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Une transformation des T-systémes bornés en des
T-systémes 1-saufs engendrant le méme langage

Résumé : Nous montrons que tout T-systéme fini et borné peut étre transformé en un
T-systéme étiqueté 1-sauf qui engendre le méme langage.
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1 Introduction

The goal of this paper is to answer Wolgang Reisig’s request made and forwarded to the
Petri Nets Mailing List in March 2001. Wolfgang Reisig wrote in [6]:

I would like to see a nice proof of the following fairly obvious problem:

Let G denote the set of all marked graphs with labelled transitions.

FEach N of G defines a formal language.

Claim: For each N of G there exists an N’ in G defining the same language,
such that N' is 1-safe.

We shall partially answer this request by giving a construction of (finite) N’ for finite and
bounded marked graphs N. The assumption that all marked graphs under consideration
are bounded was not explicit in the statement of the problem. As the set of all prefixes of
words in D’;* (the restricted Dyck language over one pair of parentheses) may be recognized
by an unbounded marked graph (with one place that counts the unmatched left parenthe-
ses), and seeing that D’{" is not regular, a finite unbounded marked graph cannot always
be transformed into a finite 1-safe marked graph with the same language. However, the
constraint that N’ should be finite was not explicit either in the statement of the problem.
We are inclined to believe that the problem has still a solution in the set of infinite 1-safe
marked graphs N’ when N is an unbounded marked graph, as examplified in Fig. 1, but
further work is needed before this conjecture can be fixed. We shall actually solve the above
problem for finite and bounded T-systems, which extend smoothly over marked graphs. To
be more precise, we shall solve the problem for unlabelled T-systems, as the solution for
labelled T-systems follows then immediately. The rest of the paper is organized as follows.
Section 2 recalls the basic definition of T-systems and marked graphs and their languages.
Section 3 reduces the problem for finite and bounded T-systems to a similar problem for
finite and bounded, live and strongly connected marked graphs. We show in sections 4 and
5 that such marked graphs may be simulated up to language equivalence by finite sets of
cyclic processes synchronized by the Arnold-Nivat product [1]. The simulation relies heavily
on Finkel-Memmi fifo nets [4] used as a bridge between marked graphs and communicat-
ing sequential processes. Section 6 converts the synchronized products of cyclic processes
to 1-safe marked graphs, so it brings the solution to the problem that was to solve. It is
also observed that the resulting 1-safe marked graphs are live. However, they need not be
strongly connected. Section 7 shows that anyway all maximal strongly connected compo-
nents of the resulting 1-safe marked graph are isomorphic up to initial markings. This fact
is illustrated in section 8, where the constructions are put to work on a simple case study.
Section 9 looks briefly at the implications of the results.
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Figure 1: An unbounded marked graph and its infinite 1-safe version
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From bounded T-systems to 1-safe T-systems 5

2 The terms of the problem for T-systems

We recall here the basic definitions of ordinary P/T-nets, T-systems, and marked graphs
before stating the problem addressed in the paper.

Definition 2.1 (finite ordinary P /T-nets) A finite ordinary P/T-net is a bipartite graph
N = (P,T,F), where P and T are finite and disjoint sets of vertices, called places and tran-
sitions, respectively, and F : (P x T) U (T x P) — {0,1} is the characteristic function of
the set of directed edges of the graph. A marking of N is a map m : P — IN. The state
graph of N is a labelled multi-graph, with markings as vertices, where there is an edge la-
belled with transition t from m to m' (in notation: m[tym' ) if and only if, for every place
p € P, m(p) > F(p,t) and m'(p) = m(p) — F(p,t)+ F(t,p). The reachable state graph of an
initialized P/T-net N' = (P, T, F,mq) with initial marking mq is the restriction of its state
graph to the markings that may be reached from mqg. N is initially live if every transition
t € T is the label of an edge of its reachable state graph; N is live if, for every reachable
marking m of N, the net (P,T,F,m) is initially live. A finite P/T-net is bounded if its
reachable state graph is finite. A bounded P/T-net is 1-safe if all its reachable markings are
maps ranging over {0,1} or subsets thereof. The free language L(N) of a bounded P/T-net
N s the set of all words in T* that are accepted by its reachable state graph, considered as
an automaton with initial state mo and with all states final. The labelled language L(N, \)
of a bounded P/T-net N with transition labelling map X : T — X is the image of its free
language under the unique monoid morphism X : T* — ¥* that extends this labelling map.

