N

N

CASH: Revisiting hardware sharing in single-chip
parallel processor

Romain Dolbeau, André Seznec

» To cite this version:

Romain Dolbeau, André Seznec. CASH: Revisiting hardware sharing in single-chip parallel processor.
[Research Report] RR-4660, INRIA. 2002. inria-00071925

HAL 1d: inria-00071925
https://inria.hal.science/inria-00071925
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00071925
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4660--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

CASH: Revisiting hardware sharing in single-chip
parallel processor

Romain Dolbeau — André Seznec

N° 4660
Decembre 2002

THEME 1

apport

derecherche

% I N RIA

RENNEsS

CASH: Revisiting hardware sharing in single-chip
parallel processor

Romain Dolbeau , André Seznec

Théme 1 — Réseaux et systémes
Projet CAPS

Rapport de recherche n® 4660 — Decembre 2002 — 1] pages

Abstract: As the increasing of issue width has diminishing returns with superscalar
processor, thread parallelism with a single chip is becoming a reality. In the past few years,
both SMT (Simultaneous MultiThreading) and CMP (Chip MultiProcessor) approaches were
first investigated by academics and are now implemented by the industry. In some sense,
CMP and SMT represent two extreme design points.

In this paper, we propose to explore possible intermediate design points for on-chip thread
parallelism in terms of design complexity and hardware sharing. We introduce the CASH
parallel processor (for CMP And SMT Hybrid). CASH retains resource sharing a la SMT
when such a sharing can be made non-critical for implementation, but resource splitting
a la CMP whenever resource sharing leads to a superlinear increase of the implementation
hardware complexity. For instance, sparsely used functional units (e.g. dividers), but also
branch predictors and instruction and data caches, can be shared among several “processor”
cores.

CASH does not exploit the complete dynamic sharing of resources enabled on SMT. But
it outperforms a similar CMP on a multiprogrammed workload, as well as on a uniprocess
workload.

Our CASH architecture shows that there exists intermediate design points between CMP and
SMT.

Key-words: multithreading, hardware sharing

This work was partially supported by an Intel grant.

Unité de recherche INRIA Rennes

CASH : revisiter le partage du matériel dans les
processeurs paralléles monopuces

Résumé : CASH est un nouveau concept de processeur paralléle monopuce, intermédiaire
entre les multiprocesseurs sur un seul composant et les processeurs multiflots simultanés.
Cette proposition montre qu’il existe des possibilités intermédiaires entre multiprocesseurs
monopuces et processeurs multiflots simultanés.

Mots-clés : multiflot, partage de matériel

CASH

CASH: Revisiting hardware sharing in single-chip parallel

processor

Romain Dolbeau, André Seznec
{dolbeau,seznec}@irisa.fr
IRISA, Campus de Beaulieu
35042 Rennes Cedex, France

1 Introduction

Due to both technology improvements and
advances in computer architecture, new gen-
eration general-purpose processors feature a
long execution pipeline (20 stages on the In-
tel Pentium 4 [6]) and a superscalar exe-
cution core. However, as increasing issue
width with superscalar processor has dimin-
ishing returns, thread parallelism with a sin-
gle chip is becoming a reality. In the past few
years, two aproaches for implementing thread
level parrallelism on a chip have emerged and
are now implemented by the industry: CMP
(Chip MultiProcessor) [T}, 4, [, B] and SMT
(Simultaneous MultiThreading) [20}, O, 21,
2.

A CMP design essentially reproduces at chip
level the (low-end) shared memory multi-
processor design that was used with previ-
ous generation machines. Due to the ad-
vance of technology, multiple 2 or 4-way is-
sue (relatively) simple execution cores can be
implemented on a single chip (for instance
the recently released IBM Power4 processor
[3, 13]). The underlying idea advocating for
CMPs is that most of the benefits of increasing
the issue width will be counterbalanced by a
deeper pipeline. It also implies that CPU

RR n°® 4660

intensive applications will have to be paral-
lelized or multithreaded.

At the other end of the design spectrum,
the SMT paradigm relies on a completely dif-
ferent approach. As pointed out by the
designers of the cancelled EV8 micropro-
cessor [2], SMTs are essentially designed to
achieve uniprocess performance with multi-
thread performance being a bonus. But the
SMT processor supports concurrent threads
with very low granularity. That is, instruc-
tions from the parallel threads are concur-
rently progressing in the execution core and
shares the hardware resources of the pro-
cessor (functional units, caches, predictors,

..). The main difficulty with SMTs imple-
mentation is induced by the implementation
of a wide issue superscalar processor; the
hardware complexities of the renaming logic,
the issue logic, the register file and the by-
pass network increase super-linearly with the
issue-width.

