N

N
N

HAL

open science

A reduction semantics for call-by-value mixin modules

Tom Hirschowitz, Xavier Leroy, Joe B. Wells

» To cite this version:

Tom Hirschowitz, Xavier Leroy, Joe B. Wells. A reduction semantics for call-by-value mixin modules.

[Research Report] RR-4682, INRIA. 2002. inria-00071903

HAL Id: inria-00071903
https://inria.hal.science/inria-00071903
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071903
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4682--FR+ENG

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A reduction semantics for
call-by-value mixin modules

Tom Hirschowitz — Xavier Leroy — Joe B. Wells

N° 4682
Décembre 2002

THEME 2

apport
derecherche

Zd INRIA

ROCQUENCOURT

A reduction semantics for
call-by-value mixin modules

Tom Hirschowitz * , Xavier Leroy * , Joe B. Wells T

Théme 2 — Génie logiciel
et calcul symbolique
Projet CRISTAL

Rapport de recherche n® 4682 — Décembre 2002 — 34 pages

Abstract: Module systems are important for software engineering: they facilitate code reuse without compro-
mising the correctness of programs. However, they still lack some flexibility: first, they do not allow mutually
recursive definitions to span module boundaries ; second, definitions inside modules are bound early, and cannot
be overridden later, as opposed to inheritance and overriding in class-based object-oriented languages, which
follow the late binding semantics. This paper examines an alternative, hybrid idea of modularization concept,
called mizin modules. We develop a language of call-by-value mixin modules with a reduction semantics, and a
sound type system for it, guaranteeing that programs will run correctly.

Key-words: modularity, mixin modules, recursion, type systems, reduction semantics

* INnrIA Rocquencourt, projet CRISTAL
 Heriot-Watt University, Edinburgh, UK

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Sémantique a réduction pour un langage de modules mixins en appel
par valeur

Résumé : Les sytémes de modules jouent un réle important dans ’ingénierie logicielle : ils facilitent le partage
de code, tout en conservant de bonnes propriétés de sireté d’exécution. Leur flexibilité reste cependant limitée.
D’une part, ils interdisent les références mutuelles entre modules. D’autre part, une définition dans un module
est liée statiquement et ne peut donc pas étre redéfinie, au contraire des méthodes dans les langages & objets
avec classes, qui sont en liaison tardive. Ce travail examine une idée & mi-chemin entre les classes et les modules,
appelée modules mizins. On présente un langage de modules mixins en appel par valeur, doté d’une sémantique
opérationnelle & réduction et d’un systéme de typage garantissant ’exécution correcte des programmes.

Mots-clés : modularité, modules mixins, récursion, typage, sémantique a réduction

A reduction semantics for call-by-value mizin modules 3

1 Introduction

Code reuse is an important aspect of software engineering. It can take place at several levels. Linguistic
abstractions, such as higher-order functions, classes and objects, increase code reuse inside a program. Separate
compilation provides for libraries, which allow programs written in the same language to share code. Components
allow code reuse to spread across different languages and different physical sites.

Besides their expressiveness, one has to consider these concepts with respect to program safety and correct-
ness. Language abstractions have been extensively studied from this standpoint, specifically through the use
of sound type systems: there are well-known ways for ensuring statically (i.e. at compile time) that an object-
oriented or a functional program will not go wrong (see e.g. [22]). Separate compilation has been investigated,
and sound type systems have been elaborated, which are able to statically prove that a separately compiled
program will not go wrong [15, 12, 7, 19]. The component-based approach is in its early stage of formalization
[20].

Among linguistic constructs, module systems are of particular interest, because they allow dealing with
separate compilation at the language level [15, 12]. One the one hand, modules are language constructs that
can be described with mostly standard formalisms, such as operational semantics and type systems. One the
other hand, they can also be viewed as compilation units, and thus express strategies for separate compilation
and linking [15, 7, 19].

A well-known module system is the one of ML [17, 16] support type abstraction, parameterization over
other modules, and separate compilation. However, it still lacks some flexibility: first, it does not allow mutually
recursive definitions to span module boundaries ; second, definitions inside modules are bound early, and cannot
be overridden later, as opposed to inheritance and overriding in class-based object-oriented languages, which
follow the late binding semantics.

This paper examines an alternative, hybrid idea of modularization concept, called mizxin modules. The
original idea appeared in the early 90’s with Bracha, Cook, and Lindstrom [5, 4, 6], and was further developed
by Duggan and Sourelis [8], Flatt and Felleisen [11, 10], Ancona and Zucca [1, 2], Wells and Vestergaard [21],
and Hirschowitz and Leroy [14]. It consists of a module language — a modularization construct independent
from the core language — with features for incremental programming, inspired by mizin classes. Basically, a
mixin module is a collection of named definitions and declarations. Declarations may be filled with definitions
by composition with another mixin module. The definitions of one mixin module then fill the corresponding
declarations of the other one, according to their names. Definitions are not statically bound to one another,
and may be redefined.

The present work tries to address certain limitations of earlier proposals for mixin modules. Bracha et al.
allow only values to be defined in mixin modules, which is too restrictive. Flatt and Felleisen and Duggan and
Sourelis introduce a notion of initialization section for extending the expressive power of mixin modules, but
they lose the ability to modify a mixin module a posteriori. Ancona and Zucca and Wells and Vestergaard allow
any expression to be defined in a mixin module, keeping the ability to modify a mixin module a posteriori.
However, their proposals only work in call-by-name, and are incompatible with call-by-value programming
languages. Hirschowitz and Leroy develop a call-by-value calculus of mixin modules. However, the semantics
of their calculus is not given by reduction rules as usual, but by a complicated type-directed translation to a
non-standard A-calculus. This makes reasoning on programs almost impossible.

The present paper gives a reduction semantics for call-by-value mixin modules in the style of [14], supporting
all the mixin operators proposed by Bracha [4]. Section 3 presents the calculus, named MM, and its semantics.
A type system is defined in section 4, and it is proved sound. Conclusions and future work are reviewed in 5.

2 Overview

2.1 Mixin modules

A mixin module is an unordered, unevaluated, possibly incomplete module: it is a set of named definitions and
declarations.
Consider the following mixin module, in an OCaml-like syntax:

mixin A =
import
val x : int
val £ : int -> int

RR n° 4682

4 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

export
define y = (g 0) + x
define g z = . f
end

The declaration val x : int is used by the definition define y = (g 0) + x.
The declaration val £ : int -> int is used by the definition define g z = ... £ ...
The scope is mutually recursive, as illustrated by the definition define y = (g 0) + x, depending on g.

The operator for linking mixin modules is composition +, which combines two mixin modules, filling the
declarations of one argument with the definitions of the other, and wvice versa. Consider the following mixin
module.

mixin B =
import
val y : int
val g : int -> int
export
define x =y + 1
define f z = g ...
end

The composition mixin C = A + B of A and B is equivalent to the mixin module:

mixin C =

import

export
define

|
~
[0}
(=]
o
+
e

define
define

XM 0B <
N N
]
(o]

define
end

The declarations of one mixin module are replaced with the similarly named definitions of the other. The export
section is the concatenation of the export sections of A and B. The code remains unevaluated, so the evaluation
of C does not go wrong. However, there is an ill-founded recursion between x and y, and if we try to evaluate
the code contained by C, a dynamic error will occur. Fortunately, mixin modules feature late binding: one may
delete the definition of x in B, thanks to the delete operator |-.

mixin B? =

import

val x : int

val y : int

val g : int -> int
export

define fz= ... g ...
end

A new definition for x may be defined in another mixin module:

mixin D = import
export
define x

I
o

end

The mixin module E = A + B’ + D is equivalent to

mixin E = import

export
define y = (g 0) + x
define gz = ... f ...

INRIA

A reduction semantics for call-by-value mizin modules 5

define fz=...g ...
define x = 0
end

Now, all holes are filled, and the mixin module can be instantiated. It is the role of the close operator,
which generates a module out of a mixin module without holes: module M = close E. The semantics of close
includes a reordering of definitions, in order to avoid references to a not yet evaluated definition. The initial
ordering is kept, as far as possible. Here, it results in only moving the definition of y, because it needs the
values of g and x (and possibly £) to evaluate. The definition module M = close E is equivalent to:

module M = struct

let recgz= ... f ...
fz=...8g ...
let x =0
let y = (g 0) + x
end

The evaluation of M consists in successively evaluating the definitions, and returning the evaluated module:

module M = struct
let rec fz= ... g ...
and gz= ... f ...
let x =0
let y =V
end

(Where V is the result of (g 0) + x.)
We refer to [4, 2] for more details on mixin modules and other operators.

2.2 An extended binding construct

In MM, the definitions of x and y could not have been included in the mutually recursive definition of £ and g.
Indeed, the let rec construct of ML only allows to bind syntactic functions (or constructed values in the case
of OCaml). Therefore, in the case of more complex dependencies between the definitions of a mixin module,
instantiation would lead to nested let and let rec bindings. In order to avoid this complication, our calculus
features a slightly more powerful 1let rec than that of ML, which is reminiscent of monadic recursive bindings
[9]. It evaluates the definitions from left to right, and basically only goes wrong when the value of a variable
defined to the right of the current definition is needed. For instance, the definition

let recfx=...¢g ...
gx=...f°
x=0
y=(g0) +x

evaluates correctly: f, g, and x are already values, and y is defined last.

Notice that the body of £ makes a reference to g, which is defined to the right of it. We call such a reference
a forward reference. A forward reference is syntactically correct if it points to an expression of predictable
shape. In the above example, the definition of g is a syntactic abstraction, which is considered an expression of
predictable shape. A forward reference is semantically correct if it does not require the value of the referenced
variable. In the above example, the definition of g is already evaluated, so it doesn’t need to inspect the value
of f.

2.3 Typing issues

Our let rec is not much more powerful than that of ML. Its main interest is that complex series of sequential
let bindings and mutually recursive let rec bindings are now written as straightforward definitions. Its typing
is much less straightforward of course, since it requires the analysis of dependencies between the definitions.
This analysis has to go beyond immediate dependencies, as shown by the following example.

Example 1 Consider the following binding, where braces enclose records and X and Z are record field names.

RR n° 4682

6 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

z € Vars Variable
X € Names Name
Expression: e:== Variable
[{X1=e1...Xpn=¢€n} Record
| e.X Record selection
| let rec 21 =e1...2, =€, in e let rec
[{(Xivzr...Xp>xy | di...dp) Structure
|er+ex| Vel|lelX Composition, closure, freezing
lex,.x, | €-xi..x, Projection, deletion
| €:X1... Xp | €:—X1...Xn ShOWing7 hiding
le[X1 =Y. X, = Y] Renaming
| exsy Splitting
Definition: d:=X[z1...2,]pz=¢€ Named definition
| _[x1...zp]pz=¢€ Anonymous definition

Figure 1: Syntax of MM

let recx={ X =2z}
y = x.X.Z
z={Z=01%

There is a forward reference from x to z, but the definition of z is of predictable shape, so the expression
is syntactically correct. Moreover, there are no forward references needing the value of the referenced defini-
tion. One could expect it to be a sufficient condition for the binding not to go wrong because of dependencies.
Unfortunately, the evaluation of the definition of y needs both the values of x and =z.

