Complex Division with Prescaling of Operands

Milos Ercegovac 1 Jean-Michel Muller
1 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We adapt the radix-r digit-recurrence division algorithm to complex division. By prescaling the operands, we make the selection of quotient digits simple. This leads to a simple hardware implementation, and allows correct rounding of complex quotient. To reduce large prescaling tables required for radices greater than 4, we adapt the bipartite-table method to multiple-operan- d functions.
Document type :
Reports
Complete list of metadatas

Cited literature [21 references]  Display  Hide  Download

https://hal.inria.fr/inria-00071856
Contributor : Rapport de Recherche Inria <>
Submitted on : Tuesday, May 23, 2006 - 6:58:51 PM
Last modification on : Monday, April 29, 2019 - 11:01:59 AM

Identifiers

  • HAL Id : inria-00071856, version 1

Collections

Citation

Milos Ercegovac, Jean-Michel Muller. Complex Division with Prescaling of Operands. [Research Report] RR-4731, LIP RR 2003-10, INRIA, LIP. 2003. ⟨inria-00071856⟩

Share

Metrics

Record views

156

Files downloads

473