Definition 2.2 (T-systems and marked graphs) An initialized ordinary Petri net (P, T,
F,mg) is a T-system if (Vp € P) (|*p| <1 A |p*| <1) where *p={t € T|F(t,p) # 0} and
p* ={te€T|F(pt) #0}. A T-system is a marked graph if (Vp € P) (|*p|=1A |p*|=1).

Problem 2.3 Given any finite and bounded T-system N = (P, T, F,my), is there a finite
and 1-safe T-system N’ = (P',T', F',m{) and a transition labelling map X : T' — T such
that the labelled language of N is equal to the free language of N, i.e. in formulas, such
that LIN) = L(N', ) ?

3 Reducing the problem to marked graphs

In order to ease solving problem 2.3, we show in this section how to reduce this problem on
T-systems to a similar problem on strongly connected marked graphs. We proceed in two
stages: problem 2.3 is reduced first from T-systems to marked graphs, next from marked
graphs to strongly connected marked graphs. Let us recall that marked graphs (P, T, F,m)
deserve this name since they may be considered as graphs as follows: the set of vertices is
T, the set of (directed) edges is P, p is an edge from ¢ to ¢’ if F(t,p) =1 and F(p,t') =1,
and furthermore this edge bears the integral mark m(p). Strong connectedness has its usual
meaning in this context.

RR n°® 4708



6 Darondeau € Wimmel

Let N = (P, T, F,mp) be a finite and bounded T-system. If there are dead transitions
t € T, i.e. transitions that cannot be fired at any reachable marking, removing from N
all such transitions does not alter L(N'). Therefore, one may assume w.l.o.g. that every
transition ¢t € T is initially live. Let us next consider places. Suppose |p*| = 0 for some
place p € P, then removing this place does not alter the language of the T-system. Suppose
|*p| = 0 for some place p such that mg(p) = 0, then removing this place together with the
(unique) transition ¢ such that F'(p,t) = 1, if it exists, does not alter the language of the
T-system. By eliminating iteratively all places that meet either case sooner or later, N' may
be contracted to an equivalent T-system such that |p®| = 1 for every place p and mo(p) > 0
whenever |*p| = 0. Suppose now |*p| = 0 for some place p, and let ¢ denote the (unique)
transition such that F(p,t) = 1. Define an augmented T-system N} with one place py added
to the set P, one transition ¢y added to the set 7', and with extended maps F' and mg such
that F'(t,py) =1, F(py,ty) = 1, F(ty,p) = 1, and mo(py) = 0. As the transition ¢ is initially
live, the new transition ¢; is also. Suppose that L(Ny) = L(N’, A) holds for some 1-safe
T-system N’ with the set of transitions 7" and for some labelling map A : 7" — T U{t;}. As
L(N) = L(Ny) NT*, it follows that L(N') = L(N’;, A,) where A’} is the T-system obtained
from A by restricting its set of transitions 7" to T N A=1(T') and ), is the restriction of A
to this subset. Hence, by augmenting simultaneously A" with one place py for each place p
such that |*p| = 0, problem 2.3 may be reduced to initially live T-systems in which |*p| =1
and |p*| = 1 for every place p, that is to say, to initially live marked graphs.