Roughly, the correct requirement is that no forward reference path starts with a strict dependency. We say
that a definition x = M strictly depends on another one y = N, when the evaluation of M might require the value
of y. What does “might require” mean here? It is a very restrictive syntactic approximation: the only case
where we detect that an expression M will not need the value of one of its free variables x is when M is a value of
predictable shape. In example 1, there is a forward reference path from x to z, which does not end with a strict
dependency, since { X = z } is a value of predictable shape. However, this path extends to a forward reference
path from y to z, which starts with a strict dependency. Therefore, the binding is rejected by the type system.

We have seen that mixin modules are instantiated by the close operator, which generates a binding out of
them. In order to statically ensure that this binding is correct, the type system keeps track of the dependencies
between mixin components. The type of a mixin contains both type information about its components, and a
graph representing their dependencies. When composing two mixin modules, the type system takes the union
of their dependency graphs. When a concrete mixin (a mixin with no declarations, only definitions), gets
instantiated, its graph is required not to have cycles with strict dependencies. This is sufficient: if there is no
cycle with strict dependencies, then an ordering of definitions can be found, such that no forward reference path
starts with a strict dependency. The close operator finds this ordering.

3 Definition of the MM language

3.1 Syntax

The syntax of MM is defined in figure 1. The meta-variables X and z range over names and variables,
respectively. Variables are used as binders, as usual. Names are used for accessing to definitions in mixin
modules, as an external interface to other parts of the expression. Figure 2 recapitulates the meta-variables and
notations we introduce in the remainder of this section.

INRIA

A reduction semantics for

call-by-value mizin modules

s=X1=e€1...X, = ¢, Record
bi=x1=e€1...¢, =€, Binding
=Xy z... X b2y Input (injective)
o:=dj...dy Output
ra=X;-»Y..X,»Y, Renaming (injective)
ople] i=e.X Record selection
|Ve|e!lX Closure, freezing
| ex,..x. | €=x1...x, Projection, deletion
| €:X,.. X, | €._X,.. X, Showing, hiding
le[X1 » Y1...X,, = Y,] Renaming
| ex>y Splitting
For a finite map f, and a set of variables P,
dom(f) is its domain, cod(f) is its codomain
fi p is its restriction to P, and f\p is its restriction to Vars\P.

Figure 2: Meta-variables and notations

Expressions include variables z, records (labeled by names) {X; = e;...X,, = e,}, and record selection
e.X, which are standard.

MM features mutually recursive bindings of the shape let rec b in e (where b is a list of definitions
Z1 =e€1...T, = e,). Note that there is no restriction to binding only value forms.

Expressions also include structures. A structure is a pair of an input ¢ of the shape X3 > 21 ... X, >2,, and
of an output o of the shape d; ...d,,. ¢+ maps external names imported by the structure to internal variables
(used in 0). o is a list (the order matters) of definitions d. A definition is of the shape L[z ...z,] >z = e,
where the label L may be either a name X or the anonymous label and e is the body of the definition. The
possibly empty finite set of names z; ..., is the set of fake dependencies of this definition on other definitions
of the structure. (This allows the programmer to force an order of evaluation.)

Finally, MM follows the literature about mixin modules [4, 2, 14] in its set of operators, including com-
position e; + eg, closure Ve, freezing e ! X, projection e x, .. x,, deletion e _x, . x,, showing e.x,.. x,, hiding
€.-x,..X,, and renaming e[X; — Y;... X, — Y,]. There is a new operator called splitting ex,y. We let op
range over the set of operators (see figure 2), and denote by ople] the application of op to the expression e.

Syntactic correctness Renamings r = (X; — Y;...X,, » Y,,), inputs ¢« = (X3 >x;...X, > zy,), records
s=(X1=e1...X,, =ey), bindings b = (z1 =e;1...z, = e,), are required to be finite maps: a renaming is a
finite map from names to names, an input is a finite map from names to variables, a record is a finite map from
names to expressions, and a binding is a finite map from variables to expressions. Requiring them to be finite
maps means that they should not bind the same variable or name twice. Renamings and inputs are required to
be injective. Outputs o = (d; .. .d,,) are required not to define the same name twice, and not to define the same
variable twice. Structures are required not to define the same name twice and not to define the same variable
twice. Fake dependencies in a definition must be bound in the same structure.

In a let rec binding b = (1 = €1 ...z, = e,), when for some 1 < i < j <n, z; € FV(e;), we say that there
is a forward reference from z; to ;. Forward references in bindings are syntactically forbidden, except when
they point to a certain class of expressions, the class of expressions with a predictable shape. We approximate
that the shape of an expression is predictable if it is a structure, a record, or a binding followed by an expression
of predictable shape. Formally e; € Predictable ::= {0} | (¢ | 0) | let rec b in e,.

Sequences Qutputs may be viewed as finite maps from pairs of a label and a variable (L, z) to pairs of a finite
set of variables (z1 ...%,) and an expression e. Renamings, inputs, records, bindings, and outputs are often
considered as finite maps in the sequel. We refer to them collectively as sequences, and use the usual notions
on finite maps, such as the domain dom, the codomain cod, the restriction - p to a set P, or the co-restriction
-\p outside of a set P. Notice that the codomain of an output o, restricted to pairs of a name and a variable
(no anonymous label), may in turn be viewed as an input, since it is an injective finite map. We denote it by
Input(o).

RR n° 4682

8 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

Value: vi=zx | {sy}
| <X1|>.'L'1...an>ib'n | dldn>
Answer: res :=v | let rec b, in v

Value sequence: s, := X3 =v1...X1 =u;
by i= 21 =v1...2p = Uy

Figure 3: Values in MM

(a0 o mews { {3101)03

(t1 | 01) C (12 | 02) means that for all (L z) € dom({¢1 | 01)),
z € FV(02) U Variables({t3 | 02)) = (L>z) € dom({t3 | 02)) and L € Names.

Figure 4: Definition of O

Structural equivalence We consider the expressions equivalent up to alpha-conversion of binding variables
in structures and let rec expressions. In the following, we assume that no undue variable capture occurs.

3.2 Semantics

The semantics of MM is defined in two steps: a contraction relation describes the action of the operators, and
a reduction relation extends it properly to any expression.

Values As defined in figure 3, an MM value is either a variable z, or an evaluated record {X; =v;...X; =
v1}, or a structure (¢ | 0). A valid result of the evaluation of an MM expression is a value, possibly surrounded
by an evaluated binding. It thus has the shape let rec 21 = vy ...2, = v, in v. The meta-variables s, and b,
respectively range over evaluated record sequences and bindings.

The contraction relation The contraction relation is defined by the rules in figure 5, where for any sets
P ...P,, P, L ... 1 P, means that the P;’s are pairwise disjoint.

The first rule (LIFT) describes how let rec bindings are lifted up to the top of the term. When the evaluation
of a sub-expression results in a let rec binding, MM lifts it one level up, as follows. Lift contexts . are defined
as

L {S}|op[O]|O+e|v+DO
S == s,,X=0,5s.

Rule (LIFT) states that an expression of the shape L[let rec b in €] evaluates to
let rec b in L[e], provided no variable capture occurs.

The record selection rule (SELECT) straightforwardly describes the selection of a record field.

The rules for mixin deletion (DELETE) and projection (PROJECT) are dual. Rule (DELETE) describes how
MM deletes a finite set of names Xj ... X, from a structure {¢ | 0). First, o is restricted to the other definitions,
to obtain o\(x,..x,} (which is shorthand for O\(X;... Xn}xvars). Second, the removed definitions remain bound
as inputs, by adding the corresponding inputs to «¢.

Rule (PROJECT) describes how MM projects a mixin to some finite set of names X; ... X, from a structure
(¢ 0). First, o is restricted to the corresponding definitions and to the local ones, to obtain o { x,..x,} (which
is a shorthand for o/ x,.. Xn}xVars)- Then, the removed definitions remain bound as inputs, by adding the
corresponding inputs to ¢.

Rules (SHOW) and (HIDE) are dual. Rule (SHOW) allows to hide all the exported names of a structure,
except the given ones. It proceeds by making the other definitions local, as defined by

Liy* vz =eif LEN
_[y*] > x = e otherwise.

Show(L[y*| >z =e,N) = {

INRIA

A reduction semantics for call-by-value mizin modules

dom(b) L FV(L)
L[let rec b in €] ~.let rec b in L]e]

LIFT
() {X1=v1...X, =0, }.X; ~cv;

(L] 0)—x,..x, ~e <L>InPUt(0)\{X1...X"} | o\¢x,..x,}) (DELETE)

(] 0)xy..x, ~ec (L,Input(o)\{Xl___Xn} |o/{ x,..x,}) (PROJECT)
(t]0).x,..x, ~c{t|Show(o,{X1...X,})) (SHOW)
(t]0):—x,..x, ~c (| Show(o,Names\{X;...X,})) (HE)

(to1, X[y*]pz=e,00) ! X~ (t]| 01, [y*]>z=¢e,0y,X> =2z) (FREEZE)

Names({¢ | 0)) L (cod(r) \ dom(r))

Clobl e Gt Tofryy o)
(t]o01,X[2*] >z =e,02) x5y ~c (1, XDz |01, Y[2"]> _ =e,02) (SpLIT)
(t1 | 01) O {e2 | 02) Names(0;) L Names(02)
(Sum)

{t1 [o1) + (12 | 02) »¢ (12 U2) \ Input(oy,02) | 01, 02)

Bind(o) is correct
V{0 | o) ~. let rec Bind(o) in Record (o)

(CLOSE)

Figure 5: Computational contraction relation

RR n° 4682

10 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

Multiple lift context:
Evaluation context: F == 0O|L[F]
E == F|letrec b, in F |let rec B[F] in e Binding context:
Lift context: B == by,,z=0,0b
L == {S}|opO]|O+e|v+D Record context:
S == s, X =05

Figure 6: Evaluation contexts

(let rec b, in F)(z) = by(z) (EA) (let rec b,y =F,b in e)(z) = by(z) (IA)

Figure 7: Access in evaluation contexts

Rule (HIDE) symmetrically hides the given names in a structure. It proceeds by showing the other ones.

Rule (FREEZE) describes how a name X is frozen in a structure (¢ | o). First, the corresponding definition
X[y*] >z = e is made local, by replacing X with the local label _. Then, a new definition is added at the end
of the output. It is named X, is bound to a fresh variable (denoted by _ in the rule by abuse of notation), and
is defined by referring to x.

Renaming of a structure (¢ | o) by a renaming r, defined by rule (RENAME), replaces the names in ¢+ and o
with the new ones. Formally, for ' C Names, we define rp by r U id| A"\dom(r) and for a finite map f with
dom(f) C Names, we define f{r} by f o (raom(f))_l. The finite map f{r} is well-defined provided rqom(y) is
injective, which holds as soon as cod(r) N dom(f) C dom(r) or in other words dom(f) L (cod(r) \ dom(r)).
By the side-condition Names({¢ | 0)) L (cod(r)\dom(r)), this is the case for t{r}. (We denote by Names({¢ |
o)) the set of names bound by the structure, i.e. dom(:) U dom(Input(0)).) Finally, we define o{r} by
09 ("Names(o)> idvars) !, with the order kept from o, and where (f1, f2)(z1,22) = (f1(x1), f2(z2)). Notice that
when composing two functions f o g, we consider a function whose domain is g~!(dom(f)) and on this domain
is f(g(z)). In the rule, o{r} is well-defined, thanks to the side-condition. Syntactic correctness is preserved,
since rNames((u/0)) 18 injective. So, after renaming, no name is defined twice.

