
HAL Id: inria-00071894
https://inria.hal.science/inria-00071894

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Calculus of Higher-Order Distributed Components
Jean-Bernard Stefani

To cite this version:
Jean-Bernard Stefani. A Calculus of Higher-Order Distributed Components. RR-4692, INRIA. 2003.
�inria-00071894�

https://inria.hal.science/inria-00071894
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
46

92
--

F
R

+
E

N
G

ap por t

de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Calculus of Higher-Order Distributed Components

Jean-Bernard Stefani

N
�

4692

January 2003

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

A Calculus of Higher-Order Distributed Components

Jean-Bernard Stefani

Thème 1 — Réseaux et systèmes
Projets SARDES

Rapport de recherche n
�

4692 — January 2003 — 53 pages

Abstract: This report presents a calculus for higher-order distributed components, the Kell calculus.
The calculus can be understood as a direct extension of the higher-order � -calculus with program-
mable locations. The report illustrates the expressive power of the Kell calculus by encoding several
process calculi with explicit locations, including Mobile Ambients, the Distributed Join calculus and
the M-calculus. The latter encoding demonstrates that the Kell calculus retains the expressive power
of the M-calculus but in a much simpler setting.

Key-words: process calculus, distributed programming, programming model, mobile processes,
� -calculus, ambients, concurrent objects.

This research has been supported in part by the IST Global Computing project Mikado (IST-2001-32222).

Un calcul d’ordre supérieur pour composants répartis

Résumé : Ce rapport de recherche présente un nouveau calcul de processus réparti d’ordre supérieur,
le Calcul de Cellules. Ce nouveau calcul peut être compris comme une extension directe du � -calcul
d’ordre supérieur avec des localités programmables. Le rapport illustre le pouvoir expressif du
Calcul de Cellules par le codage de plusieurs calcul de processus avec localités explicites tels que
Mobile Ambients, le Join calcul réparti et le M-calcul. Le codage de ce dernier montre que l’on peut
conserver le pouvoir expressif du M-calcul dans un cadre beaucoup plus simple.

Mots-clés : calcul de processus, modèle de programmation, programmation répartie, processus
mobiles, � -calcul, ambients, objets concurrents.

A Calculus of Higher-Order Distributed Components 3

Contents

1 Introduction 1
1.1 Limitations of ambient calculi . 1
1.2 Limitations of higher-order process calculi . 2
1.3 Limitations of the DJoin calculus . 3
1.4 Limitations of the M-calculus . 5
1.5 Introducing the Kell calculus . 5
1.6 Organization of the paper . 7

2 The Kell Calculus 7
2.1 Syntax . 7
2.2 Reduction Semantics . 9
2.3 Labelled transition system semantics . 11

3 Discussion 14
3.1 Messages and reductions . 15
3.2 Receptive triggers . 16
3.3 Encoding the � -calculus and the

�
-calculus . 17

3.4 Defining objects . 18
3.5 Process control . 19
3.6 Encoding Mobile Ambients . 21
3.7 Distributed interpretation . 23

4 Advanced patterns 25
4.1 Syntax and semantics . 26
4.2 Encoding the DJoin calculus and the M-calculus . 27
4.3 Encoding the distributed interpretation . 30

5 Parting notes 31
5.1 The � dK calculus . 31
5.2 Why two boxes ? . 32
5.3 Why components ? . 32

6 Conclusion 33

A Proofs 36

RR n � 4692

A Calculus of Higher-Order Distributed Components 1

1 Introduction

Several distributed process calculi have been proposed in the last decade. We can roughly classify
them in three classes:

� Ambient calculi, such as the original Mobile Ambients calculus [7, 6] and the subsequent
variants such as Safe Ambients [17], Safe Ambients with Passwords [20], Boxed Ambients
[5], Controlled Ambients [26].

� Higher-order process calculi such as as Facile/CHOCS [16, 27] and D �
�

[30], that model
process mobility via higher-order communication and remote process execution.

� Variants of the first-order asynchronous � -calculus with explicit localities such as the Dis-
tributed Join calculus [11, 10, 9], Nomadic Pict [29], DiTyCo [18], or the ����� -calculus [2],
that feature process migration primitives (go in the Distributed Join calculus, spawn in the

����� -calculus, migrate in Nomadic Pict).

These different calculi suffer from various limitations, which we discuss below. A recent pro-
posal, the M-calculus [25], combines features from calculi in these different groups, but also suffers
from several infelicities.

1.1 Limitations of ambient calculi

Ambient calculi provide a simple model of hierarchical locations with fine-grained control over
location moves and communications. This is expecially true in the variants with co-capabilities (e.g.
Safe Ambients, Safe Ambients with passwords and Boxed Ambients). Unfortunately, these calculi
suffer from two broad limitations: (1) a difficult implementation in a distributed setting, and (2) no
support for different location semantics.

Difficult distributed implementation. The basic mobility primitives of Ambient calculi (the in
and out capabilities) require an atomic rendez-vous between at least 2 ambients. Consider the rule
that governs the in primitive, for instance:

��� in �
	 �
��������� � � ����� � � � ��� �
�������
This rule requires, in one atomic step, to move ambient � to ambient � and to release the continuation
� in ambient � . Even if one disregards the atomicity requirement on the continuation, such atomic
transitions are costly to implement in a distributed setting, where ambients may be located on differ-
ent machines. Indeed, moving ambient � to ambient � requires that ambient � be located and locked
in place for the duration of the move from � to � . The high cost incurred by the implementation of
such atomic transitions is clearly demonstrated by the implementation of Mobile Ambients in the
Distributed Join calculus[12]. This implementation suggests that taking Mobile Ambients as a basis
for distributed computation would be inefficient, since a large number of useful applications only
require simple non-transactional asynchronous communication.

Recent work on the PAN distributed abstract machine for Safe Ambients [23], reinforces this
point. The distributed implementation of ambients proposed there does away with the problem by

RR n � 4692

2 Jean-Bernard Stefani

implementing the in and out capabilities locally (relying on co-capabilities and single-threadedness),
and interpreting the open capability as a move to the implicit location of the parent ambient. In this
interpretation, ambients do not correspond to a physical distribution of a computation, but merely to
a logical one. Furthermore, work on Boxed Ambients successfully argues against the open capa-
bility, which means that the PAN distributed interpretation of ambients is questionable.

Actually the only meaningful distributed interpretation of ambients we can think of (i.e. where
ambients can be mapped to different machines in a computer network), would consist in applying a
sorting that would distinguish between site ambients, i.e. ambients that correspond to physical sites,
and movable ambients, i.e. ambients that can be sent between sites. The Mobile Ambients primitives
thus would apply between two movable ambients or between a movable ambient and a site ambient,
but not between two site ambients (or at an understood higher cost than movable ambients). In
this interpretation, we recover asynchrony since communication between sites now corresponds to
the following sequence: an out to get out of the source site ambient, followed by an in to get
into the destination site ambient (the root ambient plays the role of the network that connects the
sites). This interpretation is strikingly similar to the interpretation of localities in the Distributed Join
calculus implementation: top-level localities are mapped onto sites (machines) which communicate
asynchronously. If one follows this interpretation, it becomes clear that movable ambients should
be interpreted as higher-order messages that can be exchanged between site ambients and, locally
within a site, between other movable ambients. One would thus be led to a model of localities where
such possibility would be taken as primitive, since it corresponds directly to the basic capabilities of
asynchronous networks and systems. This is actually the path that the M-calculus took and which
we follow again with the Kell calculus.

No support for different location semantics. Another limitation of Ambient calculi is their re-
liance on a fixed semantics for ambients, which changes from calculus to calculus, depending on
the particular phenomena which each calculus intends to capture. This, in our view, partly explains
the recent multiplication of Ambient calculi. One should instead consider means, within a single
calculus, to express the different interaction protocols which may characterize different forms of
locations. These protocols could be quite complex. Consider for instance interaction protocols con-
cerned with access control. There are several mechanisms that can be used for controlling access
to given resources, and an even wider range of policies for governing the use of these mechanisms.
Furthermore, in an open environment, it seems clear that one cannot avoid the recourse to run-time
checks and dynamic structures, if only to take into account the need for dynamic modifications of
access control policies. It is therefore difficult to envisage determining once and for all a precise set
of primitives for enforcing access control to distributed locations. Instead, one should expect from a
distributed calculus the ability to define the required access control behavior, much as any other type
of distributed behavior.

1.2 Limitations of higher-order process calculi

Distributed higher-order process calculi have asynchronous higher-order communication as a primi-
tive, but they have two broad limitations: (1) they lack an explicit notion of location, and (2) they do
not allow a running process to be interrupted.

INRIA

A Calculus of Higher-Order Distributed Components 3

No explicit notion of location. The lack of an explicit notion of location prevents these calculi to
account for potential failures or to provide a basis for access control. Such aspects can be taken into
account at a semantical level, when trying to account for the operational semantics of a distributed
implementation, as is the case e.g. in the CHAM semantics of Facile described in [16]. However,
as with the Distributed Join calculus discussed below, there is a need to support different locality
semantics, corresponding to different failure modes or different access capabilities. The lack of
an explicit concept of locality in such calculi hampers such developments. One could think of
encoding such concepts in these calculi: for instance, access control could be put in place by means
of wrappers around protected processes, and failures could be modelled by means of interruptible
processes. However, this begs the question of knowing what primitives are required to emulate in
these encodings. Notice, in particular, that the definition of interruptible processes is not trivial to
define in an asynchronous concurrency model. This in turn suggests that enhancing such calculi with
appropriate constructs for process interruption would be the easiest path to follow1.

No interruptible processes. The second broad limitation of such calculi lies in the fact that they
do not allow for interrutible process. Not only does that hamper the development of failure seman-
tics, but it prevents a running process to be migrated to a different locality, unless the process has
been explicitly defined to allow for such a migration. This is a severe limitation for modelling or
programming reconfigurable systems, i.e. component-based systems where components can be in-
stalled, moved or replaced dynamically. While dynamic reconfiguration capabilities can certainly be
programmed in these calculi, such modelling can become quite intricate, and in any case it still begs
the question of knowing exactly what primitive constructs are required to support reconfiguration.
In this case, it seems that the ability to identify and manipulate processes as data elements would be
a crucial requirement.

1.3 Limitations of the DJoin calculus

Variants of the first-order asynchronous � -calculus with localities suffer in turn from several limi-
tations, typically insufficient control over process mobility and communication, and lack of support
for different location semantics. As an illustration, let us discuss in more detail the limitations of the
Distributed Join calculus2.

The Distributed Join (DJoin) calculus constitutes an important milestone towards the definition
of an effective programing model for distributed and mobile computation. Its asynchronous character
and its resource locality property (receptors are uniquely defined and located), reflect the basic struc-
ture of communication in today’s point-to-point asynchronous internetworks, and make a distributed
implementation of the calculus effective. Hierarchical locations in the DJoin calculus allows strong
mobility of DJoin processes, and can model (fail-stop) failures - a crucial requirement for practical
distributed programming. The DJoin calculus, however, has several limitations: (1) it offers insuf-

1In a different context, one can note that the disruption operator in the specification language LOTOS was introduced
precisely to allow the modelling of interruptions and failures in an otherwise asynchronous concurrency setting.

2Not all the calculi in this group suffer from the exact same limitations as the DJoin calculus. For instance, Nomadic Pict
and the ����� calculus do support a form a dynamic binding, even if they lack programmable locations and offer insufficient
control over mobility and communication. However, we think the DJoin calculus is one of the most interesting calculi in this
class, and certainly a practical distributed programming model ought to be at least as efficiently implementable as the DJoin.

RR n � 4692

4 Jean-Bernard Stefani

ficient control over process mobility; (2) if offers insufficient control over communications; (3) it
does not support dynamic binding; (4) it does not support the definition of locations with different
semantics.

Insufficient control over process mobility. In the DJoin calculus, it is not possible to to pre-
vent a location from migrating to another location. Thus, except in presence of failures, the DJoin
command go

� ����� ����� which instructs the current location to move to location � , always succeeds
and cannot be blocked by the receiving location � . This means that it is always possible to move
a running process to a specified location, potentially raising security concerns since this prevents,
for instance, access control checks to occur prior to migrating an active agent (implemented as a
DJoin location). As a minimum, one would require the functional equivalent of Safe Ambients
co-capabilities [17], to effect migration only when the receiving location allows it.

Insufficient control over communications. Once a resource (a DJoin calculus definition) has been
activated, and its channels have been communicated, it is difficult to prevent access to that resource
and to erect the equivalent of a firewall as can be done e.g. in Mobile Ambients [7]. To enforce
more control over communications, one could think of making use of forwarders not dissimilar to
the relay processes employed in [9] for ensuring a fully abstract simulation of the � -calculus in
the Join calculus. However this use would be cumbersome and should be systematically enforced
(e.g. through the use of appropriate syntactic extensions to the calculus), which begs the question of
defining a proper control construct in the first place.

No support for dynamic binding. By dynamic binding, we refer to the possibility of binding,
at run-time, a channel name in a process to a particular resource, depending on the location of said
process. This feature is important for an effective distributed programming model. In a distributed
setting, one can expect for instance to have multiple copies (or variants) of the same service at
different sites, if only for cost or security reasons (sending a remote message can be more expensive
or less secure than a local one). A mobile agent should thus be able to access the local copy of a
service without necessarily having to learn about the local names of the service. Of course, one could
think of using a name service and asociated name translation mechanisms (which can be encoded
in the DJoin calculus) to implement the necessary indirection between service names and actual
channel names delivering the service, but note that this begs the question of how one can bind to
the local copy of the naming service to begin with, unless one assumes a unique centralized server.
Also, one could argue that dynamic binding appears to be more primitive than this encoding in the
DJoin calculus would imply. Bootstrapping, for instance, usually relies, not on a central repository,
but on well-known names, which are dynamically bound to the (local) objects of interest (memory
locations, name services, etc).

No support for different location semantics. Locations in the DJoin calculus are defined to be
fail-stop. It would be possible to modify the RCHAM semantics of the calculus to accomodate
different failure models (e.g. omission failures, Byzantine failures). However a more satisfactory
answer would provide the means, within the calculus itself, to define the expected or needed location
behaviour. This reinforces the first two points above: it should be possible, in the calculus, to define
the exact behavior one expects from a location, whether for modelling particular failure modes, or
for supporting different forms of access control.

INRIA

A Calculus of Higher-Order Distributed Components 5

1.4 Limitations of the M-calculus

A first attempt to remedy the shortcomings of the DJoin calculus while preserving its key properties
(hierarchical locations, transparent routing, implementability) is the M-calculus [25]. In the M-
calculus, programmable locations provide a means to retain the transparent routing of the DJoin,
while offering a high degree of control over communications in and out of a location. The key idea
behind programmable locations is that each location can be endowed with a controller process that
acts as a filter of messages. Since the calculus is higher-order, migration is merely communication of
messages that carry thunks, i.e. frozen processes. Therefore controlling migration in the M-calculus
is the same as controlling communications.

While the M-calculus manages to remedy the above shortcomings of the DJoin calculus, it is
plagued by a few infelicities: (1) multiple routing rules, (2) complex passivation construct, and (3)
complex combination of functional, concurrent and distributed constructs.

Multiple routing rules. Because of the structure of programmable locations, the operational
semantics of the calculus contains several routing rules that take care of the different ways a message
can be handled when entering or leaving a location. These rules are variants of one another, and
involve the use of special channels for the interception of messages by controllers. Also, the form of
the rules clearly make apparent that routing in the M-calculus deal with multiple boundary crossings:
between environment and controller (both ways), and between controller and content of a location
(both ways). Clearly, one would like to find a simpler, more abstract scheme to account for these
different rules and situations.

Complex passivation construct. The M-calculus contains a location passivation primitive whose
semantics is a bit involved and which would probably benefit from being split into simpler constructs.
In particular, passivation plays two roles: to interrupt a running location, and to reify the contents of
a location in thunks for further handling.

Complex combination of functional, concurrent and distributed constructs. The M-calculus in-
volves a combination of Join calculus and

�
-calculus constructs which adds to the calculus complex-

ity. The
�

-calculus application and abstraction were added to the M-calculus to allow a continuation-
free style similar to the Blue calculus [4], and to form the passivation primitive. While this combina-
tion provides a taste of what the hybridation of a functional programming language with distributed
programming features would look like, it may obscure the fundamental primitives for distributed
computation.

1.5 Introducing the Kell calculus

We introduce in this paper a new process calculus, called the Kell calculus. The calculus is intended
to overcome the limitations of the previous calculi discussed above.

The basic constructs of the Kell calculus are similar to those of the � -calculus [22]. It contains
the null process (�), names (�), variables (�), restriction on names (� �), parallel composition of
processes (� � �), and receivers, which we also call triggers (��� �). To these constructs, we add a
single notion, that of kell, which takes two forms, a passive one (��� �), and an active one (��� �).

Triggers are close to � -calculus receivers and to Join calculus definitions. In trigger �	� � , �
is called the trigger pattern and corresponds to the join pattern in a Join calculus definition. The

RR n � 4692

6 Jean-Bernard Stefani

Kell calculus is actually parameterized by the language used to define trigger patterns, i.e. the Kell
calculus can be understood as a family of calculi that share a common core (described in Section 2
below), but vary on the language of patterns used. In contrast to Join calculus definitions, a trigger
disappears after it has been triggered. Because the Kell calculus is higher-order, receptive triggers,
similar to Join calculus definitions, can in fact be defined. We note ��� � receptive triggers.

Active kells are named processes of the form � � � . Passive kells are named processes of the
form ��� � . Operators � and � are control operators in their own right. A construct of the form ��� �
freezes the execution of process � , which can be released though the � handle. In other words �����
is a form of box3 that prevents the execution of processes inside it, and that can be opened through
the � handle. Likewise, ����� is a box that allows the execution of processes inside it, and that can be
manipulated through the � handle. Coupled with communications, these two operators can be used,
for instance, to implement control operations on processes.

Kells play the role of both locations and messages in the Kell calculus. A kell ��� � or � � �
can be interpreted as a message whose destination is � and whose payload is � . A construct like����� � � � � � ��	 	 	 � ��� � � ��� can be seen as a message whose destination in � and which has 	
arguments named � � � 	 	 	 � �
� . Such a construct is also just like a (named) record. A kell ��� � can
be interpreted as an active location of name � : process � can evolve freely inside � � � and receive
messages (i.e. other kells) from the environment of ��� � .

In contrast to the Join calculus, we do not impose syntactic conditions on the unicity of receivers,
i.e. several triggers that match the same set of messages may occur in different kells in the same
execution context. This is essential to model dynamic binding features. For this reason, we avoid
the static scoping of the DJoin and use the � -calculus restriction. Ensuring the determinacy of
communication and message routing can be done as in the M-calculus by means of a type system
once the pattern language is fixed.

The intuition behind the notion of kell is that a kell corresponds to a component, with data and
behavior parts held by subordinate kells and triggers, that can serve as a wrapper or firewall for other
(subordinate) components. Thus, kells of the form � ��� � � � � � � 	 	 	�� ����� � � � � � � � � � 	 	 	��
� � � � � � , resemble objects, with name � , private data elements ��� � � � , and methods ��
 � ��
 .

Kells can move in and out of other kells, possibly carrying active elements and thus, active
processes. A kell ��� ��� � can only enter another kell � if there is a trigger �	� � inside the kell
whose pattern matches ��� � (the term ��� below is the result of the trigger reaction to the receipt of
message �):

� ��� ��� ��� � � 	 	 	 � � � ��� ��� � 	 	 	 �
Likewise, a kell � can only leave a kell � if there is a trigger outside the kell whose pattern matches
the message:

�	� � ��� ��� � � 	 	 	 � ����� ��� ��� 	 	 	 �
A kell thus has full control over its communications with its environment and communication

proceeds in a local manner, by crossing one kell boundary � ������� at a time. In this respect, the Kell
calculus resembles the Seal calculus [28] and Boxed Ambients [5]. Indeed, one way to understand
the Kell calculus is as an asynchronous form of Boxed Ambients where mobility primitives have

3One can draw an analogy here with the box operator of the PIC action calculus [21].

INRIA

A Calculus of Higher-Order Distributed Components 7

� ��� � �����	��
��
����� ������� � ����������������� �
�!��� � "#�%$

Figure 1: Syntax of the Kell Calculus

been replaced by higher-order communications. Thus, a kell can communicate only with its enclos-
ing parent (the super-kell) and the kells it encloses (sub-kells). Any form of communication with
remote kells, i.e. kells not immediately above or below the current kell in the kell forest, must be
mediated by the super-kell or sub-kells.

To preserve the benefits of transparent routing as in the DJoin, we retain the solution adopted in
the M-calculus, namely to provide for an easy encoding of transparent message routers. This in turn
relies on the definition of pattern languages that are able to introspect the contents of a given kell, in
order for a kell to decide whether a given trigger pattern is local to the kell or not. As will be shown
below, this allows us to encode the M-calculus in the Kell calculus, thus retaining the full expressive
power of the former, but in a much simpler setting.

1.6 Organization of the paper

The paper is organized as follows. Section 2 defines the syntax and operational semantics of the
Kell calculus. The operational semantics is given in two forms: a reduction semantics and a labelled
transition system semantics, which are shown to coincide. Section 3 presents various examples
in the Kell calculus equipped with a simple pattern language, together with encodings of different
calculi such as the

�
-calculus, the � -calculus, Mobile Ambients, and a concurrent object-based

calculus. Section 4 introduces a more sophisticated pattern language and presents the encoding of
the Distributed Join calculus and of the M-calculus in the resulting Kell calculus. Section 5 contains
additional discussion of the Kell calculus and its subcalculi. Section 6 concludes the paper with
some discussion of future research directions.