Let now N = (P, T, F,mg) be an initially live, finite and bounded marked graph. The
assumption of boundedness entails that whenever a transition ¢ € T is devoid of input
places (i.e. when F(p,t) = 0 for all p € P), this transition must be isolated. However,
there may exist non-isolated transitions ¢ € T without any output place (i.e. such that
F(t,p) = 0 for all p € P). For any transition ¢ in this case, one may supplement each
input place p of ¢ with a complementary place p without altering L(N') —where places p
and P are said to be complementary if F(p,t) + F(p,t) = 1 and F(t,p) + F(t,p) = 1
for all ¢ € T, and mo(p) + mo(P) is the maximal value reached by m(p) when m ranges
over the reachable markings of A/. This transformation preserves the initial liveness of
N and the respective bounds reached by the original places of N. Moreover, after the
transformation, every maximal connected component of N is strongly connected. In fact, a
strongly connected component of A with no incoming edges has no outgoing edges: if it had,
these would be unbounded, since initial liveness entails liveness for all strongly connected
marked graphs. The marked graph produced by the transformation may thus be covered by
strongly connected components, including isolated transitions as a particular case. Problem
2.3 may therefore be reduced to marked graphs covered by directed circuits, where at least
one place is marked on each circuit (since all transitions are initially live), plus isolated
transitions. In case when a marked graph satisfies these conditions but it is not connected,
this marked graph may be seen as the direct sum N' = N7+ N> of two smaller marked graphs
Nl = (Pl,Tl,Fl,mgl) and N2 = (Pg,T2,F2,m02), meaning that {Pl,Pg} and {Tl,Tz} are
partitions of P and T, respectively, F(p,t) = 0 and F(¢,p) = 0 whenever p € P; and
t € T; with 4 # j, and the maps F; and mo; are the induced restrictions of F' and mg on
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From bounded T-systems to 1-safe T-systems 7

(P; x T;) U (T; x P;) and on P;, respectively. The language L(N) is then obviously the
shuffle of the languages L(N7) and L(N>). Thus, if these languages are respectively equal to
L(N1, A1) and L(N2, Xs) for (disjoint) 1-safe marked graphs N'; and N3 and for labelling
maps A; and Az, we necessarily get L(N) = L(N'y + N3, A1 + A2) where A; + )g is the
direct sum of the maps A1 and Ay, i.e. (A 4+ X2)(t) = A\i(¢) for the unique i € {1,2} such
that A;(t) is defined. The solution of problem 2.3 for a marked graph with no places and one
(isolated) transition is trivial, any connected marked graph that may be covered by circuits
is strongly connected, and any strongly connected marked graph is live if and only if it has
no dead transitions. Therefore, it should be clear that problem 2.3 reduces to the following.

Problem 3.1 Given any finite and bounded, live and strongly connected marked graph N' =
(P, T, F,myg), is there a finite and 1-safe marked graph N' = (P',T', F’,m{)) and a transition
labelling map X : T" — T such that the labelled language L(N”, )) is equal to the free language
LN) ?

4 From marked graphs to communicating sequential pro-
cesses

A crucial fact that will considerably help us in solving problem 3.1 is the following: any
strongly connected marked graph may be transformed into a language equivalent marked
graph that can be covered by directed circuits with disjoint sets of edges. This fact does not
need an elaborated proof, since it suffices to supplement each place with a complementary
place if not already present, and then to decompose the marked graph into circuits of
length 2, defined in an obvious way from pairs of complementary places. However, less
systematic transformations to the same effect may be preferred, and we shall make no
particular assumption on the length of circuits.

From now on, let N' = (P, T, F,mg) be the amalgamated sum on common transitions of
a finite family of live and cyclic marked graphs N; = (P;, T, F;, mo;)

N=]]Mil1<i<n}

i.e. {P1,...,P,} is a partition of the set P, T =T; U...UT,, and the maps F and mg are
the direct sums of the respective families of maps F; and mg;. Of course, a cyclic marked
graph means here a marked graph which is at the same time a directed circuit. For each
cyclic marked graph A, let |mg;| denote the whole number of tokens in the subset of places
P;. Finally let M be the least common multiple of the numbers |mq;| for ¢ ranging over
{1,...,n}.

Below in this section, we show that A may be simulated by a number of ), |mo;]
communicating sequential processes, each of which travels through a loop with length
(M/[ |mos|) x |P;| for the corresponding i. As a result, the overall size of the implemen-
tation is M x |P|. It is worthwile trying to decrease M to the lowest possible value without
changing L(N'). We shall not enter here into details, but it may be found suitable to modify
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8 Darondeau € Wimmel

for that purpose the initial marking mo of A/, by adding or removing tokens to or from any
place p such that m(p) # 0 at every reachable marking m of N.

