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Abstract: We start from a mathematical model which describes the collective motion of bacteria
taking into account the underlying biochemistry. This model was first introduced by Keller-
Segel [1]. A new formulation of the system of partial differential equations is obtained by the
introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework
of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element
technique. The solution algorithm is then described and finally we give some preliminary numerical
results.Especially our method is well adapted to compute the concentration of bacteria.
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Simulation bidimensionnelle de aggrégation des bactéries

Résumé : Nous partons d’un modéle mathématique qui décrit le déplacement collectif de bactéries
et qui prend en compte la biochimie sous-jacente. Ce modéle a été introduit initialement par Keller-
Segel [1]. Une nouvelle formulation du systéme d’équations aux dérivées partielles est obtenue
par 'introduction d’une variable similaire au quasi-niveau de Fermi de la modélisation des semi-
conducteurs. Le nouveau systéme est approché par une technique d’éléments finis mixtes. On
décrit ensuite ’algorithme de résolution et donnons quelques résultats numériques préliminaires.
La méthode présentée est particulierement adaptée au calcul de concentrations de bactéries

Mots-clés : biophysique, chemotaxis, simulation numérique, éléments finis mixtes
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1 Problem Formulation

The equations for the collective motion of the bacteria can be derived (with no free parame-
ters) from the underlying biochemistry. The basic equations for the bacterial density p and the
attractant concentration c are (see |1]|2]|3][4])

dp

i Dy V%0~V - (kpVe) +ap (1)
Ooc
— =D,V? 2
5 V. +ap (2)

where
D, is the bacterial diffusion constant

k is the chemotactic coefficient (or chemotactic sensitivity)
a is the rate of bacterial division

« is the rate of attractant production

D, is the chemical diffusion constant.

The terms in equation (1) include the diffusion of bacteria, chemotactic drift and division of
bacteria. Equation (2) expresses the diffusion and production of attractant.
In [2] for example, typical numerical values are given for the various parameters,

Dy = 7.10% cm?/s, D. = 107° cm?/s,
k= 10 cem’/s, a = 10® /s/bacteria.

Taking a bacterial density p = 10®/cm?® the length scale is about 260 microns and the time
scale 100s.

In some semi-solid media (like agar), the diffusion of bacteria is much slower than attactant
diffusion which motivate to drop the term with time derivative in equation (2). This limit case
is also convenient for asymptotic behaviour when considering other media. Notice that for other
applications, the diffusion of attractants is neglected, this is the case for angiogenesis, see [5| and
the references therein.

In addition, cells divide much more slowly than the dynamics take place (the time scale for cell
division is about 2 hours) so that we can take ¢ = 0 in (1) for an entry level model. The model
used for the numerical simulations is then the following

dp

" =Dy V?’p—V - (kpVe) (3)
0=D, V? + ap (4)
which we re-write (for convenience)
—div(D.gradc) — ap =10 (5)
op ..
5 div(Dy grad p — kpgrad ¢) = 0. (6)
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4 A. Marrocco

This last formulation ((5)-(6)), strongly looks like a classical model of transient drift-diffusion of
electrons in semiconductor media (nevertheless the term wich corresponds here to the attractant
production is with an opposite sign). The attractant concentration ¢ corresponds to the electro-
static potential (), the bacterial density p to the electron density (n), the chemotactic coefficient
k to the electron mobility (u,). As in semiconductor modelling framework, a new formulation
of system ((5)-(6)) will be obtained by introduction of a variable which is similar to the electron
quasi-Fermi level and denoted by ¢,.

Note that we can find in the paper [2], one other formulation of eq. (4)

0=D,V2+ape (7)

which can be used when modelling the following fact: when the bacterial density becomes too
high, the bacteria consume all the food sources (succinate and oxygen) in their local environment
and cease producing the attractant aspartate. The parameter p* is the cutoff bacterial density.

One of the problem that has attracted biologists and mathematicians is to understand pattern
formation in such models. The most noticeable, and complex also is the aggregation of bacteria
[6]]7][8] [2][4]- In this paper we investigate this pattern based on a mixed finite element method.
We begin with another formulation based on quasi-Fermi levels, then we describe the finite element,
algorithm and we present in a fourth section some numerical results.

2 New Formulation of the “Chemotaxis Model”

First of all we can introduce a scaling on the ¢ variable (attractant concentration) via the parameter
q.

C
C=— 8
. (8)
The system (5)-(6), becomes
—div(D.grad¢) — qap =0 (9)
k
% — div |Dygrad p — apgradé =0 (10)

(+ % could be added to the left hand side of (9) if the transient equation for the attractant
diffusion was considered). We introduce a new variable ¢, by setting

- éton
p=p(¢¢n) =poe 7 (11)

where

e po is a constant (which corresponds to a given bacterial density, the variable ¢ and ¢, (or
their sum) are then equal to zero)
q Dy

o =

This class of variables is useful because we expect high values of p (collapse) and the potential
¢ 1s @ more reasonable quantity. The system of equations can now be written as

—div(D¢ grad ¢) — @p(¢, ¢n) =0 (12)

INRIA



2D simulation of chemotactic bacteria aggregation )

O] — i (p(e, ) grad ) = 0 (13

where 3
k =k/q, a =aq

The system of equation (12)-(13) where the unknowns are ¢ and ¢, will be used for the numerical
approximation. This system has to be completed with appropriate boundary condition on ¢ and
¢, and initial condition for the bacterial density p.

Eq. (12) is similar to the Poisson equation and eq. (13) to the electron continuity equation in
the semiconductor framework.

3 Mixed Finite Element Approximation and Solution Algo-
rithm

3.1 Numerical approximation (M.F.E.)

Following [9]|10][11][12], and assuming that Dirichlet boundary condition on a part of the boundary
(T'y) — of the computational domain 2 — and Neumann boundary condition on the complementary
boundary part (I';,) hold for the variables ¢ and ¢,,, we introduce the flux variables

V = D.grad¢ J, =kp(¢, ¢n) grad g, (14)
and an equivalent formulation of the system (12)-(13)

.

—divV —ap(E,p,) =0  inQ (15)
) V = D, grad@ in (16)
V.it=D. fi, onlpy (17)
L ¢= fia on Iy (18)

)
90 n) _ gy J,=0 inQ (19)

ot

. Jp = kp(¢ ¢n) grad g, in Q (20)
jp -1 = kpfon on 'y (21)
\ ©On = fon on g (22)

fia and fy,, are given boundary conditions on ¢ (respectively of Dirichlet and Neumann type), and
foq and fo, similarly for ¢,,.