2 The Kell Calculus

2.1 Syntax

The syntax of the Kell calculus is given in Figure 1. It is parameterized by the pattern language used
to define patterns � in triggers �	� � . We assume an infinite set of names, noted & , and an infinite set
of variables, noted ' , such that &)(*' �,+ . We let ��� � �.- �0/ and their decorated variants range over
& , and we let � �21 �43 �05 range over ' . The set of identifiers, 6 , is defined as 6 �7&)89' .

Terms in the Kell calculus grammar are called processes. We note : the set of Kell calculus
processes. We let � , � , � , and their decorated variants range over processes. We call kell a process
of the form ��; � . The name � in a kell ��; � is called the name of the kell. Kells of the form ��� � are
called active kells. Kells of the form ��� � are called passive kells. We call message a Kell calculus
process that is a process that is either a name or a kell. We let � �0< and their decorated variants

RR n � 4692

8 Jean-Bernard Stefani

� ��� � � ��� �
��� � ��� ��� � � ��� � � ������� �
� ��� � � ��� "�� ����� � � ��� ���

Figure 2: Syntax of Contexts

range over messages and parallel composition of messages. Parallel composition of messages are
therefore defined by the following syntax:

���	� ��� � � ��� ����� � ���
�#���9�
In a kell of the form ����� 	 	 	 � �
 ; ��
 � 	 	 	 ����� � 	 	 	 � we call subkells the processes �
 ; �
 .

In a term ��	 	 � , the scope extends as far to the right as possible. We use

� to denote finite

vectors of terms � � � � 	 	 	 � ��� � . We use standard abbreviations from the the � -calculus: � � � 	 	 	 � � 	 �
for � � � 	 	 	 	 � � � 	 � , or �
 � 	 � if

 � � � � � 	 	 	 � � � . By convention, if the name vector

 � is null, then

�
 � 	 � ��� . We abbreviate � � � � � 	 	 	 � � � � a kell of the form � ����� � � � ��	 	 	 � 	 � � � � , where
we consider that � � 	 	 	 � 	 � 	 	 	 belong to & . We also note �
���� �
 , � ��� � � 	 	 	 � 	�� the parallel
composition � � � � � 	 	 	 � � ��� � ��� � � 	 	 	 � � . By convention, if � � + , then �
���� �
 � � .

A Kell calculus context is a term � built according to the same grammar than for standard Kell
calculus terms, plus a constant � , the hole. Filling the hole in � � � � with a Kell calculus term �
results in a Kell calculus term noted � � ��� . We let � and its decorated variants range over Kell
calculus contexts. We make use of a specific form of contexts, called execution contexts (noted �),
which are used to specify the operational semantics of the calculus. The syntax of contexts is given
in Figure 2.

A pattern acts as a binder in the calculus. A pattern can bind name markers, of the form � ��� ,
where �! & , and process markers, of the form � � � , where � ' . All markers appearing in a pattern
� are bound by the pattern. Name markers can only match names. Process markers can match any
process, including processes reduced to a name. In a slight abuse of notation, we frequently dispense
with the parenthesis � 	 � around markers (especially process markers) when it is clear from the context
which names act as markers4.

A process � matches a pattern � if there is a substitution (i.e. a function from names to Kell
calculus terms that is the identity except on a finite set of names), � , that maps identifiers " appearing
as markers in � (i.e. " bv � � �) on Kell calculus terms, such that � � � � (i.e. such that the image of
pattern � under substitution � is the process �). In the Kell calculus, we also make use of context-
dependent patterns. Such patterns typically include a side condition or a guard that depends on the
current evaluation context. Matching for these patterns is defined as for standard patterns, but using
the notion of a context-dependent substitution. A context-dependent substitution � is a function that
maps pairs

� � � " � of Kell calculus contexts and identifiers onto Kell calculus terms. We note ���$#
the image of the term � under substitution � , given a context � .

4Pattern languages used in this paper do not make use of free variables in trigger patterns. As a consequence, this
convention can be employed systematically for process markers since there is no risk of confusing a process marker with a
free variable.

INRIA

A Calculus of Higher-Order Distributed Components 9

fn
���������

fv
���������

fn
� � � ��� ���

fv
� � �����

fn
�
 � ���

fv
�
 � ���
��

fn
����� � ��� �

fn
�������	� ���

fv
����� � ��� �

fv
�����

fn
� � � �����

fn
������
�� ���

fv
� � � �����

fv
�����

fn
������
 ���

fn
������

fn
��
 �

fv
��� ��
 ���

fv
������

fv
��
 �

fn
� � �������

fn
� � ��
*�

fn
�������

bn
� � � �

fv
� � � ��� �

fv
� � ��
*�

fv
�������

bv
� � � �

Figure 3: Free names and free variables

The other binder in the calculus is the � 	 operator, which corresponds to the restriction operator
of the � -calculus. Notions of free names (fn) and free variables (fv) are classical and are defined in
Figure 3. We note ln � � � the set of names that occur in process � , and bn � � � the set of bound names
of � (ln � � � � fn � � � 8 bn � � �). We note � ��� � when two terms � and � are � -convertible.

We make the following assumptions on pattern languages:

� One can decide whether a pattern matches a given term and the result of applying a substitution
on markers to a pattern � is a Kell calculus process. Generally, given a context � , we say that
a pattern � matches a kell calculus term � in context � , if there exists a context-dependent
substitution � which maps names " appearing as markers in � to Kell calculus processes, such
that � � # � � .

� A pattern language is compatible with the structural congruence defined below, i.e. if ��� �
then there is no Kell calculus context that can distinguish between � and � .

� Patterns can be sorted in at least two sorts S and H. The sort H corresponds to the sort of all
patterns. The sort S corresponds to a subset of patterns that can match terms in contexts of the
form (� ���). We note ��� T to indicate that pattern � is of sort T.

2.2 Reduction Semantics

The operational semantics of the Kell calculus is defined in the CHAM style [3], via a structural
equivalence (actually, a congruence) and a reduction relation. The structural congruence � is the
smallest equivalence relation that verifies the rules in Figure 4 and the rules that state that the parallel
operator � is associative (rule S.PAR.ASSOC), commutative (rule S.PAR.COMM), and that � is a
neutral element for the parallel operator (rule S.PAR.NIL). Note that, in rule S.TRIG, we rely on the
existence of a structural equivalence relation on patterns, also noted � .

The reduction relation � is the smallest relation satisfying the rules given in Figure 5. Notice
that we allow pattern matching on active or passive elements within the same kell, and only on
messages external to the kell, or within a subkell. This means that only messages are allowed to
cross the boundary of a kell.

The basic reduction rules of the calculus R.RED.S and R.RED.H in Figure 5 look rather involved
but their nature can be easily revealed by considering the derived rules IN and OUT in Figure 6. These
rules correspond, respectively, to the case of messages entering a kell, and to the case of messages

RR n � 4692

10 Jean-Bernard Stefani

����
fn
��
 �

��� ��� ��� �
��%����� � ��
�� S.NU.PAR �
����
	

� ��� ��	�� ������	�� � ��� �
� S.NU.COMM�
����
	

	 " � ��� ����� ��� 	 "���� S.NU.KELL� � ��� ���%� � S.NIL �
�����

��� ������� ��� S.TRIG�
� ���

����
�� S. ���

����

� � � � � � �
 � � S.CONTEXT�

Figure 4: Structural congruence

� �
S� � � � � �

 ���

�����
� � " � � � ��
 � �
 ���!�

�����
� � "
 � �#"%$&� � �'�

�����
� �

����� ��� ��
)(� " $ ��
 � � R.RED.S�
� �

H
� ��� � � " ��� �
��#* �

 �+�
�����

� � "�� � � ��
 � �
 � �!�
�,�-�

� � "
 � �-".$/� � � � �0�
�����

� �
� " � ��� � � � ��
��#*�� � �1(� " ��� ".$
�
 � �%*�� � R.RED.H �

��(

� � � � (� �
 � � R.CONTEXT�

���%�2� �2�3(
 �
 �4��

��(
 � R.EQUIV �

Figure 5: Reduction Relation

leaving a kell. These rules are themselves just extensions of the standard rule of (5) reduction
with filtering: rule BETA in Figure 6. Rule IN and OUT indicate that messages can cross kell
boundaries, and that crossing a kell boundary requires the presence of a trigger on the other side of
the boundary. Note that rules IN, OUT, and BETA deal only with context-independent substitutions,
i.e. they involve patterns that are not dependent on context. Note also that rules R.RED.S and
R.RED.H take into account the possibility for patterns to match parallel composition of messages
occurring at different levels (outside the receiving kell and within subkells of the receiving kell).

The rules R.RED.S and R.RED.H identify the form of contexts that can be used for pattern
matching. This is another assumption we make on pattern languages: patterns of the sort S can
only match terms in contexts that are of the form � � � � � � ��� , and patterns of the sort H, i.e.
arbitrary patterns, can only match terms in contexts that are of the form � � � � � ����� � < � � � � ,
where � is a Kell calculus process, and � �.< are parallel compositions of messages. Intuitively,
this means that context-dependent patterns can only introspect locally, i.e. on the contents of the
immediate surrounding kell. More precisely, if � � S, then � �$# is only defined for � � � � �76 �
and � � # � � � #98 , where �76 � � � � � � . Likewise, if � � H, then � � # is only defined for

INRIA

A Calculus of Higher-Order Distributed Components 11

�#" ���
� " � ��� � ��
 � � �1(� "���� " ��
 � � IN �

�-" ���
��� � � � "��
� ��
 � (� " ��� "
��OUT �

�-"2� �
� � � ��� (� " � BETA �

Figure 6: Derived reduction rules I

� � � � � � � and � � # � � � #�� , where � � � � � � ����� � < ��� � . We make a further assumption on
pattern matching, which is consistent with the previous assumption that a pattern language should
be consistent with structural congruence, namely: for all � � � � � � � � � � � , if � � � � and � � � � , then
� � #�� � � � #�� .

2.3 Labelled transition system semantics

We define in this section a labelled transition system for Kell calculus processes. Labels appearing
in transitions take the form

�
�	� , where

�
is an action context and � is an action. Actions are

defined by the following grammar, where � : , and where
 ����
 6 :
� ��� � � ����� � ��� � ����� � ��� ��� � � � �
� ��� � ��� �
� ��� � � ��� "%$ �

Action contexts are defined by the following grammar, where � : :
� � � � � ��� � � ��� � ��� "�� ��� ���

We use � ��� ��� and their decorated variants to range over actions. We use the following conventions
and definitions:

� For no � , � , � do we have � � # ��
 , or � � # � � .
� If

 � is an empty vector of names, then � � 	 � � � and � � 	 � � � . If

 � � � � 	 	 	 ��� , we

identify

 � with the set � � � � 	 	 	 � �
� � .

� Let � be a substitution mapping identifiers to Kell calculus terms. The support of � , � 	 supp,
is ��" 6 ��" �
� " � . The co-support of � , � 	 cosupp, is ��" � ��" � 	 supp � . The names of
� , � 	 n, is � � & � � � 	 supp 8 fn � � 	 cosupp � � . If � is a context-dependent substitution
and � is a Kell calculus context, note that � # is also a substitution; therefore we can likewise
define � # 	 supp and � # 	 cosupp.

� We consider actions of the form � � � � # � only with the constraint that bn � � � 8 bv � � � � � 	 supp,
i.e. the substitution � operates only on bound identifiers in � .

RR n � 4692

12 Jean-Bernard Stefani

� By definition, � is considered a neutral element for the parallel composition of actions, i.e. for
all � , � � � � � � � � � . Also, we set � � 	 � � � , � � 	
 �
 , � � 	 � � � � � � � 	 � � , �
 � �
 ,� � � � � .

� For all � , � � � is defined by induction as:

� � � � � � � � ��� � � � � �
� � � � � � � � � � � � � � ��� � � � � � � � � �
� � ��� � � ����� � � � �

� For all � , � � � is defined by induction as:
� � � ��� � � � ��� � � � ���
� � � ��� � � ��� � � � � ���	� � � �
� � �	�
�
� � � � � � � � � �
� � ��� � � ��� � �

� For all � , � ��� is defined by induction as:
� ��� � � � ��� � � � � � � �� ��� � � � � � � � ��� � � � � � � ����� � � � � � � ��� �
� � ��� � � � � � �

� For all � , the set of free names of � , fn � � � , is defined by induction as:

fn
� �0�����

fn
� ��� ���

fn
� ��� �����

fn
������
�� ���

fn
� � ��� "%$ � ���

fn
� � ��

fn
� ".$ �

cosupp
�

fn
� � ��� ���

fn
� � �

fn
� � �
� ���

fn
� � ��

fn
��� �

fn
� � ��� � ���

fn
� � ��� � ���

� For all � , the set of free output names of � , fon � � � , is defined by induction as:

fon
� �2�����

fon
� � � ���

fon
� ��� �����

fn
������
 � � �

fon
� � � � ".$ � �����

fon
� � ��� � �

fon
� � �

fon
� � ��� ���

fon
� � ��

fon
��� �

fon
� � ��� � � �

fon
� � ��� � ���

� For all � , the set of bound names of � , bn � � � , is defined by induction as:

bn
� �2�����

bn
� � � ���

bn
� � ����� bn

� � �����
bn
� � ��� � �

bn
� � �

bn
� � ��� ���

bn
� � ��

bn
��� �

bn
� ����� � ���

bn
� � ��
 � ���

INRIA

A Calculus of Higher-Order Distributed Components 13

� For all action contexts
�

, � � � is defined by induction as:
� ��� � � � � � �%�
� � "�� � ��� " � � � � �

�
��� � � � � �

�
� � � � � �� � � � � � � � � �

� For all action contexts
�

, the set of free names of
�

, fn � � � , is defined by induction as:

fn
� �2�����

fn
� � ���

fn
�����

if
� ���

fn
� � " � ���

fn
� �9��
�� ���

fn
� � � � � ���

fn
� �9��

fn
� � � �

fn
� ����� � ���

fn
� �9��� � ���

� We extend the structural congruence � on : to actions and action contexts in the following
way:

– If � � � , then � � � .

– If � � � � , then � � � . If
� � � � � , then

�
�
� �

.

– The parallel operator is associative and commutative.

– If � � � � and � � � � � � � , then � � � � # � � � � � � � #�� � .
– If � � � , then

� � � � � � � . If
�
�
� �

, then ��� � � ��� � �
– If � � � , then � � � � � � � . If

�
�
� �

, then
� � ���

�
� � � ���

.

– If �
 fn � � � , then � � 	 � � � � � � � 	 � � � � . If �
 fn � � � � , then � � 	 � � � � �� � � 	 � � � � � .
– If �
 fon � � � and if bn � � � 	 � � (bn � � � , then � � � 	 � � � � � � � 	 � � � .

– If � � � , then � � 	 � � � � 	 � . If
�

�
� �

, then � � 	 � � � � 	 � � . For all � ,
�

,
� � 	 � � � � 	 � and � � 	 � � � � 	 � .

– If � � � , then
� � ��� � � � � � .

With these conventions and definitions, note that if �
� � �
 , � � ��� �
and if no action 5 occurs

in � , then � ��� is a Kell calculus process. Likewise, if �
� � �
 , � � ��� � and if no action 5 occurs in
� , then � � � � � is a Kell calculus process. Also, if

�
is an action context, then � � � is a Kell calculus

context.
The labelled transition system associated with Kell calculus processes is defined as the labelled

transition system whose transition relation is the smallest relation satisfying the rules given in Figure

7, up to � -conversion (i.e. if � � � � � and � � � � � and � �
�
� ��	�
�
��� � � � , then �

�
� ����
�
�
� � �).

We can now consider the correspondence between the reduction semantics and the labelled tran-
sition system semantics of the Kell calculus. We first have that the structural congruence � respects
the transition relation. More precisely:

Theorem 1 If �
�
� ����
�
�
� � � � and � � � , then there exist � � , � � , and � such that �

� �
� ����
�
�
� �

� � , � � � � � , � � � � , and � � � .

RR n � 4692

14 Jean-Bernard Stefani

� �����
�������
	 ��� L.NULL
 ��� � ��� ��� ��� �������������������� 	�� � L.ACT
 ��� � ��� ��� ��� �������������������� 	�� � L.PASS

��� � � ��� ���
� $! �"�������������#	 � � $ � L.TRIG

�%$ ��&
�'�������(� � �*)+

fn
�(&

, ��- � , ��- $ ��&
�.�����������/	 , �0- � �

� L.NU.NF

�1$ �.&
�'�������2	 � �

��� � ��� $ ��3(&!4
�5���������������6	 ��� � �

� L.LOC

�7$ ��&
�'�������2	 � � � +

fon
�(&

, �0- � , �0- $ � , ��- &�2�����������������8	 � � � L.NU.F

��9:$ 9���&;9�/���������<	 � �9>=@?BA �/C &D9 ?FEG?IH & � ? � =)?>J
bn
�(&

�
 IK

bn
�(& � ?FL � occurs at most once in $ �NM $ � bn

�2&;9 IK
fn
�(� � ?FLB=)?OJ

�
� M � � $ � M $ � ��& � M & ����������������������������P	 � �

� M � ��
� L.PAR

�1$ ��&
�'�������(� � Q &SR ? &

�NM � ���
� $! M & �� �
S T ? Q $ R M &D9 MVU C =�? C.��W �.� $YX � & �ZM & �
 [\ ? bn

�(&
� ��� E�"�����]	 , [\ - � �

� L.RED.S

�7$ ��&
�'�������2	 � � Q &�R ? &D^ M 3(& �_M � ���
� $! M & � 4 M &D` � �

H T ? Q $ RM &D9 MVU C =�? C.�aW M & � M ?FA>J_?Bb �ac �.� $YX &D^ M � & �NM & �
 M &;` [\ ? bn
�(&

� ��� E�"�����/	 , [\ - � �
� L.RED.H

Figure 7: Transition rules

Proof: See Appendix. d
The exact correspondence between the reduction relation and the transition relation is given by the
following theorem:

Theorem 2 For all � � � � , �
�
�
�
�
�
� � � � � if and only if � ��� � .

Proof: See Appendix. d

3 Discussion

We begin this discussion by considering a simple pattern language for the Kell calculus. The syntax
of simple patterns is given in Figure 8. Any name or process variable appearing in a simple pattern
� is assumed to have a unique occurrence in � . Note that such patterns essentially correspond to

INRIA

A Calculus of Higher-Order Distributed Components 15

� ��� � �	�
� ���
� ��� � �	������� �������	����� ��� ��� �
� ��� � �	� � � ��� �
 �

Figure 8: Syntax of simple patterns

fn
� � � ��� ���

fv
� � � ���

bn
� � � ���

bv
� � �����

fn
� � � 	 ����� � � 	 �

fv
� ��� 	 �����

bn
� ��� 	 �����

bv
� � � 	 �����

fn
� � � � 	 � � � � ���

fv
� ��� � 	 � � ���

bn
� ��� � 	 � �����,	 �

bv
� � � � 	 � �����

fn
� � � �
 � � ���

fv
� ��� �
 � � ���

bn
� ��� �
 � � ���

bv
� � � �
 � � ���
��

fn
� � � � ���

fn
� � ��
�� ���

fv
� ��� � ���

fv
� � �

bn
� ��� � ���

bn
� � �

bv
� ��� � ���

bv
� � �

Figure 9: Free names and bound markers for simple patterns

(parallel compositions of) polyadic messages. The resulting version of the Kell calculus is thus
among the least expressive of the Kell calculus family. Nevertheless, as will be shown in this section,
the higher-order kell operators yield considerable expressive power.

Free names (fn), free variables (fv), bound names (bn) and bound variables (bv) for simple
patterns are defined in Figure 9. Matching for simple patterns is defined by extending standard
substitutions � on identifiers to context-dependent substitutions thus: � � � �$# � � � . The structural
congruence relation on simple patterns is easily defined by the following rules: the parallel operator,
� , is associative and commutative; if two patterns � and � are equivalent, ����� , then so are � ; � and��; � ; if two patterns differ only by � -conversion of their bound names or bound variables, then they
are equivalent. Finally, all simple patterns are of sort S.

In this section, we consider, among other things: the definition of receptive triggers; the ability to
define various forms of mobility and control, including Mobile Ambients-like constructs; encodings
of the � -calculus and of the

�
-calculus; the definition of concurrent objects.

3.1 Messages and reductions

As discussed in the introduction, kells in the Kell calculus can serve both as locations and as mes-
sages. For example, the configuration � below has two reductions:

	 ��� " � 	 "
 � ��� �%	 " � � "
 �����
	 (� " � 	 (" �

In the first reduction, kell � is the locus of computation, and kell � plays the role of a message,
received by the trigger in � . In the second reduction, the roles of � and � are reversed.

Note that processes reduced to a simple name can also be received by triggers. Thus, we have
the following reduction: � � � � � ��� � � . (Alternatively, one can think of the process � as being an
abbreviation for the process � � �).

RR n � 4692

16 Jean-Bernard Stefani

Simple patterns do not distinguish between the position of messages in an execution context. For
instance, if pattern � matches message � , i.e. there is a substitution � such that � � � � , then we
have the following reductions:

� " � ��� � ��
�� � ��� (� "���� " �
�� �
��� � ��� �
 (� " �

��������� " �
�#�

�
� (� " � � "

�

It is however possible to obtain the effect of a pattern language that distinguishes between the above
three situations by using kells which act as wrappers. If � is a simple pattern, define � by:

� ��� ��� � ����� �
��� � 	 ������� 	 ���
 �����

��������� � � �

�
� � � � � � � � �

We can obtain a distinction between the different situations above with the following high and low
wrappers:

����� ��� " �
HR

�
�� � � " �
high
� � � ��� �

low
� � � ��� ��� � � ��
 ��� " �

LR
�.	 "

�
� � �

where HR and LR are simple routers defined by:

HR
�����

high
� � �

LR
�
� �

low
� � �

The two routers simply transfer messages on special channels high and low, which help indicate
to the actual receiver the origin of messages (from the outside of the kell or from a subkell).