The (SpLIT) rule introduces a new operator “split”. If there is a definition X[2*] > 2 = e for the name X in
(¢ | o), the split operator (¢ | 0) x,y splits it into an input X > 2 and a definition Y[2*] >y = e (with a fresh
y). References to x continue referencing it as an input, but the former definition e remains exported as Y. The
operation is different from renaming X to Y or deleting X.

The (SuM) rule defines the composition of two structures (¢1 | 01) and {i2 | 02). The result is a structure
(¢] o), defined as follows. ¢ is the union of +; and ¢z, where names defined in 0; or o2 are removed. o is defined
as the concatenation of o; and 0s. The side condition (¢1 | 01) O (42 | 02) checks that both structures agree on
bound variables, and that no free variable is captured. It is defined in figure 4, where dom({¢ | 0)) = t:Udom(0),
and Variables((¢ | 0)) denotes cod(¢) U{z | (L,z) € dom(o)}. Lastly, o; and o2 are required not to define the
same names.

Eventually, the (CLOSE) rule describes the instantiation of a structure {¢ | o). ¢ must be empty. The
instantiation is in three steps. First, o is reordered to 0, according to its dependencies, to its fake dependencies,
and to its default ordering. Second, a binding Bind (o) is generated, defining, for each definition d = L[y*|px = e
in o, the definition £ = e, in the same order as in 6. Third, the named definitions of @ are put in a record
Record (o), with, for each named definition X[y*] >z = e, a field X = =, and this record is the result of the
instantiation. The side condition ensures that the generated binding is syntactically correct, especially that
there is no forward reference to bindings of unpredictable shapes.

The reduction relation The reduction relation is defined by the rules in figure 8, using notions defined in
figures 6 and 7.

Rule (CONTEXT) extends the contraction relation to any evaluation context. Evaluation contexts are defined
in figure 6. We call a multiple lift context ' a series of nested lift contexts. An evaluation context E is a multiple
lift context, possibly inside a partially evaluated binding, or under a fully evaluated binding. This unusual
formulation of evaluation contexts is intended to enforce determinism of the reduction relation. The idea is
that evaluation never takes place inside or under a let rec, except the topmost one. Other bindings inside the

INRIA

A reduction semantics for call-by-value mizin modules 11

el ¢ (CONTEXT) ENj@) =v
Ele] —» . E[e] E[N[z]] -+ E[N[v]]

(SuBsT)

dom(b;) L {z} Udom(b,,bs) UFV (b, b)) UFV(f)

let rec b,,z = (let rec by in €),bs in f~».let rec b,,b;,x =¢,by in f

(IM)

dom(b) L (dom(b,) UFV(b,))

let rec b, in let rec b in e —-».let rec b,,b in e

(EM)

Figure 8: Reduction relation

expression first have to be lifted to the top by rule (L1FT), and then merged with the topmost let rec if any, by
rules (EM) and (IM). In the case where the topmost binding is of the shape b,,z = (let rec b; in e),bs, rule
(IM) allows to merge b; with the current binding. When an inner binding has been lifted to the top, if there
is already a topmost binding, then the two bindings are merged together by rule (EM). As a result, when the
evaluation encounters a binding, it is always possible to lift it up to the top and then merge it with the topmost
binding if any.

Eventually, rule (SUBST) describes the use of bound values when needed. The notion of a needed value is
formalized by need contexts, which are defined by

N :=op[0] |O+v1 |v2+0O (v is not a variable).

In MM the value of a variable is copied only when needed for the application of an operator, or for composition.
The value of a variable z is found in the current evaluation context, by looking for the first binding of above
the calling site, as formalized by the notion of access in evaluation contexts in figure 7. There are two kinds of
accesses.

¢ In the case of a context of the shape let rec b, in [, if the called variable x is bound in the topmost
binding b,, then b,(x) is the requested value, provided the two capture conditions are respected. First,
no variable free in b, (z) should be captured by F. Second, z should not be captured by F either, because
this would mean that another binding is concerned, inside F.

¢ In the case of a context of the shape E [let rec b,,y =F,b in e], if the called variable z is bound in the
binding b,, then b,(x) is the requested value, provided the two capture conditions are respected. First,
no variable free in b, (x) should be captured by F. Second, z should not be captured by F either, because
this would mean that another binding is concerned, inside F.

In figure 7, the capture conditions are formalized with the Capt function. Capt(E) is the set of bound
variables above O in E. If O is filled with another variable, then it is free in the obtained expression.

Instantiation The (CLOSE) rule makes use of a reordering operation on outputs o, which we define in this
section. This operation takes four aspects of its argument into account: its internal dependencies, its fake
dependencies, the shapes of its definitions, and its original ordering. Internal dependencies and fake dependencies
are considered imperative requirements on the final ordering: if a definition d might call another definition d’,
then d' must be put before d in the final ordering. The shapes of the definitions are examined in order not to
generate a binding with forward references to definitions of unpredictable shape. The original ordering is only
used as a hint, in the case where no constraint forces one definition to be put before the other.

Remark 1 (Warning) The criterion on bindings mentioned in section 2, forbidding forward dependency paths
starting with a strict edge, will look reversed here. Indeed, when a definition dy calls another definition dsy, it
is also possible to see it as a constraint on their ordering, such as “the definition d2 must be put before the
definition d1”. As we will use this relation on definitions as an ordering for generating a binding, the second
way s more intuitive. A consequence is that the criterium now forbids backward dependency paths ending with
a strict edge.

RR n° 4682

12 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

(Liy*lvz=e) €0 (L'[z*]pa'=€)eo x =Degree(z,e)

X
S,z

(Liyr---yn]pz =€) €0 (L'[z*]pz' =€) €0

N1—> NQ NQX—2>N3 N11>N2

+ +
Ny X7 N, Ny 5T N,

Figure 10: Transitive closure of —

More formally, the dependency graph of an output is defined in figure 9. For each pair of definitions
Liy*]>x = e and L'[z*]> 2’ = €’ in o, there may be two kinds of edges.

e If 2’ is free in e, then an edge is drawn from z’ to z. This edge is labeled with a degree x € {©,®}. x is
determined by Degree(z’, €), where the Degree function is defined for z € FV(e) by

Degree(z,{t|0)) = ©
Degree(z,{s,}) = ©
Degree(z,e) = © otherwise.

The Degree function is simple, and could be extended as in [3, 14].

e If 2’ is mentioned in y*, then an edge from ' to x is drawn, with degree ®. Fake dependencies act as real
strict dependencies.

The transitive closure of this relation is defined in figure 10, by defining the degree of a path as the degree of

its last edge. The relation gj gives a conservative approximation of which definition needs the value of which
other one in Bind(0). Reordering o according to —, it is not enough though, because the generated binding
might be syntactically incorrect. Indeed, it is forbidden to make forward references to definitions of unpredictable
shape inside a binding. Strict forward references to definitions of unpredictable shape already correspond to

edges labeled ® in —,, and are therefore taken into account when reordering according to g);" . Weak forward
references to definitions of unpredictable shape correspond to edges labeled ® in —,, and are therefore not

taken into account when reordering according to gj . Let »o= {(z1,22) | 21 9) x2,0(z1) ¢ Predictable}.
This relation exactly puts weak references to definitions of unpredictable shape in the right order.

We define the binary relation >, by the lexical ordering >, = ((g)j U >o)T,>,), where >, is the initial
ordering in o. If >, contains no cycle, o is said correct. This is written - 0. In this case, © denotes o reordered
by >,.

4 Typing

4.1 Type system

In this section, we present a type system for MM.

Types are defined in figure 11. There are only two kinds of types, record types {O} and mixin types
(I; O; D), where I and O range over finite maps from names to types and D is a finite graph over names, labeled
by degrees. Such a graph is called an abstract dependency graph. (Remember that dependency graphs over the
whole set of nodes are called concrete.) An environment T is a finite map from variables to types. We write
T(T') for the map where the bindings of I have overridden the ones from T'.

INRIA

A reduction semantics for call-by-value mizin modules 13

T € Types == {O}|{l;0;D)

1,0 € Names —2 Types

D Crin {X 23 Y| X,Y € Names, x € Degrees}
Fin

r € Vars — Types

Figure 11: Types

Remark 2 Graphs are considered equal modulo removal of isolated nodes, and modulo the following rewriting
rule:

X1
N1 N2 - — > N1 m N2 (1)
X2

where A gives the most dangerous of two degrees:

XitAx2=9@ ifx1=x2=0©
X1 A X2 = @ otherwise

In figure 12, the type system is defined by means of a set of inference rules.

The first rule (T-STRUCT) concerns the typing of basic structures (¢ | 0). Given an input I (which is arbitrary
here, we do not consider type inference or type-checking issues) corresponding to ¢, and a type environment I',
correponding to o, it checks that the definitions in o indeed have the types mentioned in T,.

The condition F —,|,y requires some explanation. We saw in section 3.2 that dependencies in an output
are represented by its dependency graph —,. For structures (which are incomplete outputs), the corresponding
notion is the concrete dependency graph. A concrete dependency graph is a graph over nodes. A node N
is an element of Nodes(=) Vars U Names. The dependency graph of a structure is defined in figure 14. It
records dependencies in the structure (as was done for outputs), but takes external names into account, when
possible. Named definitions are represented by a name, and local definitions are represented by their variables.
In order for types not to mention local components, we introduce a lift operation |—(, 0], which, as described
in figure 13, first ensures to keep track of local components by shifting their dependencies to the next exported
components, and then erases them. The result is an abstract dependency graph.

Finally, the rule checks that the imported types are well-formed, which would otherwise not be forced, with
the following notion of well-formedness.

Definition 1 (Correct graphs) A graph — is correct iff Q)“‘ is an ordering on its nodes (written F—).

Definition 2 (Well-formed types) Figure 15 defines the sets of well-formed types an inputs (or outputs), as
the least relation respecting the rules. A mizin type (I; O; D) must import and define disjoint sets of names, the
targets of D must be defined, and D must be correct.

The second rule (T-SuM) types the sum of two expressions. It verifies that names are bound to the same
types in both expressions (relation O overloaded to types), that the union of the two dependency graphs is still
correct, and that two names are not defined twice (i.e. are not in the two outputs). The result type shares the
inputs, where defined names have been removed, and takes the union of the outputs and of the dependency
graphs.

The third rule (T-FREEZE) introduces a new operation D!X >z on abstract graphs, which is again defined
in figure 13. To freeze a name X, it first replaces X with a fresh local variable z, making the graph temporarily
non-abstract. Then, it adds a strict link from x to X. This follows closely the semantics of freezing from figure
5, first making all other components call the local component z instead of X, and then re-exporting X as x
exactly. The link is forced to be a strict one by hypothesis 2.

The (T-CLOSE) rule transforms a mixin type with no input into a record type. It looks very simple, but
to prove it correct, we must show that well-ordered outputs yield well-ordered bindings by contraction rule
(CLOSE).