The system we have to consider is now made up of four equations (15) (16) (19) (20) with the
four unknowns (¢, v, Ons J:,)

We consider now the following Sobolev spaces

H(div) = {w|w € (L3(Q))?, divw € L3(Q)} (23)
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6 A. Marrocco

%,i = {’U)|’LU € H(le), w-n=0 on Fn,i} (24)

Then, for sufficiently smooth data we can obtain the following equivalent dual mixed variational
formulation of the original problem.
Find V e H(div), &eL%Q)
J, € H(div), ¢, € L*(Q) such that

- / divV - v dz — / ap(&,¢p) -vidr =0 Yo, € L*(Q) (25)
Q Q
/[Dc]l‘?wldx+/édlvw1d$—/ f1du71ﬁdF:0 lee%’l (26)
Q Q Ta1
V@i =D, fin on Iy (27)

/M-wd:r—/divj;-wdxzo Vop € L2(Q)  (28)
Q

ot O
/[Ipr(é, gon)]_lj;) - Wo dx + / Op - div iy dz — / foa - Wo - dl =0 Viy € Vpo (29)
Q Q T2
J, it = kp( on) - fan onTpy (30)

For the numerical applications (as often it happens) we will have fi,, = fo, = 0 so that we look
for V and fp in Vp,1 and Vp 2 respectively.

As in [9][12][13][14] the previous formulation (25)—(27) and (28)—(30) allows us to realize easily
a discrete approximation via mixed finite elements.

We retain the lowest order M.F.E. of Raviart-Thomas (R} ) for implementation. After a tri-
angulation 7, of the computational domain 2 C R, we define the following finite dimensional
spaces

Ly, = {v, € L*(Q)|VK € Tp, va|x = constant} (31)
Vi ={w, € H(div)[VK € Tp, wu(x,¥)|k = ‘g}f + ’yK|;} (32)

We assume also that I',,; (4 = 1,2) is obtained by union of edges of triangles which belong to
the mesh 7; and that
Vo,ih = V0,0 N Vi (33)

Then the discrete formulation of the problem follows directly from (25)—(30) by replacing L?(€2)
by Ly and Vo; by Vo .

3.2 Solution algorithm

Refering again to the publications related to semiconductor area [9|[11][12] [13][14], various algo-
rithms are described for a “stationary” version of system (25)-(30) (i.e. without % term !). Let
us recall here the major characteristics of these numerical schemes.

e association to each (stationary) equation (primal variable) of the system of an “artificial”

transient equation,

INRIA



2D simulation of chemotactic bacteria aggregation 7

e semi-implicit (Peaceman Rachford, Douglas Rachford) or implicit (Backward-Euler) time
discretization schemes for the “artificial” evolution equations. Use of local time steps,

e relaxation on the equations at each time step,

e for each time step, and for each equation of the system, solution of the nonlinear problem by
Newton-Raphson technique.

The fact that we associate an “evolution” equation and the use of implicit or semi-implicit
schemes is an other way to consider augmented Lagrangian techniques for the solution of saddle
point problems [15] arising from the mixed formulation. Local time steps are closely connected
with the penalty functions in the framework of Augmented Lagrangian techniques.

Special features of such an approach are relative simplicity and ease of implementation of
model extensions. It is easy to add one equation to the system without need of deep changes in
the algorithm architecture. Equations are handled successively in the algorithmic process. This
numerical scheme, specially when using backward Euler for time discretization, has appeared to be
rather efficient for semiconductor device (drift diffusion model and standard applied potentials).
One can think reasonably that if the coupling between the equations of the system is not “too
strong” then the relaxation on the equations do not penalize strongly the (speed of) convergence
of the iterates towards the stationary solution of the whole system. This is certainly what happens
in the static drift diffusion model for regimes not so far from the equilibrium state.

Nevertheless this solution technique failed when applied to energy-transport models for semi-
conductors [6] [7]. One equation (relative to electron temperature) has been added to the drift
diffusion model and the constitutive relation for the current density has been slightly modified. The
previous numerical scheme works correctly only for solutions very close to the equilibrium state.
In order to recover the algorithmic behaviour, for typical load range, similar to the behaviour,
obtained when using the drift diffusion model, one has to consider simultaneously (couple) the
equations relative to the electron current continuity and the energy [7]. The implementation
of such numerical scheme in a little bit more complicated but seems a necessity to insure the
convergence of the iterative procedure.

In past few years we are also interested by the numerical simulation of the transient behaviour
(physical transient) of a semiconductor device governed by the drift diffusion model (numerical
simulation of the switching of a diode). The model is very close to the “chemotaxis model”.

After the semi-discretization in time, using fully implicit scheme, we have to deal with a se-
quence of “quasi-static” problems which are similar to the static drift diffusion problem himself,
but generally easier to solve because the nonlinearities involved are of lower amplitude. The de-
gree of nonlinearity may be controlled in practice by the physical time step. For “very small time
step” the operator governing the transient tends to the identity operator (linear operator) and for
sufficiently large time steps, the operator corresponds to the static drift diffusion (fully non linear
operator).

The first attempt for the numerical simulation of the transient behaviour was to apply the
most efficient scheme developped for the static drift diffusion model at each “quasi static” problem
obtained via the semi-discretization in time of the transient model. As the time step (physical
time step) becomes smaller and smaller the convergence of the iterates becomes more and more
difficult to obtain and solution of quasi-static problems is not reached. The whole algorithm failed
to converge. The only plausible explanation to this algorithm behaviour is that, as the time
step (physical time step) becomes smaller, the coupling between the equations (Poisson equation

RR n’" 4667



8 A. Marrocco

and continuity equations) becomes stronger, and the relaxation strategy (decoupling) used in the
numerical algorithm is no more adapted. A more implicit scheme has to be used for the solution
of the quasi-static problems. The fully implicit scheme (on the system and not on each equation
of the system) has been implemented and convergence was restored.

We describe now an adaptation of this numerical scheme as simply as possible.

A) Semi-discretization in time (physical time), by a fully implicit scheme (Backward-Euler)

The solution of the problem represents an approximation of the transient solution at different
times Tp,1 = T, +6t (n = 0,1, 2,3, ...); the time step d¢ may be adapted if needed. The formulation
of the sequence of quasi-static problems is the following:

Find (&, Vit ontl j;”’l) solution of

—div V™ — ap(e it = 0 (34)
/[Dc]lf/’”+1 -wy dx + / M div wy dx — frawy -ndl' =0, Yw; € Vo1 (35)
Q Q Ta1
1
—div J, + = [p(e", ) — p(e, )] = 0 (36)
/[kp (&t et~ lJ_,; cwy dr + / oMt divwy do — foawz -ndl =0, Ywy € Voan. (37)
T2

) Each quasi-static problem (index n) is solved via artificial transient [12|[14]. The index of
tlme dlscretlzatlon is here k£ (Backward Euler scheme on the system of equation)

e — & — Aty (z) div VT — Aty (2) - ap(@T, of ) =0 (38)
/[DO]_I‘_/”c+1 -wy dx +/ At divw, dz — frawr -ndl =0, Yw; € Voap (39)
Q Q Ta
. 1 n
A — ok — Aty(a) div [+ Aty(a) - 5[0, k) = p"] = 0 (40)
/;p Ek+1, gok“ JEtL. wo dx + g0k+1 div we dz — foqwe -ndl' =0, VYwy € Voo, (41
Q n p n r [t}
d2

In (40) p" is given (p" = p(c", cpn)) In this process indexed with &, we can take ¢® = ¢ and
¢? = ¢". The unknowns are here (¢5+1, VF+1 ot j“l) When the convergence with respect to
k is obtalned, then the current solution gives ("1, VL, ontl J”+1)

As we use the lowest order Raviart-Thomas element, the equations (38) and (40) lead to scalar
relation on each elements 7" of the triangulation 7, (it is natural in this approximation to take
the “local time steps” At; and Aty constant on each element 7).

