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Abstract: This report deals with approximations of geometric data defined on a hyper-
surface of the Euclidean space E™. Using geometric measure theory, we evaluate an upper
bound on the flat norm of the difference of the normal cycle of a compact subset of E™ whose
boundary is a smooth (closed oriented embedded) hypersurface, and the normal cycle of a
compact geometric subset of E™ "close to it". We deduce bounds between the difference
of the curvature measures of the smooth hypersurface and the curvature measures of the
geometric compact subset.
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Approximation de cycles normaux

Résumé : Ce rapport étudie les approximations de quantités géométriques définies sur une
hypersurface d’un espace euclidien E". En utilisant la théorie de la mesure géométrique,
nous évaluons une borne supérieure de la norme plate de la différence du cycle normal
d’un compact de E™ dont le bord est une hypersurface (compacte orientée lisse plongée),
et du cycle normal d’un compact géométrique qui lui est proche. Nous en déduisons une
majoration de la différence des mesures de courbure de ’hypersurface et des mesures de
courbure du compact géométrique.

Mots-clés : Cycle normal, approximation, surface, courbure
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1 Introduction

This report deals with approximations of geometric data defined on a hypersurface of the
Euclidean space E™. Basically, we answer to the following question: suppose that we want to
evaluate different curvatures of a smooth hypersurface My, but that we can only access to the
local geometry of a (smooth or discrete) object Mj, "close” to it. Can we deduce from the
knowledge of the geometry of My "good approximations” of the curvatures of My ? In such
a generality, the answer is obviously negative, but with simple suitable assumptions, much
can be done. We deal with geometric measure theory, [4], and the use of currents. The main
advantage lies in the fact that one can define curvature measures on non smooth objects,
generalizing the Lipschitz-Killing curvatures of a submanifold, (which are smooth functions).
This frame has been build with success by Wintgen and Z#hle, [12], [13], [14],[15],[16], which
defined the notion of normal cycle of singular objects, generalizing the unit normal bundle of
a smooth submanifold, and by J. Fu, [6], [7], [8], [9], [10], who could characterize the normal
cycles, and define the curvature measures of a large class of "geometric objects” admitting
a normal cycle. He got an approximation result by comparing the curvature measures of
a sequence of polyhedra converging to a smooth submanifold of an Euclidean space: if the
polyhedra are "closely inscribed in the submanifold”, with a "fatness” bounded by below by
a positive constant, and if the Hausdorff distance between the polyhedra and the subman-
ifold tends to zero, then the curvature measures of the polyhedra tends to the curvature
measures of the smooth submanifold, (see the definitions below). The proof of this theorem
consists on checking that the masses of the sequence of the normal cycles of the polyhedra
are bounded and using the compactness theorem of integral currents with bounded mass, [9].

Remark however that this result does not give a bound on the "error” between the cur-
vature measures of a polyhedron "close” to the submanifold, and the curvature measures of
the submanifold. This is the goal of this report: We evaluate an upper bound on the flat
norm of the difference of the normal cycle of a compact subset of E™ whose boundary is a
smooth (closed oriented embedded) hypersurface M"~!, (basically, its unit normal bundle)
and the normal cycle of a geometric compact subset C (in the sense of J. Fu, [8]) whose
boundary B is "close to it", in terms of the mass of the normal cycle of C, the Hausdorff
distance between M™ ! and B, the maximum angle between the normals to M™ ! and the
support of N(C) over B, and an a priori upperbound on the norm of the second fundamental
form of M™~1.

Recall that one can always build n differential forms wy, (0 < k < n —1) of degree n — 1
on the tangent manifold TE™, which give rise to curvature measures. When one evaluates
these forms on the unit normal bundle of a smooth hypersurface, one gets the integral of
its Lipschitz Killing curvatures. By analogy, one can define the curvatures of any geometric
object by evaluating these forms on their normal cycle. Our result will be applied at the end
of the article to get explicit approximations of the curvatures of M™~! by the curvatures of
C.

RR n® 4723
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2 Background on currents

All the details can be found in [4].