The mixin projection rule (T-PROJECT), exactly as the corresponding contraction rule, keeps in the output
types only the selected ones, reporting the other ones in the input types. The abstract graph is modified

RR n° 4682

14 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

Expressions:

dom(:) = dom([]) FI FT, F =0 T(Iot 'WwTl,)Fo:T,
LF (| o0): (I;T, 0 Input(o); [=0)])

(T-STRUCT)

IlL*'JOlDIQH'JOz |‘D1UD2 F|_€1:<Il;01;D1> F|_621<I2;02;D2)
Phep+es: (1 Ul) \ (01 U02);01 W Oq; Dy U D3)

(T-Sum)

Tke:([;O;D) X € dom(O) - I'ke:(0;0;D)
TFelX:(,0;D!X]) (T-FreezE) T+ Ve: {0}

(T-CLOSE)

I'ke:(I;0;D)
Thex,.x,: T80\ x,..x,} 0 {x1..x.}; D){x1.. X })

(T-PROJECT)

I'ke:(I;0;D)
The_x,.x, {IWO x;..x.}; O\ix1.. X0} D —{x1..%.})

(T-DELETE)

C'ke:({I;0;D) {X1...X,} Cdom(O)
Tke_x,.x,: (I;0\x,..x.}; [Di—tx1..x.1])

(T-HIDE)

T'ke:(I;0;D) {X1...X,} C dom(0O)
Ckex, . x, (L0 (x,..x.}; | Diyxy..x.3])

(T-SHOW)

I'te:(I;0;D) (cod(r) \ dom(r)) L (dom(I) Udom(0O))
['Eelr]: (I{r}; O o {r}; D{r})

(T-RENAME)

T'ke:(I;0; D) Y ¢ dom(I) Udom(O)

T-S
TFexry (IO {X :OX)0{X = Y} Dayy) L LorH)
Vie{l..n},Tke:T; (T-Recom) R (0 S)
-RECORD _— -RSELECT
TH{Xi=e1... Xp=en) (X1 :T1... Xp: T} TFeX:0(X)
Fb +T, TD{T)Fb:Ty T(TykFe:T & € dom(T)
T-L _ T-
I'kletrec bine:T (T-LETREC) I'kz:T(x) (T-VARIABLE)
Sequences:
T'ke:T I'ko:T, T'kte: T TFEb:TYy
Fke:0 Pk (L[z*]vz=¢e,0): {z: T}, F'Fx=eb):{z: T}y

Figure 12: Type system

INRIA

A reduction semantics for call-by-value mizin modules 15

Lift
Transitive closure through local components
Nlﬁ)!l? .’L‘X—Q)DNQ N1l>N2
JIARSISERGY RN
Lift
L_)J = _)D| Names X Names
Sum Dl + D2 = D1 U D2
Freeze D!'X = D{Xez}Uu{z o, X} (z not mentioned in D)
Project D|N = D| Names xN xDegrees
Delete D|—N = D\ Names XN xDegrees
Hide D._x,.x, = D{Xi—z...Xpn z,} (z1...2, fresh)
Show D.x,..x, = D._Targets(D)\{X1..Xmm}
Rename D{r} = {Wi{r}, No{r},x) | (N1, N2, x) € D}
Split Dx,y = (D\Dy.x})U{(Z,Y.x)|(Z X,x) € D}

Figure 13: Graph operations

x = Degree(z',¢) (L', z") € dom({¢ | o)) (L[z*]>z=¢€) €0
Node(L',z") X)(L‘(,) Node(L, z)

(Li, z;) € dom({¢ | o)) (L[z1...2n)>px=¢) €EO

Node(L;, x;) 9’(40) Node(L, z)

Figure 14: Dependencies in a structure

I

FO dom(I) L dom(O) Targets(D) C dom(O) FD FO

F(I;0; D) F {0}

VX € dom(I) - I(X)
FI

RR n° 4682

Figure 15: Well-formed types

16 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

accordingly by the operation D(x, . x,}, which removes the edges leading to unselected components. The
(T-DELETE) rule is its dual again.

The (T-HIDE) removes the given names from the output. Additionally, it acts on the abstract graph D as
described in figure 13. Tt first replaces the given names by fresh variables, and then lifts the result, in order to
obtain an abstract graph. Rule (T-SHOW) is its dual, as expected.

Rule (T-RENAME), given a mixin e of type (I; O; D), deduces that e renamed by r has the same type, with
input I and output O redirected to use the new names (cod(r)). As the contraction rule (RENAME), it makes
use of the ry function, composed with I and O. The abstract graph is renamed as well.

Given an expression e of type (I; O; D), according to rule (T-SPLIT), the type of ex,y is as follows. X is
added to the input, with the type it had in O. X is renamed to Y in the output. The graph D is modified
according to figure 13. D _x} is the set of edges leading to X in D. Basically, these edges are redirected to
Y.

The (T-RSELECT) and (T-RECORD) rules for typing record construction and selection are standard.

The (T-LETREC) for typing bindings let rec b in e is almost standard, except for its side-condition: the
binding must be well-ordered with respect to its dependencies. The dependency graph of a binding b is defined
via the dependency graph of the equivalent output Qutput(b) = Output(z; =e;1...z, =€,) = (_[]p 21 =
er..._[]>xn, = ey). We define >; by >output(s)- A binding b is said correct with respect to an ordering >
(written >k b) if >} (the definition order in b) respects > (in other words >C>;). We abbreviate > F b with
F .

Eventually, the typing of outputs and bindings is straightforward, since it consists in successively typing
their definitions.

4.2 Graph soundness

In section 3, we presented MM with concrete, simple instances of IsDefinedSize() and Degree. We now
axiomatize the minimum conditions that they must satisfy.

Hypothesis 1 (Shape)
e 2 ¢ Predictable.

(¢ | o) € Predictable and {s,} € Predictable.

Let o be a variable renaming. e{c} € Predictable iff e € Predictable.

If E[z] € Predictable, then E[v] € Predictable, for all v.

If e — €' and e € Predictable, then ¢’ € Predictable.

If e € Predictable and ¢’ € Predictable, then for any context E
E [e] € Predictable iff E [¢'] € Predictable.

We require the degree function to meet the following condition.

Hypothesis 2 (Degree function)

If Degree(z,e) = @, then e € Predictable.

If e — €' and Degree(z,e) # @, then Degree(z,e') # ®.

If x € FV(e) \ Capt(E[N]), then Degree(z,E[Nle]]) = ®.

If y ¢ FV(v) \ Capt_(F), then Degree(y,F [v]) = Degree(y,F).

If for all x € FV(e), Degree(z,e') < Degree(z,e), then for any context E, for any x € FV(E|e]),
Degree(z,E[¢']) < Degree(z,E[¢]).

e Vzr ¢ dom(b),X #Y,Vx € {x | X l)(xbm‘o) N,o= (Output(h),Y > =e)},

Degree(z,let rec b in e) < x.

INRIA

A reduction semantics for call-by-value mizin modules 17

4.2.1 Modeling the reduction with graphs
Definition 3 (Mixin redex) Mizin redezes e are defined by

er = (1 | 01) + (12 | 02) | op[{¢ | 0)].

The graph operations on abstract graphs defined in figure 13 are trivially generalized to concrete graphs.
These operations are used to guess the concrete graph of a mixin redex.

Definition 4 (Graph of a mixin redex)

ulor)+(zloz) = ulor) T T (uafoz)
—op[(ulo)] = op(=qlo))

Proposition 1 (Graphs operations model contraction) If e; ~ e, then =, = —.
Proof By case analysis on the reduction.

Sum. We have ey = (11 | 01) + (2 | 02) and e = (¢ | 01,02), with ¢+ = (11 U t2) \ Input(o;,02). Trivially,
er = P (11]o1) Y P (uafoay = (sfo1) U —P(i]oa) by (11 | 01) O (L2 | 02). Then, (ulor) U = (tfoa) = ~(t]o1,02)

Freeze. Let ey = (¢ | 01, X[y*]px = f,02) ! X, and e = (¢t | 01, _[y*]> 2 = f,00,X > __ = z). First consider the
structure e’ = (v | 01, _[y*] > & = f,02). Its graph is exactly the same as the one of e except that instead
of the node X, we find the node Node(> z), which is . Then, append the component X >y = z with
a fresh y. This adds a strict dependency from X to z, so the result is exactly —,.

Other cases similar.

O

4.2.2 Subject contraction for graphs

The goal of this section is to ensure that abstract graphs detect all errors in the underlying concrete graphs.
We write + for paths in graphs. The minimum degree of a path y = X X5 Ny ... N,_; X5 YV is x = /\ Xi-
1<i<n

Proposition 2 (Lift preserve paths between names) Let v be a path for the — relation, starting with
name X, ending with name Y, and having minimum degree x. Let D = |—|. There exists a path from X toY
in D, with the same minimum degree.

Proof Let v = Ny X Ny...N,_1 X% N,,. We proceed by induction on the number of names in the path.

[m]
Base. Two names, v = X Xy 1. Tp1 22 Y. An easy induction on n proves that X %~ Y, and therefore
(X,Y,x) € D.

Induction. By induction hypothesis.
O
J®

Corollary 1 If gﬁ has a cycle with at least one name, then |— |71 also has one.

On the other hand, lifting commutes with the other operations on graphs.

Proposition 3 (Lift commutes with operators) Let —1, —2, and — be concrete dependency graphs (i.e.
graphs over Nodes).

e If the variables from —1 and the ones from —o are disjoint, then |—1 U =2 = |—1] U |—2].
e |op[=]] = op[|—=]], for op € {!X, _n s N, [7], N5 N, x>y} (with cod(r) L Nodes(—)).
Proof

RR n° 4682

18

Tom Hirschowitz , Xavier Leroy , Joe B. Wells

Sum. It is obvious that |—1] U |—2] C |—=1 U —2], since =1 C—1 U =2 and lift is monotone.

Now, an edge between names X and Y in |—1 U —2], implies the existence of a path between X and YV
through variables only, in —1 U —»5, but as variables cannot interact, this path is entirely in either one of
the two subgraphs.

Freeze. Let x be a fresh variable. By definition, we have to prove that |—» !X > z| = ||—=]!X > z]. Let

—1
=1

= > Xpx and =2 = |—=]
= |—1] =, = > Xb2z
-y =[]

First, notice that both in =} and —¥, no edge starts from X, and edges arriving to X come from paths
to X through z with degree ® in —; and —, respectively, so they have degree ®.

o —5C—.

— LetY 1>’21 X, with X # Y. Necessarily, x = ®.

This implies that there exists a path of —} of the shape

’ ! n ! ®
VX%, o2z, X0 5, X,

because z is the only variable in —%,.

n could be zero, in which case we would have Y g); X.
But this means that we have YV 2%, X X5, X ... X%, X,

So by definition of ||, we have Y X% 0 X X0 x Xm0 x

n ®
So, we have Y X% P p X0, Xm0 =y X,

and therefore YV 9)1 X.
Let Y %, Z, with Y and Z different from X. Then

Xo ' X1 ' Xn '
Y Sy Sy 0.0 =5, Z,

because z is the only variable in —Y.

We have x = /\ xi- n could possibly be 0, in which case the path would rather look like
0<i<n

vy X% Z.

We can deduce ¥ 2%, X X4, X... X 2%, 7,

soY X0 x X0 x | x Xno gz

and therefore Y %0 ¢ X0 5 ¢ X80 7.

So we have Y X Z.

o o C—).

~ Let Y %) X, with Y # X. We have

X X
VY 50z 50 .0 250

where for all i, X540 does not go through z.

As above, we have x = ® and n could possibly be 0, in which case the path would rather look

likey 250 5 &5 x.

This implies that ¥ 2%0 x X480 x . x X0 X,

Therefore, V 2%, X X4, X ... X X%, X.
®

So,V X%, 2 X5 2.0 X, 2 5, X,
and so Y 9)'2' X.

Let Y % Z, with Y and Z different from X.
We deduce Y X%0 g X450 5 o X0 7
where for all i, ﬁ)f‘ does not go through z.