C) At each step k, we have a non linear problem to solve. We use Newton-Raphson technique,
the index of iteration is now denoted by /. We set:

o\ (U

7 V U 2
U= = 42
v, U (42)

p Uy

INRIA



2D simulation of chemotactic bacteria aggregation 9

Equations (38) and (39) can formally be written as
El(é, ‘7, Pns ) = El(Ul, UQ, U3, U4) = El(ﬁ) =0.

Ey(&,V,+,-) = Ey(U1,Us, Us, Us) = Ey(U) = 0
and so on, and finally the system (38)—(41) may be synthetized by

E(U) =0. (43)

The Newton-Raphson rule applied to (43) gives

E] .- o =
0 §U¢ = —E0), o6U'=0""-U" (44)
aUj |,
or equivalently
-1
et = gt — | 9L E(U) (45)
Ui |,

where

0F; T
[B—UZ] is the jacobian matrix of the application E evaluated at step .
il
The Newton-Raphson technique leads to a sequence of linear systems (indexed by £). In our
context of approximation (M.F.E.-RT}) the size of each linear system is approximatively

2 x (NT + NA)

where NT is the number of triangles of the triangulation 7, and N A is the number of edges of
the mesh.
On can reduce the size of linear system by eliminating the primal variables (i.e., ¢ and ¢,,).
As a matter of fact, if we consider the first and third rows of relation (44), we can express
explicitely the primal variables (1, &) as functions of the dual variables V¢! and J_';f“ by

A et — ¢t Aty - divV? [ E\(TY ] (46)
P =gt || Atydivedt E5(U*) |
The matrix [A] is given by
1-— Atlapc|Z —Atldpfp |£
[A] = Aty | L, At s (47)
5t Pele 5t Penle

By the definition of p in (11), the derivatives of p with respect to ¢ and ¢, are the same and
the determinant of A can be evaluated as

Aty
detA:1+p’é<5—2—At1 ) (48)

We can eventually act on the physical time step 6t or the local time steps At; and At in order
to keep det A # 0 or even > 0.

RR n’" 4667



10 A. Marrocco

Let us denote by B the inverse of matrix A
B=A" (49)
Then the following relations are obtained for &+! and %+

G — =5 = ByAtdivVE! — B[l — & — Atyapf

. At (50)
+ BpAtydivJit — By [soﬁ —op+ 5—5 (" — p“)}
gOﬁjH — (pfb = 5@0£ = BglAtl div \7£+1 - Bgl[éz — (~3k — Atlépe]
- At (51)
+ BQQAtQ div Jf;—H - B22 |:(pf; - QOII.(I + 6—132 (,Oz - pn):| .

These relations (50) and (51) are then used within the second and fourth rows of (45). Finally
the linear system we have to solve is relative to the unknowns V¢! and fﬁ“ only (i.e. of maximum
size 2.NA). When the convergence with respect to £ is reached then the solution at step & of the
whole process is obtained.

4 Numerical Applications

We take for {2 the rectangular domain L x ¢ and we suppose that at 7" = 0 we have a uniform

L

Figure 1: Simulation Domain and reduction by symmetry.

distribution of bacteria with density pg.
From the definition of p in (11) it is natural to take at initial time

&+ ¢n=0. (52)

By analogy with the drift diffusion model for semiconductor the variable ¢ is similar to the
electrostatic potential which is defined up to an additive constant. We can fix this constant by
taking the value 0. On the other hand we want to ensure in the following numerical approximation,
the mass conservation (or volume conservation) for the bacteria. From eq. (13) this will be the
case if we take the following boundary condition on ¢,

0,
on

=0 onl =00Q. (53)

INRIA
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In short, we can take at initial time

p=poand ¢ = ¢, =0 (54)
and the boundary condition
ér=0
O, (55)
on |I‘ =0

Of course, by reason of symmetry we can consider only a quarter of the simulation domain €2,
namely (L/2,£/2), then we have to take the following boundary conditions on the boundaries of
symmetry ['g

an 0 onlyg,
In
and o 0 onlg.
WA W/ WY
R RN A A
VYV VYV VYV VNNV NN VYV VYV VYV VYV Y Y Y Y YV RV VAN Y VYV VYNV N VYV VYV VTRV
AR AN AN N AAAAAANN AN AN AAAA AR AN N AAAA AN A AN KR A AAAAAANANAN N AAAAAAN AN AAAAA AR ARRN
VYV VY VYNV YV YV VANV AN VYV VANV VYV VNN YV VYV VNN VYV VUV E YV E LY
AANA NN A AR AR A AAAARRARKANAAA AR AN KRR AAA AR N AAAAAAAANRRRN AAAAAARAARRRR
VYVVVVVVVLNY VW\/V\/V\/VVV\}\;W VWVVWW\}\I\\IV\EVW/V\IWVWW VVVVWWW ‘/WWV
(a) Mesh 1 (1775 triangles) (b) Mesh 2 (5433 triangles)

Figure 2: MESHES. The meshes are adapted to the geometries by deformation .

In all numerical experimentations, two meshes have been used in order to see if the transient
may be strongly affected by the spatial discretization. Fig (2) show the first mesh (with 1775
triangles) and the second mesh (with 5433 triangles)

The bacterial density is also assumed to be larger than a prescribed minimum value p,;,
(projection). We choose in our simulations,

Pmin = 10_10/Cm3' (57)

4.1 Numerical results with 2 = square

In this part, we take L = £ = 0.5¢cm;

RR n’ 4667



12 A. Marrocco

The physical parameters are those given in section 1. The model for attractant diffusion and
production is given by (4). In (8) the scaling factor ¢ is taken (as in other applications) as 1072,
The initial uniform distribution of bacteria is taken py = 10%/cm3.

The figures(3,4) represent the distribution of bacteria density within the domain of simulation
at times 100s and 2000s and for the two meshes. The coordinates (z1,z9) are given in pm on
the figures and a log scale is used for representation of the density p (range from 107'% to 10710
(em™2)). The initial constant value py is marked on the figures.

The total amount of bacteria remain constant along the evolution process:

/ pdr = C" = / podx = py X Area(52)
Q Q

For this example, the bacteria migrate towards the center of the square. Something like a
Dirac mass at this center is obtained after a certain amount of time (see fig.(4)) A P'-smoothing
is applied (for visualization of solution) to the raw data obtained from the mixed finite element
approximation. The primal variables ¢, p, and associated quantities (as bacteria density) are
constant on each triangle of the mesh. As such an action (smoothing) reduce strongly the function

peaks, a special treatment (only for visualization) is applied on the smoothed function in order to
retrieve peak values.

