~ and = denote boundary values
taken on the inner side of the boundary with respect to the normal n

u(r) ifr'eQ
G(r—1")(Onu) (r) —u (r)0nG(r —r') ds(r) = Cu~(x")/2 ifr' € 09 (28)
o0 0 otherwise .

5Sometimes called the third. The numbering of Green identities varies among authors.

INRIA



Integral Formulations for EEG 27

This important result shows that a harmonic function u inside a volume (2 is completely
determined by the internal boundary values of itself and of its normal derivative. To make
the notation more compact, we define

PE (u) = /S Glr — 1) (Bau)* — ut(2)0aG(r — 1) ds(r)

and
u(r) ifre
. p .
Yo u(r) = rl}{nﬂﬁu(r )/2 ifreoq
r'eQ
0 ifreQ°.
Then (28) can be written as
Z3an(t) =xaou (29)
Note that if r € 99, lim u(r') = u~(r) with respect to a normal field n on 92 pointing
=
outside €. This orientation assumed on the left-hand sides of (28) and (29). Considering a
normal vector field n’ = —n which now points inside the domain (2, then partial derivatives

change signs, and the third Green identity (28) becomes

u(r’) ifr' € Q
— [ Gr—1")(Owu)"(r) —ut(r)0wG(r —1') ds(r) = {ut(r')/2 ifr' €00
oe 0 otherwise ,

the '+’ superscript indicating that the values of u and its normal derivative must this time
be considered on the side towards which the normal n’ is pointing. Therefore, for an inward-
pointing normal field,

P = xau
Note that yq is intrinsic to 2, in the sense that it is independent of any normal orientation
on 9N).

C Hollow ball topology

Interestingly, the third Green identity (28) is also valid for a hollow ball such as depicted in
Fig. 2 as 2 = Q, with a boundary consisting of two unconnected parts, S; and S,.

The relation (29) supposes that the normal field n points outside the domain Q. This is
not the case in Figure 2, where the normal field on S; (which we call n;) points inwards,
whereas the normal field on S» (which we call ny) points outwards. Decomposing 92 =
51 U Ss, and using the above considerations on the sign of the normal, one can write

xou = -2 _ (u) + @gzm(u) . (30)

S1,n1
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Q°N Bg

Figure 8: Two-dimensional slice through a volume 2 enclosed within a growing ball Bg,
yielding a bounded volume ¢ N Br with a hollow ball topology.

D Complement space

Let us now consider a bounded volume 2 with the topology of a sphere. Take its unbounded
complement ¢ = R*\Q) and try to derive the third Green formula for a function « harmonic
in Q¢ and satisfying J#. To do this, we consider the (bounded) intersection of Q¢ with a ball
Bp of radius R surrounding 2, as shown in Figure 8. The volume Q¢ N By has a hollow
ball topology and the Green identities hold. As R tends to infinity, the contribution on 0Bg
gets negligible thanks to both G and u satisfying the condition #. This shows that the
third Green identity (28) is also valid in an unbounded space Q¢, for harmonic functions u
satisfying J#. It can be written in the compact form:

XQe U = —ng’n(u) . (31)

E Representation theorem

Combining the third Green identities for 2 and Q¢ yields the following well-known classical
representation theorem, see [6, 7] for a complete proof.

Theorem 2 (Representation Theorem for u) Let 2 C R® be a bounded open set with
a regular boundary 0. Let u : (U Q°) — R be a function harmonic (Au = 0) in both

and Q°, satisfying the J# condition, and let further p(r') &ef Pu (r') = Opu(r’), where n' is
the outward unit normal of 9Q at point r'. Then for r ¢ 99 the following representation
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holds:

u(r) = / 0w G(r — 1) [u] 1 () + Gl(r — 1) [p] 1, (') ds(r') (32a)
a0

and for r € 902

ut(r) = :F[u]% + / —Ow G(r —1")[u] ;o (r') + G(r — v') [p] 5 (x") ds(r') . (32b)
1o}

The theorem shows that a function v harmonic in Q U Q¢ and satisfying ¢ is completely
determined by the jumps of [u] and [Ou] on the interface Q. Observe that u from (32a)
converges to (ut + «7)/2 on 91, while the value of u jumps when crossing the boundary.

This is manifested by the term :F[“]% in (32b).

F Representation theorem for the nested domain topol-
ogy

Having in view the layered model depicted in Fig. 1, we extend Theorem 2 to a nested
domain topology. As we have seen in Section 3.6, it suffices to consider the case of three
nested domains as in Fig. 2.

Proposition 1 Let Q;,%,, Q3 be disjoint open sets such that Q; UQy UQ3 = R®, separated
by regular boundaries 9 N 9Ny = Sy, N2 N IN3 = Sa, and IN; NIN3 = D. Let u : (Ql U
Q,UQ3) — R be harmonic and satisfy . Then (32a) and (32b) hold with 8Q = S; U S;.
Proof To prove this proposition, we use the third Green identities (29) in Q1 and (31) in Qs,
and the variant (30) in Q2. We assume that the normal vector fields n1 on S; and n2 on S» point
globally outward (as in Fig. 2). We have

X0 u = ‘@5_1,111 (u) )

XU = _32;1,:11 (U) + ‘@S_Q,rlg (U) ’

Xt = — P4, 0, (u) -
Summing up the three contributions gives

X, U + XU + XQ3U = (ygl,nl (u) - ‘gz,s-tl,n1 (u)) + (‘gzgg,ng (u) - y;;,ng (u)) .