Let us start looking for those communicating sequential processes. For notational conve-
nience, we allow ourselves in the sequel to identify each place p in a marked graph with the
unique pair of transitions (¢,t') such that F(t,p) = 1 and F(p,t') = 1. The constructions
we are about to explain rely on a (second) crucial observation, which is that L(N') does
not change when A and all marked graphs N are interpreted alternatively as Fifo-nets [4].
This amounts to map all tokens in mg injectively in [1,|mg|] and then consider each place
p = (t,t') as a fifo buffer, with transition ¢ at the input and with transition ¢’ at the output,
such that each token initially fed into place p stays forever in the (cyclic) marked graph N;
which p belongs to. Thus, a transition ¢ can be fired if and only if all its input buffers are
non-empty, and firing this transition causes one token to flow from the input buffer of ¢ to
the output buffer of ¢ in each marked graph N; such that ¢ € T;. At initialization, tokens are
fed into buffers in arbitrary order. Nevertheless, this order is preserved to some extent under
all firings. Actually, for each 4 € [1,n], let oy = ;1 .. .ti,m; be a repetition free enumeration
of T; where each consecutive pair p; j = (ti j—1,1i,;) is a place of N; — thus pi1 = (ti,m;,ti1)
is also a place of ;. Then, the concatenation of all buffers p; ; from j = 1 to j = m;, in this
order, yields a sequence of tokens w; invariant under all firings up to conjugation of words
— where two words uv and vu are said to be conjugates.

Consider a fixed transition ¢ € T. Let {p;, ji,---,Dixji } be the set of all buffers with
transition ¢ at the output. For each I € [1,k], let v; be the sequence of tokens stored
at initialization in the concatenated buffers of the fifo-net N;,, starting this concatenation
with the output buffer of transition ¢ such that any two successive buffers are neighbours
in this net. Let h; be the last number in the sequence v;. Thus, at the first time when
transition ¢ is fired, it will consume token h; from buffer p;, j, for each I € [1,k]. After this,
the new sequence of tokens stored in the concatenated buffers of the fifo-net A, starting
again from the output buffer of transition %, is the conjugate of v; obtained by shifting h,
from the last position to the first position. Therefore, one can make an exact list of all
combinations of k tokens (from the respective fifo nets Aj,) that will actually enable the
successive firings of transition ¢. This (cyclic) list starts with the k-tuple (hy, ... , hg), read
from the last positions of the respective sequences v; to vg, and each subsequent item is
obtained similarly after a simultaneous shift of all sequences by one position. As a result,
the number K; of items in this list is the least common multiple of the numbers |mg;, | when
[ ranges over [1, k]. Denote by A; the (M x k) array of token numbers obtained by repeating
this list M/K; times in sequence. Thus, each token owned by some given net N; such that
t € T; occurs M/ |mg;| times in A; (in column [ such that ¢ = 4;).

We now convert arrays A; to synchronization tables ST} over new alphabets that will then
be used to construct the sequential processes subject to synchronization (see the detailed
example given in section 8). Each table ST} is derived from the corresponding array A;
by replacing the successive occurrences of each token z, in column [ where x appears, with
new symbols t(z,1),#(x,2),... ,t(z, M/ |mo;|), where ¢ = 4;, in this order. The sequential
processes are then defined as follows. Each fifo net A; gives rise to as many processes Pr ()
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From bounded T-systems to 1-safe T-systems 9

as there are tokens z in mg;. For each token x stored at initialization in some buffer p; ;
(with transition ¢; ; at the output), Pr(z) is the cyclic process that iterates endlessly the
finite sequence of actions as follows, where L = M/ |mq;| and second subscripts are defined
modulo the number m; of transitions of N;:

do t;;(z,1) 5 tijya(z,1) ;5 ... tij-i(z, 1)
tij(®,2) 5 tigri(z,2) ;.. tija(@,2)
tij(@, L) 5 tijr(z,L) 5 ... 5 tijoai(z, L) od

The collection of all processes Pr(z) (z € [1,M]), composed in parallel and synchronized
according to the rows of the synchronization tables ST; (¢ € T'), behaves indeed like the
Petri net A/ as we show in the next section.