INRIA

A reduction semantics for call-by-value mizin modules 19

As above, we have xy = /\ x: and n could possibly be 0, in which case the path would rather
0<i<n
look like Y X480 7.
Then, Y 240 x X0 x . x X0 7
andsoY 2%, X X4, X... X X, 7,
1t

. n !
which leads to Y X%, ¢ X5, z...x X% Z,
n
andso Y %, Z.

Other cases. Easy.

O

Corollary 2 If F—, then F op(—). If F—1, F—s, Variables(—) L Variables(—»), and F |—1] U [—2],
then F—1 U —.

Proof

Freeze. Assume op = !X >z and G = (A4, >,—). This operation first replaces X by x in —, which does not
introduce any cycle, and then adds one-way edges to X, which cannot create any cycle.

+
Sum. Let -=—; U —5. Assume there is a cycle in g) . First notice that if there were no named node

in it, as variables from both graphs do not interact, the cycle would come entirely from one of the two
graphs, which are supposed correct, therefore contradicting the hypothesis. Otherwise, by lemma 3,
|—=| = |=1] U |—2]. Moreover, there is at least one named node X in our cycle, so by lemma 2, our cycle
is a path from X to X, so it appears in |—| with the same valuation, which contradicts its correctness.

Other cases. Easy, since they do not add any edge to the dependencies.

O

Proposition 4 IfT' & ey : (I;0; D), then D = | =,].

As a consequence, if a mixin redex is well-typed, then the structure(s) in it have a correct graph, and by
typing the redex also has a correct graph.

Corollary 3 IfT' ke : T, then - —e,.

Lemma 1 IfT'+ ey : {(I; O; D) and et ~ e, then e is a structure and - =, and D = |—.].

We have proven that structures obtained by reduction are correct, which means that their dependencies do
not have strict cycles. It is now necessary to prove that this property is enough for a structure without inputs
to be closed. In other words, it is necessary for our type system to be sound that an output with a correct
dependency graph generate can be reordered.

Lemma 2 (Typing is enough for close) Ift+ —,, then I o.

Proof Assume there is a cycle in >, = (>, U gj)*. This cycle cannot contain only =, edges, since for all

nodes Ni, Ny, N3 such that Ny =, Ny >, N3, by definition N; 9)o N, 9)0 N3, with o(N;) ¢ Predictable
and o(N3) ¢ Predictable, and by definition of >, and hypothesis 2, we have o(N;) € Predictable, which is
a contradiction.

So there is at least one g)j edge in our cycle. But >, is included in go , so this is a cycle for gj too.
O

RR n° 4682

20 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

4.2.3 Manipulation of recursive bindings

Definition 5 (Graph comparison) We define —1<— by
® . o .
e for all Ny —, Na, there exists Ny — 7] Na

e for all Ny 9)2 N, there exists N, 1)1 Ns.

In particular, if —2C—1, then —1<—5 ; and if for all edge in — 5 there exists an edge with the same ends
and an inferior degree in —1, then —1 <—2. Notice that this relation is transitive.

Definition 6 (Binding comparison) A binding by is more restrictive than a binding by (written by < by)
iff they have the same domains (dom(by) = dom(bs)), they define variables in the same order (>y=>y), the
dependencies and shapes of by are more restrictive than those of by (—p, < —b,, and for oll © € dom(bs), if
ba(z) ¢ Predictable, then bi(z) ¢ Predictable).

The desired property is that if a binding is well-ordered for the ordering induced by a more restrictive
binding, then it is well-ordered.

Lemma 3 (Relax) Ifb <b and >y b, then - b.

Proof We proceed by contrapositive. First notice that > F b implies >y F b', since they define variables in

the same order. If >, - b does not hold, it implies that there is a right-to-left edge in (output(s) U 9)?)+

So, there exists = e and y = f defined in b in this order, such that either ¥ >output(s) T Or ¥ g)j z.

o If ¥y >0output(s) T, then y 9’1; z and b(y) ¢ Predictable. By definition of b’ < b, this implies that
b'(y) ¢ Predictable and y 1),), z. Whatever Y is, it is a right-to-left edge in >, which contradicts I b'.

o If y Q); z, by definition of b’ < b, this implies that y g)f; z, so it is a right-to-left edge in >/, which
contradicts - b'.

O

Lemma 4 If — (., then - Bind(0).

Proof Bind(0) is in the same order as 0, and its graph does not take fake dependencies into account. Lemma
3 allows to conclude. O

Our computational reduction relation manipulates let rec constructs as blocks of data, not worrying too
much about dependencies issues. The soundness proof requires some properties to be verified, especially con-
cerning the (IM) rule, which merges two nested bindings. We want to be sure that merging two well-orderd
internally nested bindings — i.e. the second binding appears in one of the definitions of the first one — yield a
well-ordered new binding (corollary 4).

Definition 7 (Paths) For a path v = (No 25 ... X% N,)), we define the degree of v as xn, and we write vX
for a path of degree x, and v C— if v is a path of —.

Eventually, we write edges as triples (source, target, degree), and paths as lists of paths such that the target
of one is the source of the next one, separated by commas, as in ¥, (z,y, X), 73>

Proposition 5 (Let rec internal dependencies)
For all y, for all z € FV (e) \ dom(b), Degree(z,let rec b in e) < Degree(z,e).
For all y, for all z € FV(b(y)) \ dom(b), Degree(z,let rec b in e) < Degree(z, b(y)).

Proof
Let X #Y, b= (z1 =e€1...2, = €p), and 0 = (Output(b),Y > _ =e).

e For the first point, as z € FV(e), there is an edge X 1>(XM|0> Y, where x = Degree(z,e). By hypothesis
2, Degree(z,let rec b in e) < x.

INRIA

A reduction semantics for call-by-value mizin modules 21

e The second point is similar. Suppose y = z;, and f = b(y). There is an edge X l><Xl>,”|0) Z;,, where
x = Degree(z, f). By hypothesis 2, Degree(z,let rec b in e) < x.

O

Proposition 6 (Merging nested bindings)
Let b= (b1, =let rec by in e, b3), b' = (b1, b2,z = e,bs), with F b and dom(b2) L dom(b) UFV (b, b3).
Let v a path of =y, from x1 to x2, of degree x.

r +
1. If 21,35 € dom(b), then z; X, x2, with X' < x.

P+
2. If 1 € dom(b), z2 € dom(bs), then 1 X—),, x, with X' < x.
3. If z1 € dom(by),z2 € dom(b), then if x = @, then x5 € ({z} U dom(bs)).
4. If x1,x2 € dom(by), then either v C —,
r+
or x X5, x for some x' < x.
Proof By induction on the length of ~.
Base 7 is an edge.
1. 21,22 € dom(b). If z5 # z, x = Degree(zy, b (z2)) = Degree(zy,b(x2)), so £1 24 z2. Otherwise,
Xx = Degree(z;,e€).
But as z; ¢ dom(by), by lemma 5, Degree(z1,let rec by in e) < Degree(z;,e€), so we have an
edge z1 X5y z, with x' < x.
2. 1 € dom(b), x> € dom(by). Let ba(xz2) = f. We have x = Degree(z, f), so similarly by lemma 5,
x' = Degree(z1,let rec by in e) < Degree(z:, f), so we have an edge z; 2+ z, with x' < x.

3. 1 € dom(by),z> € dom(b). We have 21 € FV(V'(22)) and z2 € dom(b), so 2 = z, S0 z2 €
({z} U dom(bs)).

4. 21,22 € dom(by), we have of course v C —p,.
Induction step 7 is of length n > 1.

1. 1,25 € dom(b)
e If v only has nodes in dom(b), let (z3,z2,x) be its last edge. By induction hypothesis there is
a path 7{‘1 from x3 to x2 with x' < x in —4, and a path 73‘” from z, to z3, so 7{‘”,73‘1 C —,
with degree x' < x.
e Otherwise, let 5 be the last node of v in dom(b,). The next node is necessarily z. Let x5 be
the last node of vy in dom(b) before z5. Let x4 be the next node. (It is in dom(b2).) We have

Y= 7{617(x37$4:X4)772XQ;(x5;$;X5)7’7§C3:

with 7X* C —p,. Let now o = (Output(bhy),Y > = e) and consider the structure (X o z3 | o).
Its concrete dependency graph is —(xpa,)0y and contains a path (X, 24, X4), 73>, (#5,Y, x5)-
So by hypothesis 2, we have x5 = Degree(zs,let rec by in e) < x5, so there is and edge

I3 ﬁ)b xz.

Then, applying the induction hypothesis to v; and s if not empty, we obtain two paths X
and 'yéxls of =, and so 'yixll, (:1:3,.77,)(’5),75"/3 is a path of =, with a degree x§ < x5 if 73 is
empty, and a degree x4 < xs otherwise.

2. z1 € dom(b),z2 € dom(by). Let z3 be the last node of v in dom(b), and z4 the next one. vy is of the

shape y{*, (23,24, x3), 75>, with the nodes of v, in dom(bs). 71 and 72 could be empty. As above,
by lemma 5, we have x5 = Degree(zs,let rec b2 in e) < Degree(zs, b2(z4)) = x3, SO we have an

X
edge 23 =% .

RR n° 4682

22 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

o If 72 is empty, n > 1, so 7y is non-empty, and applying induction hypothesis to v;, we obtain
71X with same ends, and therefore obtain a path in —; with same ends as vy, and with degree
X3 < X3 = X-

e Otherwise, 72Xz C —p,. Let X #Y, 1 = X b z3, and 0 = Output(bz),Y > = e. We obtain a
path (3,24, x3),72X* in —(, 5y with same ends as v, and with degree x> = x. So, if 1 is empty,
we have in both cases a path from z3 to z in b, with degree x4, < x. Otherwise, by induction
hypothesis, we obtain fy{X; with x] < x1, and reason exactly as above.

3. 1 € dom(bs), 5 € dom(b). Assume xy = ®. The first node of v not in dom(by) is necessarily z.
Let z3 be the node just before it. v has the shape 7', (z3,, x3),73?. If 72 is empty, we have 75 =
which is clearly in {z} Udom(b3). Otherwise, apply induction hypothesis to obtain a path 75"’2 with
the same ends as 2 and x5 < x2. But here x = x2 = ® so x5 = ®. As G I b, 25 must be defined
after z in b, so it must be in dom(bs).

4. 21,29 € dom(bs). If all the nodes are in dom(by), then v C —, directly. Otherwise, the first node
not in dom(bs) in -y is necessarily z. Let z3 be the node just before it. - has to continue after z,
because it has to go back to a node in dom(bs), by hypothesis. Let x4 be the node just after the
first occurence of z. + has the shape v, (z3,, x3), (Z, T4, X4), 75>

e If v, is empty, then as Degree(z, ba(r4)) = x4, by lemma 5 there exists an edge = X4, 2, with
.+

X4 < x4- But here x4 = x, so we are in the second case and x ﬁ),, x with xj < x.

e Otherwise, by induction hypothesis on (z,z4, x4), 73*, we obtain a path v4**> C —, from z to
and x4 < x2, which means that z ﬁ),, z, and that is enough.

O

Corollary 4 (Correct internal merge)
If b= (by,z =let rec by in e,b3), F b, I bs, dom(by) L dom(b) UFV (by,b3), and b’ = by,bs, x = e,bs, then
Fb.
ot
Proof We want to prove that if £ —, 2, then 1 >y 2 (z; is defined before z in b').
+
o If x1,22 € dom(b), by lemma 6, there is a path x; g)b ZTo, and as F b, 1 >p T2, SO X1 >p Ta.