. 00 5. 00 10. 90

-10. 00 -5. 00

bectl.5

Sps500

1875

.00 5. 00 10. 20

-10. 00 -5. 00

bactl_8

Y500

<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 20 T (s)= 100 DENSITE de BACTERIES (LOG) Step: 20 T (s)= 100
Min: 54782 Min: . 40676
Mox: 9.5475 Max: 10.198

1679

(a) With mesh 1 (1775 triangles) (b) With mesh 2 (5433 triangles)

Figure 3: Bacreria concentratiON, (LoG. scae). Computational domain:square 0.25cm X 0.25¢m. Distribu-
tion after 100s. Initial Concentration is marked, observer position near (Tmaz, Ymaz)-

In order to follow quantitatively what happens to the bacterial density distribution, we can
analyse the solution at a given time T in the following way:

INRIA
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<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 400 T (s)= 2000 DENSITE de BACTERIES (LOG) Step: 400 T (s)= 2000
Min: -10 Min: -10
Max: 9. 8958 Max: 10,543

5. 00 10. 00
5. 00 10. 98

. 00

. 00

-10. 00 -5. 00
~10. 00 -5. 00

boct15 1875 =5

= boctl 8
Y500 Y500

(a) With mesh 1 (1775 triangles) (b) With mesh 2 (5433 triangles)

Figure 4: Bacreria concentration, (Loa. scas). Computational domain:square 0.25cm x 0.25¢m. Distribu-
tion after 2000s. Initial Concentration is marked, observer position near (Tmaz, Ymaz)-

1. We control the value of the total bacterial mass (which remains constant during the evolution
process)

Total _Mass = / pdx = Z p(J) x Area(J) (J triangle of the mesh)
Q J

2. We consider a threshold value (py, -typically we choose py, = po-) for the density p and only
triangles for which the density is larger or equal than p;, will be taken into consideration in
the following. First of all, we begin to attach the attribute “not marked” to all the triangles.

3. -Determination of the 7*" local maxima

e We look for the triangle J; such that

p(Ji) > p(J) VI

where J € list of “not marked” triangles and such that p(J) > py,

e If the triangle J; does not exists => EXIT (GoTo END)
e The triangle J; is “marked”

e We determine all the triangles J; ; in the (connected) neighbourhood of J; such that
= p(Jik) > prn
— Jix “not marked”

RR n’ 4667
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All these triangles J; (including J;) form a connected domain €,
Q= Ji|J Tin
k

e We evaluate and print several quantities

J; = number of the triangle where the local maximun(i) occur

Conc = density value (local maximum)

XG(J;),YG(J;) = coordinates of the center of gravity for triangle J;
N (i) = number of triangles in 2;

Local_Mass(i) = [, pdx

Contrib(J;) = p(J;) x Area(J;)

Percent (i) = %Aﬁzg) x 100

Percent _max_local(i) = % x 100

Percent_max_total(i) = % x 100

e All triangles in €2; are “marked”
e Return to 3 for the determination of next local max.
e END

— At this point, a certain number (/) of local maxima has been found
- N = the total number of triangles considered = ). N (¢)

- Troncated_Mass =, Local _Mass(4)

Troncated Mass
Total Mass x 100

Analysis of the solution on Mesh 2 at 100s and 2000s

Mesh 2
6.25000E+04

- Troncated _Mass_Percent =

100.0 s
J1 = 5433 Conc: 1.577E+10 (XG,YG)= ( 2.489E-01, 2.493E-01) (cmXcm)
Number of triangles N(1)= 1532

Local_Mass(l) = b5.26292E+04 Percent(1)

Total bacteria mass: Threshold value: 1.00000E+06

Local max number: 1

84.20681 7%

Contrib( 5433)= 2.82386E+04 Percent_max_local(l) 53.65572 % Percent_max_total(1l)= 45.18177 %
———————— Global results ------

Number of local maxima : 1 Total number of triangles N= 1532

Troncated_Mass : 5.26292E+04 Troncated_Mass_Percent : 84.20681 %
——————————————————————————————————————————————— Mesh 2

Process time 2000.0 s Total bacteria mass: 6.25001E+04 Threshold value: 1.00000E+06
———————————————————————————— Local max number: 1
*xx J1 = B433 Conc: 3.490E+10 (XG,YG)= ( 2.489E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 1

Local_Mass(1) = 6.25001E+04 Percent(1) = 99.99998 Y%

Contrib( 5433)= 6.25001E+04 Percent_max_local(1)= 100.00000 % Percent_max_total(1l)= 99.99998 Y%

Global results
Number of local maxima
Troncated_Mass

: 1 Total number of triangles
: 6.25001E+04 Troncated_Mass_Percent

N= 1
1 99.99998 ¥,

We can see (qualitatively) on figure (4) the formation of a Dirac Mass at the center of the square.
Quantitatively, we can see from the solution analysis at 600s that only one triangle (the smallest
part in our MFE approximation) contribute to the total Mass. As early as the process time
reached 100s, this triangle contained more than 45% of the total mass of bacteria.

INRIA
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4.2 Numerical results with () = rectangle with small aspect ratio

In this part, we take L = 1.cm ¢ = 0.5¢cm;
The figures(5,6) represent the distribution of bacteria density within the domain of simulation

at times 100s and 600s and for the two meshes.

125@

bacil 5

8

<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 100 T (s)= 100 DENSITE de BACTERIES (LOG) Step: 100 T (s)= 100
Min: - 85294 Min: - 96762
Max: 8. 2031 Mox: 83736

QSB

boct1 8

82y

(a) With mesh 1 (1775 triangles)

(b) With mesh 2 (5433 triangles)

Figure 5: Bacreria concentration,(Loa. scate). Computational domain:rectangle 0.50cm x 0.25¢m. Distri-
bution after 100s. Initial Concentration is marked, observer position near (Tmin, Ymin)-

Analysis of the solution on meshes 1 and 2 at time 100s

——————————————————————————————————————————————— Mesh 1

Process time 100.0 s Total bacteria mass: 1.25000E+05 Threshold value: 1.00000E+06
———————————————————————————— Local max number: 1
**¥*x J1 = 1115 Conc: 1.597E+08 (XG,YG)= ( 2.710E-01, 2.487E-01) (cmXcm)

Number of triangles N(1)= 605

Local_Mass(1) = 1.11694E+05 Percent(1) = 89.35488 ¥

Contrib( 1115)= 2.55813E+03 Percent_max_local(l)= 2.29031 % Percent_max_total(1l)= 2.04651 %
———————— Global results ------
Number of local maxima : 1 Total number of triangles N= 605

Troncated_Mass : 1.11694E+05 Troncated_Mass_Percent : 89.35488 Y

——————————————————————————————————————————————— Mesh 2

Process time 100.0 s Total bacteria mass: 1.25000E+05 Threshold value: 1.00000E+06
———————————————————————————— Local max number: 1
**x J1 = 3372 Conc: 2.365E+08 (XG,YG)= ( 2.746E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 2107