2.1 General currents

Let M™ be a C*® n-dimensional manifold. We denote by D™ the E-vector space of C*°
differential m-forms with compact support on M™. The norm of a m-differential form ¢ is
the real number

lloll = sup ||gyll, 1)
pEM™

where, for each p € M,

l|¢pl| = sup{| < ¢p,Cp > |,(p € AT, M™,[(p| = 1}. (2)
The dual of D™ is the E-vector space D,, of currents on M™. The subset of m-currents

with compact support is denoted by £™. We endow D,,, with the weak topology:

lim 7, =T <= lim T5(¢) = T(4),Y$ € D™ (3)

J—c0o J—c0

2.2 Current representable by integration

We say that a current T' € D,, is representable by integration if there is a Borel regular
measure ||T'|| on E™ finite on compact subsets and a unit m-vector fields T defined almost
everywhere such that

T(¢>=/<T,¢>d||T||,V¢eDm. (4)

2.3 Rectifiable and integral currents

In particular, we can associate a m-current to any oriented rectifiable subset S of dimension
m of M™: let S be the unit m-vector associated to almost every point x of S. For every
¢ € D™(M), we define a current (still denoted by S) by

<S,¢>=/S<§,¢>, (5)

and more generally,
<a5,¢>=a/<§,¢>,\mez. (6)
s
If the support of S is compact, we say that S is rectifiable. We denote by R,, the space of
rectifiable currents.

INRIA
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A current is said to be integral if it is rectifiable and if its boundary is rectifiable. The
space of integral m-currents is denoted by I,,.

2.4 Mass and norms of currents

There are different interesting seminorms on the space of currents D,,. We mention the
main ones:

e The mass of a current T € D,, is the real number
M(T) = sup{T(¢), such that ¢ € D™, ||¢]| < 1.} (7)

Using general results on representation of measure theory, it can be proved that if
M(T) < o0, T is representable by integration.

e The flat norm of a current T' € D,, is the real number

F(T) = inf{M(A) + M(B) such that T = A+ OB, A € R, B € Ris1}. (8)

Remark that the flat norm has another expression. One has:
F(T) =min{M(A)+ M(B) such that T = A+ 9B, A€ &,,,B € Emi1}, 9)

or

F(T) = sup{T(¢), such that ¢ € D™, [[¢]| <1,[|d¢|| <1}. (10)

2.5 The constancy theorem for integral currents

We shall use the following important result:

Theorem 1 Let M™ be an oriented compact submanifold of BV, and T be an integral cur-
rent whose support lies in M™, and such that the support of OT lies in OM™. Then, there
exists an integer k such that T = kM™.

2.6 Normal cycle associated to a compact subset of E”

In this paragraph, we rephrase J. Fu. The goal is to define a generalisation of the unit
normal bundle of a submanifold, to a very large compact subsets of E™.
Let A be a compact subset of E™. Consider the function
iga: STE" - E, (11)
defined by

ia(z, &) = lim lim [x(A N B(z,7) N {p such that (p — z).¢ < t})[;=F2]. (12)

r—0s—0

RR n® 4723
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(Remark that i4 may have no sense if the Euler characteristic is taken for an object
which has no finite homology...) However, if i4 exists, it is unique in a certain sense. More
precisely, J. Fu proved the following, [9]:

Theorem 2 There exists at most one closed compactly supported integral current Sa €
L,—1(STE") such that

e S4 is Legendrian,

e and for all smooth functions ¢ in STE",

Sa(0@ Odvse) = [ ol iale. v
zcE"

Following [9], one gives the following;:

Definition 1 Let A be a compact subset of E™. If ia and Sa exist, then A is said to be
geometric.

Examples: The main examples of geometric compact subsets of TE™ are the unit normal
bundle of any smooth submanifold of E", the generalized unit normal bundle of any convex
subset of E™, the normal bundle of subsets with positive reach, the normal cycle of any
polyhedron of E™.

3 An approximation result

In this paragraph, we shall evaluate an upper bound on the flat norm of the difference of
the normal cycle of a compact subset K of E" the boundary of which is a smooth (closed
oriented embedded) hypersurface M™~! and the normal cycle of a geometric compact subset
C the boundary of which B is strongly close to M™~!; (see the definitions below). We denote
by 6(A, A’) the Hausdorff distance between two subsets A and A’ of E™.

3.1 The second fundamental form of a hypersurface of E"

A detailed background can be found in [1]. Let = : (M,g) — E™ be a codimension one
isometric immersion of a Riemannian submanifold M into E". We will use the following
notations: h denotes the second fundamental form of the immersion 4, (that is the symmetric
tensor with values in the normal bundle T+ M), A denotes the Weingarten endomorphism.
One has, VX, Y €e TM,V¢ € T+ M,

VxY =VxY +h(X,Y), (13)

Vxé=VxE— A X. (14)

INRIA
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3.1.1 The Gauss map associated to M"~!
Let & be a unit normal vector field on the hypersurface M™~!. We denote by G the Gauss
map associated to the immersion of M™~1:

G:M" ' — TE" (15)

is defined by
G(m) = (m, &m). (16)

The differential of G
dG : TM™ ' < TTE"

satisfies: )
dG(maX) = ('TvgaXa fo) = (.f,f,X, _AfX) (17)