3.2 Receptive triggers

As can be seen in rule R.RED.S, a trigger disappears after it has been triggered. Because the calculus
is higher-order, however, it is possible to define receptive triggers, i.e. triggers that are preserved
during a reduction (similar to Join calculus definitions). Receptive triggers are important because
they provide a way to define recursive processes (receptive triggers correspond to Join calculus
definitions and to replicated output in the � -calculus). It is known from the work on CHOCS [27] that
recursion can be defined, in a higher-order setting, by means of process passing and communication.
We show below how to define receptive triggers in the Kell calculus. Let � , � and � be such that
�
 fn � � � 8 fn � � � , and define 	 � � � � � � � by:

 ����� � ��� ���
� �
� $��)�)� ��� ��� $��
Let � � � � � � � ��� 	�	 � � � � � � � ��� � 	 � � � � � � � . Let � , � , � � , � , � , < and � be as in the premises

of rule R.RED.H. By rule S. � , it is always possible to choose � such that �
 fn �4< � 8 fn � � � 8
fn � � � 8 fn � � � 8 fn � ��� # � . Then, by rules S.NU.KELL and S.NU.PAR, we have:

� " � � ��� � � � � � ��
��#*�� � � �����.� � " ��
 ��� � ����� � �
� $�
 ����� � ��� � � � � �
 �#*�� ���
By construction and by rule R.RED.H we have: ��� 	 ����� 	 � � � � � � � ��� � 	 � � � � � � � � � < � � � � � �
� � ��� 	 � ��� ��� # ��	 � � � � � � � ��� � 	 � � � � � � � � ��� � � � � . Since �
 fn � � � 8 fn � � � 8 fn � ��� # � , we

INRIA

A Calculus of Higher-Order Distributed Components 17

� �
S� � � � � ��

 �+�

�,�-�
� � "�� � � ��
 � �
 � �!�

�����
� � "
 � �#" $ � � �0�

�,�-�
� �

��� � ��� ��
)(��� ��� � " $ ��
 � � R.REC.S�
� �

H
� � �#� � "�� � ��
 �%*��

 �!�
�,�-�

� � " � � � �
 � �
 ���!�
�,�-�

� � "
 � �-".$&��� � � �0�
�,�-�

� �
� "�� ��� ��� � �
 �#*�� ��� (� "�� ��� � � � " $ �
 � �#*�� � R.REC.H�

Figure 10: Derived reduction rules II

have ��� 	 � ��� ��� # � 	 � � � � � � � ��� � 	 � � � � � � � � � � � � � � � ��� ��� # � ��� 	 	 � � � � � � � ��� � 	 � � � � � � � �
� � � � � � ����� ��� # � � � � � � � � � � � � � by rules S.NU.KELL and S.NU.PAR. Thus, by rules
R.CONTEXT and R.EQUIV,

� " � � ����� � � ��� ��
��#* � � �1(� "�� � ��� � � � ��� "%$���
 � �#* �
We can reason similarly with rule R.RED.S. We have just shown that the construct � � � � � � acts

exactly as a receptive trigger. More precisely, let us note � � � the construct � � � � � � : we have just
shown that the reduction rules R.REC.S and R.REC.H in Figure 10 are derived rules of the Kell
calculus.

3.3 Encoding the � -calculus and the
�

-calculus

The � -calculus and the
�

-calculus constitute standards of expressive power. They can be simply and
directly encoded in the Kell calculus. This is obvious in the case of the asynchronous � -calculus,
but, because of its higher-order character, the Kell calculus can also encode directly the synchronous
� -calculus. The synchronous (polyadic) � -calculus with positive name matching and input guarded
sums (cf [24] for a definition) is indeed a direct sub-calculus of the Kell calculus. A simple encoding
is given below, where we assume that the names � � 	 	 	 � 	 � 	 	 	 , and ok do not appear free in � , �
 ,
� , and where

� � � � 	 	 	 � � ,

�
 � �
 � 	 	 	 �
 ��� , � � .

[[
�	� 	 � �

]]
� � �

[[
�

]]
� 	
�
� � � � � 		
 �

[[
� � �

]]
� �

k
�
k
���
k
�

[[
�

]]
�

[[� � �
	 � �]]
� � � � � � $ � �

[[
�

]]
� ��� $ 	

[[
� ��� �

]]
� � ���

[[
�

]]

[[
� ��

]]
�

[[
�

]]
�
[[

]]

[[� �]]
� �

k
�
k
���
k
�

[[
�

]]
�
k
�

[[��,�-� � � � � 	
� �0� � �]] � �

k
�
k
�0�
�,�-� k

��� � �
 � � � 	 �
�
� � �.� � � � 	 �
 � � � � [[

� �]] �
 �

RR n � 4692

18 Jean-Bernard Stefani

An encoding of the
�

-calculus in the Kell calculus can be obtained indirectly through the encoding
of the � -calculus, however a simpler and more direct one is given below, where we assume that the
names

�
, fun, arg, and abs, do not appear free in � , � :

[[

]]
�

[[�
 � �]]
�

abs
$ � � $
 � [[

�
]]
�

[[
�

]]
� �

funarg
�
App

�
fun

"
[[
�

]]
�
arg

$
[[

]]

App
�

fun
" �
abs

$�� � �
arg

$��*��� � � $��
We have the following reductions:

[[
� �
 � ���
]]

� �
funarg

�
App

�
fun

"��
abs

$ � � $
 � [[
�

]]
� � �

arg
$

[[

]](�
funarg

� � $
 � [[
�

]]
� � $ [[

]](�

funarg
�
[[
�

]]
�
[[

]] �
���
[[
�

]]
�
[[

]] �
��
It is easy to prove by induction on the structure of P that [[� �
��� � �]] � [[�]] � [[�]] � � � , hence

we have: [[� � � 	 � � �]] �
	 � [[� �
��� � �]]. Note that the above encoding enforces as call-by-name
evaluation strategy.

3.4 Defining objects

With the kell construct as a generalized (named) record construct, one can obtain various forms
of objects directly. To illustrate, we show here how one can simulate concurrent objects directly
inspired by the concurrent object calculus of Gordon and Hankin [14], itself inspired by the object
calculi introduced by Abadi and Cardelli in [1]. This simulation is quite close to the encoding of the
Gordon and Hankin concurrent object calculus in the Blue calculus with records proposed in [31].

We consider objects to consist of named records of the following form (� � � � � � 	 	 	 � 	��):
�
�(� � 9 ��� �
 9 ���

9 �����9 �
where � is the reference of the object, and � � are the methods of the object. There are three basic

operations which are available on objects: invoking a method � 	 �
 , updating a method � 	 �
�� � � � ��� ,
and cloning an object clone � ��� . The informal operational semantics of these three constructs is
given by the following rules, inspired by the operational rules in [14] (for simplicity, we omit the
continuations returned as part of the different operations). Let � � � � 9 � � �
 9 ��� 9 �����9 � and � � � � � � �� �
 ���$� � 9 ��� �
 9 ��� 9 ��������� ���9 � , we have:

� �
�(� � ��� � � � (� �
�(� � ��� � � � �
 � � � INVOKE �
� � �(� � ��� ��� � �"! � �
 ����� (� �
�(� � � � �
�(� � � � UPDATE �
� �
�(� � � clone � � � (� � �(� � � ��	�� � 	#�(� � � CLONE �

Such behavior can be faithfully mimicked in the Kell calculus with simple patterns, using the follow-
ing definitions, where we recall that m

�%$ � � 	 	 	 � $ � � is an abbreviation for m ������� $ � � 	 	 	 � 	 � $ � � ,

INRIA

A Calculus of Higher-Order Distributed Components 19

and where we assume that the names � � 	 	 	 � 	 � 	 	 	 , m, inv, upd, clone, r and make do not occur
free in any of the � , � � , � , � � :

[[
�
�(�]] �

Env
�
Object

� � � � 9 �
Meth

� � � � 9 � 	 9 ��� 9 � � 9 � � �
[[
��� �

]]
�

m
� � �

inv
� � �

[[
� � � ! � �
 ���

]]
�

m
� � �

upd
� � � �

r
$�� � $
 ���

[[
�

]]
� � � �

[[clone
� � �

]]
�

m
� � �

clone
�

with the definitions:

Object
� � � � 9 ��� 9 � 9 � � � � � "��

Clone
� � � � � � �

9 � � � Invoke
9 � � � �

Update
9 � � � �
� 9 $�� 9

Invoke
9 � � � �

m
� � �

inv
��� 9 � � � 9 $ � � � � �

r
� � 9 $ � � � � ��� 9 ��� 9 $ �

Update
9 � � � �

m
� � �

upd
��� 9 � � � �
� 9 $ � � � � � 9 $ �9� �

Clone
� � ���

m
� � �

clone
� � �7� �

9 � � �
� 9 $�� 9 �

�
9 � � �

� 9 $�� 9 � � � ��	��
make
� 	 � � 9 ��� 9 � 9 � � �

Meth
� � � � � 	 � �����

r
� � $ � 	 � � �

[[
�

]]
� �

and where the environment process Env for routing messages between objects and activating cloned
objects, is defined thus:

Env
�

Router
�
Factory

Router
� �

m
$
 �

m
$
��

Factory
�

make
� � 	 � �.� � 9 � ��� 9 � 9 � ��� �

Object
� 	 � � 9 ��� 9 � 9 � � �

The process Router just helps forward messages between objects. The process Factory is
responsible for creating new objects upon request.

3.5 Process control

Notice that the context � � ��� � is an execution context. Processes in this context can freely execute.
As rule IN reveals, they can also receive messages from their environment. Combining trigger and
kell constructs provides different degrees of control over the execution of a process:

� Within � � � , process � is passivated, but it remains available for reactivation by its environ-
ment. Reactivation can take place, for instance, in a context of the form � � � ��� � �	� � , where
the following reduction is valid:

� $ ����� � $
 ��
�� (�
� Within ��� � , process � is active, and can communicate with its environment. In a context of

the form ��� � � ��� � � � , process � can be passivated through the following reduction:
� � "
 ��� $
 � ��� " ��(� $��

RR n � 4692

20 Jean-Bernard Stefani

��� � is also a message that allows process � to move from kell to kell while remaining active.
Thus, ��� � can model a mobile agent that can interact with its environment (if � contains at
least one trigger) while roaming a network of kells.

� Within � ��� ��� � � , process � is active but it cannot communicate with its environment. This is
another example of a mobile agent, however in this case the agent is prevented from interacting
with its environment while moving.

� With simple patterns, within � � �
	 � �
� � � � � , with � � �
 fn � , process � is active but it is
totally isolated from its environment: it can no longer communicate with it and can no longer
be manipulated by it.

� With simple patterns, within � � � 	 � ��� � � � � , process � is inactive, and can no longer be ma-
nipulated by its environment.

Note that, with simple patterns, there are several forms of processes, apart from � � � 	 � ��� � � � � ,
that can be intuitively equated with � . This is the case, for instance, of � � �
	 � ��� � � � � � � � � . Even
though pattern � may match external messages, the whole pattern expects a message of the form��� � which can never be present. Thus, there is no Kell calculus context with simple patterns that
can distinguish between � � �
	 � ��� � � ��� � � � � and � .

Each kell in the Kell calculus can be endowed with its own control behavior (with respect to
the processes it contains) through the use of the box operators. Consider a kell of the form ����� � �
c � � � . Through the c handle, process � can control the execution of � . For instance, if � �
kill

� � � � c � 5 � � , then we have:

kill
� � � ��� " �����

c
"
 � (� "��

Message kill � � can be seen as an explicit termination command or as modelling the occurrence
of a failure of kell � . Along the same lines, with

� � �
suspend

� � � �
c
" � � �

c
$�� *%� �

resume
� � � �

c
$ � � �

c
"��

we have the following reductions:

suspend
� � � � � "���� �%*��

c
"
 � (� "���� �#*��

c
$
 �

resume
� � � � � " ��� �%*��

c
$
 � (� " ��� �.*��

c
"
 �

which mean that � � � � � can suspend or resume the execution of � , depending on whether � is
active or suspended.

Notice that it is impossible for a kell ��� � to “commit suicide”, i.e. to become � by means of
purely internal reductions of process � , as the kill example above suggests. Indeed, if � � �
then we have ��� � � ��� � , so the best that can be achieved is a reduction to ��� � , which, as a
message, can still be handled by the environment. However, a kell can signal its willingness to be
garbage collected, e.g. by emitting a message of the form collect

� 	 	 	 � . A process such as process
Collector below can be used for that purpose. Note that it relies on the cooperation of the kell to

INRIA

A Calculus of Higher-Order Distributed Components 21

be collected and on an authentication scheme using a password
�

(there could be several kells named� in a given context).

Collector
�

collect
� � � � � ��� � � � � � � � "
 �

��� 	 �
F
� � ��� ��� � �%	 " � � "
 �

query
� � ��� ��� � ��� � � ��� � � 	 � � �	� � � ��� � 	 � � �

F
� � ��� ��� � � �
� � � ��� �

yes
� � � 	 "�� � � � �

� �
� � � ��� �
no
� � � 	 "�� �

collect
� � ��� � � � "
 � �

3.6 Encoding Mobile Ambients

The combination of box operators and higher-order communication provides for various forms of
mobility. For instance, the Kell calculus can emulate the different mobility primitives of Mobile
Ambients [7]. The encoding given below illustrates this. The encoding is deadlock-free, but it
relies on a simple locking scheme that reduces the parallelism inherent in ambient reductions, and
it exhibits divergence (potentially infinite idle reduction loops). An encoding that does not suffer
from these latter two limitations is certainly possible (e.g. one could mimick the protocol employed
in the Join calculus implementation of ambients described in [12]) but it would be more complex.
The encoding uses the process Collector defined above to garbage collect kells that have been
opened, and

�
-calculus constructs (

�
abstraction and application) as defined in Section 3.3. Since, in

Mobile Ambients, there can be several ambients bearing the same name in parallel, authentication by
Collector is required prior to collecting a given ambient. In order to simplify the presentation of
the encoding, we will present it using an extension of simple patterns, namely simple patterns with
direction. This pattern language allows trigger patterns to discriminate between messages coming
from the outside of the receiving kell, and from messages originating from a subkell of the receiving
kell. We have seen in Section 3.1 how such a discrimination could be realized with simple patterns.
Using similar constructs, we can thus obtain an encoding of Mobile Ambients into the Kell calculus
with simple patterns. However, the encoding below is more readable. Simple patterns with direction
are defined by the following grammar:

� ��� � � � ��� � ��� �
� � �
where
 refers to the
 productions in the grammar of simple patterns in Figure 8. Simple patterns

with direction are a subset of advanced patterns defined, together with the associated semantics of
matching, in Section 4.1.

The encoding of Mobile Ambients in the Kell calculus with simple patterns (with direction) is
defined as follows.

[[
�

]]
���

[[in
��� �

]]
�
in
� � �

[[
�

]]
�

[[
��� � �

]]
�%��� �

[[
�

]] [[out
� � �

]]
�
out
� � �

[[
�

]]
�

[[
� �

]]
�

[[
�

]]
�
[[

]] [[open
��� �

]]
�
open
� � �

[[
�

]]
�

[[� �]]
����� � �,� � � �

[[
�

]]
� � �

[[
� � � �]] ��� "�� A � � � � amb " [[

�
]]
� �

AmbEnv

RR n � 4692

22 Jean-Bernard Stefani

A
� � � � �

t
�
t
�
S
� � �

t
� �

T
� � �

t
� �

F
� � �

t
� �

NQ
� � ��� �

S
� � �

t
� � �

t
�
in
� 	 � � � � �

amb
"�� � � ���

collect
� � ��� �

to
� � �

in
��� � � ��� � � �

YQ
� � ��� � �

���
t
�
out
� 	 � � � � �

amb
"�� � � ���

collect
� � ��� �

up
$ � � �

out
��� � � ��� � � �

YQ
� � ��� � �

T
� � �

t
� � �

t
�
amb

"�� �
open
� � � � � � �

� ���
collect

� � ��� � ��� � � � � �
YQ
� � ��� � �

� �
t
�
to
�
���

in
� � � � �
 � � �

amb
"�� �

����� �
make
�
� � � ��
 ��� � � ��� ��� � � � � �

amb
"���� ��� � � �

� �
t
�
up
�
���

out
� � � � �
 � � �

amb
"�� � ��� ���

make
�
� � � �
 ��� � ����� ��� � � � � �

amb
"�� � � �

YQ
� � ��� � �

query
� � ��� � �
� � � � � � � ��� �

yes
�

NQ
� � ��� � �

t
�
query

� � � ��� � � �
� � � �
t
� � � � ��� �

no
�

F
� � �

t
� � �

t
�
to
�
���

in
��� � � �
 � � �

amb
"��*�

����� �
make
�
� �

in
��� � � � �
 ��� � ����� ��� � � � � �

amb
"���� �
� � � �

���
t
�
up
�
���

out
��� � � �
 � � �

amb
"��*�

����� �
make
�
� �

out
��� � � � ��
 ��� � � ��� ��� � � � � �

amb
" ��� �
� � � �

AmbEnv
� �

t
� �
C t C

� �
Collector

C
� � t � � Factory � t � � t ��� �

Factory
�
t
���

t
��� � �

make
�
��� � ��� � � �

� ��� ��� ��� �#��� �
Collector

��� " �
A
�
� � �

amb
"�� � �

A few comments on this encoding are in order. The encoding of the ambient construct, ��� ��� , is
typical of encoding of calculi with explicit locations. The process A � ��� in the encoding can be
understood as implementing the interaction protocol that is characteristics of Mobile Ambients. En-
coding of other forms of ambient calculi would involve defining different variants of this process.
Process AmbEnv is a helper process that characterizes the environment required by Mobile Ambi-
ents, and that provides garbage collection and factory facilities. The auxiliary processes A � ��� and
AmbEnv are defined below. We use a lock t per ambient to avoid conflicts between concurrent
moves. Process S � ��� t � starts the execution of in and out moves at the source ambient. Process
T � ��� t � implements the open primitive and terminates the execution of in and out moves orig-
inated at a source ambient within process S. Notice that all the ambient primitives lead to the the
destruction of the source ambient, which is later recreated at the end of execution of the in and out
primitives. Process F � ��� t � non-deterministically aborts transactions implementing the in and out
moves to avoid unduly blocking an ambient (and thus preserving the mobile ambient semantics).

INRIA

A Calculus of Higher-Order Distributed Components 23

This process is the source of divergence in the encoding. Such divergence can be removed at the
expense of a slightly more complex encoding, e.g. where each controller process A � ��� maintains a
list of names of current sub-ambients.

3.7 Distributed interpretation

At this point, some comments are in order to justify our belief that the Kell calculus constitutes a
distributed process calculus. The main issue has to do with the implementability of the reduction rule
R.RED.H in a distributed setting and the existence of potential conflict situations. Rule R.RED.H is
local in that it involves a single receiver located at a single kell, but consider the following instance
of derived rule IN: � " � 	 "
 ��
 �
 � �.	 " ��(� " ��� �
 �
In this reduction, one must first decide that the receiving kell is the � kell and that � plays the role of
a message (process � may contain triggers ready to receive messages of its own). However, note that
the decision to consider � as a message is a purely local one. It involves deciding at � that � should be
sent to the trigger at � and not considered for the reception of messages of its own. This looks like
a standard execution or scheduling decision, which does not require a distributed consensus to take
place, and which requires only the knowledge of the fact that there is a receiver ready for � located at
a different kell at this level of the system. Such knowledge is in turn not dissimilar to the one that a
given reference in a distributed system is in fact a reference to a server, which can receive messages.
More problematic is the following situation, where it is possible to apply both derived rule BETA
(with the trigger on �) and derived rule OUT (with the trigger on �):

� "
 ��
 � � " � 	 ��� � ��
 � ��	 $�� � �
Here again, however, notice that to choose between the BETA reduction and the OUT reduction, all

that is involved is a local choice at kell � , namely to send kell � to the trigger on � , or to send message
� (which is clearly a message, in this case, since it corresponds to a passive kell) to the trigger on
� . Provided � and � are identified as potential receivers, then only local actions are required to
implement the possible reductions (a scheduling choice at kell � , and a reception at trigger � or at
trigger �). A yet more problematic case occurs in the following situation:

� " � � "
 ��
�� � � " � 	 " � � � ��
 � ��	 "��
In this case, there are two possible reductions, both relying on derived rule IN (the � kell received

at kell � on the � trigger, and the � kell received at kell - on the � trigger). There is still the need of
a local choice to make at kell � , either to send it to trigger � , or to make it available for the receipt
of messages on trigger � . But the situation here is similar to the situation with the IN rule of Mobile
Ambients, or, for that matter, with the go primitive of the Distributed Join calculus: moving kell �
to kell � would require locking kell � in place in order to make the move atomic. This is made more
evident in the following situation:

�
"�� � "
 �
 � � � " �

�
"�
 ��
 �

If both scheduling decisions at kell - and kell � are to consider the kells as messages, then the
configuration is deadlocked whereas one would expect at least one of the two possible reductions

RR n � 4692

24 Jean-Bernard Stefani

(using rule IN) to take place. We thus see the need to implement kell mobility in the general kell
calculus by means of a distributed transaction mechanism with deadlock detection or prevention.