Local_Mass(1) = 1.11937E+05 Percent(1) = 89.54935 %

Contrib( 3372)= 8.46726E+02 Percent_max_local(l)= 0.75643 % Percent_max_total(1l)= 0.67738 %
———————— Global results ------
Number of local maxima : 1 Total number of triangles N= 2107

Troncated_Mass : 1.11937E+05 Troncated_Mass_Percent : 89.54935 %

Analysis of the solution on meshes 1 and 2 at time 600s

Mesh 1
1.25000E+05

. Process time : 600.0 s Total bacteria mass: Threshold value: 1.00000E+06

RR n’" 4667



16 A. Marrocco

<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 600 T (s)= 600 DENSITE de BACTERIES (LOG) Step: 600 T (s)= 600
Min: -10 Min: -10
Mox: 9.7798 Max: 10,453

lgsm 125@
&y By

boctl S 1/ iT=1 bocil B 0 aT=1

(a) With mesh 1 (1775 triangles) (b) With mesh 2 (5433 triangles)

Figure 6: Bacreria concentratiON, (Log. scate). Computational domain:rectangle 0.50cm x 0.25¢cm. Distri-
bution after 600s. Initial Concentration is marked, observer position near (Tmin, Ymin)-

———————————————————————————— Local max number: 1
*xx J1 = 1146 Conc: 6.023E+09 (XG,YG)= ( 2.794E-01, 2.487E-01) (cmXcm)
Number of triangles N(1)= 1
Local_Mass(1) = 9.64805E+04 Percent(1) = T77.18437 %
Contrib( 1146)= 9.64805E+04 Percent_max_local(1l)= 100.00000 % Percent_max_total(1l)= 77.18437 %
———————————————————————————— Local max number: 2
**xx J2 = 1636 Conc: 1.780E+09 (XG,YG)= ( 4.302E-01, 2.487E-01) (cmXcm)
Number of triangles N(2)= 1
Local_Mass(2) = 2.85119E+04 Percent(2) = 22.80950 %
Contrib( 1636)= 2.85119E+04 Percent_max_local(2)= 100.00000 % Percent_max_total(2)= 22.80950 Y%
———————— Global results ------
Number of local maxima : 2 Total number of triangles N= 2
Troncated_Mass : 1.24992E+05 Troncated_Mass_Percent : 99.99388 %

——————————————————————————————————————————————— Mesh 2
. Process time : 600.0 s Total bacteria mass: 1.25000E+05 Threshold value: 1.00000E+06

———————————————————————————— Local max number: 1
**x J1 = 3372 Conc: 2.876E+10 (XG,YG)= ( 2.746E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 1

Local_Mass(1) = 1.02971E+05 Percent(1) = 82.37659 %

Contrib( 3372)= 1.02971E+05 Percent_max_local(1)= 100.00000 % Percent_max_total(1l)= 82.37659 %
———————————————————————————— Local max number: 2
**xx J2 = 5028 Conc: 6.145E+09 (XG,YG)= ( 4.386E-01, 2.493E-01) (cmXcm)

Number of triangles N(2)= 2

Local_Mass(2) = 2.20225E+04 Percent(2) = 17.61800 %

Contrib( 5028)= 2.20013E+04 Percent_max_local(2)= 99.90358 % Percent_max_total(2)= 17.60101 %

———————— Global results ------
Number of local maxima : 2 Total number of triangles N= 3
Troncated_Mass : 1.24993E+05 Troncated_Mass_Percent : 99.99458 %

At T = 100s we begin to see the first local maxima -see fig.(5)-, but only a few percentage of
the total mass is located on the triangle which presents the maximum bacterial density. We can
see on the quantitative analysis that the localization of local maxima and concentration values at

INRIA
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these points remain mesh dependent. We can also remark from the analysis at 7" = 600s that the
distorsion between mass repartition (at local maxima) is amplified when the mesh is refined.

4.3 Numerical results with () = rectangle with large aspect ratio

In this part, we take L = 1.5em £ = 0.5¢m;
The figures(7,8,9) represent the distribution of bacteria density within the domain of simulation

at times 100s, 250s and 600s and for the two meshes.

<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 100 T (s)= 100 DENSITE de BACTERIES (LOG) Step: 100 T (s)= 100
Min: -1 0648 Min: - 93346
Max: 8089 Mox: 83523

100508 @ kg
1000508 . ® 5ewiam

bacil 5 4T=1 boct1 8 iT=1

(a) With mesh 1 (1775 triangles) (b) With mesh 2 (5433 triangles)

Figure 7: Bacreria concentraTiON, (Log. scare). Computational domain:rectangle 0.75¢m x 0.25¢m. Distri-
bution after 100s. Initial Concentration is marked, observer position near (Tmin, Ymin)-

Solution analysis on mesh 1 and 2 at 100s (respectively)

——————————————————————————————————————————————— Mesh 1
100.0 s Total bacteria mass: 1.87500E+05
____________________________ Local max number: 1

Threshold value: 1.00000E+06

*kk J1 = 830 Conc: 1.228E+08 (XG,YG)= ( 2.740E-01, 2.474E-01) (cmXcm)
Number of triangles N(1)= 656
Local_Mass(1) = 1.69660E+05 Percent(1) = 90.48521 %

Contrib( 830)= 3.01108E+03 Percent_max_local(l)= 1.77478 % Percent_max_total(1l)= 1.60591 %
———————— Global results ------
Number of local maxima : 1 Total number of triangles N= 656

Troncated_Mass : 1.69660E+05 Troncated_Mass_Percent : 90.48521 %

——————————————————————————————————————————————— Mesh 2
. Process time : 100.0 s Total bacteria mass: 1.87500E+05
———————————————————————————— Local max number: 1
**xx J1 = 2500 Conc: 2.252E+08 (XG,YG)= ( 2.730E-01, 2.493E-01) (cmXcm)
Number of triangles N(1)= 2314
Local_Mass(1) = 1.69736E+05 Percent(1) = 90.52596 %
Contrib( 2500)= 1.20953E+03 Percent_max_local(l)= 0.71259 %
———————— Global results ------
Number of local maxima : 1 Total number of triangles N= 2314
Troncated_Mass : 1.69736E+05 Troncated_Mass_Percent : 90.52596 %

Threshold value: 1.00000E+06

Percent_max_total(1l)= 0.64508 %
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<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 250 T (s)= 250 DENSITE de BACTERIES (LOG) Step: 250 T (s)= 250
Min: -10 Min: -10
Mox: 95623 Max: 10,291

RLL T
100508 @ kg

iT=1 bacil B

boctl S

(a) With mesh 1 (1775 triangles) (b) With mesh 2 (5433 triangles)

Figure 8: Bacreria concentratiON, (Loa. scate). Computational domain:rectangle 0.75¢m x 0.25¢cm. Distri-

bution after 250s. Initial Concentration is marked, observer position near (Tmin, Ymin)-

<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 600 T (s)= 600 DENSITE de BACTERIES (LOG) Step: 600 T (s)= 600
Min: -10 Min: -10
Mox: 95942 Max: 10.295

RLL T
100508 @ segtam

iT=1 bacil B

boctl S

(a) With mesh 1 (1775 triangles) (b) With mesh 2 (5433 triangles)