In particular,
|1dG|| < sup(1, ||A]]). (18)

3.1.2 The projection on a smooth hypersurface

Let M™ ! be a closed (oriented embedded) hypersurface of E*. Since M™ ! is smooth,
there exists a tubular neighborhood U be of M™ ! on which the orthogonal projection Prjy
from U to E™ is well defined. Remark that if § is the maximum radius of U, then

o1
iy

The following result is classical, (see [5] for instance):

5 (19)

Proposition 1 The map
pry U — M}

is differentiable; moreover, at each point p € U, Dpry is given by the following matriz, in
a frame of (unit) principal vectors of M™ completed by the unit normal vector:

1
1+6eX 0

Dpr‘U = 1
0 T o 0

where A1, ..., A\n_1 are the principal curvatures of M™ 1, and e = £1. In particular,

1
D < —. 2

RR n® 4723
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In the following of this section, we shall say that a compact subset B lying in U is close
to M™~1. Moreover, if the orthogonal projection onto M™~! induces a bijection between B
and M™~! we shall say that B is strongly close to M™~1. If B is strongly close to M™~!,
then it is homeomorphic to it. In the following, we shall assume that M ™! is the boundary
of a compact subset K, and that B is the boundary of a geometric compact subset C, (that
is, admitting a normal cycle).

3.2 Comparing the normals

Let C be a geometric compact subset of E™ such that B = 9C is strongly close to M™~1. Let
B be a Borel subset of E™ included in B. For every point m in M™~!, one can compare the
normal &, of M™~! with

{(p,v) € STE"such that pr(p) = mand (p,v) € spt N(C)|B><]E"}'
For every (Borel) subset B of C, we put

oap = sup sup |2 (&m, V)] (21)
mePT(B) yespt (N©) , ysuch that pr(p)=v

3.3 A homotopy between normal cycles

With the previous notations, consider the map f defined by the following diagram:

TU~UxE* L spt N(K)C TK ~ K x E"
pl TG
U = Mnt

Let h be the affine homotopy between f and the identity, [4]:
h:(UxE") x[0,1] — spt N(K),
given by
hz, X, t) =tf(z, X))+ (1 —t)(x, X).

Let B be a Borel subset included in B. To simplify the notations, we define the
(n — 1)-current D by D = N(C)|(B><]E")' We define also the (n — 1)-current E by E =
N (I&)| (pr(B)xE) and the n-current C' = hy(D %0, 1]). For technical reasons, we shall assume

that B is regular enough to be sure that D is an integral current, (or at least representable
by integration). We shall say that such a Borel subset is regular.
The homotopy formula for currents (cf. [4]), gives immediately

aC = f,(D) — D — hy(dD x [0, 1)).

INRIA
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Proposition 2 1. One has:
fy(D)=E.

2. Moreover,

F(D - E) < (M(D) + M(D)) sup |f —Id| sup (|[Df||"~>,[[Df||""",1).
spt D spt D

Proof of Proposition 2:

1. We apply the constancy theorem, [4], 4.1.31: the support of the image by f of D (resp.
D) is included in the support of E, (resp. dF). Consequently, there exists an integer
¢ such that fy(D) = cE. By evaluating f3(D) and E on particular differential forms,
as the volume form wy, and using the fact that the restriction og f to B is one-one,
we see that ¢ = 1; (see below for a precise definition of wy).

2. In order to evaluate the flat norm of D — E, we decompose D — E in a sum of a
(n — 1)-current and the boundary of a n current, by writing:
D — E =0C — hy([0,1] x D). (22)
By definition of the flat norm, we deduce immediately that the flat norm of (D — E)
satisfies
F(D—E) < M(C)+ M(hy([0,1] x D)). (23)

On the other hand, since D is representable by integration, we have, ([4] 4.1.9.):

M(C) = M(hy(D x [0,1])) < M(D) sup |f —Id| sup (|[Df"""[|1d]]"""), (24)
sSpt D spt D

and

M (hy(dD x [0,1])) < M(9D)) sup |f —Id| sup (||Df|["7%,||[Id|[*"?),  (25)
spt D spt D

from which we deduce Proposition 2.
Proposition 3 Let B be a regular Borel subset included in B. Then

1. supgpt p |f —Id| < max(6p,ap), and

sup(1,||h
2. Vk 2 1,supgpt p ||IDf]| < %,

where 6 = 6(B, pr(B)) is the Hausdorff distance between B and pr(B) and ||hp|| is the
mazimum of the norm of the second fundamental form of M™~! restricted to pr(B).