5 Establishing the simulation

We show first that every firing sequence of the fifo net A’ may be simulated by a run of
the synchronized processes Pr(z) producing the same trace (after replacing with ¢ all the
occurrences of synchronized actions from each table ST;). We show next that every run of
the synchronized processes Pr(z) may be simulated by a firing sequence of the Petri net N
with the same trace. As L(N\) is identical whether A is seen as a fifo net or not, an obvious
conclusion follows.

Now for the first simulation. As a preliminary remark, observe that a given action ¢(z, k)
occurs exactly once in the cyclic process Pr(z) and exactly once in the synchronization table
ST;. Each action t(x, k) with token z owned by the net N; conveys precisely the information
that the token z is flowing for the k" time through the transition ¢, where k is counted
modulo M/ |mg;|. Each process Pr(z) describes in this way the travel of the token z through
the transitions of the net A in any run of the fifo net A/. Each table ST;, when viewed
as an implicit sequential and cyclic process, encodes similarly the projection of any run of
the fifo net NV on transition t. Each firing sequence of the fifo net A/ therefore induces by
projection a synchronized run of all processes Pr(z) with an identical trace.

If we had introduced one more sequential process per table ST, let

Pr(t) = do STy[1]; STy[2];. .. ; STy[M] od ,

and synchronized every action STj[l] from each process Pr(t) with all actions t(z, k) from
the processes Pr(z) such that STy[l] = (... ,t(z,k),...), a converse simulation of the system
of all processes Pr(z) and Pr(t) by the fifo net /' would immediately follow: sequences of
actions of the synchronized processes would read directly as firing sequences of the fifo net NV.
However, we prefer here interpreting tables ST} as sets of synchronization vectors, defining
the joint actions of the processes Pr(z) without imposing a priori any sequential ordering
between the joint actions defined in each table ST;. The system under consideration is thus
precisely the Arnold-Nivat product of all processes Pr(z) with the rows of all tables ST;
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10 Darondeau € Wimmel

as synchronization vectors [1] [2]. Now, every sequence of synchronized actions performed
from the initial state of this system is clearly mapped to a firing sequence of the Petri net A/
when each synchronized action (... ,#(x, k),...) is interpreted as firing . Whenever a token
z belongs to a subnet N; and ¢t = t; ;, the readiness of the process Pr(z) for performing
t(x, k) indicates that the token z is available from place p = p; ; at the input of transition ¢
in the Petri net A. The readiness of Pr(z) for performing next ¢; j11(x, k) or t; j11(z,k+1)
indicates that the token z is subsequently moved to place p' = p; j4+1 (where the second
subscript is counted modulo m; = |T3|).

Thus, if we let A denote the labelling map that sends to ¢ all row vectors in each table
STy, then L(N) = A(L) where £ is the set of sequences of synchronized actions of the
communicating sequential processes Pr(x).

6 From the communicating sequential processes to a 1-
safe labelled marked graph

It is pretty easy to tie the loose ends now by converting the synchronized product of processes
Pr(z) to a 1-safe marked graph N’/ = (P',T', F', m{) with transition labelling map A such
that L(N',\) = L(N), hence bringing a positive solution to problem 3.1.

Let P' =J{P. |z €[1,|mo|]} where, for each process Pr(z) with program
do tij(z,1); tijra(z,1);... stij—1(z, 1) ;... stij(2, L) ;... stij-1(z, L) od,
P;: = {pi’j(x, ].) , pi,j—i—l(m, ].) goee ;pi,j—l(-ra ].) g ,pi,j(w, L) ye--5Pij—1 (iL‘, L) } with L =
M/ |mo;|. The initial marking of N’ is defined on each subset P, by letting mg(p; ;(z,1)) =1
and leaving all other places p;;(z, k) empty.

Let T" = |J{T} |t € T} where each subset T} is the set of row vectors of the corresponding
table ST;. Let the labelling map A be defined like in section 5, thus A sends all items in
each subset T} uniformly to the transition ¢ of NV.

Finally, for each transition ¢ = (... ,t(z,k),...) in T’, and for each entry t(z,k) of
this synchronization vector, let F'(p,t') = 1 and F'(t',p") = 1 where p = p; j(z, k) if token
z belongs to N; and ¢t = t; ;, and p’ is the successor of p in the enumeration of P). Let
F'(p',t') =0 and F'(¥,p') = 0 in all remaining cases.