Figure 9: Bacreria concentratiON, (Loa. scatr). Computational domain:rectangle 0.75¢m x 0.25¢m. Distri-

bution after 600s. Initial Concentration is marked, observer position near (Lmin, Ymin)-

Solution analysis on mesh 1 and 2 at 600s (respectively)

INRIA
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. Process time : 600.0 s Total bacteria mass: 1.87500E+05 Threshold value: 1.00000E+06

———————————————————————————— Local max number: 1
*xx J1 = 869 Conc: 3.928E+09 (XG,YG)= ( 2.808E-01, 2.487E-01) (cmXcm)

Number of triangles N(1)= 2

Local_Mass(1) = 9.71086E+04 Percent(1) = 51.79124 ¥,

Contrib( 869)= 9.43845E+04 Percent_max_local(l)= 97.19479 % Percent_max_total(1)= 50.33838 %
———————————————————————————— Local max number: 2
*xk J2 = 1685 Conc: 1.777E+09 (XG,YG)= ( 6.704E-01, 2.487E-01) (cmXcm)

Number of triangles N(2)= 1

Local_Mass(2) = 4.26938E+04 Percent(2) = 22.77004 %

Contrib( 1685)= 4.26938E+04 Percent_max_local(2)= 100.00000 % Percent_max_total(2)= 22.77004 %
———————————————————————————— Local max number: 3
**kk J3 = 1297 Conc: 1.189E+09 (XG,YG)= ( 4.945E-01, 2.487E-01) (cmXcm)

Number of triangles N(3)= 1

Local_Mass(3) = 2.85685E+04 Percent(3) = 15.23651 %

Contrib( 1297)= 2.85685E+04 Percent_max_local(3)= 100.00000 % Percent_max_total(3)= 15.23651 Y%
———————————————————————————— Local max number: 4
**kk J4 = 1146 Conc: 7.957E+08 (XG,YG)= ( 4.191E-01, 2.487E-01) (cmXcm)

Number of triangles N(4)= 1

Local_Mass(4) = 1.91198E+04 Percent(4) = 10.19721 %

Contrib( 1146)= 1.91198E+04 Percent_max_local(4)= 100.00000 % Percent_max_total(4)= 10.19721 %
———————— Global results ------

Number of local maxima : 4 Total number of triangles N= 5

Troncated_Mass : 1.87491E+05 Troncated_Mass_Percent : 99.99500 %

——————————————————————————————————————————————— Mesh 2
. Process time : 600.0 s Total bacteria mass: 1.87500E+05 Threshold value: 1.00000E+06

———————————————————————————— Local max number: 1
*xk J1 = 2500 Conc: 1.971E+10 (XG,YG)= ( 2.730E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 1

Local_Mass(1) = 1.05869E+05 Percent(1) 56.46339 %

Contrib( 2500)= 1.05869E+05 Percent_max_local(1l)= 100.00000 % Percent_max_total(1l)= 56.46339 %
———————————————————————————— Local max number: 2
*%xx J2 = 4575 Conc: 5.821E+09 (XG,YG)= ( 5.927E-01, 2.493E-01) (cmXcm)

Number of triangles N(2)= 1

Local_Mass(2) = 3.12662E+04 Percent(2) = 16.67531 %

Contrib( 4575)= 3.12662E+04 Percent_max_local(2)= 100.00000 % Percent_max_total(2)= 16.67531 %
———————————————————————————— Local max number: 3
**xx J3 = 3667 Conc: 4.727E+09 (XG,YG)= ( 4.571E-01, 2.493E-01) (cmXcm)

Number of triangles N(3)= 1

Local_Mass(3) = 2.53862E+04 Percent(3)

Contrib( 3667)= 2.53862E+04 Percent_max_local(3)
———————————————————————————— Local max number: 4
**k J4 = 5264 Conc: 4.649E+09 (XG,YG)= ( 6.981E-01, 2.493E-01) (cmXcm)

Number of triangles N(4)= 1

Local_Mass(4) = 2.49685E+04 Percent(4) 13.316562 %

Contrib( 5264)= 2.49685E+04 Percent_max_local(4)= 100.00000 % Percent_max_total(4)= 13.31652 %
———————— Global results ------

Number of local maxima : 4 Total number of triangles N= 4

Troncated_Mass : 1.87490E+05 Troncated_Mass_Percent : 99.99449

13.53927 %
100.00000 % Percent_max_total(3)= 13.53927 %

For the present example, the two meshes give the same number of local maxima (4), but
localization and relative weight to the total mass contributions are slightly different. Are the
patterns too mesh sensitive? Perhaps mesh adaption may be needed in the evolution process
when density gradients begin to become significants.

4.4 Numerical results with limited attactant production

The model of attractant production is given via eq. (7),

ap e~ PP
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20 A. Marrocco

where the parameter p* is the cutoff bacterial density. For the numerical results presented in the
following, we have considered only the rectangle €2 defined by L = 1.5em , ¢ = 0.5¢m and used
the Mesh 2 (5433 triangles).

When taking into account the fact that the production of attractants may be bounded, the
behaviour of bacterial density distribution during the process is quite different.

In the previous simulations (attractant production modelled via ap), when a peak of concen-
tration appears within the evolution process, it remains at the same (or nearly the same) place
during all the process. The bacteria density decreases around these peaks.

In the present simulations, the first concentration peak travels towards the center of the domain
( upper right corner of the computational domain), “eating” successively all the other local peaks
of bacterial concentration. High densities values are not localized only over one mesh element.

With the values p* = 50py , p* = 100p, , p* = 500py, the center of 2 is reached more or less
quickly. With p* = 1000p,, the peak of concentration does not reach the center, the progression
is stopped after the last local peak has been “eaten”. After this positioning, the concentration of
bacteria “far” to the peak decreases continuously but very slowly. We have to take large time steps
(physical time steps) in order to have significant variations of the variables and consequently of
the density p in the numerical scheme and reach as quick as possible something like a “stationary
solution”.