RR n® 4723
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Proof of Proposition 3:
1. The first item is trivial;

2. For the second item, we remark that

f=Goprop, and Df = DG o Dpr o Dp;,. (26)

On the other hand, one has, almost everywhere,

sup [[DG]| < sup(L, [[hs|]). [[Dprs|| < 7 |Dp, || = 1. (27)
) prB -

1
Sup 5olal]’|

The conclusion follows.

3.4 Approximation of curvature measures

From Propositions 2 and 3, we shall deduce the following result:

Theorem 3 Let M™~! be a closed (oriented) hypersurface of ™ bounding a compact subset
K and C be a geometric compact subset of E" the boundary of which B is strongly closed to
Mm™=1. Let B be any regular Borel subset of E™ included in B. Then,

FNC)pxE™) ~ N(K)Kpr(B)xE")) <

max(éB,aB)(%)n_l(M(N(C)\(BXE")) + M(aN(C)I(BxlE"))):

where 6p = 6(B, pr(B)), ||hp|| denotes the maximum of the norm of the second funda-
mental form h of M™~! restricted to pr(B).

On the tangent bundle TE™ of E", one can define (n—1)-forms which give rise to curvature
measures when they are evaluated on the normal cycle of geometric compact subsets of M™.
These forms are invariant by rigid motions of E™ and by rotation on each fiber when they are
restricted to the unit tangent bundle STE™. We recall now their construction: we identify
TE™ with E™ x E™ itself identified with C", endowed with its canonical complex structure
J. At any point (m,&) of STE", consider an orthonormal frame (ey,...,e, 1) of £+, and
(e1 = Jey,...,en—1 = Je,) its image by J. On STE"™, we can build the (n — 1)-differential
form

(ef +te]) Ao A(elr_y +ten_q),

(the ef and €f denote the dual frame). Consider this expression as a polynomial in the
variable t, and remark that the coefficient of every t* is a differential form w; which does
not depend on the orthonormal frame (e;). Each (n — 1)-form w; is invariant under the
action of the orthogonal group. That is why we call these n-forms the standard invariant
(n — 1)-forms on STE".

INRIA
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Proposition 4 One has
o Vk,0<k<n-—1,||lw|| = Ci(n,k);
o Vk,0 <k <n-—1,||[dw|| = Ca(n,k);
where C1(n, k), C2(n, k) are constant depending only onn and k, satisfying C1(n, k)leqCa(n, k).

The proof is obvious and let to the reader. The exact values of Cy and Cy are Cy(n, k) =
Ck |, Ca(n,k)=(k+1)(n—1-k)+k(n—k)CE_,

The standard forms (wy, ...,wn—1) can be used to define curvature measures on E™, as-
sociated to any geometric compact subset B.

Definition 2 Let C be a geometric compact subset of E™. Let B be a Borel subset of E".
The k-th curvature measure of B is the real number

ME(B) =< N(C) g, "Wk > -

Recall that when M ™! is a smooth hypersurface, M (B) are nothing but the classical
Lipschitz-Killing curvature of B N M"~1, [5].

Let ¢ denote a unit normal vector field deﬁned on M"~! and h denote the second
fundamental form of M™~!. We denote by )\ )\ _, the principal curvatures of M™~1,
(in the direction £).

Definition 3 The k™" -elementary symmetric function Zx(€) = {)\“, . %} of the prin-
cipal curvatures of M™~' in the direction £ is called the k=" -mean curvature of M™ in the
direction &.

Remark that

det (I +tA¢) = Z Ex( (28)

with 25, (&) = >_;, A, (§), where Ay, (£) is the sum of all k-minors of the matrix Ag¢, (I
denotes the class of subsets of {1, ..., (N — 1)} with k elements).
The following result is well known, (see [1] for instance):

Proposition 5 M (B) = [,,.-1,5 Zk(§)dv, where dv denotes the volume form of M™ 1.
Using Theorem 3 and Proposition 4, we get immediately the following

Corollary 1 Let K be a compact subset of E" whose boundary M™ ' is a smooth (closed
oriented embedded) hypersurface of E™. Let C be a geometric compact subset of E™ whose

RR n® 4723



12 Cohen-Steiner € Morvan

boundary B is strongly close to M™ 1. Let B be any reqular Borel subset of B. Then, for
every k,0<k<n-—1,
|ME(B) = Mg (pr(B))| <

e ) N ) + MO (©) )

where §g = 6(B, pr(B)) is the Hausdorff distance between B and pr(B) and ||hg|| is the
mazimum of the norm of the second fundamental form of M™~1 restricted to pr(B).

Ca(n, k)max(ép,an)((

INRIA
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