Fortunately, the potential cost of general kell mobility need not be paid for every communication
as in Mobile Ambients, and we can have a truly distributed interpretation of the calculus. First, notice
that passive kells ��� � should always be interpreted as standard asynchronous messages. No such
conflict situations arise when communication between kells relies on passive kells. Thus, systems
that do not require communication of active kells do not pay the cost of a distributed transaction for
each communication. Obviously, routing an asynchronous message in presence of kell mobility is a
non-trivial business, but in a model as general as the Kell calculus (or in an actual distributed system,
for that matter), that is only to be expected. We can formalize this restriction of using passive kells
only as messages crossing kell boundaries as a subcalculus of the Kell calculus, which we call dK.
Messages that cross kell boundaries in dK take the form given by the following grammar:

� � � ��� �������	��� $�� ��� � � � �
The operational semantics of dK is given by the same structural congruence and reduction rules as

the full Kell calculus, except that rules R.RED.S and R.RED.H are modified thus:
� �

S� � � � � �

 ���
�����

� � " � � � ��
 � �
 ���!�
�����

� � "
 � �#"������ ���
�,�-�

� �
������� � ��
�(� "�� ��
 � �DK.RED.S�

� �
H

� � � � � "�� � �
��%*��

 �!�

�,�-�
� � " � � � ��
 � �
 � �!�

�,�-�
� � "
 � �#"���� � � � ���

�,�-�
� �

� " � � ��� ��� �
 �%*�� � � (� "���� "�� �
 � �%*�� � DK.RED.H�
In dK, each active kell should be understood primarily as a locus of computation (a location), possi-
bly under the control of a surrounding behavior (i.e. a set of triggers located immediately outside of
the active kell under consideration). In this calculus, we can no longer have conflict situations such
as the two last ones identified above, which do not have any reduction in dK. Certain conflicts still
exist in dK, but they are harmless. As a first instance, consider configuration � below:

	 ��� "
 � � ��� " � 	 $
 ��
�� �,	 $ �
Configuration � has the following two reductions:

	 (�	 $�� 	 (� "
 ��� � � " �
These two reductions reflect non-determinism inherent in the situation, which can be readily in-

terpreted, for instance, as a choice between the receipt of a message on channel � and a failure of
location � . Such conflicts appear to us to be non problematic for (a) they reflect inherently non-
deterministic situations that should be captured in a distributed process calculus, such as a potential
occurrence of a failure, and (b) they involve pure messages and control behavior located at a higher
level in the hierarchy of kells, which is consistent with a view of locations being organized in a
hierarchy of control, and which can readily be implemented even in a ditributed setting (although at
more expense than a simple asynchronous message communication, but that is only to be expected).

INRIA

A Calculus of Higher-Order Distributed Components 25

Another potential conflict situation in dK is exemplified by configuration
�

below:
� ��� "
 ��� � � "
 ��
9��� " �

which has the following two reductions:
� (� "
 � �9� � �+(� "
 ��

Here again, we do not see this situation as problematic for the conflict takes place between two
triggers placed at the same location. If the location is interpreted as a computing site, then the
conflict is purely local and can be readily implemented as a mere scheduling decision. If the location
is to be interpreted as a network, then the � triggers correspond to the modelling of some inherent
non-determinism in the network behavior.

Interestingly, we do not use lose much in expressive power when going from the full Kell calculus
to dK. All the encodings given in previous sections are actually encodings in dK. The subcalculus
dK thus appears as an interesting basis for an implementable distributed calculus.

Second, we can envisage relying on type systems to enforce required safety properties such as
the linearity of certain names to ensure the determinacy of routing as is done, in a similar higher-
order context, in the M-calculus [25]. We leave the study of such type systems for future research.
Third, and most importantly, note that the interaction behavior of a kell depends on the environ-
ment (i.e. surrounding kell) it is placed in. The Kell calculus, contrary to Mobile Ambients, allows
the coexistence of different forms of interactions between kells, as well as different communication
environments. In particular, one could think of a particular environment that would only allow the
exchange of passive kells, thus enforcing the constraint that characterizes the dK subcalculus, and
the creation and destruction of sites, i.e. kells corresponding to different spatial loci of computation.
All subkells of such sites would then be deemed local to the site. Furthermore, messages exchanged
between sites could be deemed to bear an address name, i.e. a name that would be unique among
the sites and that would at any time be associated univocally with one site only, again a linearity
property that could be enforced by a type system. This interpretation, which is strikingly similar
to the distributed implementation of the DJoin calculus and of the M-calculus, allows a direct im-
plementation in a distributed setting. None of the conflict situations described above exist between
sites, and conflict situations involving non site kells can be resolved locally, within a site. Commu-
nication between sites can thus be mapped to standard point-to-point asynchronous communication,
with more complex communication protocols needed only when there is kell mobility between sites.

4 Advanced patterns

We introduce in this section a more sophisticated pattern language for Kell calculus triggers. Patterns
defined in this section provide more introspection capabilities than simple patterns. Such introspec-
tion capabilities can be leveraged for programming various forms of routing and control, by means
of wrappers, interceptors, and the like. We illustrate this through encodings of the Distributed Join
calculus and of the M-calculus.

RR n � 4692

26 Jean-Bernard Stefani

� ��� � � � � � � ����� ��� � �
� � ��� � �	� � � � � � � �

�� ��� � �	��������������� ����� � �*� � �
� ��� � �	� � � � ���
 �
� ��� � � �
	 �
	 �

T
�
	 �

D
����� �������

T
��� �

K
�
	 "

T

D
��� �

P
�
	 "

D

Figure 11: Syntax of advanced patterns

4.1 Syntax and semantics

The syntax of advanced patterns is given in Figure 11. Advanced patterns are built on simple patterns
extended with direction and with the ability to do some introspection on the content of the current
kell. Intuitively, a pattern of the form

�
� � � matches kells which match the pattern
 , provided that in

the current evaluation context they match the indicated direction and that the predicate � is satisfied
(note that the scope of variables appearing in pattern
 extends to predicate �). We abbreviate �
� �
the predicate 	 � � � � � , ��
 T the predicate 	 � � T � , ��
 D the predicate 	 � � D � , and � ��
 � 	
the predicate 	 � � �
� � 	 � . The intuition behind the predicates given in Figure 11 is as follows:

� Predicate � � � is true when name � is equal to name � .
� In a given context � � - ����� ��� � , predicate � K is true when there is a subkell in kell -

that has name � , or when the predicate is true, recursively, of a subkell of - .
� In a given context � � - ����� � � � , predicate � � � T is true when there is a subkell � of -

such that predicate � T is true of this kell.

� In a given context � , a pattern of the form
 � ��	 � matches a kell which matches the

pattern provided the predicate � does not hold in the context. Likewise, a pattern of the form

 � � � � � � 	 matches a kell which matches the
 pattern provided both predicates ��� and � 	
hold in the context.

The formal semantics of advanced patterns is defined as follows. Matching for advanced patterns
is defined as a conservative extension of that of simple patterns. More precisely, a context-dependent
substitution � is a standard substitution mapping name markers to Kell calculus processes that is
extended to work in contexts � as defined below:

��� � ����� � ".$ ��� � � "�������� �
��� � � � � ����������" � ��� � � � �

INRIA

A Calculus of Higher-Order Distributed Components 27

where � and � are predicates defined inductively on all contexts of the form � � < � � ����� � � �
by: �

��� ����� T ?
true�

��� ��� � � T ? T X	� M � M ��� � � M�
 �
��� ��� � � T ? T X	� M ��� � � M�� � ��� M

 M
� �
��� ���

�
� T ? T X	� M ��� � � M � M��

� � � + K � � ����� T ? T X	� M ��� � � M�� � � � �
 � � � + \ � ��-#-]- \
 � K � � ����� T ? T X	� M ��� � � M \ � ��-#-#- � \
 � � � � � �
 M�

 M -#-]- M

 �
 � � � + P � � ����� T ? T X	� M ��� � � M � � � M

 �� � + fn � � � � � + \ � ��-#-]- \
 � K � � ����� T ? T X	� M ��� � � M \ � � � -#-/- \
 � � � � ��M�

 M -#-]- M�
 �

 M

 � � + fn � � � � � ? � � � ����� T ? � � ? � � ���
�
� � ����� T ? � � �

�
� � ����� T � �

� �
�
� � � � ����� T ? � �

� �
� � ����� T �� � �

� � � � ����� T

The structural congruence relation on advanced patterns is defined by the following rules: the
parallel operator, � , is associative and commutative; if two patterns � and � are equivalent (� � �),
then so are � ; � and � ; � ; if the two predicates � and �

�
are logically equivalent, then the patterns

�
� � � and

�
� � �
�

are equivalent; if two patterns differ only by � -conversion (taking into account
bound identifiers), then they are equivalent. Simple patterns form the subset of advanced patterns
which are deemed to be of sort S. All other advanced patterns (patterns with direction, and patterns
with predicate) are deemed to be only of sort H.

4.2 Encoding the DJoin calculus and the M-calculus

Using advanced patterns allows straightforward encodings of the DJoin calculus and of the M-
calculus. An encoding of the DJoin can be derived via the composition of the encoding of the
Djoin in the M-calculus described in [25] and of the encoding of the M-calculus defined in this sec-
tion. However, a more direct encoding can be obtained as follows. For any DJoin definition

�
, we

note df � � � the set of names (channels and locations) it defines. The DJoin encoding is a function
of a name that keeps track of the current DJoin location. It is defined by induction as follows, where
we assume that m, mm, loc, collect, toGC, make, va, enter do not occur free in � ,

�
:

[[
�

]] � ��� [[
�

]] � ���
[[�]] � ���

[[
� �

]] � � [[
�

]] � � [[
]] �
[[go

��� �
]] � � va

� � �
[[
�

]] � � [[
� � � �

]] � � [[
�

]] � � [[� �
]] �

[[
� �
�

�
� � � � ����� �

]] � � m
� 	 � � ���

�
�.� � � ����� �

[[
�
in
�

]] � ��� �� � [[�
]] � � [[�]] � �� � df

� � �

[[
�
�! � �

��� �.��� �"� �#� � �
]] � � m

� 	 ���
�
��$���

�
� � ��� �.���

m
� 	 ����� ��$���#� � � �

[[
�

]] �
[[
� � �,� � �]] � ��� " � DJ � � � � loc "�� [[�

]] � � [[�]] � � � � DJEnv

RR n � 4692

28 Jean-Bernard Stefani

together with the following auxiliary definitions:

DJ
� � ��� �

t
�
t
�
IR

�
Go
� � �

t
� �

Enter
� � �

t
�

IR
�

m
� � � � �
 � � � � � �

K
�
loc

" � �
loc

"�� � �
m
� � �
 � �

�
m
� � � � �
 � � ��� ����

K
�
mm
� � �
 �

Go
� � �

t
���

t
�
va
� � � � � � � ����� � �� K �

�
loc

" � �
� ���

toGC
� � ��� � �

collect
� � ��� �

enter
� � � � � � � ��� � � � �

Enter
� � �

t
���

t
�
enter

� � � � 	 � �
 � � �
loc

"�� �
��� �

make
� 	 �
 ��� � � ��� ��� � � �

t
�
loc

"�� � ��� � �
DJEnv

� �
t
� �
CtC

� �
ER

�
GC

C
� � t � � Factory � t � � t ��� �

Factory
�
t
���

t
��� � �

make
�
��� � ��� � � � � ��� ��� ��� � ��� �

ER
�
GC

��� " �
DJ
�
� � �

loc
" ��� �

ER
�

mm
�
 � � �

m
�
 �

GC
�

collect
� � � � � ��� � � � � � � � " ��� �

toGC
� � ��� � � ��� �

Some comments are in order. Note that the encoding of a DJoin locality takes the same general
form as that of a Mobile Ambient: a locality � has a controlling process DJ � ��� , that implements the
basic interaction protocol that governs a DJoin locality. The latter includes: routing messages on the
basis of the target locality, implementing locality migration, by means of the Go � ��� and Enter � ���
processes. Note that the encoding given above is faithful to the DJoin semantics, since migration is
only allowed if the target locality does not appear as a sublocality of the current locality.5

We can likewise define an encoding of the M-calculus. For simplicity, we consider some slight
modifications on the syntax given in [25]. In particular, we consider that each resource name vari-
able, locality name variable and process variable are properly distinguished. Also, we consider a
call-by-name evaluation strategy for the

�
-calculus constructs of the calculus, instead of a call-by-

value one. As for Mobile Ambients and the DJoin calculus, we make use of the
�

-abstraction and
application constructs defined in Section 3.3. The encoding of the M-calculus in the Kell calculus is
defined by induction as follows, where we assume that the names m, mm, mmm,mb, pm, pass, nil,
make, collect, toGC do not occur free in

$
,
$ � , � , � , and where we note � � � for a variable that

can be a (Kell calculus) name marker or a process marker, depending on the sort (resource or name
variable, process variable) of the source variable in the translation.

[[
�

]]
���

[[
�

]]
���

[[

]]
��

[[
�4�

]]
�
nil

[[
� ��� �

]]
� ��� �

[[
�

]] [[
��� � �

]]
�%��� �

[[
�

]]
[[
� �

]]
�

[[
�

]]
�
[[

]] [[�
 � �]]
� �
 � [[�]]

[[
�

]]
�

[[
�

]][[

]] [[
� ���

�
� � � � ��� � �

]]
�
m
�
� �

[[
�
�]]
� � �.� �

[[
� �

]]
�

5This is not the case of the encoding of the DJoin calculus in the M-calculus defined in [25], which does not test for the
presence of the target locality as a sublocality of the locality to be migrated. It is possible to faithfully encode the Djoin
calculus in the M-calculus but at the cost of a more complex translation than the one reported in [25].

INRIA

A Calculus of Higher-Order Distributed Components 29

[[
� � � ���

�
� � � � � � � �

]]
�
mm
� � ��� �

[[
�
�]]
�.� � � �

[[
� �

]]
�

[[� � �
	 � ���
]]
��� �4��� � � 	 � � � � � ��	 �

[[
�

]]
� � � � 	 � � ��� ���� 	 �

[[

]]
��� � 	 �

[[
�
�
 � ��� � � ��� �
 � � �]]

�
m
�
�
�
� ��

�
� � ��� � � �

m
�
� � � ��
 � � � �

[[
�

]]
[[
� ����� �
 �]] ��� " � M � � � � mb " [[

�
]]
�
pm
"

[[

]]
� �

MEnv
[[�������

�
]]
�
pm
"�� �

pass
�
[[
�

]]
��� �

together with the following auxiliary definitions:

M
� � � �

IR
� � � �

Pass
� � �

Pass
� � � �

mb
" � � �

pass
�
 �%� � � � ��� ���

collect
� � ��� � �
 � �#� � � �

toGC
� � ��� � �

MEnv
�

ER
�
GC

ER
�

mmm
�
 � � �

mm
�
 �

GC
�

collect
� � � � � ��� � � � � � � � � " ��� �

toGC
� � ��� � � ��� �

Auxiliary process IR � ��� provides a direct encoding of the M-calculus routing rules, as defined in
[25]:

IR
� � ���

mm
� � 	 � � �
� � � �
�� � � ���-	 ���	� 	 �

mb
"
K
� 	 �

pm
"
K
�
m
�
i
� � ��� � �
 �

�
mb
"���� �

mm
� � � �
� � � �
�� � � � mb

"���� �
m
�
� � �
 � �

�
pm
"���� �

mm
� � � �
� � � �
�� � � � pm

"���� �
m
�
� � �
 � �

� �
mb
" � � �

mm
� � 	 � � �
� � � �
 � � � ���#	 ���� � 	 �

pm
"
K
� 	 ��

mb
"
K�

pm
"�� �

mb
" � �

pm
" � � �

mm
� 	 ��� � �
 � � �

� �
mb
" � � �

mm
� � 	 � � �
� � � �
 � � � ���#	 ���� � 	 ��

pm
"
K
� 	 ��

mb
"
K
�

mb
"�� �

mmm
� 	 ��� � �
 � �

� �
pm
" � � �

mm
� � 	 � � �
� � � �
�� � � � �#	 ���� ��	 �� pm " K�

mb
"�� �

pm
" � �

mb
" � � �

m
�
o
� 	 ��� � �
 � � �

� �
mb
" � � �

m
�
� � �
 � � � ��� � �� mb " P � � �

pm
"
P�

pm
"�� �

mb
"�� �

pm
" � � �

m
�
� � �
 � � � �

� �
pm
" � � �

m
�
� � �
 � � � ��� � �� pm " P � � �

mb
"
P�

mb
"�� �

pm
"����

mb
" � � �

m
�
� � �
 � � � �

An M-calculus programmable locality � � � � � ��� takes the form of a kell of the same name, with
a controller process M � ��� that embodies the basic routing rules of the M-calculus and implements
the behavior of the
���
�
 operator. Controller process � and content process � appear as active

RR n � 4692

30 Jean-Bernard Stefani

subkells. Note that we use a different garbage collector, GC, that exploits a pattern of the form� ; � � � � � . Note also that to obtain en encoding of the M-calculus in the subcalculus dK introduced
in Section 3.7, it suffices to modify the handling of the
���

 construct thus:

[[�������
�

]]
�
pass
�
[[
�

]]
�

Pass
� � ���

mb
"�� � �

pass
�
 � � �

pm
"�� � ��� ���

collect
� � ��� � �
 � � � � � �

toGC
� � ��� � �

4.3 Encoding the distributed interpretation

Interestingly, the distributed interpretation we have sketched at the end of Section 3.7 can be defined
as a direct subcalculus of the Kell calculus. Its syntax is given below (top-level kells are called sites):

	 ��� �
DKEnv

� � � 	 � �
� ��� � � " �

Router
� � � �

site
"����

It semantics is given by the following definitions, where we assume that names m, mm, newS, stop
do not occur free in � :

Router
� � � �

m
� � �
 � � �

m
� � �
 �

�
m
� � 	 � �
 � ��� �#	 ���� �

mm
� 	 �
 �

DKEnv
�

mm
� � � � �
 � �

m
� � �
 �

�
newS
� � � � � ��� � � � � �)��� ��� "��

Router
����� � � � �

m
� � ��� ��� �

�
stop
� � � � � ��� � � � 	 � � ���#	 ���� � � 	 "�� � �

m
� � ��� �

ok
�

�
stop
� � � � � ��� � � � 	 � � ���#	 ��� � � � "�� � � �

The Router process just moves messages in and out of a given site. Messages m
� ��� � �

between
sites bear an explicit target site � , together with a payload � . The environment DKEnv assists in the
routing of messages, and provides for the creation and destruction of sites. Creation and destruction
of sites are notified back to the originator of the newS and stop commands.

This interpretation requires that messages identify systematically the target site. This is very
similar to what takes place in D � or in the lower Nomadic Pict calculus. If one want to recover a more
location transparent communication between sites, we could instead expect the routing mechanism
to maintain the knowledge of an association between potential message targets and hosting sites.
This again is easy to capture in the Kell calculus, yielding a calulculus with location transparent
communication based on uniquely located channels. This is in turn very similar to what takes place
in the distributed implementation of the DJoin, or in the upper Nomadic Pict calculus. This new
interpretation can be obtained just by modifying the Router process thus:

Router
� � � �

m
� � 	 � �
 � � ���-	 �

site
"
K
�
m
� 	 �
 �

�
m
� � 	 � �
 � �����#	 ��

site
"
K
�
mm
� 	 �
 �

INRIA

A Calculus of Higher-Order Distributed Components 31

� ��� � �����	��
���� � �
�
� � � � � �
 � � � ��� " � ��� ��� ��� � � ��� � ��� �%� � �

� ��� � � ��� ���
�
� � �.� � �
 � ��� " �

� ��� � � ��� ���
�
� � �.� � �
 �

� ��� � � � � ���
 �
�!��� � "#� $

Figure 12: Syntax of the � dK Calculus

To be clear, messages in this interpretation always take the form m
� ��� � � where � designates the

target kell, a kell which is not a site. A target kell can be understood for instance as an object,
as illustrated in Section 3.4, or as an M-calculus location, as defined above. The routing scheme
defined above is determinate only if one can ensure the unicity of target kell names, e.g. either by
static scoping as in the DJoin, or by means of an appropriate type system as in the M-calculus.

5 Parting notes

We gather in this section various remarks and additional discussions concerning the Kell calculus
and some of its sub-calculi.

5.1 The � dK calculus

In the previous section, we have introduced a relatively sophisticated pattern language, that allowed
some degree of introspection on the structure of a kell. What happens if we go in the reverse direc-
tion, i.e. rather than complexify, if we simplify the simple pattern language introduced in Section
3?

One way to simplify it is to retain the possibility to match only one message at a time, and to
allow as messages the equivalent of messages in the higher-order polyadic asynchronous � -calculus,
i.e. messages of the form

� � � � � 	 	 	 � � � � . The resulting sub-calculus we call the � dK calculus for
we believe it merits to be investigated further. For future reference, we give here the syntax of the
� dK calculus as well as the reduction rules that result from the choices made. The full syntax of the
� dK calculus is given in Figure 12.

The reduction semantics of the � dK calculus is given by the same structural congruence as the
Kell calculus, without rule S.TRIG, which is not necessary (it is covered by S. �). The reduction
relation is given by the rules in Figure 13. They correspond to the rules R.CONTEXT, R.EQUIV in
Figure 5, and to the rules IN, OUT, and BETA in Figure 6. The expression � � � � means that: if
� � � � " � � 	 	 	 � " � � , then � � � � � � � 	 	 	 � � � � and, for all � � � � 	 	 	 � 	�� , if " � � � ��� � , then � � is
a name � � , if "
�� � ��
 � , then �
 is an arbitrary (� dK calculus) process. The expression � � � <
means that: if � � � � " � � 	 	 	 � " � � , then < must be as � above; if � � ����� � � , then < � ��� - , where- is some name; and if � � ����� � � , then < � � � � , where � is an arbitrary � dK calculus process.
The substitution � is just the substitution � � � � � � � �
 � �
 � .