Clearly, N is a marked graph and this marked graph is 1-safe, since the initial marking
of N contains only one token per directed circuit. Also clearly, L(N”) = £, and therefore
LN, X) = ML) = L(N). We now argue that the marked graph N is live. In order to
see this, suppose for a moment one adds to A/' as many places as there are transitions in
T’, imposing on each subset of transitions 7} an execution in the cyclic order defined by
table STy, starting with the first item in this table. The augmented 1-safe marked graph N’
behaves now exactly like the fifo net M. As A is live, the augmented marked graph N has
at least one token on each directed circuit [5]. This property holds a fortiori for N, hence
this marked graph is live.

INRIA



From bounded T-systems to 1-safe T-systems 11

7 Symmetries in the 1-safe marked graph

Since N is a live and one-safe marked graph, N' = }°. N is a direct sum of strongly
connected components A, (hence, they also are live and one-safe marked graphs). We will
show in this section that all components N,'y, considered as labelled marked graphs labelled
with A, are isomorphic up to initial markings. This fact, illustrated in the example given in
section 8, depends on the working assumption that A/ has been derived from a strongly
connected marked graph N, as was indeed assumed in the statement of problem 3.1.

To begin with, we make two easy remarks. First, each subset of places P, forms a
directed circuit in the marked graph N’. Therefore, for all z € [1,|my]|], all transitions
t' € T' such that ' = (... ,#(z,k),...) for some ¢ and k are in the same component N .
Second, the free language L(\) is the shuffle of all labelled languages L(N, A), entailing that
L(N3,A) € L(N) for each of them. Seeing that N is live and bounded, the maximal firing
deviation between any two transitions of this net is bounded [5]. Therefore, by definition of
the map A, each component N,; has at least one transition from each subset 7}.

Owing to the first remark, one may easily compute the set of transitions of each strongly
connected component A. For this purpose, let = be the least equivalence on the set [1, [mo|]
of all token numbers such that x = y whenever z and y occur simultaneously in some row of
some table ST;. The equivalence classes of tokens are in bijection with the strongly connected
components of N'. Namely, for each class X of equivalent tokens, let 7"(X) (C T') be the
subset of all transitions ¢’ in T" = (J{T/ |t € T'} such that t' = (... ,t(z,k),...) for some
z € X (with arbitrary ¢ and k). Then 7'(X) is the set of transitions of some strongly
connected component /\/Z The converse relation is obvious.

In order to show that all strongly connected components /\/:’/ are isomorphic up to initial
markings, we intend to prove the following: if two row vectors STy[j] and ST;[(j +1) mod M]
from some table ST; define two transitions in respective components A, and N, é, then for
every transition STy [j'] of N, STy[(j' + ) mod M] is a transition of Nj.

For simplicity, it is henceforth assumed that tokens have been numbered and distributed
at the initialization of A into the various buffers ps,; such that each sequence of tokens wj;
stored in p; 1 ...pim, is the decreasing sequence w; = (s; + |mo;l) ... (s; + 1), where s; =0
and s; 41 = |mo1|+. . -+ |mo;| for positive i. In this way, each one of the arrays A; considered
in section 4 has successive rows

(f)°1) - (f)°x) oo (fe)°(2)
(f)'(x) oo (D)) - (fe)"(2k)
(fi)?(x1) - (f)*(@) - (fe)?(2k)

where, for each token number z; in between s;, (excluded) and s;,41 (included), (f;)™(z;) is
the token number within the same interval such that (f;)™(z;) is congruent with z; modulo
|m0il |
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12 Darondeau € Wimmel