+
e If z; € dom(b), z2 € dom(bs), by lemma 6, there is a path z; 9),, z, 80 1 >p = and therefore 1 >y .
o If z; € dom(b2),z2 € dom(b), by lemma 6, then z5 € {z} Udom(bs), so z1 >y Z2.

e If x;,22 € dom(by), by lemma 6, we are in one of the following two cases.

. e
— There exists a path xy —;, Z2, and as - bz, T1 >p, T2, S0 Ty >y T2.

+
— There exists a path z Q)b x, which is impossible, since + b.

O
There is a similar property for merging two externally nested bindings — i.e. the second one appears right
under the first one.

Lemma 5 (Correct external merge)
If dom(by) L (dom(by) UFV (b)), F b and - by, then with b = by, by + b.

Proof Let 'y® be a path of —,. We prove that it goes from left to right in b.
o If it is a path of —,, then by hypothesis, it goes from left to right.

If it is a path of —,, then by hypothesis it goes from left to right.

If it goes from a node defined in by to a node defined in bs, ok, it goes from left to right.

It cannot go from node defined in b2 to a node defined in by, because dom(bs) L FV (by).

INRIA

A reduction semantics for call-by-value mizin modules 23

4.3 Soundness

We first state the two traditional type well-formedness and weakening lemmas.

Proposition 7 (Types well-formed) If the types in I' are well-formed, and T & e : T, then T is well-formed.
Proof By induction on the typing derivation.

Struct. e = (¢ | o) and T = (I; 0; D). By syntactic correctness, dom(t) 1. Names(0), so dom(I) L dom(0O).
Moreover, the targets of D, by construction of —, 5y, and —>'<30|0>, are in dom(0), and by typing - G),
so F D. Eventually, I I is given by the typing rule, and F O is obtained by induction hypothesis.

Sum. Assume e = e1 + ea, 'k € : <I1;01;D1), 'k € : <I2;02;D2), F _D1 @] Dz, and
T ={(([1UL)\ (01 403); (01 ¥ 02); D. UDy). By induction hypothesis the types of e; and e are well-
formed, so I1 U Is and O1 W O are as well. By construction, the inputs are disjoint from the outputs, the
graph is correct, and its targets are in dom(O; W O5).

Freeze. e = €¢' ! X, T F €' : ({I;0;D), and T = (I;0; D! X). The only difficulty is to show that the targets
of D! X are in dom(O), but the ones of D are by induction hypothesis, so it is the same for the ones of
D!'X >z, and therefore for the ones of D.

Close. Simple by induction hypothesis.

Project and delete. Easy by induction hypothesis. For projection for example, everything is trivial, except
maybe that Targets(D|y) C dom(O) y), but by induction hypothesis
Targets(D) C dom(0), and as Targets(Dy) = Targets(D) NN, we have Targets(D) C dom(O)N
N = dom(O) y).

Show and hide. Assume I' - e : (I; O; D), and by rule (T-SHOW),
I'kex,.x,:{;0x,.x,;D:x,..x,). By induction hypothesis, (I;0; D) is well-formed, so - I, - O,
F D, dom(I) L dom(0O), and Targets(D) C dom(O). We can deduce that (I;0|x,..x,; D:x,..x,) is
well-formed, since Targets(D.x, .. x,) C {X1...X,} and by typing {X;1...X,} C dom(O). The other
conditions are easy, and hide is similar.

Rename. e =€'[r], T+ €' : (I; O; D), (cod(r) \ dom(r)) L dom(I) Udom(O) (1),
and T = (I{r}; O{r}; D{r}).
By induction hypothesis, dom(I) L dom(0O), Targets(D) C dom(O), I I, - O and + D. Furthermore,

I{r} and O{r} are well-defined individually, but it is not trivial that they do not define the same name
twice.

To show this, first remark that dom(I{r}) = (dom(I) \ dom(r)) & r(dom([l)) and
dom(O{r}) = (dom(O) \ dom(r)) & r(dom(O)).
But by induction hypothesis, we know that dom(I) L dom(O), so

dom(I{r}) Ndom(0O{r}) C ((dom(I)\ dom(r)) N cod(r))
U ((dom(0O) \ dom(r)) N cod(r))
U (r(dom(I)) Nr(dom(0))).

But by (1), both (dom(I) \ dom(r)) Ncod(r) and (dom(O) \ dom(r)) Ncod(r) are empty. Finally, as r
is injective and dom(I) L dom(0O), we have r(dom(I)) L r(dom(O)).
Moreover, by induction hypothesis, Targets(D) C dom(O), so
garg(et)j(D{r}) C r(Targets(D)) U (Targets(D) \ dom(r)). But Targets(D) \ dom(r) C (dom(O) \
om(r)), so
Targets(D{r}) C r(dom(0)) U (dom(O) \ dom(r)) = dom(O{r}).

Split. Assume I' e : (I;O; D), and by rule (T-SpLIT),

Fkex,y : (IW{X : 0(X)};O{X — Y}; Dx,v). By induction hypothesis, Targets(D) C dom(O). But
Targets(Dx,y) = Targets(D) \ {X} U{Y} C dom(O){X — Y}. The other conditions are easy.

Other cases. Easy.

RR n° 4682

24 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

O

Lemma 6 (Weakening) IfT'Fe: T and dom(I") L FV(e), then TT")Fe:T.

Proof Simple induction on the typing derivation. Clashes of dom(I") with bound variables of e’ are not a
problem because in the rules, new bindings override previous ones. O
Now, typing is preserved by the computational contraction rules.

Lemma 7 (Subject contraction) Ife~s.e¢' andT'tFe:T, thenT ke : T.
Proof By case analysis on the contraction step.

e (Sum). Assume e = (43 | 01) + {12 | 02), and ' F e : T. By typing we have ' F (11 | 02) : (I1;01; D1},
'k <L2 | 02) : (Iz;02;D2), and T = (I;O;D), with I = (Il UIQ) \ (01 UOQ), 0 = 01 L‘HOQ, D= D1 UDQ,
and F D. We have e’ = (1| 0), where + = (11 U2) \ Input(o1,02), 0 = 01 =, 02, with {41 | 01) O {t2 | 02).
By lemma 1, F =, and D = |—].

Then we deduce easily that T' e’ : T

— dom(t) = dom(I) is trivial.

— We have seen that = —,|,)-

— By typing there exist correct I'y and T's such that I'(I; OLflLﬂfl) Foy: Ty and T(1, OL51®F2) Foy:Ts.
So it would be enough to derive I' 0 : (T; WT2), where I' = T'(J o 1.~ W'y W Ty).
First Variables(o;) L Variables(oz), so dom(T';) L dom(Ts).
Then, I = I} wI}, with I] = I; \O2 and I}, = I\ (I;UO;) and we obtain To,~! = (Ijor 1)W(I5or ™) =
(Lo M)W (Ihouwt).
Moreover, with P = cod(t1) N Variables(oz), we have I'y = 'y p W I'a\ p, and by {11 | 01) O (12 | 02),
for all z € P, there is a name X € dom(t1) N Names(o) such that (X > z) € 1 N Input(o2), so
id) p = Input(02) o 17 ", and therefore

o (id\P)

I'; o Input(os) 0 47"
(T3 o Input(oz)) 0 47 *
= (g0 Lfl

= 02\ dom(s;) © Ll_l
= (02011)0Lf1.

Lo1p

So, we obtain T'y = (O N I1) 017" W\ p and so

1"/

DT (L \O2) o)W (Tpouy ') (I NOs) o iy WTay\p)
Ty Wlow' W (o)W p).

By compatibility, this weakening does not concern free variables of 01, so we obtain by lemma 6:
I+ o0y : T, and by symmetry IV F o5 : g, s0 IV o : Ty W Ts.

e (L1FT). Let e=L[let rec b in e;], and T'Fe: T, dom(b) L FV(L), and ¢’ =let rec b in Le;]. By
case on .. For example . = O + e», we have a derivation of the shape

FTY Fb T{Ty) Fb:Ty Ty ke :Th : L WO, 0L WO,
T'kletrec b in e : T} T'kFey:Th FDyUD,
't (letrec b in e1) +e2: T

where Ty = (I1; Oy1; D1), Ta = (I3; O2; D2),
and T = <(Il U Iz) \ (01 U 02);01 &) Oz;Dl U Dz)

By hypothesis, dom(T';) = dom(b) L FV(es), so by lemma 6, we have T'(Ty) I es : Ty, and we can
reconstruct the derivation as follows:

INRIA

A reduction semantics for call-by-value mizin modules 25

LWO,Ol W0, . .
F T, : F Dy UDs Ty ke :Th Ty Fex: Ty
Fb LTy Fb:Ty Ty Fer+ex:T
T'kletrec b in e; +ey: T

e (FREEZE). Assumee = (1 | 0)! X and e’ = (¢ | 0'), with 0o = (01, X[y*]>z = f,02), and o' = (01, [y*]pz =
f,02, X by =), with a fresh y.

By typing, we have a derivation of the shape

FI FT, Yz € Variables(0),T{(I o™ WT,) F o(2) : To(2)
dom(:) = dom([) F =0 I{Iov 'wl)Fo:T,
Tk {(]|o0):{I;0;D) X € dom(0)
Tke:(;0;|D!X])

with O =T, o Input (o) and D = |—=,|0)]-
Let Ty = T'y{y — I'y(x)). By weakening, we can derive

Yz € Variables(o') \ {z,y},T{Tor ™ W) F o'(2) : T'(2).
For z and y, we easily derive too that

T(Tot W)k f:T(2)
T(Tor ' W) a2 :T(y).

So we have
Vz € Variables(o'),T(T o™ W) F o'(2) : T (2).

Moreover, by lemma 1, we have - —. and |—. | = [D! X|, so we can derive
kI FT Yz € Variables(o'),T{I ot ' W) F o'(2) : T (2)

dom(:) = dom([I) F—e T{Io ' W) Fo : T
Tk(]o):(I;0;|D!X])

¢ (DELETE). Let e = (¢ | 0)_x,...x,, with N = {X; ... X,}, we have

dom(:) = dom([]) HI FT, F =0 T{(Iov 'wl)kFo:T,
Tk {(|o0):{I;0;D)
'ke:T

with T' = (I'; O'; D') = (I & O x; O\n; D|—n) and D = [—(,|0y]. But necessarily, we have e’ = (' | o) =
(s, Input(o)lN | 0\N>-

So, Tor 'y, = (WO x) o (L,Input(o)lN)*l) W I, with T, = To\x, and so I'(((I & O) o
(e, Input(o)lN)_l) W) Fow : T,

Moreover, we have by lemma 1, - —. and D' = |—¢ |, so we can derive

dom(/') = dom(I") FI' FTY F =)o (ot " WIl) o : T
TC'ke :(I';0'; D"

RR n° 4682

Tom Hirschowitz , Xavier Leroy , Joe B. Wells

¢ (PROJECT). Let e = (¢ | 0)|x,...x,- Let N ={X;... X}, N/ = Names(o) \\V, and €" = (¢ | 0)|_p+. We
have in fact that e’ ~. €', because of the duality of delete and project.
So if we show that T' F e” : T', we can reproduce exactly the delete case as above.
By typing, we have T' - (v | 0) : (I;0;D), and T = (I';0"; D'), with I' = T U O\yr, O' = Oy, and
D' = Dyy.
But we can derive T' - e : (I";0"; D"), with I" = TU O pn = ITUO\Ww =I', 0" = O\y» = Oy = 0/,
and D" = D|_n» = Dy = D', so we derive T' - " : T, and may apply the same process as above to
deduce I'-¢€' : T.