RR n � 4692

32 Jean-Bernard Stefani

�#" ���
� " � ��� � ��
 � � �1(� "���� " ��
 � � IN �

�-" ���
��� � � � "��
� ��
 � (� " ��� "
��OUT �

�-"2���
� � � � � (� " � BETA �

��(

� � � � (� �
 � � R.CONTEXT�

�����2� �2�3(
��
 �3��

��(
 � R.EQUIV �

Figure 13: Reduction relation of the � dK Calculus

It is interesting to note that one can encode the Kell calculus with simple patterns in this calculus:
it suffices to emulate the matching on multiple messages by multiple successive receptions and the
other features of the pattern matching in simple patterns by multiple embedded receptions. This in
turn means that this calculus is already expressive enough to provide a faithful encoding of different
notions of locations, including ambient-like notions. Also, this calculus is a subcalculus of the dK
calculus, introduced Section 3.7. This means that the � dK calculus can readily support a distributed
interpretation and, coupled with an appropriate type system to ensure the linearity of (certain) kell
names, would be amenable to an efficient distributed implementation.

5.2 Why two boxes ?

It would seem that the box operator � is redundant since ��� � � � prevents the execution of �
and still make it available for further manipulation through the � handle. The following reductions
illustrate this: ����� � � � � � � � � � ��� � ��� � � � � � � � �
However, at a minimum, an explicit construction of the form ��� � provides a natural distinction
between pure messages and active locations, a distinction which we have exploited in the dK sub-
calculus to avoid conflict situations arising with active kells. If we had only the � box operator, we
would lose that distinction. The only way to recover it would be through the means of an extended
pattern language which would allow matching on processes of the form � � � . But then we would
uncover a whole new set of potential conflict situations, since � � � , like � � � , would play a dual
role of message and receiver. Overall then, it seems that having the � operator actually simplifies the
calculus and provides the necessary basis for its distributed interpretation.

5.3 Why components ?

The title of this paper announces a calculus for higher-order distributed components. So far, however,
we have not mentioned components. What gives ? A first element of answer can actually be found
in Section 3.4, where we showed that the Kell calculus (and in fact the dK subcalculus) provided
an easy intepretation of objects as active kells. Beyond objects, an active kell may have several

INRIA

A Calculus of Higher-Order Distributed Components 33

subkells, and can provide different forms of control over these subkells. As we saw in Section
3.5, a kell can interrupt a subkell and later resume it execution. The encoding of the M-calculus in
Section 4.2 illustrates the possibility for a kell to act as interceptor for messages ultimately destined
to subkells. This suggests that kells with subkells look very much like composite components with
subcomponents. Since communication between subkells of a kell

�
must be mediated by kell

�
, we

can implement different forms of communication paths or connectors [13] between subkells. One
can also control explicitly within kell

�
the establishment and release of such connectors, providing

the basis for a dynamic component-based structure. For instance, a receiving port named � of a
component can readily be represented as a receiver of a kell, able to match messages of the form � � 	 � .
Likewise, a sending port named � can be equated with the possibility for a kell to emit messages of
the form � � 	 � . Given two kells

� � and
�
	 , the first one with a sending port � and the second one with

a receiving port � , a simple connector between ports � and � can be defined as � � ��� � � � � � � � � � � � � .
If some control needs to be exercized on a connector, then it is possible to use some shared lock t
as in � � t � � � � � � t � � � � � � t ��� � � � . If the lock is consumed by the controller process, then
the connector ceases functioning. Alternatively, one could define the connector as a kell � � ��� � � �- ��� � � � � � � � � � � , and use trivial connectors � � � � � t � � � � � � t and � � � � � t � � � � � � t to ensure
connectivity between ports and connectors. Deleting or suspending the connector - can then be done
easily.

As another illustration of the possibility to use the Kell calculus as a basic composition language,
we can define a direct encoding of the ��� 6, calculus, which serves as a basis for the Piccola com-
position language [19]. The ��� calculus is an asynchronous � -calculus, which handles forms �
instead of names. Forms are records of fields � � $, where

$
is value, which can be either a name� or a field selection � � , where � is a form variable.

[[
�

]] � � � � � �
[[

�]] � ��
 � � ��$�
 � � �
 � �

[[�]]
�%�

[[� � � � � �
]]
�

[[�]]
��� $

[[
�

]]
[[�
]]

�
[[�]]

�

[[
�

]]
� �

[[
� ���

]]
�

[[
�

]]
�
[[
�

]] [[
��� � �

]]
��� ���

[[
�

]]
[[
� �
 �0� �

]]
��� ���

[[
�

]] � ����� � � � � � ��� �
 � � [[
�

]]
�

[[
� � � �0� �]]

����� �
[[
�

]] � ����� � � � � � ��� � [[�]]
� �

[[� � �
 �0� �]]
�%��� �

[[
�

]] � ����� � � � � � ��� �
 � � [[
�

]]
�

We can therefore develop, using the Kell calculus as a basis, the same type of constructs that have
been developed in Piccola, such as generic wrappers, complex and active forms, composition scripts,
etc. In fact, the above encoding of ��� calculus provides a direct way to extend Piccola to a distributed
setting by just adding the active kell construct of the Kell calculus.

6 Conclusion

We have introduced in this paper a new process calculus, called the Kell calculus, and demonstrated,
through various encodings, its expressive power. In particular, we have shown that it faithfully

6For simplicity, we make one slight alteration to the ��� calculus defined in [19]: forms can have multiple fields with the
same label, as in the ��� calculus, but we do not guarantee that a field selection will return the rightmost one.

RR n � 4692

34 Jean-Bernard Stefani

captures the semantics of locations in several process calculi such as ambient calculi, the DJoin
calculus and the M-calculus. We have discussed how suitable restrictions of the calculus yield sub-
calculi which can be implemented efficiently in a distributed environment, lending some weight to
the belief that the Kell calculus could constitute a suitable basis for distributed computing. Further
work remains to confirm that belief, through. First, we would like to apply the same techniques
used in the M-calculus to derive a type system for the Kell calculus which can ensure the linearity
of chosen names. We have seen that this is a crucial point for the distributed interpretation of the
calculus. Second, we need to investigate the bisimulation semantics of the calculus. Indeed, apart
from the context rules, the rules of reduction of the calculus are essentially local rules, i.e. rules
which involve only a single location. We believe this feature of the calculus can allow us to directly
leverage the results obtained in the past decade on the bisimulation semantics of process algebras
with localities [8]. Third, we believe a crucial feature for a distributed process calculus is to be able
to deal with overlapping locations, i.e. locations that may share processes. This is necessary to deal
properly with the physical and logical aspects of locations in a distributed setting. How overlapping
locations can be defined remains as a challenge, though.

Acknowledgments

Many thanks to G. Boudol for a fruitful discussion on the different features of the Kell calculus,
and to members of the Mikado project for interesting comments on early versions of the calculus
presented in this report.

References
[1] M. Abadi and L. Cardelli. A theory of objects. Springer, 1996.

[2] R. Amadio. An asynchronous model of locality, failure, and process mobility. Technical report, INRIA
Research Report RR-3109, INRIA Sophia-Antipolis, France, 1997.

[3] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science, vol. 96, 1992.

[4] G. Boudol. The
�

-calculus in direct style. Higher-Order and Symbolic Computation, vol.11, 1998.

[5] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In 4th International Symposium on Theoretical
Aspects of Computer Software (TACS), 2001.

[6] L. Cardelli. Types for mobile ambients. In Proceedings 26th Annual ACM Symposium on Principles of
Programming Languages (POPL), 1999.

[7] L. Cardelli and A. Gordon. Mobile ambients. In Foundations of Software Science and Computational
Structures, M. Nivat (Ed.), Lecture Notes in Computer Science, Vol. 1378. Springer Verlag, 1998.

[8] I. Castellani. Process algebras with localities. In Handbook of Process Algebra, J. Bergstra, A. Ponse and
S. Smolka (eds). Elsevier, 2001.

[9] C. Fournet. The Join-Calculus. PhD thesis, Ecole Polytechnique, Palaiseau, France, 1998.

[10] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus. In In proceed-
ings 23rd ACM Symposium on Principles of Programming Languages (POPL), 1996.

INRIA

A Calculus of Higher-Order Distributed Components 35

[11] C. Fournet, G. Gonthier, J.J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents. In In Proceed-
ings 7th International Conference on Concurrency Theory (CONCUR ‘96), Lecture Notes in Computer
Science 1119. Springer Verlag, 1996.

[12] C. Fournet, J.J. Levy, and A. Schmitt. An asynchronous distributed implementation of mobile ambients. In
Proceedings of the International IFIP Conference TCS 2000, Sendai, Japan, Lecture Notes in Computer
Science 1872. Springer, 2000.

[13] D. Garlan, R. Monroe, and D. Wile. Acme: Architectural Description of Component-Based Systems,
chapter 3. In [15], 2000.

[14] A. Gordon and P. Hankin. A Concurrent Object Calculus. In 3rd International Workshop on High-Level
Concurrent Languages, ENTCS, 1998.

[15] G. Leavens and M. Sitaraman (eds). Foundations of Component-Based Systems. Cambridge University
Press, 2000.

[16] L. Leth and B. Thomsen. Some facile chemistry. Formal Aspects of Computing Vol.7, No 3, 1995.

[17] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceedings 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2000), 2000.

[18] L. Lopes, F. Silva, A. Figueira, and V. Vasconcelos. DiTyCO: An Experiment in Code Mobility from the
Realm of Process Calculi. In Proceedings 5th Mobile Object Systems Workshop (MOS’99), 1999.

[19] M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal Language for Composition, chapter 4. In [15],
2000.

[20] M. Merro and M. Hennessy. Bisimulation congruences in safe ambients. In 29th ACM Symposium on
Principles of Programming Languages (POPL), Portland, Oregon, 16-18 January, 2002.

[21] R. Milner. Calculi for interaction. Acta Informatica, Vol.33, No 8, 1996.

[22] R. Milner. Communicating and mobile systems : the
�

-calculus. Cambridge University Press, 1999.

[23] D. Sangiorgi and A. Valente. A Distributed Abstract Machine for Safe Ambients. In Proceedings of the
28th International Colloquium on Automata, Languages and Programming, volume 2076 of Lect. Notes
in Comp. Sci. Springer-Verlag, 2001.

[24] D. Sangiorgi and S. Walker. The
�

-calculus: A Theory of Mobile Processes. Cambridge University Press,
2001.

[25] A. Schmitt and J.B. Stefani. The M-calculus: A Higher-Order Distributed Process Calculus. In Proceed-
ings 30th Annual ACM Symposium on Principles of Programming Languages (POPL), 2003.

[26] D. Teller, P. Zimmer, and D. Hirschkoff. Using Ambients to Control Resources. In to appear in Proceed-
ings CONCUR 02, 2002.

[27] B. Thomsen. A Theory of Higher Order Communicating Systems. Information and Computation, Vol.
116, No 1, 1995.

[28] J. Vitek and G. Castagna. Towards a calculus of secure mobile computations. In Proceedings Workshop
on Internet Programming Languages, Chicago, Illinois, USA, Lecture Notes in Computer Science 1686,
Springer, 1998.

[29] P. Wojciechowski and P. Sewell. Nomadic Pict: Language and Infrastructure. IEEE Concurrency, vol. 8,
no 2, 2000.

[30] N. Yoshida and M. Hennessy. Subtyping and locality in distributed higher-order processes. In Proceedings
CONCUR 99, Lecture Notes in Computer Science no 1664. Springer, 1999.

[31] S. Dal Zilio. Le calcul bleu : types et objets. PhD thesis, U. of Nice-Sophia Antipolis, France, 1999.

RR n � 4692

36 Jean-Bernard Stefani

A Proofs
We gather in this section the proofs of theorems appearing in the main text, together with auxiliary lemmas.

Lemma A.1 (Substitution Lemma) For all
"
,
�

,
�

,

, if
� �

and
"#$
n � bn ��� �
 � � �

, then
� ".$ �

 " $
.

Proof: A simple induction on the derivation of
����

. �

Lemma A.2 If
� � � �

��������� (� �
, then we have fn

� �9���
fn
�����

and bn
� � ���

bn
�����

.

Proof: A simple induction on the derivation of
� � � �

�������	� (� �
. �

We define recursively the operation
� � �

on actions by: recursively:
� � ��� �

,
� ��� ���

,
� � ��� � ,

� � � � �
,� � ��� � � � � �

,
� � � � � � � � � ���
� �

. Note that if
� ���� � �

, then
� � � ���

is a Kell calculus process. When� � � � ���	
 9 ��� � 9 , � � � ��� ".$ �
, we say that

�
or
"

occurs in
�

. By the following lemma, an action
�

can

occur only at most once in a given action
�

obtained in a derivation
� � � �

���	����� (!� �
. By convention, we set
 9 ��� � 9 � � if � ��� .

Lemma A.3 If
� � � �

�
���	�	� (� �
, then we have (i)

� ���
, or (ii)

� � �2��
 9 ��� � 9 or (iii)
� � � � � ��
 9 ��� � 9 .

Furthermore, in case (i) and (ii)
�

does not occur in
�

, and in case (iii)
�

occurs exactly once in
�

.

Proof: By induction on the derivation of
� � � �

���	�	�	� (� �
. The key induction step is the case when

� � � �
���	�	��� (

� �
is derived through the use of rule L.PAR. In this case, we have

� � *
�
� * � , * 9

� 9 � � 9
���������	� (* �9 ,� � �

�
� � � , � ��� �

��� � , with the constraint that
�

occurs at most once in
�

, and if one of the
� 9

is equal
to
�

, then the other must be
�
. Because of this constraint, and using the induction hypothesis for

�
� and
� � ,

we then have five possible cases: (1)
�
� verifies (ii) and

� � verifies (ii), in which case
�

verifies (ii); (2)
�
�

verifies (ii) and
� � verifies (iii), in which case

�
verifies (iii); (3)

�
� verifies (iii) and

� � verifies (ii), in which
case
�

verifies (iii); (4)
�
� verifies (i) and

� � � � , i.e.
� � verifies (ii) with � � � , and

�
verifies (i). (5)

� �
verifies (i) and

�
�
� �

, i.e.
� � verifies (ii) with � � � , and

�
verifies (i). Hence

�
verifies (i), (ii) or (iii), as

required. �

Lemma A.4 If
� � � �

��������� (� �
, then fn

� � ���
fn
�����

fn
� � �

and fn
��� � ���

fn
������

bn
� � ��

fn
� � �

if�
occurs in

�
; otherwise, fn

� � ���
fn
�����

and fn
��� � ���

fn
������

bn
� � �

.

Proof: By induction on the derivation of
� � � �

�
���	�	� (� �
. By convention, we set fn

� � ��� �
if
�

does not
occur in

�
.

� L.NULL. In this case, we have
� � �

, and
� � � �	� �

. Hence fn
� � �9� ���

fn
�����

and
fn
��� � ���

fn
�����

, as required.
� L.ACT and L.PASS. In these cases, we have

� ���
,
� �%�

and
� � �%�

. Hence fn
� � ���

fn
�����

and
fn
��� � �������

fn
�����

, as required.

INRIA

A Calculus of Higher-Order Distributed Components 37

� L.TRIG. In this case, we have
� � ��� *

,
� � � � � " $ � � �

,
�	� �

,
� � � *2" $

, fn
�����9�

fn
� � �
 �

fn
� *�� �

bn
� � � �

. Hence fn
� � ���

fn
� � �

, and fn
��� � ���

fn
� *�� �

bn
� � �

fn
� "%$ �

cosupp
���

fn
������

fn
� � �

, as required.

� L.LOC. In this case, we have
� � � " *

,
* � � � � ����	������� (* �

,
� � � � � �

,
� � � " � �

,
� � � � " * �

,
fn
����� � � � �

fn
� *��

, fn
��� � � � � � �

fn
� * � �

. By induction hypothesis, we have fn
� � � � �

fn
� *��

fn
� � �

. Hence fn
� � ���

fn
� � � ���

fn
�����

fn
� � �

, as required. Also by induction hypothesis,
we have fn

� * � � �
fn
� *��

bn
� � � �

fn
� � �

. Hence fn
��� � � �

fn
� *���
 � ���

bn
� � ��

fn
� � � �

fn
������

bn
� � ��

fn
� � �

, as required.

� L.NU.NF. In this case, we have
�,� � ��� *

,
* � � � � ����	������� (* �

,
� � � �

,
� � � � � � �

,
� � � ��� � * �

,
fn
�������

fn
� *�� � � ���

, ln
����� �

ln
� * �

, fn
��� � ���

fn
� * � � � � ���

. By induction hypothesis, we have
fn
� � � ���

fn
� *��

fn
� � �

and fn
� * � ���

fn
� * �

fn
� � �

bn
� � � �

. Hence fn
� � ���

fn
�����

fn
� � �

and fn
��� � � �

fn
������

fn
� � ��

bn
� � �

, as required.

� L.NU.F. In this case, we have
� � ����� *

,
* � � � � �� �������	� (* �

,
� � � ��� � �

,
� � � ��� � �

,
� � ����� � * �

,
� ��� �
�� ���

, fn
����� �

fn
� * ��� � ���

, fn
� � � �

fn
� � � ��� � ���

, bn
� � � �

bn
� � � ��
 � ���

, fn
��� � � �

fn
� * � � � � ���

. By induction hypothesis, we have fn
� � � ���

fn
� *��

fn
� � �

and fn
� * � ���

fn
� *��

fn
� � �

bn
� � � �

. Hence fn
� � ��� �

fn
� *��

fn
� � � � � � ��� �

fn
� *�� � � ����

fn
� � ���

fn
�����

fn
� � �

and fn
��� � � �

fn
� * � � � � ��� � �

fn
� * � � � ���	

bn
� � � �

fn
� � � �

fn
� ��� ���

bn
� � �

fn
� � �

, as
required.

� L.PAR. In this case, we have
� � *

�
� * � , * 9

� 9 � � 9
�������	�	� (* 9

,
� � �

�
� � � , � � �

�
��� � ,� � ��* �

�
�.* � � , fn ������� fn

� *
�
�

fn
� * � � , fn � � ��� fn

� �
�
�

fn
� � � � , bn � � � � bn

� �
�
�

bn
� � � � ,

fn
��� � � �

fn
� * �

�
�

fn
� * �� � . By induction hypothesis, we have fn

� � 9 � �
fn
� * 9 �

fn
� � 9 �

and
fn
� * �9 � �

fn
� * 9 �
�

bn
� � 9

fn
� � 9 �

. By Lemma A.3, there is at most one
�

occurring in
�

. So at
least one of fn

� � 9 � � �
. Let
�

be the potentially occurring one. Hence, we have fn
� � ���

fn
� *

�
�

fn
� * � �
 fn � � ��� fn

�����

fn
� � �

and fn
��� � ���

fn
� *

�
�

fn
� * � �
 bn � � �
 bn � � � �
 fn � � ���

fn
������

bn
� � ��

fn
� � �

, as required.

� L.RED.S. In this case, we have
� � � � � �

����������� (� � �
,
� � �

,
� ���

, � � �
bn
� � � � � � ��� � � � � � � ,

fn
��� � � �

fn
��� � � ��� � � ,

� � � �
�
��� � � � , � ��� ��� " � � � , �-" � � � � � � � � � � . By induction hypothesis,

we have fn
� � � � �

fn
�����

fn
� � �

and fn
��� � � � �

fn
�����

bn
� � � �

fn
� � �

. By Lemma A.3,
we know that no

�
action occurs in

� 9
, hence we have, by induction hypothesis since

� 9
must have

appeared in an earlier derivation step involving subterms of
�

, fn
� � 9 � �

fn
�����
 � � . By definition

fn
� � � �

fn
� � �

fn
� "����

cosupp
�
. But

�#"�� � � � � � � � � , hence fn
� "����

cosupp
� �

fn
� �

�
� � � �

and fn
� � � �

fn
�����
 � � . As a result, we have fn

� � � � � �
fn
�����

, and fn
��� � � � �

fn
�����
 � �

fn
� � � ��� � � � fn

�����
, as required.

� L.RED.H. This case is handled as the case L.RED.S above.

�

Proof of Theorem 1: The proof proceeds by induction on the depth of the inference of
� � � �

��������� (� �
and

by induction on the depth of the derivation of
����

by means of the structural congruence rules.
We first consider the case when

� �

has been obtained by the application of a single structural con-

gruence rule, and we consider the last rule that has been applied in the derivation of
� � � �

��������� (� �
. In the

RR n � 4692

38 Jean-Bernard Stefani

different cases below, several subcases can be dispatched immediately. Because we consider only derivations
of
� �

which only involve a single inference step, rule S.CONTEXT is not applicable. Also, if
� �

has
been derived using rule S. � , then by definition of the transition relation (which is defined up to � -conversion), if� � � �

�
���	�	� (� �
and

� � �

, then

 � � �
�
���	�	� (� �

. Finally, if
����

has been obtained through S.PAR.NIL,

i.e.

 �,� � �

, then by rule L.PAR.L we get

 � � �

�
���	�	� (� � � �
, and we have found

 � � � � � �&� � �
,� � � �

and
� � �

, as required. In the sequel, we do not consider these subcases any more.

Case:
� � � �

�������	� (� �
derived by L.NULL. In this case we have

� � �
,
� ���

and
� � � �

. We have

by L.NULL

�� �
� �	��� (

. Hence we have found

 � �
 � � � � �

,
� � ��
 � � � �

, and
��� � � �

,
as required.