For r € Q1 U Q2 U Q3, xa,u(r) + xa,u(r) + xo,u(r) = u(r), and we obtain (32a). For r € S; U Ss,
Xy u(r) + Xa,u(r) + xosu(r) = CEOHTO - Since ut = —Lulpg + T and u = L[ulon +
“+'5“_ , we obtain (32b).
O
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G Single and double-layer potentials

The single-layer potential (the second part of (32a)) is given explicitly as
we(r) = / G(r — (') ds(r') (33)
a9
while the double-layer potential (the first part of (32a)) is written as

ug(r) = /aan(I' — 1 u(r’) ds(x). (34)
90

The function £ corresponds to a charge density distribution on 952, while  may be viewed
as a dipole density. Both potentials (33), (34) satisfy the Laplace equation Au = 0 in QUQ°
and also satisfy the condition .. Remarkably, with arbitrary functions &, u from C°(99Q),
both (33) and (34) yield a harmonic function in C?(Q U Q°).

The single-layer potential is continuous with respect to r, in particular when crossing
the boundary 0. On the other hand its normal derivative is discontinuous when crossing
00. As proved in [7], the limit values on both sides are

pE(r) = dput(r) = $$ + /BHG(r —r)¢(r")ds(x')  forr € N (35)
80

The double-layer potential enjoys the opposite properties. It has a discontinuity when
crossing 02 and the corresponding limit values on both sides of 02 are

ut(r) = :I:@ + /an/G(r —ru(r)ds(r) for r € 9Q (36)
o0

The normal derivative of a double-layer potential is continuous when crossing Q2. Taking
the derivative of (34) in the direction n at r, we write

p(r) = pn(r) = nu(r) = /3ﬁ,n1G(r —r)p(r) ds(r’) . (37)
[249]

A subtle point here is that the kernel 9;, ,,,G(r —1') is not an integrable function for r' — r.
We therefore need to treat p as a distribution, defined through scalar products with suitable
test functions. This is unlike [p] which is continuous on 9.

Given these definitions, we can reinterpret (32a) as showing that a function u harmonic
in QU Q° is represented as the sum of a single-layer potential [6, 7] corresponding to & = [p]

and a double-layer potential corresponding to p = —[u].
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H Multiple interface potentials

The single and double potentials can also easily be applied in the case of our layered model
from Fig.1. For the single-layer potential, we write:

ui(x) = [ 6~ 15, (0 ds(e) (39)
=1y

where each g, is defined on the corresponding surface S;. The properties from the single
interface case are trivially satisfied thanks to additivity, namely [us]; = 0 and [Onus]: = &;.
More specifically,

N + _ £Sj (r) a o ’ ’ ,
pp(r) = Opu(r) = Fe + Z/@nG(r r')&s, (') ds(r') forre S; . (39)
=1 S

Similarly, for the double-layer potential, we have

N—1
wilt) = 3 [ OuwGlr ~ s, () A (40)
=1 S
with [ug): = —ps,, [Onuq] = 0 and
N
ui(r) = j:,u%(r) + Z/BHIG(r —1)us, (r')ds(x") forreS; . (41)
=1 S;

I Extended representation theorem

The equations concerning p in Sections G are summarized in Theorem 3 below, which extends
Theorem 2 to the directional and normal derivatives of u.

Theorem 3 (Representation Theorem for p) Let Q C R® be a bounded open set with
a regular boundary 9Q. Let u : (QU Q°) — R be a function harmonic (Au = 0) in both Q
and Q° | satisfying condition J#. Let also n (resp. n') be the unit normal to 9 at point r
(resp. ') and m an arbitrary unit vector at r. Then for r ¢ 95} the following representation
holds:

Pm(r) = / 02w G = 1) [u] 1o (') + OmG(r =) [P0 () ds(x))  (42)
o0
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and for r € 90}

() ¥p(r) = :F[p]% + / —0% wG(r —1')[u] o (r") +8aG(r —1')[p] 5 (r') ds(x') .
™ (42b)

Analogously to u, the derivative p = p, given by (42a) for m = n converges to p =
(pT +p)/2 on 9N in the distributional sense. Theorem 3 also holds in the case of a nested
volume topology, but we do not provide the detailed proof here.

J Uniqueness

The integral representation in terms of y = —[u] and £ = [p] is unique, if v and p are
considered as a pair [7]. In other words, there is only one pair of (u,&) generating a given
(u=,p7), (ut,pt), or ([u],[p]). However, this is no longer true if only p~ is given (interior
Neumann problem), as any constant function can be added to w. Physically, this means
that the potential is only known up to a constant. To get rid of this indetermination, we
can for example choose to impose <u, 1> = 0; other options are possible [32]. In the same
spirit, note that for harmonic u, the Stokes theorem necessarily imposes (p,1) = 0 on any
closed surface.

K Weak regularity

We shall need to extend Theorems 2,3 also for non-regular surfaces®, such as for example
a triangulated surface which is not regular on the edges and at the vertices. We find that
the equations in Theorems 2 and 3 hold, provided that there are not “too many” singular
points (their set is of zero measure) and that we only evaluate the integrals in (32b), (42b)
at the regular points. If needed, the values/limits on the surface can still be calculated even
in the singular points by a more complex expression involving inner and outer spherical
angles [10,41]. We will avoid this complication here by concentrating on the Galerkin method
that gives better results and does not require pointwise values.

In a similar vein, we can relax the continuity requirements on p = —[u], £ = [p], in
order to approximate them by some fi, £. Only piecewise continuity is necessary for the
convergence of the integrals in Theorems 2,3 (again with a set of discontinuity points of zero
measure) if we do not evaluate (32b),(42b) at the points of discontinuity.

6 A surface is regular if it can be locally approximated by a linear function everywhere.
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