¢ (RENAME). Let e = (1 | 0)[r]. We have ¢’ = (1{r} | 0{r}), and by typing:

FI FT,
F=(o dom(I)=dom(:) T({Io/'wTl,)Fo:T,
Tk (] o):{I;0;D) (cod(r) \ dom(r)) L (dom(I) Udom(O))

Tke:T
with 7' = (I';0"; D) = (I{r}; O{r}; D{r}), D = [0,
and O =T, o Input(o).

We may write e’ as (¢/ | ') = (1{r} | o{r}), and Input(o’) = Input(o) o r;émes(o), S0

Fo o Input (OI) = Fo o IHPUt(O) ° Tl:]}ames(o)
-1
=0o rljlames(o)
= 0[0 rdom(O)

For inputs, we have I'o)/ ™" = I{r}o(u{r})~! = Ior;;m(l)ordom(b)w_l = Jou=!, so T({I'o)' ' &l,) F o' : T,
Moreover, it is easily seen that dom(I') = dom(:'), I', and by lemma 1, we have, with - — /|,y and
D' = | = (y|o1y], s0 we can derive

FI O FT,

F =00 dom(/') = dom(I") T{I'o/™
T o) :(I';0";D")

1hLJI‘O)}—o':I‘O

e (CLOSE). Let e = V{e | 0). We have ¢/ = let rec Bind(o) in Record(o), and Bind (o), and by
typing

T, —(e|o) F<F0> Fo:T,
I {elo): ($;0; D)
'e:T

with T' = {0}, D = |—(0)], and O = T, o Input(o).
Let
0= d1 .. dn
dz' = L,[:L‘?’l .. .’L'ﬁh] >x; =e;
b=Bind(0) = (z1 =€1...Tp, =€)
s = Record(0) = (X1 = z,01)--- X;m = Ty(m))
where p: {1...m} — {1...n} injective
and for all 4,X; = L.

We have ¢’ =let rec b in {s} andlet 'y = {z; : T; | i € {1...n}}.
We have

INRIA

A reduction semantics for call-by-value mizin modules 27

— I{T,)Fb: T, (easy with I{T',) Fo: T,),
— kb, by lemma 4,
— I(T,) F {s} : {O}, since for all i € {1...m}, T{To) F z,0 : To(y(i)), and Ty (zyy) = O(Xy),

so it is ok.

e (SHOW). Assume e = eg.x,...x,, with eg = (¢ | 0). Then, ' = (1| 0o'),
and o' = Show(o, X1 ... X,,). Let N = {X;...X,}. The typing derivation is of the shape

FI o FT,
F—=ue dom(I)=dom() I{Ioi/'wl,)to:T,
'k eo:(I;0;D) N C dom(0)
I'ke: (I;O|N;D')

with D = |_—><L‘O)J, D' =|D.y|,
and O =T, o Input(o).

By lemma 1, we have - -, and D' = |G,].
The typing of o' is exactly as the one for o, so we obtain that e’ has type ([;0’; D'), with O' =T, o
Input (o). But Input(o’) = Input(0), 5, so O' = O, which is the expected result.
e (HIDE). As for delete and project, we obtain the expected result by reasoning dually to the (SHOW) case.
e (SPLIT). Let eg = (¢ | o) and e = egx»y, with 0o = (01, X[z*] >z = e1,02). We have ' = (/' | o) =
(t, X >z | o1, X[z*]>y = e1,02) for a fesh y.
The typing derivation is of the shape

FI FT,
F =0 dom(I) = dom() T{Io 'wl,)Fo:T,
'k e : (I;0;D) Y ¢ dom(O) U dom(I)
T'Fex,v: (IH‘J {X : O(X)},O{X — Y};Dx}y)

with D = [— (5], and O =T, o Input (o).
By lemma 1, we have —('|o") and |__><L"O'>J =Dx,vy.

Moreover, the environment I'y corresponding to o' is I',{z — y}, and it is easy to reconstruct the
derivation for e’ (by a weakening).

O

It is now possible to prove that if a well-typed expression reduces to another expression, then this expression
has the same type, which is known as the subject reduction property.

First we prove that typing is compositional at the level of lift contexts.

Lemma 8 (Lift context) IfT+L[e]:T,TFe:T', andTFe' :T', thenT F1L[e']: T.
Proof By case on L.

o L ={S}, withS =s,,X =0,s. We have a derivation of the form

VY =f) € (sv,'s),I‘ Ff:0®) 'k e; 2T
THA{Sle]}: T

with T = {O U {X : T'}}.

RR n° 4682

28 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

By hypothesis we have T' e’ : T', so we can reconstruct the derivation

VY =f)e (sv,.s),l" Ff:0®) rk e" 2T
TH{Sle]}: T

o L = op[O], for op € {V,[r],!X,_x,..x, »|x,..x, }- We have a derivation of the shape

Tke:T' side conditions
C'ke:op[T)

with T' = op[T"], and op deduced from the typing rules. The only side conditions appearing in the rules
are X € dom(0O) for freezing and cod(r) L dom(I) Udom(O) for renaming, which do not use the shape
of e, so we can reconstruct the derivation in a compositional way.

e L. = O+ e;. The derivation is of the form

11601 DIQ@OQ }_D1UD2 Fl—e : <Il;01;D1> F}_ez : <IQ;02;D2)
T'kFe+ey: ((Il UIQ)\(OlUOQ);OlL‘HOQ;DlUDQ)

Similarly, we can reconstruct the derivation compositionally with e'.

e L = v+ O. Similar.

This property is true for multiple lift contexts as well.

Lemma 9 (Multiple lift context) IfT'FFle]: T, TFe:T', andT e : T', then THF[e]: T.

Proof By trivial induction on F. O

Corollary 5 (External substitution) If '+ v:I'(z), and T - F[z]: T, then T FF[v] : T.

Proof Trivial. O
For evaluation contexts, typing is not exactly compositional, since in the let rec case, it depends on the
shapes of the bindings. However, we have this slightly less general property.

Lemma 10 (Evaluation context) Assume I' - Ele] : T, with a sub-derivation T(I') F e : T' in place of
the hole. Assume also that T(T') - €' : T', that e € Predictable and ¢’ € Predictable, and that for all
z € FV(e'), x € FV(e) and Degree(z,e) < Degree(z,e’).

ThenT HFE[e]:T.

Proof By induction on E.
e E =F. By lemma 9.

¢ E =let rec b, in F. The derivation has shape

Fb, T{To)Fby:Ty, I(Ty)FF[e]:T
'k let rec b, in Fle]: T

By lemma 9, we have T' - F[e/] : T, so we can reconstruct the derivation compositionally.

INRIA

A reduction semantics for call-by-value mizin modules 29

o E =let rec B[F[e]] in f, with B =b,,2 = O,b. The derivation has the shape

Vy#z €dom(B),T(T;) FB(y) : To(y) T(Te) FFe]: To(x) ;
T(T,) - B[F[e]] : Ty () Ff:T kb
TFE[]: T

where b = B [F [e]].

By induction hypothesis, we derive T'(I'y) F F [e'] : Tp(z).

Let b' = B[F [¢']]. There only remains to prove that - b'.

As b, we have >, | b/, since they define the same variables in the same order.
Obviously, we have >,=>.

By hypothesis and hypothesis 1, we have F[e] € Predictable iff F[e¢'] € Predictable, so b and b’ are

equivalent with respect to shapes.

For dependencies, we know that the edges with a target different from z in — stay the same in —. For

the edges towards z, we know that FV(F[e']) C FV(F|e]). Let y € FV(F[e']) N dom(B). By hypothesis
+ +

and hypothesis 2, we have Degree(y,F[e]) < Degree(y,F[e']), so that if y 9),,, z, then y 9),, z.
Therefore, the constraints imposed on the ordering are weaker than in b, and by lemma 3, the order of
definition stays acceptable.

O

Lemma 11 (Evaluation context) Ife~s.¢e', and T FE[e]: T, then THE[e]: T.

Proof By lemma 10. O

Now that we have proven that typing is preserved by the (CONTEXT) rule, the last difficulty for proving
subject reduction concerns the (SUBST) rule. Indeed, replacing a variable with its value might change the shape
of a binding. We first prove that if the variable is defined above the current context, it does not change the

typing.
Now, we check that substituting a variable with its value, defined in the current binding does not change
typing either.

Lemma 12 (Internal substitution preserves correct ordering) Let B = (b,,y = 0O,b1), b = B[F [N[z]]],
b =B[F[N[]]], by(z) = v, and Capt(F[N]) L FV(v) U{z}. Ift b, then - ¥'.

Proof Assume + b. Then, b and b’ define the same variables in the same order. So, >; I b'.

By hypothesis 1, if F[N[z]] € Predictable, then F[N[v]] € Predictable, so the shapes of b’ are less
restrictive than in b.

For this, by lemma 3, it is enough to show that —p < —.

For this we remark that

=y C =2 U{z5y | 2 € FV(F[N[v]]), x = Degree(z, F[N[v]])}
But by hypothesis 2, among the variables z € FV(F [N[v]]), we can distinguish two cases.
e For variables z € FV(v) \ Capt(F [N]), we have x = ®.
e For variables z ¢ FV(v) \ Capt(F [N]), we have x = Degree(z,F[N]).
Therefore, we have

-y C —p
U{z 9) y |z € FV(v) \ Capt (F[N])}
U{z Xy | z€ FV(F[N[v]]) N (FV(v) \ Capt(F[N])),x = Degree(z,F[N])}

RR n° 4682

30 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

Let —" be the right member of the above equation.

For each edge in {z °, y | z € FV(v) \ Capt_(F[N])}, as z € FV(v), there is an edge z %, 2. But by
hypothesis 2, Degree(z, E [N[z]]) = @, so there is a strict path from z to y in —.

For each edge in {z Xy | z € FV(F[N[v]])) N (FV(v) \ Capt(F[N])),x = Degree(z,F[N])}, we have
Degree(z,F[N[z]]) < x. (This can be deduced from hypothesis 2.)

So, we have —, <—", and by transitivity of graph comparison, we get —, < —pr.

O

We can eventually verify that reduction through the (SUBST) rule preserves types.
Lemma 13 (Access) IfE[N](z) =v and THFE[N[z]]: T, thenTFE[N[v]] : T.
Proof By induction on E.

e E =T, impossible.

e E =let rec b, in F. By corollary 5.

e E =letrec B[F] in e. Let b=B[F[N[z]]], b = B[F[N[v]]], and B = b,,y = 0O, b1.

The derivation has the shape

Fb Vyedom(b,b),[(Ty) FB(y):T(y) () FFN[]]:T(a)
THFE[N[z]]: T

We have b, () = v, and by lemma 12, - b’.
Eventually, we have I'(I'y) | v : I'(z), so by corollary 5, we can derive I'(I',) F F[N[v]] : I'(z), and therefore

Fo' Vyedom(b),T(Ty) F b :Ty(y)
THFE[N[]]: T

O
Type preservation along the (IM) rule is proven.

Lemma 14 (Internal merge) If e = let rec b,,z = (let rec b; in e1),by in f e = let rec b,,b1,z =
e1,bo in f,andTke:T, thenT ke :T.