Case:
� � � �

���	�	��� (� �
derived by L.ACT. In this case, we have

��� � " *
,
� � ���

and
� � � ���

.
Since

� �

, we have

� " * �

. This could only have been derived by rule S.NU.KELL (apart from the

three rules which have been considered above). Thus, we have
��� � "���	�� �

and

 � ��	�� � " �

, with
	 �� �

.
There are now two possibilities: either (i)

	 �
fn
� � �

or (ii)
	 ��

fn
� � �

.
In case (i), we have in fact

	 �
fon

� � " � �
; hence we can apply rule L.ACT followed by L.NU.F to get:

 � � 	�� � " �
� �������	�	�	��� (�

. Since
	 ����

, we have
� 	 � � " � ��� " � 	 � �

: we have found
��� � 	 � � " � ��� " ��	�� � �

�
,
� � ��
)� � ���

and

 � ��� ��� �

, as required.

In case (ii), we can apply rule L.ACT followed by L.NU.NF to get:

 � � " �
� �	��������� (� 	 � �

. But we have��	 � �����
and , since

� �� 	
, we have

� " ��	�� � � � 	�� � " � � ��	 � � " � � ��� � " � � ��	�� ��� � " �
, hence we

have found
� ��� " � ��� " � 	 � � � �

,
� � ��
���� ���

and

 � �%� 	 � � ��� �%� �

as required.

Case:
� � � �

���	����� (� �
derived by L.PASS. In this case, we have

� � � $ *
,
� � � �

and
� � � � �

.
Since

�!�

, we have

� $ * �

. This could only have been derived by rules: (a) S. � , (b) S.CONTEXT, or

(c) S.PAR.NIL, which have all been considered above.

Case:
� � � �

���	�	��� (� �
derived by L.TRIG. In this case, we have

� � � � *
,
� � �

,
� � � � � "%$ �

,
and

� � � � ".$
. But then

� � ��� * �

could only have obtained through S.TRIG. Thus, we have

 � ��� *
. But then by L.TRIG, we have

� � � ��� " $ �
� �	�������	�	� (*�" $

. Hence we have obtained

 � ��*2" $ � � �

,� � � � � �
, and

� � � ��� ".$ � � � ��� ".$ ��� �
, as required.

Case:
� � � �

���	����� (� �
derived by L.NU.NF. In this case we have

� � ��� � *
,
* � �

� �
� ��������� (* �

with� ��
fn
� � �

,
� � � � ��� * �

, and
� � ����� �

� . Since
� �

we have

 ��� ��� *

. This could only have been
derived by rules: (a) S.NIL, (b) S.NU.KELL, (c) S.NU.COMM, (d) S.NU.PAR.

� In case (a), we have
* � �

,
����� ��� �

, and

 � �

. But then
* � �

� �
� �	�	�	�	� (* �

could only have been
derived by L.NULL, hence

�
�
� �

,
� ���

,
* � � �

, and
� � ��� � � � ����� � � �

,
� � � � ��� �9� �

.

By L.NULL we have

�� �
� �	��� (

, hence we have found

 � �
 ��� ��� �

,
� � �
+����� �

,
and

� � � � �
, as required.

� In case (b), we have
* � 	 " �

, with
	 ��%�

, and

���	 " � ��� �

. Now
* � �

� �
� �	�	�	��� (* �

could only have
been derived through rules (i) L.ACT, (ii) L.LOC, (iii) L.RED.S, (iv) L.RED.H, (v) L.NULL.

– In case (i) we have
	 " � 	 " � �-	 " �

�
�������	�	�	��� (�
. Hence

�
�
� 	 " �

,
� � 	 " �

, and
* � �7�

. By

rule L.ACT one gets:
	 " � ��� � 	 "������ � �#	 " � ��� �

� �����	�	�	�������������	� (�
. Since

� ��
fn
� � �

, we have
� ��

fn
� � �

,

INRIA

A Calculus of Higher-Order Distributed Components 39

hence we have:
� ��� 	 " � � 	 " �

. Hence we have found :

 � � * � � �!� � ��� * � � � �

,� � 	 " ��� � � � ����� 	 " � � 	 " � � �
, and
� � � 	 "�� ��� ��� ��������	 " � � � ��� 	 " � � �

, as
required.

– In case (ii), we have
	 " � 	 "�� � � � � � �

���	�	�	�������	�	� (" � �
, with

�
� � � � �� �	������� (� �

,
� � � � � �

,
�

�
�

	 "�� � , and
* � � 	 " � �

. Since
� ��

fn
� � �

, then
� ��

fn
� � � �

, and by rule L.NU.NF one

gets:
��� � � � ��� � � � � �� �������������	� (��� � � �

. Applying rule L.LOC yields:
	 "������ � 	 " � ��� � � � � � � �

� �	�������	�	�	������� (" ��� � � �
. Since

	��� �
, we have:

	 " � ��� � � � � ��� 	 " � �
, and

	 " ��� � � � � ����� 	 " � � . Hence we
have found

 � �
	 " � ��� � � � ����� 	 " � � �%� ��� * � �%� �
,
����� � � � � �

, and
� � ��	 " � ��� � � �� ��� 	 " � � � � � � � �

���
, as required.

– In case (iii), we must have
�
�
��*

,
� � �

and
* � � � � �� �	�	�	��� (�* � �

with
� � � ��� � � � � � � � ".$ � �

� � � . But we have
*%�
	 " �

, hence
* � � � � �� �	�	����� (* � �

could only have been obtained via L.LOC,
hence
� � shold be such that

� � ��� � ^ � , a contradiction. Hence this case is void.

– In case (iv) we have
� � �

,
�
�
� 	 " � � *

,
* � � � � � � * � � , with

* � � � � ����	�	�	��� (* � �
, � � �

bn
� � � � , � � � � � � � ^ � � � � � ��� � � " $ � � � � � � � � � ` , � � � � � � , �#" $ � � � ^ � � � � � � � � � � � � � ` ,� � � ^ � ��� � � ` ��� �

,
� � �

�
� � � � � � ��� �

. Now,
%��	 " � � � � � �� ��������� (� � �

could only have been obtained
through rule L.LOC (rule L.ACT does not apply because of the form of action

� �). Hence we

must have:
� � ^ � � � ` ��� , �

� ^ � � ^
� �������	� (� �

,
� � �)	 "�� ^ , � � � � � ^ � , and

* � � �)	 " � �
. We

now have two cases to consider: (1)
����

fn
� � ^ �

and (2)
� �

fn
� � ^ �

.

In case (1), we can apply L.NU.NF to get:
� ��� � ����� � ^ � � ^

� �	�������	�	�	� (��� � � �
. Now, by L.LOC, we get:

	 " ��� � � 	 " � ��� � ^ � � � ^ �
� �����������	�	�	������� (" � ��� � �

. The conditions of premises of rule L.RED.H still apply,
in particular since

� � ^ � � � � , and since
� � � � � � 	 "�� ^ � � � 	 " ��� � � ^ �

. Hence, by L.RED.H
we get:

	 " � ��� � 	 "���� � � � �
� ���	�	�	������� (� � � � 	 "������ � �

Now, since
�

is bound in
�

, and since the transition rules are defined up to � -conversion, it
is always possible to choose

�
such that

�!�� � � . Hence we have found

 � � � � � � 	 " ��� � � � �� ��� � � � � 	 " � � � ����� � � � � * � � � ����� * � � � �

,
� � � 	 "������ � � � ��� 	 " � � � ��� �

�
� �

, and� ��� � �
, as required.

In case (2) we can consider that
�
fon

� � ^ �
for if that were not the case, then by Lemma A.4, we

would have
� ��

fn
� � �

, a contradiction with the fact that
�-"%$%� � � � � � � � � � . We can then apply

L.NU.F to get:
� ��� � ����� � ^ � ��� � � ^

�������	�	�	�������	� (� �
. Now, applying rule L.LOC, we get:

	 " ��� � � 	 " � ��� � ^ � � � ��� � ^ �
� �	�������	�	�	������������� (" � �

Since
� � � ��� � ^ � � � � � � ^ � � � � � � � , and

� � � � � � 	 "�� ^ � � � 	 " � ��� � ^ �
, we can apply

L.RED.H to get:
	 " � ��� � 	 "���� � � � �

� ���	�	�	������� (����� � � � � 	 " � �
Hence we have found

� � � 	 " � ��� � � ����� 	 " � � ����� �
�
� �

,

 � � ��� � � � � � 	 " � � �� ��� � � � � * � � ��� ��� * � ��� �

, and
� � � � �

, as required.

RR n � 4692

40 Jean-Bernard Stefani

– In case (v), we have
�
�
��*

,
� ���

, and
* � ��*

. Now, by L.NULL, we have
	 " � ��� � 	 "������ � � �

� �����������	�	� (" ��� � �
, hence we have found

 � �

� � � � ��� 	 " � � ����� * � � � �
,
� � �
�� � �

� ��� 	 " � � � ��� 	 " � � � ��� *%� ����� �
�
� �

, and
� � � � �

, as required.

� In case (c), we have
*�� � 	 � �

,

 � ��	�� � ��� �

and
	 �� �

. Now, we could only have had
* � �

� �
� �	�	�	��� (* �

through one of the following rules: (i) L.NU.NF, (ii) L.NU.F, (iii) L.RED.S, (iv) L.RED.H, (v)
L.NULL.

– In case (i), we have
��	�� � � 	 � � � � �� �	����������� (� 	 � � �

, with
* � �%� 	 � � �

,
�
� � � �� ���	�	�	� (� �

,
�
�
� � 	 � � � ,

and
	���

fn
� � �

. Since
�
��

fn
� � �

, by rule L.NU.NF we get:
� ��� � ��� � � � � ����������	�	�	� (� ��� � �

, and

since
	 ��

fn
� � �

, applying again rule L.NUNF we get:
��	�� ����� � ��	 � ��� � � � � ����	�������	�	�	��� (��	�� � ��� � �

.
Since

	 �� �
we have

��	�� ����� � � � ��� � � 	 � � �
, and

� 	 � ��� � � � � ����� ��	�� � � . Hence we have found
 � � ��	�� � ��� � � � � ��� ��	�� � � � � ��� * � � � �
,
� � �

, and
� � � ��	�� ����� � � � � ��� � 	�� � � �� ��� �

�
���

, as required.

– In case (ii), we have
��	�� � � 	�� � � � ��	�� � �� �	����������������� (* �

, with
�

�
� � 	 � � � and

� � � 	 � �
� , with	 �

fn
� �

�
�

and
�
� � � � ����	�	�	��� (* �

. Since
�/��

fn
� � �

and
�&��)	

, then
�&��

fn
� �

�
�

and by rule

L.NU.NF we get:
� ��� � ����� � � � � �� �����������	�	� (� ��� * �

. Applying rule L.NU.F we get:

� 	 � � ��� � ��	�� � ��� � � � � 	 � � �� �����	�	�	������������� (� ��� * �
Hence we have found

� � � ��	�� � ��� � � � � ��� ��	 � � � � � � � �
�
� �

,
� � � 	 � �

�
� �

and
 � ��� ��� * � ��� �
, as required.

– In case (iii), we have
* * � �

� ���	� (* �
with
�

�
��*

,
� � �

,
* � � � � � � * � � , * � � � � �� �	������� (* � �

,� � � bn
� �

�
�
,
� �

�
� � � �

�
� � � � ".$ � � � � � , � � � � � � , �-".$ � � � � � � � � � � . Since

* � ��	�� �
,

we could only have had
*%����	 � � � � � � �� �������	� (* � �

through either (1) rule L.NU.NF or (2) rule
L.NU.F.

In case (1), we have
� � � � 	 � � ^

,
* � � ����	�� � �

,
	���

fn
� �

�
�

and
�
� ^ � �

�� ���	�	�	� (� �
. We

have
� �

�
� � � �

�
��� � � ".$ � � � � � , and

� � � � � � � � ��	�� � ^ � � �
� � � � ^

, hence we can apply

L.RED.S to get:
� � ���
� ����� (� � � � � � . Applying L.NU.NF twice we get:

��	 � ��� � � � 	 � � ��� � � �
� ���������	�	�	� (��	 � ��� � � � � � � � . Hence we have found:

� � � � 	 � � ��� � � � ��� � 	�� � � � ��� * � �
,
��� � � �

, and
 � ����	 � ��� � � � � � � � ��� ��� � � � � � 	 � � � ��� ��� � � � � * � � ��� ��� * � ��� �
, as required.

In case (2), we have
� � � � 	 � � ^

,
�
�
� � 	�� � � , 	 � fn

� � � � , and
�
� ^ � � ����	������� (* � �

. Since	 �
bn
� �

�
�
, we have

	 � � � . We have
� � � � � � � ��� � � � � � �

�
� � � �

�
� � � � " $ � � � � � , and� � � � � ��� � ��	�� � ^ ��� �

� � � � ^
, hence we can apply L.RED.S with

�� � � bn
� � � � � � � �	�,	 � ,

to get:
� � � �

� �	��� (� �� � � * � � . Applying rule L.NU.NF twice we get:
� 	 � � ��� � � 	 � � ��� � � �

� ���������	�	�	� (��	 � ��� � � �� � � * � � . Hence we have found:

 � ����	 � ��� � � �� � � * � � ��� ��� � � � � * � � � � ��� * � � � �

,
� � ���	 � ��� � � � � ��� � 	�� � � � ��� *%���

,
� ��� � �

, as required.

– In case (iv), we reason exactly as in case (iii) above.

INRIA

A Calculus of Higher-Order Distributed Components 41

– In case (v), we have
�
�
� *

,
� � �

,
* � ��*

, hence
� � ����� � *����

, and
� � ����� * ���

. By

L.NULL, we have

�� �
� �	��� (

, hence we have found

 � ��
 ��� � � �

,
� � ��
)���)���

,
and

� ��� � �
, as required.

� In case (d), we have
��� � ��� *

,
*�� � ���

,
* � �

� �
� �����	�	� (* �

with
� ��

fn
� � �

,
� � � ��� � * �

,
� � � ��� �

� ,

 � ����� � � � ���

with
�/��

fn
��� �

. Now,
* � �

� �
� ���	�	�	� (* �

could only have been derived
via one of the following rules: (i) L.PAR, (ii) L.RED.S, (iii) L.RED.H, (iv) L.NULL.

– In case (i), we have
�
� � � � �� �������	� (� �

,
�
� ^ � � ^
� ���	�	�	� (� �

,
�
�
� � � � � ^ , � � � � � � ^ ,* � � � � ��� �

, bn
� � � � � bn � � ^ � � � , bn � � � � � fn ��� � � �

, bn
� � ^ � � fn � � � � �

, and the
conditions that if one of the

� � � � ^ is
�

, then the other must be
�
. Since

����
fn
� � �

, we have� ��
fn
� � � �
 fn � � ^ � , hence by rule L.NU.NF:

����� � � ��� � � � � �� �	�	�	��������� (� ��� � �
.Since bn

� � ^ � �
fn
��� ��� � � ���

, bn
� � � � � bn � � ^ ����� , bn � � � � � fn ��� ����� , we can apply L.PAR to get:

��� ��� � � ��� � � � � � � � ��� ^ � � � � � ^
� �������	�	�	�������������	�	�	��� (��� ��� � � � ��� �

Since
�&��

fn
��� �

, then
�&��

fn
� � ^ �

by Lemma A.2. Also, since
� ��

fn
� � ^ �

and
�&��

fn
��� �

,
then by Lemma A.4 we have that

�)��
fn
��� � �

unless
� �

bn
��� �

. In the latter case, since the
transition rules are given up to � -conversion, it is possible to � -convert

�
so that

����
bn
��� �

.
Hence we have

����
fn
� � ^ �

and
�
��

fn
��� � �

. But then we have found

 � � ������� � � � ��� � �� ��� � � ��� � � � ��� * � ��� �

,
� � � � ����� � � �)� � ^ � ��� � � � � � ^ ��� ��� �

�
� �

, and� � � � � � ^ � � , as required.

– In case (ii), we have
�
�
��*

,
� � �

,
* � � � � � * � � , *

� �
�
� � �

�� ���	�	�	� (* � �
,
� � �

�
��� � � � � � � � ".$ � �

� � � , � � � � �
�
�
,
�-" $ � � � � � � � � ^ � . Now,

* � � � � � � ����	�	�	��� (* � �
could only have been obtained by

rule L.PAR, hence we have
�
� � � � ����	�	�	��� (� �

,
�
� ^ � � ^
� ��������� (�� �

,
� �

�
� � � � � ^ , � � � � � � �� ^

,
* � � � � � �	� �

, bn
� � � � � bn � � ^ � � � , bn � � � � � fn ��� � � � bn � � ^ � � fn � � � � � , and

the constraint that if one
� � � � ^ equals

�
, then the other must be

�
. We now have to consider to

subcases: (1)
����

fn
� � � � and (2)

� �
fn
� � � � .

In case (1), we can apply rule L.NU.NF to get:
� ��� � ����� � � � � �� �����������	�	� (� ��� � �

. We have bn
� � ^ � �

fn
� ����� � � ����� , bn � � � � � bn � � ^ ����� , bn � � � � � fn ��� � ��� , thus we can apply L.PAR to get:

��� ��� � � ��� � � � � � � � ��� ^ � � � � � ^
� �������	�	�	�������������	�	�	��� (��� ��� � � � ��� �

Now, we have
� � � � � ^ � � � � �

�
�
,
� � � � �

�
� � � � � � � ^ � � � � � ��� � � � � � ^ � , hence by

L.RED.S we get:
��� ��� � � ��� ����� � � � ��� � �

� �	�	�������������	� (� � � � ��� ��� � � � ��� �
Hence we have found

 � � � � � � ��� ��� � � � �
� � � ����� � � � � � � �
� � � ��� � * � � � �
,
� � � � �

, and� � � ��� ��� � � ���
� ����� � ����� � ��� *%� ����� �
�
���

, as required.

In case (2), we can consider that
� �

fon
� � � � , for otherwise by Lemma A.4 we would have

����
fn
� � �

and we would then have that
� �

fn
� � � �

fn
� � � " $ �

; but since
�-" $ � � � � � � � � � ^ � , we

RR n � 4692

42 Jean-Bernard Stefani

would have
� �

fn
��� �

, a contradiction. So we can apply L.NU.F to get:
� ��� � ����� � � � ����� � ����	�������������	�	� (

� �
. We have

�
��
fn
��� �

and
����

fn
� � ^ �

, hence we have: bn
� � ��� � � � � bn

� � ^ � � �
,

bn
��� ��� � � � � fn ��� ����� , bn � � ^ � � fn ������� � ����� , hence by rule L.PAR we get:

��� ��� � � ��� � � � � � � � ��� ^ � � ��� � � � � � � ^
�
�	�	�	�����������	�	�	�������������	�	�	� (� � ��� �

We have
� � ��� � � � � ^ � � � � � � � ^ � � � � �

�
�
,
� � � � �

�
� � � � � � � ^ � � � ��� � � � � � ^ � ,

hence by L.RED.S:
��� ��� � � ��� ����� � � � ��� � �

� �	�	��������������� (����� � � � � � � ��� �
Hence we have found

 � � ��� � � � � � � � � � � ��� ��� * � � � �
,
� � �*� �

, and
� � � ����� � � � �

��� � � � � ���
� � ��� *%� ����� �
�
� �

, as required.

– In case (iii), we reason exactly as in case (ii) above.

– tem In case (iv), we have
�
�
��*

,
� � �

,
* � ��*

, hence
� � ��� ��� *%���

, and
� � � ��� * ���

.

By L.NULL, we have

 � �
� ����� (

, hence we have found

 � ��
)� � �%� �

,
� � ��
 �%�)�

�
, and

� ��� � �
, as required.

Case:
� � � �

��������� (� �
derived by L.NU.F. In this case, we have

� �%����� *
, with

* � �
� �

�� �	�	����� (� �
, and� �

fon
� �

�
�
,
� � � ��� �

� ,
� � � ��� �

� . Since
�!�

, we have

�� � ��� *

, and this could only have been
derived via rules: (a)S.NIL, (b) S.NU.KELL, (c) S.NU.COMM, (d) S.NU.PAR.

� In case (a), we have
*%���

and

 ���

. Since
� �

fon
� �

�
�
,
�
�
�� �

, hence this case is void since there
is no way to derive a transition for

*
except through rule L.NULL.

� In case (b), we have
* � 	 " �

with
	 �� �

and

 � 	 " � ��� �

. But then
* � �

� �
�� �	�	����� (� �

could
only have been derived through (i) L.ACT, (ii) L.LOC, (iii) L.RED.H (rule L.RED.S cannot have been
applied for the same reason as in subcase (b) of case L.NU.NF).

– In case (i), we have
�
�
�
	 " �

,
�
�
�
	 " �

, and
� � � �

. But by L.ACT we have:

	 "�� ��� � 	 " � ��� � �%	 " ��� � �
� �	�	�	�������	�	�	������� (�

Hence we have found

 � � �
� � �

,
� � � 	 "������ � � ����� 	 " � � � ��� �

�
� �

, and
� �

	 " ��� � � � � ��� 	 " � � � ��� �
�
� �

, as required.

– In case (ii), we have
� � � 	 " � �

,
�
� � � � �� �����	�	� (� �

,
�
�
� 	 " � � , � � � � � � � . Since� ��

fn
� �

�
�
, then

� ��
fn
� � � � , hence by L.NU.F:

��� � � � � � � � � � ��� � ����������	�	�	������� (� �
. Then, by

L.LOC:
	 "������ � 	 " ��� � � � � � ����� � � �

� �	�	�������������	�	�	����� (" � �
. Hence we have found

 � � 	 " � � � � �
,� � ��	 " ����� � � � ��� � 	 "�� � � � � � �

�
� �

, and
� � � ��� � � � � � � ��� � � � � � � ��� �

�
� �

, as
required.

– In case (iii), we have
�
�
� �

, but then we have a contradiction for
� �

fon
� �

�
�
, hence this case

is void.
� In case (c), we have

* � � 	 � �
, with

)�� �
, and

 � � 	 � � ��� �
. Now, we could only have had*%����	�� � � �

� �
�� �	�	����� (� �

through (i) L.NU.NF, (ii) L.NU.F, (iii) L.RED.S, (iv) L.RED.H.