In the following analysis reports, we add the percentage of area represented by the triangles
retained for numerical integration (ie triangles where the density is > py,, threshold value)

Quantitative results for p* = 50pq

——————————————————————————————————————————————— Mesh 2
. Process time : 550.0 s Total bacteria mass: 1.87500E+05 Threshold value: 1.00000E+06

———————————————————————————— Local max number: 1
*xx J1 = 5379 Conc: 2.074E+08 (XG,YG)= ( 7.233E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 277 Area % = 1.3118

Local_Mass(1) = 1.79917E+05 Percent(1) = 05.95565 %

Contrib( 5379)= 1.11379E+03 Percent_max_local(l)= 0.61906 % Percent_max_total(l)= 0.59402 %
———————— Global results ------

Number of local maxima : 1 Total number of triangles N= 277 Area % : 1.3118

Troncated_Mass : 1.79917E+05 Troncated_Mass_Percent : 95.95565 %

——————————————————————————————————————————————— Mesh 2
. Process time :223220.0 s Total bacteria mass: 1.87500E+05 Threshold value: 1.00000E+06

———————————————————————————— Local max number: 1
*x*% J1 = 5432 Conc: 2.670E+08 (XG,YG)= ( 7.484E-01, 2.486E-01) (cmXcm)

Number of triangles N(1)= 199 Area % = 1.0750

Local_Mass(1l) = 1.87157E+05 Percent(1) = 99.81688 %

Contrib( 5432)= 1.40406E+03 Percent_max_local(l)= 0.75021 % Percent_max_total(l)= 0.74883 %
———————— Global results ------

Number of local maxima : 1 Total number of triangles N= 199 Area % : 1.0750

Troncated_Mass : 1.87157E+05 Troncated_Mass_Percent : 99.81688 Y%

Quantitative results for p* = 50009

. Process time : 100.0 s Total bacteria mass: 1.87500E+05 Threshold value: 1.00000E+06

———————————————————————————— Local max number: 1
*%xx J1 = 2622 Conc: 5.173E+08 (XG,YG)= ( 2.930E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 2441 Area % = 15.4336

Local_Mass(1) = 1.63828E+05 Percent(1) = 87.37489 %

Contrib( 2622)= 2.77833E+03 Percent_max_local(l)= 1.69589 % Percent_max_total(1l)= 1.48178 %,
———————— Global results ------

Number of local maxima : 1 Total number of triangles N= 2441 Area 7 : 15.4336

Troncated_Mass : 1.63828E+05 Troncated_Mass_Percent : 87.37489 %
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<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 550 T (s)= 550 DENSITE de BACTERIES (LOG) Step: 685 T (s)= 223210
Min: -10 Min: -5.6222
Mox: 8. 4265

Max: 8.3168

'
B
H
=
L]
H
@
B

100508 @ kg

iT= 1E4

4T=1 boct1 8

bacil B

(a) High concentration localization after 550s (b) Distribution after large simulation time

Figure 10: Bacteria concentration, (Log. scate). Computational domain:rectangle 0.75¢cm x 0.25¢cm.

Bounded production of attractants (p* = 50pg), observer position near (Tmin, Ymin)-

<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 20 T (s)= 100 DENSITE de BACTERIES (LOG) Step: 60 T (s)= 300
Min: .51876 Min: -5.6942
Mox: 9.2394

Mox: 8.7137

RLL T

100508 @ kg

4T=5 boct1 8

bacil B

(a) High concentration localization after 100s (b) High concentration localization after 300s

Figure 11: Bacreria concentration, (Log. scaum). Computational domain:rectangle 0.75¢cm X 0.25¢m.

Bounded production of attractants (p* = 500pg ), observer position near (Tmin, Ymin)-

300.0 s Total bacteria mass: 1.87500E+05 Threshold value: 1.00000E+06

Local max number: 1
(XG,YG)= ( 4.138E-01, 2.486E-01) (cmXcm)

. Process time :

**%x J1 = 3358 Conc: 1.735E+09
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<CHEMOTAXIS> CCHEMOTAXIS>
DENSITE de BACTERIES (LOG) Ste p: 120 T (s)= 600 DENSITE de BACTERIES (LOG) St ep: 199 T (s)= 1000
Min: -9.015 Min: -5.8562
Mox: 9. 3161 Max: 9. 4132

RLL T

boct1 8

bacil B

100508 @ kg

4T= 10

(a) High concentration localization after 600s

Figure 12: BacTeria concenTraTION, (LOG. SCALE).

(b) High concentration localization after 1000s

Computational domain:rectangle 0.75cm x 0.25¢cm.

Bounded production of attractants (p* = 500pg ), observer position near (Tmin, Ymin)-

Number of triangles N(1)= 57 Area % = 0.2050

Local_Mass(1l) = 9.84080E+04 Percent(1) = 52.48427 %

Contrib( 3358)= 9.09209E+03 Percent_max_local(l)= 9.23918 % Percent_max_total(l)= 4.84911 %
———————————————————————————— Local max number: 2
**kk J2 = 4338 Conc: 1.342E+09 (XG,YG)= ( 5.601E-01, 2.486E-01) (cmXcm)

Number of triangles N(2)= 51 Area % = 0.1813

Local_Mass(2) = b5.36993E+04 Percent(2) = 28.63965 ¥

Contrib( 4338)= 7.56914E+03 Percent_max_local(2)= 14.09541 % Percent_max_total(2)= 4.03688 %
———————————————————————————— Local max number: 3
**¥k J3 = 5207 Conc: 8.238E+08 (XG,YG)= ( 6.881E-01, 2.493E-01) (cmXcm)

Number of triangles N(3)= 55 Area % = 0.1963

Local_Mass(3) = 2.53662E+04 Percent(3) = 13.52863 %

Contrib( 5207)= 4.42463E+03 Percent_max_local(3)= 17.44302 % Percent_max_total(3)= 2.35980 %
———————————————————————————— Local max number: 4
*kk J4 = 2925 Conc: 1.193E+06 (XG,YG)= ( 3.433E-01, 2.493E-01) (cmXcm)

Number of triangles N(4)= 102 Area }, = 0.3556

Local_Mass(4) = 7.28307E+02 Percent(4) = 0.38843 %

Contrib( 2925)= 6.40780E+00 Percent_max_local(4)= 0.87982 Y% Percent_max_total(4)= 0.00342 Y%

———————— Global results ------

Number of local maxima : 4 Total number of triangles N= 265 Area % : 0.9383

Troncated_Mass : 1.78202E+05 Troncated_Mass_Percent : 95.04099 %

Process time 600.0 s Total bacteria mass: 1.87499E+05 Threshold value: 1.00000E+06
———————————————————————————— Local max number: 1
*%xx J1 = 4240 Conc: 2.070E+09 (XG,YG)= ( 5.425E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 63 Area % = 0.2316

Local_Mass(1) = 1.56721E+05 Percent(1) = 83.58472 %

Contrib( 4240)= 1.11202E+04 Percent_max_local(l)= 7.09557 % Percent_max_total(l)= 5.93081 %
———————————————————————————— Local max number: 2
**x J2 = 52560 Conc: 8.198E+08 (XG,YG)= ( 6.963E-01, 2.486E-01) (cmXcm)

Number of triangles N(2)= 53 Area % = 0.1891

Local_Mass(2) = 2.57054E+04 Percent(2) = 13.70959 %

Contrib( 5250)= 4.29516E+03 Percent_max_local(2)= 16.70921 % Percent_max_total(2)= 2.29076 %

Global results
Number of local maxima : 2

Total number of triangles

N= 116

Area % : 0.4207
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Troncated_Mass : 1.82426E+05 Troncated_Mass_Percent : 97.29431 %
... Process time : 1000.0 s Total bacteria mass: 1.87500E+05 Threshold value: 1.00000E+06
———————————————————————————— Local max number: 1
**xx J1 = 5432 Conc: 2.589E+09 (XG,YG)= ( 7.484E-01, 2.486E-01) (cmXcm)