Proof
We have a derivation of the shape

Ty, 5 -
v 7& - . - bl F(F(,)(F(,l) F b1 : Fbl F(Fb)<rb1) F €1 : Fb(SL')
Y7 T T F b(y) : T(y) T(T) F let rec by in e; : Ty(2) : T,
T(Ty) I b: T, (T f:T Fb

Tt let rec b,,z = (let rec by in e1),by in f:T

where b =b,,z = (let rec b; in ey),bs.
Let b’ = b,, b1,z = eq,by. By corollary 4, we have - b'.
Moreover, by weakening, we have

W Do) F b(y) < To(y)

INRIA

A reduction semantics for call-by-value mizin modules 31

and with I'y =Ty W T,

F(Fbl) : f : T
and we have

: : F Ty
F(Fbl) = b'(y) Dy (y) F(Fy) : f : T Fb
Fkletrec b’ in f:T

Vy € dom(b)

O
Next, rule (EM) is examined.

Lemma 15 (External merge)

If dom(b) L (dom(b,) UFV (b)), thenT Fej:T.
eo = let rec b, in let rec b in e,
ey = let rec b,,b in e,and
Pheo:T,

Proof The typing derivation for eg has the shape

b F<F1)<F2> Fb: Fz F<F1)<F2) Fe: FQ
Fb, I{T1)Fby:Ty I(T1)Flet rec b in e: T
T'khey:T
By lemma 5, we have F b, b.
So by weakening we can reconstruct the derivation.

O
We can now state the subject reduction property.

Lemma 16 (Subject reduction) Ife — e andT'Fe:T, thenT ke : T.

Proof By immediate induction, with lemmas 7, 11, 13, and 15. O
Eventually, we prove that if a term is well-typed and is not a result, then either it reduces to another term,

or it is stuck on a free variable. This is known as the progress property.

Lemma 17 (Progress) IfT'Fe:T and e is not a result, then either e = E [N|[z]] with ¢ Capt(E[N]), or
there exists ' such that e — €.

Proof By induction on e.

1. If e is of the shape L[eg], and ep is not a value. If eg = let rec b in f, then the (LIFT) applies. Else, by
induction hypothesis we are in one of the following cases.

e ¢o = E[N|[z]] with z ¢ Capt_(E[N]), and e is stuck on z too, i.e. e = L[E[N [z]]].
e Otherwise, if eg — e(), we reason by case analysis on the applied reduction rule.

— (EM). Then the (LIFT) rule applies for e.

— (SuBsT) or (CONTEXT). Then eg = E[f] and ey = E[f']. By case analysis again, on E:
x* IfE =0 or E =F, then e reduces by the same rule, since L[E] is an evaluation context.
* If E = let rec b, in Fg or E = let rec B[F] in g, then the (LIFT) rule applies for e.

2. If e is of the shape N[z], there is nothing to show (z is necessarily free in N[z]).

3. e=letrec b in f.

RR n° 4682

32 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

(a) Else, if b is evaluated. b = b,. If f is a result, it has the shape let rec b,’ in v (or e would be one),
and rule (EM) applies.

Otherwise, by induction hypothesis, we are in one of the two following cases.
e f— f'. By case analysis on the reduction:
— (EM). Then rule (EM) applies for e as well.
— (SuBsT) or (CONTEXT).
We have f = E[g] and f' = E[¢']. fE = let rec b, in F' or E = let rec B[F] in g,
then rule (EM) applies, and otherwise, the same rule applies for e since let rec b, in E is
an evaluation context.
o f=E[N[z]], with ¢ Capt (E[N]).
If E =letrec b, in F or E = let rec B[F] in g, then rule (EM) applies, and otherwise,
E is of the shape F and f = F[N|[z]], e = let rec b, in F[N[z]]. If z € dom(b,), then rule
(SuBsT) applies, and otherwise e = E([N[z]] with z ¢ Capt(Ey).
(b) Otherwise, b is not evaluated, so b is of the shape b,,y = g, b1, where g is not a value.
e If g is a result, then it is of the shape let rec b,’ in v, and by internal merge,
e —s let rec b,,b,’,y =v,b; in f.
e Otherwise, by induction hypothesis:
— If g— ¢', by case on the reduction.
x (EM): then rule (IM) applies for e.

* (CONTEXT) or (SUBST): then g = E[go] and ¢’ = E[gg]. If E is of the shape let rec b,’ in F
or let rec B[F] in g¢", then rule (IM) applies for e, and otherwise, the global context is
an evaluation context and the same rule (CONTEXT) or (SUBST) applies for e.

— If g = E[N[z]] with z ¢ Capt,(E[N]). By case on E. First notice that we know that

+
z ¢ dom(y = g, by), since by typing - b and therefore if = g)b y, then z is defined before y

in b, and g = E[N[z]] implies the existence of an edge z gn, y by hypothesis 2.
* If E =let rec b,' in F or let rec B[F] in g”, then rule (IM) applies.

x Else, if z € dom(b,), then rule (SUBST) applies, since the global context is an evaluation
context.

* Else, if z ¢ dom(b,,y = g,b1), then e is of the shape E([N[z]] with z ¢ Capt(Ey).
4. e = e1 + eo.

We treated the case where either e; or e; is not a value above. So we may assume that both are values.
The typing derivation must be of the shape

F = o) : F = (ia]0s)
l_ .[1 l_ Fl B l_ .[2 }_ FQ B
dom(y;) =dom(l;) T{(Ijou; ' WI)Foy: T dom(iy) = dom(ly) T(lpo0u; W) oy : Ty
F|_€1I<Il;01;D1) F|_€2:<I2;02;D2)
I'ke:T

with - D1 U D5 and I ¥ O1 O I, ¥ Os as side-conditions and

D1 == (/01) T = (I;0; D)

Dy = —(12]02) and I = (11 U IQ) \ (01 U 02)
0, =T o Input(o;) O =01 40,

02 = Fz o Input(oz) D= D1 @] Dz.

But values with mixin types may only be of two kinds: either variables or structures. If either one of the
two is a variable, we have treated the case as well in the beginning (and e = E[N [z]] with « ¢ Capt(E)).

So we may assume that e; = {11 | 01), e2 = (12 | 02), and that bound variables of the two structures meet
only on the common names, i.e. e; O ez. This can be reached via a-conversion.

Moreover, typing imposes that Names(O;) L Names(0,), so Names(o;) L Names(oz), and rule (Sum)
applies.

INRIA

A reduction semantics for call-by-value mizin modules 33

5. (CLOSE). e = Veg, and eg is a value, not a variable (these cases have been treated above). By typing,
eo = {€ | 0) and we have

= Fo = _)(elo) F(Fo) Fo: Fa
I'Feg: (0;0; D)
Tke: {0}

So we have e — let rec Bind(5) in Record(o), provided
0 is defined and Bind (o) is syntactically correct.

By lemma 2, 0 is defined and + Bind (o).

For any forward reference from z to y in Bind (o), there is an edge from y to z in —,, and if it points to
a component of unpredictable shape, then either its degree is ® or we have y >, x, so y is defined before
z in © and therefore, in both cases, z is defined before y in Bind (o).

6. Other operators trivial.

O
Eventually, we can prove a standard soundness theorem.

Theorem 1 (Soundness) The evaluation of a well-typed expression may either not terminate, or reach a
result, or get stuck on a free variable.

5 Conclusion

We have presented a language of call-by-value mixin modules, equipped with a reduction semantics and a sound
type system. A companion paper, in preparation, formalizes the compilation of the let rec construct of MM.

Some open issues remain to be dealt with, which are related to different practical uses of mixin modules. If
mixin modules are used as first-class, core language constructs, then the simple type system presented here is
not expressive enough. Some form of polymorphism over mixin signatures seems necessary, along the lines of
type systems for record concatenation proposed by Harper and Pierce [13] and by Pottier [18]. If one wants to
build a module system based on mixin modules, then type abstraction and user-defined type components have
to be considered. We are working on an extension of Leroy’s module system [15] to mixin modules with type
components.

Furthermore, in both cases, the programmer will probably have to write interfaces for mixin modules. In the
type system presented here, the type of a mixin module must include its dependency graph. This is problematic
for two reasons: first, it is cumbersome to write the whole graph of a mixin module; second, the dependency
graph reveals too much information on the implementation of the mixin module, in the sense that small changes
in the implementation must be reflected in the dependency graph, thus changing the interface. An issue that
remains open is how to reduce the amount of dependency information that needs to be put in mixin interfaces,
while still allowing static checking of well-formedness.

References
[1] Davide Ancona. Modular Formal Frameworks for Module Systems. PhD thesis, Universita di Pisa, 1998.
[2] Davide Ancona and Elena Zucca. A calculus of module systems. J. Func. Progr., 2002.

[3] Gérard Boudol. The recursive record semantics of objects revisited. In David Sands, editor, Europ. Symp.
on Progr. 2001, volume 2028 of LNCS, pages 269—-283. Springer-Verlag, 2001.

[4] Gilad Bracha. The Programming Language Jigsaw: Mizins, Modularity and Multiple Inheritance. PhD
thesis, University of Utah, 1992.

RR n° 4682

34 Tom Hirschowitz , Xavier Leroy , Joe B. Wells

[5] Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA90, volume 25(10) of SIGPLAN
Notices, pages 303-311. ACM Press, 1990.

[6] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proceedings of the IEEE Computer
Society International Conference on Computer Languages, pages 282-290, Washington, DC, 1992. IEEE
Computer Society.

[7] Luca Cardelli. Program fragments, linking, and modularization. In 24th symp. Principles of Progr. Lang.,
pages 266—277. ACM Press, 1997.

[8] Dominic Duggan and Constantinos Sourelis. Mixin modules. In Int. Conf. on Functional Progr. 96, pages
262—-273. ACM Press, 1996.

[9] Levent Erkok, John Launchbury, and Andrew Moran. Semantics of fixIO. Fixed Points in Comp. Sc. 2001.

[10] Matthew Flatt. Programming Languages for Reusable Software Components. PhD thesis, Rice University,
1999.

[11] Matthew Flatt and Matthias Felleisen. Units: cool modules for HOT languages. In Prog. Lang. Design
and Impl. 1998, pages 236—248. ACM Press, 1998.

[12] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing. In
21st symp. Principles of Progr. Lang., pages 123-137. ACM Press, 1994.

[13] Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In symp.
Principles of Progr. Lang. 1991, pages 131-142, Orlando, Florida, 1991.

[14] Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In Daniel Le Métayer, editor,
Europ. Symp. on Progr. 2002, volume 2305 of LNCS, pages 6—20, 2002.

[15] Xavier Leroy. Manifest types, modules, and separate compilation. In 21st symp. Principles of Progr. Lang.,
pages 109-122. ACM Press, 1994.

[16] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérome Vouillon. The OCaml 3.06
reference manual, 2002. Available at http://caml.inria.fr/.

[17] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (revised).
The MIT Press, 1997.

[18] Francois Pottier. A versatile constraint-based type inference system. Nordic Journal of Computing,
7(4):312-347, November 2000.

[19] Claudio V. Russo. Types for Modules. PhD thesis, University of Edinburgh, 1998.

[20] Jodo Costa Seco and Luis Caires. A basic model of typed components. In Europ. Conf. on Object-Oriented
Progr. 2000, volume 1850, pages 108-128, 2000.

[21] Joe B. Wells and René Vestergaard. Equational reasoning for linking with first-class primitive modules.
In Programming Languages and Systems, 9th European Symp. Programming, volume 1782 of LNCS, pages
412-428. Springer-Verlag, 2000.

[22] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf. and Comp., 1992.

INRIA

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