INRIA

A Calculus of Higher-Order Distributed Components 43

– In case (i), we have
�
� � � � �� �������	� (� �

, with
�

�
� ��	 � � � , � � � � � , � � � ��	�� � �

,
	 ��

fn
� � � � .

Since
� �

fon
� �

�
�
, then by L.NU.F we get:

� ��� � � ��� � � � � ��� � �� ���������	�	�	����� (� �
. Now by L.NU.NF

we get:
��	 � ��� � � ��	�� ����� � � � � ��� � �� �������������	�	�	������� (��	�� � �

. Hence we have found

 � ����	�� � � � � �

,
� � ���	 � ��� � � � � � � � � 	 � � � � � ��� �

�
���

, and
��� � � � � � � � ��� � � � � , as required.

– In case (ii), we have
�
� � � � �� �	�	����� (� �

, with
�

�
� � 	�� � � , � � � � 	 � � � , � � � � �

,
	 �

fon
� � � � .

Since
� �

fon
� �

�
�
, then by L.NU.F we get:

��� � � � � � � � � � ��� � ����������	�	�	������� (� �
. Now by L.NU.F

we get:
� 	 � � ��� � ��	�� � ��� � � � ��	�� ����� � ����������������	�	�	�������	�	� (� �

. Hence we have found

 � � � � � � �

,
� � ���	 � ��� � � � � ����� � 	 � � � � ��� � �

�
� �

, and
� � � 	 � � ��� � � � � ��� � 	 � � � � ����� �

�
� �

, as
required.

– In case (iii), we should have
�
�
��*%����	�� �

,
�
�
� �

, but since
� �

fon
� �

�
�
, this case is void.

– In case (iv), we reason as in case (iii) above.

� In case (d), we have
* � � � �

and

���������� � � � �

,
� ��

fn
��� �

. Now
* � �

� �
�� �	�	�	�	� (� �

could only
have been derived through rules (i) L.PAR, (ii) L.RED.S, or (iii) L.RED.H.

– In case (i), we have
�
� � � � ����	�	�	��� (� �

,
�
� ^ � � ^
� �����	�	� (� �

,
� � � � � � � �

,
�

�
� � � � � ^ ,�

�
� � � � � ^ , bn � � � � � bn

� � ^ � � �
, bn

� � � � � fn
��� � ���

, bn
� � ^ � � fn

� � � ���
, and

the condition that if one of
� � � � ^ equals

�
, then the other must be

�
. Since

�/��
fn
��� �

, then by
Lemma A.2

� ��
fn
� � ^ �

. Now, since
����

fn
��� �

, by Lemma A.4, we have that
� �

fn
� � ^ �

only if
� �

fn
� � �

where
�

occurs in
� ^

. But then we cannot have
�
fon

� � ^ �
, for fon

� � � � �
,

by definition. Hence we have
� ��

fon
� � ^ �

, which implies, since
� �

fon
� �

�
� �

fon
� � � �

fon
� � ^ �

, that
� �

fon
� � � � . We can thus apply L.NU.F to get

����� � ����� � � � � ��� � ����	�������������	�	� (� �
.

Now, if necessary by � -converting
�

, we can always take
� ��

bn
��� �

, which means by Lemma
A.2 that

�/��
bn
� � ^ �

. Thus, we have bn
������� � � � � bn � � ^ � � � . Also bn

� ����� � � � � fn ��� � for����
fn
��� �

, and bn
� � ^ � � fn � ����� � � . Hence we can apply L.PAR to get:

��� ��� � � ��� ��� ��� � � � ��� ^ � ����� � � � � � � ^
�
�	�	�	�����������	�	�	�������������	�	�	� (� � ��� �

Now, since
����

fon
� � ^ �

, and since bn
����� � � � � � bn

� � ^ � � �
, we have by the definition of

action equivalence
� ��� � � � � � ^ � ��� � � � � � ^ . Hence we have found

 � � � � � � � � � �
,� � ��� � ��� � � � � � ^ � � ��� � � � � ^ � � � � �

�
� �

, and
� ��� ����� � � � � � ^ � ����� � � � � ^ �� ��� �

�
� �

, as required.

– In case (ii), we should have
�
�
� �

, but since
� �

fon
� �

�
�
, we have a contradiction, hence this

case is void.

– In case (iii), we reason as in case (ii) above.

Case:
� � � �

���	�	��� (� �
derived by L.LOC. In this case, we have

� �,� " *
,
* � �

� �
�� ���	�	�	� (* �

,
� �

� "��
� ,
� � � �

�
�
,
� � ��� " * �

. Now,
����� " *!�

could only have been derived through S.NU.KELL,

hence
* � � 	 � �

,

�� ��	�� � " �

, and
	 �� �

. But then
* � �

� �
�� �������	� (* �

could only have been derived via (i)
L.NU.NF, (ii) L.NU.F, (iii) L.RED.S, (iv) L.RED.H, (v) L.NULL.

RR n � 4692

44 Jean-Bernard Stefani

� In case (i), we have
�
� � � � �� ���	�	�	� (� �

,
�

�
� ��	 � � � , * � � ��	�� � �

,
	 ��

fn
� �

�
�
. Applying rule L.LOC

we get:
� " � � "�� � � � � � �� �	�������������	� (� " � �

. Applying rule L.NU.NF, we get:
��	�� � " � ��	�� � " � � � � � � �� �	�	�������	�	�	������� (� 	 � � " � �

. Hence we have found

 � � ��	 � � " � � � � " � 	 � � � � � " * � � � �

,
� � � ��	�� � "�� � �� " � 	 � � � ��� "�� �

���
,
����� �

�
� � �

, as required.

� In case (ii), we have
�
� � � � ��������	�	� (* �

,
�

�
� ��	�� � � , � � � ��	�� � � , 	 � fn � � � � . Applying rule L.LOC

we get:
� " � � " � � � � � � �

� �����	�	�	������� (�� " * �
. Applying rule L.NU.F, we get:

��	�� � " � ��	�� � " � � � � � 	�� � � �
���	�	�������������	�	�	����� (� " * �

. Hence we have found

 � � � " * � � � �

,
� � � � 	 � � "�� � � � " � 	�� � � � � " �

�
� �

,� � � � 	 � � � � ��� � � � � � , as required.

� In case (iii), we have
�
�
�)*

,
�
�
� �

,
* � � � � �� �	�	����� (* � �

, � � � bn
� � � � , * � � � � � � * � � , � � � ��� � � � �� � � � � � � � � , � � � � � � , �#".$%� � � � � � � � � � , � � � � � � �

and
� � � � � � �

. Now
* � � � � �� �	�	����� (* � �

could
only have been derived through (1) L.NU.NF, or (2) L.NU.F. Note that we can ensure � � � � ����� � by
a suitable � -conversion of

*
.

– In case (1), we have
�
� ^ � � ^
� ��������� (� �

,
� � � � 	 � � ^

,
� � � � ^ , * � � � ��	�� � �

,
	/��

fn
� � ^ �

.
We have

� � ^ � � � � � � � � � � � � ��� " $ � � � � � , � � � � � � � � � 	 � � ^ � � � � ^ �
, hence we can

apply L.RED.S to get:
� � � �
������� (� � � � � � . Now by L.LOC:

� " � � " � � �
�	�	������� (� "�� � � � � � . And by

L.NU.BF: ��	�� � " � � 	�� � " � � �
� ���	�	�	������� (� 	 � � " � � � � � �

Note that in this case
	7��

fn
� � ^ �

, hence by Lemma A.2, it it possible to ensure that
	 �� � � by a

suitable � -conversion of
�

. Hence we have found

 � � � 	 � � " � � � � � � ��� " � � � � ��	 � � � ��� " * � �� �

,
� � � 	 � � " � ��� " ��	 � � ��� "�� 	 � � ��� " *%��� " �

�
� �

, and
� ��� � �

, as required.

– In case (2), we have
�
� ^ � � ^
� �������	� (� �

,
� � � � 	�� � ^

,
� � � � 	�� � ^

,
* � � � � �

,
	 �

fon
� � ^ �

.
We have

� � 	 � � ^ � � � � � � � � � � ��� ��� "%$ � � � � � , � � � � � � � � � 	 � � ^ � � � � ^ �
, hence we

can apply L.RED.S to get:
� � ���
� ����� (� � � � � � , with � � � 	 � � � . Now by L.LOC:

� " � � " � � �
����������� (� "�� � � � � � � . And by L.NU.BF:

� 	 � � " � ��	�� � " � ���
� �	������������� (��	 � � " � � � � � � �

Hence we have found

 � � ��	�� � " � � � � � � � � � "�� 	 � � � � � � � � ��� " � � � � * � � ��� " * � � � �

,
� �

��	 � � " � ��� " � 	�� � ��� " ��	 � � ��� " *%��� " �
�
� �

, and
� ��� � �

, as required.
� In case (iv), we reason exactly as in case (iii) above.
� In case (v), we have

�
�
� *

,
� � �

,
* � �+*

, hence
� � � � " *,�,�

, and
� � � " * � �

. By

L.NULL, we have

�� �
� �	��� (

, hence we have found

 � �
�� � � � �

,
� � �
!� �!� �

, and� � � � �
, as required.

Case:
� � � �

�
���	�	� (� �
derived by L.PAR. In this case, we have

� � *
�
� * � , * �

�
�
� �

�� �������	� (* �
� ,

* � � � � � ��������	�	� (* � � , � � � * �
�
� * � � , � � �

�
� � � , � � � � � � � , bn � � � � � bn

� � � � � �
, bn

� �
�
� �

fn
��� � � ��� , bn � � � � � fn ��� � � ��� , and the condition that if one of

� � � � ^ equals
�

, then the other must be�
. Now

����

could only have been derived through (a) S.PAR.COMM, (b) S.PAR.ASSOC, (c) S.NU.PAR.

INRIA

A Calculus of Higher-Order Distributed Components 45

� In case (a), we have

 ��* � �.* � . By rule L.PAR, we have:

* � �%* �

� � ��� �
� � � � � �� ���������	�	�	�������	�	� (*��� �%*�� �

Hence we have found

 � � * �� �9* � � � * �

�
�9* � � � � �

,
� � � � � ��� �

� �
�
�	� � � � ,� � � � � � � � � � � � � � � , as required.

� In case (b), we have
� � � �

�
� � � �9� * � , * �

� �
�
� � � and

�� �
�
� � � � � * � � (or a sym-

metric case with
* �). Now, we must have had

*
�

�
�
� �

������������ (* �
� through rule L.PAR, hence we

have
�
�

� ^ � � ^
���	������� (� �

� ,
� � � ` � � `� �������	� (� �� , * � � � � �

�
� � �� , � �

� � ^ ��� `
,
�
�
� � ^ � � `

,
bn
� � ^ � � bn � � ` � ��� , bn � � ^ � � fn ��� ` � � � , bn � � ` � � fn ��� ^ � ��� . We can apply rule L.PAR to

� � and
* � to get:

� � �%* � � ` ��� � � � ` � � �� ���������	�	�	�������	�	� (� �� �#*�� �
Applying L.PAR another time we get:

�
�
��� � � �#* � � � ^ � � � ` � � � � � � ^ � � � ` � � � �� �	�	�	�������������	�	�	�������	�	�	��������� (� �

�
��� � �� �%* � � �

Hence we have found

 � � � �

�
� � � �� ��* � � � �,� � �

�
� � �� ��� * � � � * � � �0* �� ��� �

,
� � ��� ^ � � � ` �

� � � ��� � ^ � � ` � � � � � � �
� � � � � ,

� � � ^ � � � ` � � � � � � � ^ � � ` � � � � � � � � � � � � ,
as required.

� In case (c), we have
*
�
� ��� � �

� ,
� ��

fn
� * � � , and

 � ��� � �
�
�-* � . Now,

*
�

�
�
� �

�� ��������� (�* �
� could

only have been derived through (i) L.NU.NF, (ii) L.NU.F (iii) L.RED.S, (iv) L.RED.H, (v) hnameL.Par.

– In case (i), we have
�
�

� �
�
� � �

�� �	������� (� �
� ,
�

�
� ����� � �

� ,
�
�
� � �

� ,
�
��

fn
� � �

�
�
,
* �
�
� ��� � � �

� .
We have bn

� � �
�
� � bn

� � � � � �
, bn

� � �
�
� � fn

� * � � � �
, bn

� � � � � fn
� �

�
� � �

, for since�+��
fn
� * � � it is always possible to � -convert

* � to ensure
� ��

bn
� * � � , which ensures by

Lemma A.2 that
�/��

bn
� � � � . Also, we can always � -convert

*
� to ensure

�/��
fn
� � � � . Hence

by L.PAR we get:
�
�
�.* � � � � ��� � � � � � � ��������	�	�	�������������	� (� �

�
�%*�� �

By L.NU.NF we get

� ��� �
�
�#* � � ��� �7�

�
��� � � � � � � ����������	�	�	�������������	�	� (����� � �

�
�%* � �

Since
�)��

fn
� * � � , then by Lemma A.2,

� ��
fn
� � � � . Hence we have found

 � � ����� � �
�
�

* � � � ������� � �
�
� � * �� �)* � � ��* � � � � �

,
� � � � � � � �

�
� � � � � � ��� � �

�
� � � � � � �

� � � � � ,� � �
�
� � � � � , as required.

– In case (ii), we have
�
�

� �
�
� � �

�� �	�	�	��� (� �
� ,
�
�
� � ��� � �

� ,
�
�
� ����� � �

� ,
� �

fon
� � �

�
�
,
* �
�
� � �

� .
Now, we have

�/��
fn
� * � � and, as in the subcase (1) above, we can ensure that

�
does not occur

in
* � and have

� ��
fn
� � � � . Thus we have bn

� � �
�
� � bn

� � � ��� �
, bn

� � �
�
� � fn � * � ��� �

,
bn
� � � � � fn � � � ����� . Hence by L.PAR we get:

�
�
�%* � � � � � � � � � � � � � �� �	�	�	�������	�	�	������� (*��

�
�%*�� �

RR n � 4692

46 Jean-Bernard Stefani

Since
� �

fon
� � �

�
�

hence we can apply L.NU.F to get:

��� � �
�
�%* � � ��� �7�

�
� � � � � ��� � � � � � �� �����	�	�	�������������	�	�	������� (*��

�
�#*���

Hence we have found

 � ��* �

�
�-* � � �%� �

,
� � � ����� � �

�
� � � ��� � ��� � �

�
� � � � � � �

� � � ��
,
� � � ��� � �

�
� � � ��� ����� � �

�
� � � � � � � � � � � � , as required.

– In case (iii), we have
�
�
���

,
�

�
��*

� . By the conditions in rule L.PAR, we then have
� � � �

and
* � � � * � . Also, we have

*
�

� �
�
� � �

�� ��������� (* � �
� ,
* �
�
�,� � � � * � �

� , � � � bn
� � �

�
�
,
� � �

�
� � � �

�
�

� ��� " $ � � � �� , � � � � �
�
�
,
�-" $ � � � �� ��� �� � . Now, since

*
�
����� � �

� ,
*
�

� �
�
� � �

�� �	������� (* � �
� could

only have been derived via (1) L.NU.NF or (2) L.NU.F.

In case (1), we have
�
�

� � �
�
� � � �

�� �	�	������� (� �
� , with

�!��
fn
� � � �

� ,
* � �
�
� � ��� � �

� ,
� � �
�
� � �

� ,
� �

�
�

� ��� � � �
� . Note that

� � � �
�
� � � � �

�
�9� � �

�
� � � � " $ � � � �� . Hence, because of L.TRIG, we have

�
�

� � �
�
� � � � �

�� �	��������� (� �
� with
� � � �
� identical to

� � �
� except that the action

� ��� ".$ �
occurring in

� � �
� (which

is unique by Lemma A.3) has been replaced by
� ��� " $ � � and

� � � � � � �
�
� * � � . By the definition

of action equivalence, we have
� � � �
�
� � �

� . Now, since
� � � � , we have bn

� � � �
�
� � bn � � � � ��� ,

bn
� � � � � fn � � � ����� . Also, it always possible to � -convert

�
� to ensure bn

� � � �
�
� � fn � * � ����� .

Hence we can apply rule L.PAR to get:

�
�
�.* � �7� �� ��� � � � � � ��� �����	�	�	�������	� (� �

�
�#* �

Now by L.NU.NF we get:

����� �
�
�#* � � � � � � �

�
��� � � � � � ��� �����	�	�	�������������	� (� ��� � �

�
�.* �

Now,
� ����� � � �

�
� * � � � � � � �

�
� * � � � � �

and, since for all
�

,
�

,
" ��� $�� � ".$

, we have�-" $ � ���#".$. We can the apply L.RED.S to get:

� ��� �
�
�%* � ����� �

�
�#* � � �

� �	�	�	������������� (� � � � � ��� � �
�
�.* �

Since we have ensured � � �
bn
� � �

�
�

is such that � � � fn
� * � � � �

, then we have found

 � �� � � � ��� � � �

�
�4* � � ��� � � � � ��� � �

�
� �3* � � ��� � � � * � �

�
� �3* � � * �

�
�3* � � � �

,
� � � � ��� �

�
�3* � ���� ��� �

�
� �%* � � � , and

� � � � �
, as required.

In case (2), we have
�
�

� � �
�
� � � �

�� ���	�	�	��� (� �
� , with

� �
fon

� � � �
� ,
* � �
�
� � �

� ,
� �
�
� � ��� � � �

� ,
� �

�
�

� ��� � � �
� . Note that

� � � �
�
� � � � �

�
�9� � �

�
� � � � ".$ � � � �� . Hence, because of L.TRIG, we have

�
�

� � �
�
� � � � �

�� �	��������� (� �
� with
� � � �
� identical to

� � �
� except that the action

� ��� ".$ �
occurring in

� � �
� (which

is unique by Lemma A.3) has been replaced by
� ��� " $ � � and

� � � � � � �
�
� * � � . By the definition

of action equivalence, we have
� � � �
�
� � �

� . Now, since
� � � � , we have bn

� � � �
�
� � bn � � � � ��� ,

bn
� � � � � fn � � � ����� . Also, it always possible to � -convert

�
� to ensure bn

� � � �
�
� � fn � * � ����� .

Hence we can apply rule L.PAR to get:

�
�
�.* � � � �� ��� � � � � � ��� �����	�	�	�������	� (� �

�
�#* �

INRIA

A Calculus of Higher-Order Distributed Components 47

Now by L.NU.F we get:

����� �
�
�#* � � � � � � �

�
��� � � � ��� � � � ��� �	�������	�	�	�������������	� (� �

�
�.* �

Now,
� ����� � � �

�
� * � � � � � � �

�
� * � � � � �

and, since for all
�

,
�

,
" ��� $�� � ".$

, we have�-" $ � ���#".$. We can the apply L.RED.S to get:

����� �
�
�%* � � ��� �

�
�.* � � �

� ���	�	�	����������� (� � � � � �
�
�#* �

Since we have ensured � � � � � � � � bn
� � �

�
�

is such that � � � fn
� * � � ���

, then we have found
 � � � � � � � �
�
�3* � � ��� � � � � �

�
� �3* � � ��� � � � * � �

�
� �4* � � * �

�
�3* � � � �

,
� � �,� ��� �

�
�4* � ���� ��� �

�
� �%* � � � , and

� � � � �
, as required.

– In case (iv), we reason as in case (iii) above.

– In case (v), we have
�
�
�!*

� ,
�
�
� �

,
* �
�
�+*

� , hence
� � �!*

�
�0* � � , and

���!*
�
� � � ,

� � � � . By L.NULL, we have
�
�

�
�
� �

�	����� (�
� . Hence by L.PAR

�
�
�%* � �

�
� � � � � �

���	�	�	����������� (�
�
�%* � �

Since
� ��

fn
� �4� * � � , it is always possible to � -convert

*
� so that

� ��
fn
� � � � and thus

�!��
fn
� * � � � , we can apply L.NU.NF to get:

��� � �
�
�%* � � ��� �

�
� � � � � �

� ���	�	�	������������� (��� � �
�
�#* ��

Hence we have found

 � � � ��� �

�
� * � � ����� ��� �

�
� ��* � � � � �

,
� � � ��� � �

�
� � � ��� � ��� �

�
� �

� � ��������� �
�
� � � � ��* �

��� � � � , and
� � � � � � , as required.

Case:
� � � �

��������� (� �
derived by L.RED.S. In this case, we have

� � �
,
� ���

,
� � �

� � �
� ��������� (� � �

with� � � � � � � � � � , � � � bn
� � � �

,
� � � � � �

�
� � � � ".$ ��� � � , � � � � � �

,
� � � � � �

,
� � � �

�
�
,
�#".$�� � � � � � � � .

Now,
� �

could only have been derived by one of the following rules (a) S.NIL, (b) S.NU.KELL, (c)
S.NU.COMM, (d) S.NU.PAR.

� In case (a), we have
� �%����� �

and we have a contradiction for the only possible transition for
�

involves
L.NULL and we have

� �� �
. Hence this case is void.

� In case (b), we have
� ��	 "�� ��� *

,

7� � ��� 	 " *

,
	 ����

(or the symmetric case with
� ��� ��� 	 " *

and

 �
	 " ��� � *

, which is handled similarly). But then
� �

�
� � �

� ���	�	�	� (� � �
could only have been

derived through (i) L.ACT or (ii) L.LOC. Case (i) is void for it would imply
� � � 	 " ��� � *

, which is
not consistent with the fact that

� � � � � �
�
� ��� � � � . Case (ii) is similarly void for it would imply� � � � � � � �

, which is also not consistent with the fact that
� � � � � �

�
� ��� � � � . Hence the whole case

is void.