Now let STy[j] = (... ,t(z,k),...) and STy[(j +1)] = (... ,t(z', k'),...) be two vectors
in some table STy, with respective entries t(z, k) and t(z', k") in some fixed position. Let
s; < = < 811, thus both tokens x and z’' belong to subnet N; of N. It follows from the
construction of synchronization tables that [ = (k'—k) X |mo;|+(z'—z). Hence, ' = s;+((z—
s; +1)mod|mg;|) and k' = (k+ | (x — s; +1) / |mos| |) modulo (M/ |mg;]). Observe that the
computation of 2’ and k' does not depend on the chosen transition ¢ of /. Therefore, for each
I €[1,M] and for all t € T', vectors STy[j] translate uniformly to vectors ST[(j + 1) mod M]
by mapping each entry t(z, k) with s; < z < s;41 to t(2', k') as described above. Moreover,
whenever t(z, k) has an immediate successor t'(z, k) or t'(z, (k+1) mod (M/ |my;|) in Pr(z),
t(z', k') has the immediate successor t'(z’, k') or #'(z', (k" + 1) mod (M/ |mg;|) in Pr(z’).
Hence, every edge in N’ with respective source and target ST;[j] and STy [j'] is mapped in
this way to an edge from STi[(j + 1) mod M] to STy [(j' + 1) mod M]. As each component
N,’y has at least one transition from each table S7T3, it follows obviously that all components
N are isomorphic.

8 A detailed example

Consider the live and bounded marked graph A shown in Fig. 2. This strongly connected

k(s

/

5
HONNORNGL
[« —O
3

Figure 2: A live and bounded marked graph

marked graph cannot be covered by directed circuits with disjoint sets of edges. It suffices
however to add one place, complementary to place 5, to obtain an equivalent marked graph
that can be covered by two edge disjoint circuits as shown in Fig. 3. Denote a and (3 the
tokens stored in places 1 and 2, respectively. Denote 7;d and ¢; { the sequences of tokens
stored in places 4 and 6, respectively (place 6 is the new place complementary to place 5).
Now |mo1| = 4 and |mgz| = 2 have the least common multiple M = 4. Therefore, the cyclic
processes Pr(z) induced from the six tokens = € {a, 3,7, 4d,¢,(} have programs as follows:

Pr(a) =do b(a,1);c(a,1);d(a,1); a(a,1) od
Pr(B)=do ¢(B,1);d(8,1);a(B,1);b(B,1) od
Pr(y)=do a(v,1);b(y,1);c(v,1);d(v,1) od
Pr(§)=do a(6,1);b(6,1);¢(6,1);d(06,1) od

INRIA
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k(L]

i
Do d

Figure 3: Two edge disjoint circuits

M 4

The synchronization tables ST} from section 4 are computed as follows.

a(6,1) a(C1)
For t = a, v1 = afvd and vy = &(, therefore ST, = ZEZ: B ZEE: ;;
a(a,1) ale?2)
c(8,1) «¢(¢,1)
For t = ¢, v1 = vdaf and vy = €(, therefore ST, = cc(((;: 11)) zgz: ;g
c(v,1) c(2)
b(a,1) d(B,1)
Finally, ST} = Z ((j 11)) and STy = Z((‘;‘: 11))
b(B,1) d(y,1)

The 1-safe marked graph A/’ that is derived from the above data as described in section 6
is shown in Fig. 4 —with the obvious labelling of transitions. A/’ is in fact the direct sum of
two independent marked graphs, and these are actually isomorphic up to initial markings.

9 Conclusion

The main implication of the results established above is an algebraic characterization of the
languages of bounded marked graphs. Let us recall De Simone’s definition of the mized
product of two languages given in [3]. Let A; and A be two alphabets, and let X and Y
be languages of A} and Aj, respectively. Their mixed product is the set of all words w in
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8 e

aB1) a2 |

o

0(,1)  a(C,1) ‘

b (5,@

c(4,1) c(¢,2) ‘

c(a,1)  ¢(g,1)
d(a,1)
a(a,1)  a(e2)

c(v,1) c(e,2) ‘

d(v,1)

Figure 4: An equivalent 1-safe marked graph
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(A1 U As)* with respective projections 74, (w) € X and 74, (w) € Y. Now, the languages of
bounded marked graphs labelled in the alphabet Y. are the images under strict alphabetic
morphisms ¢ : A* — ¥* (where A is an arbitrary alphabet) of all languages of A* defined
from the set of generators (ajas)*(¢ + a1), each one on some alphabet {a;,a2} C A, using
mixed product as the composition operator.
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