Number of triangles N(1)= 39 Area 7 = 0.1455

Local_Mass(1) = 1.83725E+05 Percent(1) 97.98692 ¥,

Contrib( 5432)= 1.36181E+04 Percent_max_local(l)= 7.41218 Y% Percent_max_total(1l)= 7.26297 %

———————— Global results ------
Number of local maxima : 1 Total number of triangles N= 39 Area ) : 0.1455
Troncated_Mass : 1.8372BE+05 Troncated_Mass_Percent : 97.98692

<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 100 T (s)= 100 DENSITE de BACTERIES (LOG) Step: 300 T (s)= 300
Min: - 90531 Min: -B.4309
Max: 8,091 Max: 9,561

WES® W seie s
0w . 5 osiem

boctl 8 4T=1 boct1.8 iT=1

(a) High concentration localization after 100s (b) High concentration localization after 300s

Figure 13: Bacreria concentration, (Log. scaie). Computational domain:rectangle 0.75¢cm x 0.25¢m.
Bounded production of attractants (p* = 1000pg ), observer position near (Tmin, Ymin)-

Quantitative results for p* = 1000pg, "Stationary solution”.

... Process time :******** s Total bacteria mass: 1.87534E+05 Threshold value: 1.00000E+06
———————————————————————————— Local max number: 1
%% J1 = 4953 Conc: 4.422E+09 (XG,YG)= ( 6.479E-01, 2.493E-01) (cmXcm)

Number of triangles N(1)= 38 Area % = 0.1325

Local_Mass(1) = 1.87473E+05 Percent(1) = 99.96752 %

Contrib( 4953)= 2.37528E+04 Percent_max_local(1l)= 12.67000 % Percent_max_total(1l)= 12.66588 %

———————— Global results ------
Number of local maxima : 1 Total number of triangles N= 38 Area ) : 0.1325

Troncated_Mass : 1.87473E+05 Troncated_Mass_Percent : 99.96752

Conclusion

We have presented here a computational scheme which allows the simulation of chemotactic bacte-
ria aggregation. As theoretically predicted, the density redistribution during the evolution process
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<CHEMOTAXIS> <CHEMOTAXIS>
DENSITE de BACTERIES (LOG) Step: 600 T (s)= 600 DENSITE de BACTERIES (LOG) Step: 1000 T (s)= 1000
Min: -9.5969 Min: -7.2982
Mox: 96226 Max: 96441

boct1 8

RLL T

bacil B

100508 @ kg

(a) High concentration localization after 600s

Figure 14: Bacteria concenTraTION, (LOG. SCALE).
Bounded production of attractants (p* = 1000pg ), observer position near (Zmin,Ymin)-

(b) High concentration localization after 1000s

Computational domain:rectangle 0.75cm x 0.25¢cm.

<CHEMOTAXIS>
DENSITE de BACTERIES (LOG)

Min: -3.8086
Mox: 9.6446

boct1 8

Step: 1500

T (s)= 1500

RLL T

<CHEMOTAXIS>
DENSITE de BACTERIES (LOG)

Min: -10
Max: 9.6456

bacil B

Step: 1782

T (s)= 142210

WS @ 5emam

4T= 1E4

(a) High concentration localization after 1500s

Figure 15: Bacreria CONCENTRATION, (Log.

SCALE).

(b) Distribution after a long time

Computational domain:rectangle 0.75c¢cm x 0.25¢cm.

Bounded production of attractants (p* = 1000pg ), observer position near (Lmin, Ymin)-

appears to be strongly dependent on the model used for the source (production) of attractants.
With the first model (source of attractants proportional to the bacterial density p), several isolated
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peaks of bacterial concentration may appear -concentration localized over only one element, which
is something like a Dirac mass at discrete level- and remain more or less at the same place along
the evolution process.

Introducing a cutoff value in the production of attractants, the first peak of bacterial concen-
tration travels to the center of the domain, “eliminating” all the secondary peaks. After a certain
amount of time, high densities values remain localized on small part of the domain (0.1 to 1 %)
but not only over one mesh element.

Acknowledgments

Many thanks to B. Perthame for fruitful discussions and for relevant suggestions concerning this
work.

References

[1] E.F. Keller and L.A. Segel. Model for chemotaxis. J. Theor. Biol., 30:225-234, 1971.
[2] M. D. Betterton and M. P. Brenner. Collapsing bacterial cylinders. Phys. Rev. E, 64(061904), 2001.

[3] M.P. Brenner, P. Constantin, L.P. Kadanoff, A. Schenkel, and S.C. Venhataramani. Diffusion, at-
traction and collapse. Nonlinearity, 12(4):1071-1098, 1999.

[4] M.P. Brenner, L.S. Levitov, and E.O. Budrene. Physical mechanisms for chemotactic pattern forma-
tion bybacteria. Biophysical Journal, 74:1677-1693, 1998.

[5] L. Corrias, B. Perthame, and H. Zaag. A model motivated by angiogenesis. C. Rendus Acad. Sc.
Paris, to appear.

[6] W. Jager and S. Luckhaus. On explosion of solution to a system of partial differential equations
modelling chemotaxis. Trans. Amer. Math. Soc., 239(2):819-824, 1992.

[7] M.A. Herrero, E. Medina, and J.J.L. Veldzquez. Finite time aggregation into a single point in a
reaction-diffusion system. Nonlinearity, 10(6):1739-1754, 1997.

[8] M.A. Herrero and J.J.L. Veldzquez. Chemotactic collapse for the keller-segel model. J. Math. Biol.,
35(2):177-194, 1996.

[9] F. Hecht and A. Marrocco. Numerical simulation of heterojunction structures using mixed finite
elements and operator splitting. In R. Glowinski, editor, 10th International Conference on Computing
Methods in Applied Sciences and Engineering, pages 271-286, Le Vésinet, February 1992. Nova
Science Publishers,Inc.

[10] F. Hecht and A. Marrocco. Mixed finite element simulation of heterojunction structures including a
boundary layer model for the quasi-fermi levels. COMPEL, 13(4):757-770, december 1994.

[11] A El Boukili and A. Marrocco. Arclength continuation methods and applications to 2d drift-diffusion
semiconductor equations. Rapport de recherche 2546, INRIA, mai 1995.

[12] A. El Boukili. Analyse mathématique et simulation numérique bidimensionnelle des dispositifs semi-
conducteurs & hétérojonctions par l'approche éléments finis miztes. PhD thesis, Univ. Pierre et Marie
Curie, Paris, décembre 1995.

RR n’ 4667



26 A. Marrocco

[13] A. Marrocco and Ph. Montarnal. Simulation des modéles energy-transport a ’aide des éléments finis
mixtes. C.R. Acad. Sci. Paris, 323(Série I):535-541, 1996.

[14] Ph. Montarnal. Modéles de transport d’énergie des semi-conducteurs, études asymptotiques et réso-
lution par des éléments finis miztes. PhD thesis, Université Paris VI, octobre 1997.

[15] R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator Splitting Methods in Nonlinear
Mechanics. Studies in Applied Mathematics. SIAM, Philadelphia, 1989.

INRIA



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