� In case (c), we have
�7� � ��� ��	 � *

,

7� � 	 � � ��� *

,
	�����

. Now,
� � �

� � �
� ���	�	�	� (� � �

could only have
been derived using two successive applications of rules L.NU.NF and L.NU.F. We thus have four cases
to consider (i) L.NU.NF twice, (ii) L.NU.F twice, (iii) L.NU.NF followed by L.NU.F, (iv) L.NU.F
followed by L.NU.NF. The four cases are handled similarly. We just consider the first two.

RR n � 4692

48 Jean-Bernard Stefani

– In case (i), we have
* � � � � �� �	�	�	��� (* �

, with
�

�
� ����� � 	 � � � , � � � �,� ��� ��	 � * �

. We can apply

L.NU.NF twice to get
��	 � ��� � * � 	 � � ��� � � � � �� �	�	�������	�	�	��� (��	�� ����� * �

. Since
� � 	 � � ��� � � �*� � � � �*�� �

�
� � �

, we can apply L.RED.S to get:

� 	 � � ��� * � 	 � � ��� * � �
� ���	�	�	������� (� � � � � 	 � � ��� * �

Hence we have found

 � � � � � � � 	 � � ��� * � � � � � � ��� � � 	 � * � ��� � � � � � � � � �

,
� � �
���� ���

,� ��� � �
, as required.

– In case (ii), we have
* � � � � � �� ���������	� (� � �

, with
�

�
� � ��� � 	�� � � , � � � � ��� ��	 � � � �

, . We can

apply L.NU.F twice to get
��	�� � ��� * ��	 � ��� � � � � ��	�� ����� � � �� ���	�	�	�������������	�	�	��� (� � �

. We have
� � 	 � � ��� � � � � �� � ��� ��	�� � � � � � � � � �

, and
� � 	 � ��� � � � � � � � � � � � �

�
� � �

, hence by L.RED.S we get:

��	�� � ��� * � 	 � � ��� * � �
� �	�	����������� (� � � � �2� �

Hence we have found

 � �%� � � � � � � �%� �

,
� � ��
)��� � �

,
� ��� � �

, as required.

� In case (d), we have
� � ��� ��� *�� � �

,

 �%� ��� * � �

,
����

fn
� � �

(or the symmetric case
� ��� ��� * � �

,

 � ��� ��� *���� �

, which is handled similarly). Now,
� � �

� � �
� �������	� (!� � �

could only have been derived
using the following rules: (i) L.NU.NF followed by L.PAR, (ii) L.NU.F followed by L.PAR.

– In case (i), we have
* � � � � � �� �������	� (* �

,
�
� ^ � � � ^
�������	�	� (� �

,
� ��

fn
� � � � � , � �

�7� ����� � � � � � ^ ,� � � � � � � � � ^ , � � � � ������� * � � � � �
, bn

� � � � � � bn � � � ^ � � � , bn � � � � � � fn � � � � � , bn � � � ^ � �
fn
��� ��� *�� ���

. Now, we can always � -convert
� ��� *

and
�

to ensure
���
fn
� � ^ �

bn
� � �

. Hence
we have bn

� � � ^ � � fn � *������ , and we can apply L.PAR to get:

*�� � � � ��� ^ � � � � � � � ^� ���	�	�	�������������	�	� (* � � � �
Now

����
fn
� � � ^ � , hence

����
fn
� � � � � � � ^ � and we can apply L.NU.NF to get:

� ��� *�� � ��� � � � ��� ^ � � � � � � � ^
�	�����	�	�	�������������	�	�	� (� ��� *�� � � �

Since
� � � � � � � � � ^ , and

� ��� � � � ��� ^ � � � � ����� � � � � � ^ �9� � � � ��� ^ � , we can apply

L.RED.S to get:
� ��� *�� �
�� �

� �	��� (� � � � � ��� * � � � � . Hence we have found

 � ��� � � � ��� � * � � � � �� � � � � � � ��� �

,
� � ��
��%� � �

,
� ��� � �

, as required.

– In case (ii), we have
* � � � � � �� �	�	�	��� (* �

,
�
� ^ � � � ^
� �������	� (� �

,
� �

fon
� � � � � , � �

� ��� ��� � � � � � ^ ,� � � ��� ��� � � � � � � � ^ , � � � �
* � � � �
, bn

� � � � � � bn
� � � ^ � � �

, bn
� � � � � � fn

� � � � � ^ � � �
,

bn
� � � ^ � � fn � *7� � � � � � � . As in the subcase (i) above, we can ensure

� ��
fn
� � ^ �

bn
� � �

.
Hence, we can apply L.PAR to get:

*�� � � � ��� ^ � � � � � � � ^� ���	�	�	�������������	�	� (* � � � �

INRIA

A Calculus of Higher-Order Distributed Components 49

Now,
����

fn
� � � ^ � but

� �
fon

� � � � � and we can apply L.NU.F to get:

� ��� *�� � ��� � � � ��� ^ � � � � � � � � � � ^
� �������������	�	�	�������	�	�	����� (*�� � � �

Since
� � ��� � � � � � � ^ � � � � � � � � � ^ � � � � � �

and
� � ��� � � � � ^ � � � � � � � ^ � � � �

�
�
, we can

apply L.RED.S to get:
� ��� *�� �
 � �

� ����� (� � � � * � � � � . Hence we have found

 � � � � � � * � � � � �� � � � � � � ��� �

,
� � ��
��%� � �

,
� ��� � �

, as required.

Case:
� � � �

���	�	��� (� �
derived by L.RED.H. This case is handled similarly to the previous one (derivation

by L.RED.S).

We can now proceed to the final steps of the proof by considering derivations of
� �

involving rule
S.CONTEXT. We proceed by induction on the form of

�
contexts.

Case
� � � ��� *

and

 � � ��� �

,
* � �

. In this case
� � � �

�
������� (� �
could only have been derived

through one of (i) L.NU.NF, (ii) L.NU.F, (iii) L.RED.S, (iv) L.RED.H, (v) L.NULL.

� In case (i), we have
* � �

� �
� �	�	����� (* �

, with
� ��

fn
� � �

,
� � � ����� * �

,
� � � ��� �

� . By induction

hypothesis, we then have
�
� �
�
� �

� ���	�	�	� (� �
with
� �
�
� �

� ,
� � �

,
� �+*

and
� � �+* �

. Applying

L.NU.NF we get:
����� � ����� � �

�
� �

� �����������	� (� ��� � �
. Hence we have found

 � � ����� � � � � ��� * � � � �
,� � � ����� � �

�
� ��� � �

�
� �

,
� � �

, as required.

� In case (ii), we have
* � �

� � �
� �����	�	� (� �

, with
� �

fon
� � � �

,
� � � ��� � �

,
� � ��� � �

� . By induction

hypothesis, we then have
�
� �
�
� � �

� �	������� (� �
with
� �

�
� �

� ,
� � � � �

, and
� � *

,
� � � � �

.

Applying L.NU.F we get:
� ��� � � ��� � �

�
� � ��� � �

� �	�������	�	�	����� (� �
. Hence we have found

 � � � � ����� �
,� � � ����� � �

�
� ��� � �

�
� �

,
��� ����� � � � � ��� � � � �

, as required.

� In case (iii), we have
� � �

,
� � �

,
� � �

� �
�� �	�	����� (�

� ,
� � � � � � � � � , � � � bn

� �
�
�
,
� �

�
� � �

�
�

� � � " $ � � � � , � � � �
�
�
,
�-" $ � � � �

� � � � . Now,
� � �

� �
�� �	������� (�

� could only have been derived
using one of (1) L.NU.NF or (2) L.NU.F.

– In case (1), we have
* � � � � ��������	�	� (* �

, with
�+��

fn
� � � � , � � � � � , � � � � ��� * �

,
�
�
�

� ��� � � . By induction hypothesis, we then have
�
� � � � � �� ���	�	�	� (� �

with
� � � � � � , � � � � � ��

� , and
� � � * �

. Since
� � � �

� , we have
� � � �
� � �

�
�
. Applying L.NU.NF we get:

� ��� � ��� � � � � � � �� �	�	����������� (� ��� � �
. Since

� � � �2� �
�
� � ��� " $ � � � � , then some

� ��� " $ � � must occur in� �
, such that

� ���
and

� � � �
. Hence we can apply rule L.RED.S to get:

��� � � � ��� � � �
����������� (� � � � ��� � � � Hence we have found

 � � � � � � � ��� � � � � � � � � ��� * � � � �
,
� � � � ��� � �%� ��� * �%� �

,� ��� � �
, as required.

– In case (2), we have
* � � � � �� ���	�	�	� (* �

, with
� �

fon
� � � � , � � � � ��� � � , � � � * �

,
�

�
�

� ��� � � . By induction hypothesis, we then have
�
� � � � � �� ��������� (� �

with
� � � � � � , � � � � � ,

RR n � 4692

50 Jean-Bernard Stefani

and
� � � * �

. Applying L.NU.F we get:
��� � � � ��� � � � � ��� � � �� �����	�	�	��������� (� �

. Since
� � � � � , we have� � ��� � � � � � � ��� � � � � � � � , and some

� ��� " $ � � must occur in
� �

, such that
�7� �

and
� � � �

.

Hence we can apply rule L.RED.S to get:
� ��� � � ��� � � �

�����	�	�	� (� � � � � � Hence we have found

 � �� � � � � � ��� � � � � ��� * � ��� �

,
� � ����� � � ��� ��� *%�%� �

,
� � � � �

, as required.

� Case (iv) is handled similarly as case (iii) above.

� In case (v), we have
� �%�

,
� ���

,
� � ���

. By rule L.NULL, we have

�� �
� �	��� (

, hence we have
found

 � ��
���� �%� �
,
� � ��
)��� � �

, and
� � � � �

, as required.

Case
�7� * ���

and

 � � � �

,
*+� �

. In this case
� � � �

�
���	�	� (� �
could only have been derived

through one of (i) L.PAR, (ii) L.RED.S, (iii) L.RED.H, (iv) L.NULL.

� In case (i), we have
* � �

� �
�� �	�	����� (* �

,
�
� � � � �� �������	� (� �

,
� � ��* � ��� �

,
� � �

�
� � � , � � �

�
� � � .

By induction hypothesis, we have
�
� �
�
� �

�� �	�	����� (� �
with

� � � * �
,
� �

�
���

� and
�
�
� �

� . We can

now apply rule L.PAR to get:
� ��� � � � � � � � � �

� � �
���������	�	�	�����������	� (� � � � �

. Hence we have found

 � � � � �

� � � * � � � � � � �
,
� � � � �

�
� � � � � �

� � � � � , and
� � �

�
� � � � � � � � � � � , as

required.

� In case (ii), we have
�����

,
� � �

,
� � �

� �
�� �����	�	� (� � �

,
� � ��� � � � � � � , � � � bn

� �
�
�
,
� �

�
� � �

�
�

� � � ".$ ����� � , � � � �
�
�
,
�#".$
� � � �

��� � � . Now,
� � �

� �
����	������� (� � �

could only have been obtained

through rule L.PAR, hence we must have:
* � � � � ��������	�	� (* �

,
�
� ^ � � ^
� ��������� (� �

,
� � � ��* � � � �

,�
�
� � � � � ^ , � �

� � � ��� ^ , with additional conditions from the premise of rule L.PAR. By

induction hypothesis, we must have
�
� � � � � � �� ��������� (� �

, with
� � ��* �

,
� � � � � � , � � � � � � . We

can apply L.PAR to get:
� � � � � � ��� ^ � � � � � � ^� �����	�	�	�������������	� (� � � � �

. Now the conditions of rule L.RED.S

are still valid and applying L.RED.S we get:
� ��� � ��� � �

���������	�	� (� � � � � � � � � . Hence we have found
 � ��� � � � � � � � � ��� � � � * � � � � ��� �
,
� � � � � �
��
���� � �

,
� ��� � �

, as required.
� Case (iii) is handled similarly as case (ii) above.

� In case (iv), we have
� �%�

,
� ���

,
� � ���

. By rule L.NULL, we have

�� �
� ����� (

, hence we have
found

 � ��
���� �%� �
,
� � ��
)��� � �

, and
� � � � �

, as required.

Case
� � � " *

and

 � � " �

,
* � �

. In this case
� � � �

�
������� (� �
could only have been derived

through one of (i) L.ACT, (ii) L.LOC, (iii) L.RED.H, (iv) L.NULL.

� In case (i), we have
� � � � � ��� " *

, and
� � ���

. But, by L.ACT, we have

 � � " �
� �	�	�	����� (�

.
Hence we have found

 � ��� ��� �
,
� � ��
��%� � �

, and
� ��� " � ��� " *%� �

, as required.

� In case (ii), we have
* � �

� �
�� �	�	����� (* �

,
� � � "��

� ,
� � � � " * �

,
� � � �

�
�
. By induction hy-

pothesis we must have:
�
� �
�
� �

�� �	�	�	��� (� �
with

� � � * �
,
� �

�
� �

� ,
�
�
� �

� . By L.LOC we get:
� " � � "�� �

�
� ���

�
�

� �	�	�	�������	�	� (� " � �
. Hence we have found

 � ��� " � � � � " * � � � �
,
� � � � " � �

�
�

� "��
�
� �

,
� �����

�
� ��� �

�
� � �

, as required.

INRIA

A Calculus of Higher-Order Distributed Components 51

� In case (iii), we have
� � �

,
� ���

,
� � �

� �
�� ��������� (!� � �

,
� � ��� � � � � � � , � � � bn

� �
�
�
,
� �

�
� � � ^ �

���
�
� � � � ".$ �9� � � � � � ` , � � � �

�
�
,
�#"%$ � � ^ � � � �

� � � � � � ` . Now,
� � �

� �
�� �	������� (� � �

could only have been obtained through L.LOC, with
�
�
� � � �

�
�
,
* � � � � � �� �	�	����� (* �

,
�

�
�,� "�� � ,

� � � � � " * �
. By induction hypothesis, we must have

�
� � � ��� � �� �������	� (� �

, with
� � � * �

,
� � � � � � ,

� �
�
� � �

� . By rule L.LOC we get:
� " � � "�� � � � ��� �� �� �	�	������������� (� " � �

. Conditions of rule L.RED.H are
still valid since

� ��� �
�
� ��� � � �

�
��� � �

�
�

and
� � " � � � ��� � � "�� � ��� � �

�
�
. Applying L.RED.H, we

get:
� " � � " � � �

�	�	�	�	��� (� � � � � " � � . Hence we have found

 � � � � � � � " � � � � � � � � " * � ��� � � � � � � � � �

,� � ��
���� ���
, and

����� � �
, as required.

� In case (iv), we have
� �%�

,
� ���

,
� � ���

. By rule L.NULL, we have

�� �
� ����� (

, hence we have
found

 � ��
���� �%� �
,
� � ��
)��� � �

, and
� � � � �

, as required.

Case
� ��� � *

and

 ��� � �

,
* � �

. In this case
� � � �

�������	� (� �
could only have been derived through

L.TRIG. We thus have
� � �

,
� ��� � � "���� �

and
� � ��*2"����

. By L.TRIG, we have

� � � � � "���� �
� ���	�	�	������� (� "����

.
By Lemma A.1, up to a possible renaming of bound names in

*
and

�
,
*)� �

implies that we have
*�" ��� �

� "����
, hence we have found

 � ��� �
,
� � � � ���

, and
� � � � � "���� ��� �

, as required.
This concludes the proof of Proposition 2.1.

�

Let
��� �

mean
� � � �

��������� (� �
for some

� �2� �
. We abbreviate

��
a parallel composition of actions

� ��� � � , and
�

a parallel composition

� ���
 � of Kell calculus processes. We abbreviate

�
�� ��
the propo-

sition 	 � ���
 �
� �

� .

Lemma A.5 Let
� �� � � �

. Then we have

1. If
�
� �

, with
� � � � � , then

����� � � �
 �%*
with

�� � and
*�� �

.

2. If
�
� �

, with
� � � � �

, then
���%� � � �
��#*

with

���

and
*�� �

.

3. If
�
� �

, with
� � � ��� � � , then

����� � � � � "���
��%* � � �
with

�� � ,
*�� �

,
� � �

.

4. If
�
� �

with
� � � �
 9 ��� � 9 , then

����� � � � *��
 9 ���
 9 with

 9 � � 9 , *�� � .

5. If
�
� �

with
� � � ���
 9 ��� � 9 � , then

����� � � � *���� "�� * 9 �
 9 ���
 9 � with

 9 � � 9 , *�� � .

6. If
�
� �

with
� � �2� �
�
 9 � � � 9 �
 ����� � � � � then

� � � �� �
,� � �
 9 � �
 9 �
 �,�-� � � " �
 � �-* � �
with

�� �
,
� � �

,

 9 � � 9 ,
 � � � � , * � � � .

7. If
��� �

with
� � � ��
 9 ��� � 9 � � � ��
 � ��� � � �
 �,�-� � � � � � then

��� � �� � � �
 9 � �
 9 � � "���
 �
���

 9 � �
 9 ��
 �,�-� � � " �
 � �#* � � � with

� � �
,
��� �

,

����

,
� � �

,

 9 � � 9 ,
 � � � � ,
 � � � � * � � � .

Proof: Properties 1 to 3 are proved by a simple induction on the derivation
� � � �

�
������� (� �
. Properties 4 and

5 are proved by a simple induction. Properties 6 and 7 are proved from properties 3, 4 and 5 by applying rule
L.PAR. �

RR n � 4692

52 Jean-Bernard Stefani

Lemma A.6 If
� � � �

�	����� (

, then

��(

.

Proof: We proceed by induction on the depth of inference of
� � ���

�	����� (

. This transition could only have

been inferred through one of the following rules: L.LOC, L.NU.NF, L.PAR, L.RED.S, L.RED.H.

� L.LOC. In this case we have
� � � " *

,

 � � " �

,
� � � "�� �

,
* � � � �� �����	� (�

. By induction
hypothesis, we have

* (�
, hence by R.CONTEXT,

��(

, as required.

� L.NU.NF. In this case, we have
�,� ����� *

,

 � � ��� �

,
* � � � �� ������� (�

,
� � ����� � �

. By induction
hypothesis, we have

* (�
, hence by R.CONTEXT,

��(

, as required.

� L.PAR. In this case we have
�,� �

�
� � � ,
,�

�
�
 � , with

�
�

�
�
� �

� �����	� (

� ,
� � � �

� �
� �	�	��� (!� �

or
� � � �

� �
� �����	� (
 � , � �

�
�
� �

� �����	� (!�
� . In the first case (the other is identical), we have by induction

hypothesis
�
�
(

� , hence by R.CONTEXT we have
� ���

�
��� � (

�
� � � ��
 , as required.

� L.RED.S. In this case we have
� � � � � �� �����	�	� (� � � � � � � �

�
� �
�� � ".$ � � � � , � � � � � �

,
�-".$ � � � � �� � � . Then by Lemma A.5(6), we have that

�)� � � � �� �
 � � �
 9 ���
 9 �
 �,�-� � � " �
 � �%* � � with

���� �
 �

,

�� � � � ".$ �

,
� � �

,

 9 � � 9 ,
 � � � � , * � � � , � � ��
 9 ��� � 9 , � � ��
 �,�-� � � . But then

by L.RED.S, S.PAR.NIL and Theorem 1 we have that
� � � � � ��� �� �
 � ".$�� � ��
 �,�-� � � " * � . Since��(� � by R.RED.S, we have by R.EQUIV that

��(

, as required.

� L.RED.H. In this case, we reason as in the case L.RED.S above, using Lemma A.5(7) instead.

�

Lemma A.7 If
* (�

, then there exist
� �

,
�

such that
* � � �

���	��� (� �
and

� � � �
.

Proof: We proceed by induction on the depth of inference of
� �(

.
Case R.RED.S. In this case, it suffices to notice that rule L.RED.S applies to

* � ����� � � ��

with� � � �

as in rule R.RED.S, and yields
* * ���

� �	�	� (* �
, with

* � � � " $ ��
 �
, with

" $ �
 �
as in rule R.RED.S.

Hence we have found
� � � * � � �

, as required.
Case R.EQUIV. In this case, we have

* �,�
,
� (

, and

 � �

. By induction hypothesis we have� � � �
� ����� (
 �

and

 � �

. But by Theorem 1, since
*)� �

, there must exist
* �

such that
* � � �

� ����� (* �
and

* � ��
 �
. Hence we have found

� � � * � ��
 � ��
)� �
, as required.

Case R.CONTEXT. In this case, we assume
��(

,
� � � � * � ,
 � � � � � , with

* (�
, and we proceed

by induction on the form of evaluation contexts.

� Case
��� � " *

and

 � � " �

, with
*!(�

. By induction hypothesis, we have
* � � �

���	�	� (� �
and

� � � �
. But then by L.LOC we get:

� " * � � �
�	����� (� �

�
� � � � �

. Hence we have found

 � � � " � � �� " � ��

, as required.

� Case
����� ��� *

and

 ����� � �

, with
*!(�

. By induction hypothesis, we have
* � � �

���	�	� (� �
and

� � � �
. But then by L.NU.NF we get

� ��� * � ��� � ���
� ����������� (� ��� � �

. Hence we have found

 � ����� � � � ���� � � ��

, as required.

INRIA

A Calculus of Higher-Order Distributed Components 53

� Case
� ��*��
�

, and

�� � �
�

, with
*�(�

. By induction hypothesis, we have
* � ���

������� (� �
and

� � � �
. By L.NULL, we have

�
� � �
� �	�	� (��

But then by L.PAR, we get
*�� � � ��� � �

� �����	�	�	� (� � ���
.

Hence we have found

 � � � � ��� � � � �
��

, as required.

�

Proof of Theorem 2: Theorem 1 results directy from the conjunction of Lemma A.6 and of Lemma A.7. �

RR n � 4692

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