CMP and SMT represent two extreme design
points. With a CMP, no execution resource,
apart from the L2 cache and the memory in-
terfaces, is shared. A process cannot bene-
fit from any resource of distant processors.
On a parallel or concurrent workload, af-
ter a context switch, a process may migrate

Dolbeau € Seznec

from processor P; to processor P; leading
to loss of instruction cache, data cache and
branch prediction structures warming. On
the other hand, with a SMT, single process
performance is priviledged. Total resource
sharing allows to benefit from prefetch effect
and cache warming from other threads in a
parallel workload.

In this paper, we propose a median course,
the CASH parallel processor (for CMP And
SMT Hybrid). Instead of an all-or-nothing
sharing policy, one can share only some of
the resources. CASH retains resource sharing
a la SMT when such a sharing can be made
non-critical for the implementation, but re-
source splitting a la CMP whenever resource
sharing leads to a superlinear increase of the
implementation hardware complexity. For
instance, sparsely or rarely used functional
units (e.g. dividers), but also branch predic-
tors, instruction caches and data caches, can
be shared among several “processor” cores on
a single-chip parallel processor. On the other
hand, CASH keeps separated the major parts
of the execution cores (rename logic, wake-
up and issue logic, bypass network, register
files) where wider issue implies higher hard-
ware and design complexity.

CASH can not exploit the complete dynamic
sharing of resource enabled on SMT (particu-
larly for single process) but retains part of
the resource sharing advantage on concur-
rent workloads and parallel workloads. It is
able to use the whole capacity of instruction
and data caches and branch predictors with
single process workloads. A process migra-
tion from processor P; to processor F; would
not affect the performance of the I-cache and
branch prediction structures. With a par-
allel application a thread prefetches the in-
structions and warm-up the predictor struc-
tures for one another. Sharing the data cache

Corel Core 2

Private L1 Private L1

Shared L2 Cache

Private L1 Private L1

Core 3 Core 4

Figure 1: Diagram of the sharing in a single-
chip multi-processor.

leads to similar prefetching and also avoids
coherency traffic induced by the distributed
L1 caches in a CMP.

The remainder of the paper is organized as
follows. In Section B, we present in details
the rationale for the CASH parallel proces-
sors. Our simulation framework is presented
in Section Bl Section M analyzes simulation
results on CASH parallel processors. Finally,
Section Bl summarizes this study and presents
future directions for this work.

2 Revisiting resource shar-
ing for parallel proces-
sors

In few years, thread parallelism on a chip has
moved from a concept to a reality. There
are two major approaches: Chip MultiPro-
cessor (Figure M) and Simultaneous Multi-
Threading (Figure B). When considering
hardware resource sharing among the pro-

INRIA

CASH

4-way threaded core

Shared L1

Shared L2 Cache

Figure 2: Diagram of the sharing in a simul-
taneous multithreading processor.

cesses (illustrated in gray on Figures [l and
B), the two approaches represent two extreme
design points.

In this section, we first recall that the com-
plexity of the execution core of a superscalar
processor (i.e. the pipeline stages ranging
from renaming to retirement) increases su-
perlinearly with the issue width ([12]. For
the pipeline stages ranging from register re-
naming to instruction validation, there is no
comparison between the hardware complex-
ity of a 4*N-issue superscalar SMT processor
and the complexity of four N-issue processor
in a CMP configuration.

On the other hand, resources such as the
I-cache, the data cache or the branch predic-
tion structures can be shared at reasonable
hardware cost and pipeline overhead. This
stands also for long-latency functional units
such as integer multipliers and dividers.

Therefore, it becomes natural to con-
sider intermediate designs between CMPs and
SMTs with separate execution cores, but with
shared instructions and data caches, branch

RR n° 4660

5

Corel Core 2

—
Shared| | 2 || 2 || & [£

5 o kel D
L2 S]] 2]z
Cache Z Z & 8

(7)) (7)) %)
Core 3 Core 4

Figure 3: Diagram of the sharing in the pro-
posed CASH.

prediction structures, and long-latency func-
tional units. We call such an intermediate
design, CASH (for CMP And SMT Hybrid).
CASH is illustrated in Figure Bl

Whenever a manufacturer chooses to im-
plement multiple execution cores rather than
a very wide issue execution core, CASH repre-
sents an alternative to a pure CMP architec-
ture.

2.1 Complexity of wide issue su-

perscalar core

For the sake of simplicity, we assume the
following pipeline organization: instruction
fetch, instruction decode, register renaming,
instruction dispatch, execution, memory ac-
cess, write back, retire (see Figure H). Some
of these functional stages may span over sev-
eral pipeline cycles.

In a wide-issue superscalar processor, the
hardware complexity of some of these func-
tional stages increases super linearly and
even near quadratically with the issue width.

Dolbeau € Seznec

This is due to the dependencies that may
exist among groups of instructions that are
treated in parallel. All the pathes must be
dimensioned to be able to treat all the in-
flight instructions as if they were all possibly
dependent.

For instance, let us consider the register
renaming stage, the wake-up and issue logic
and the operand fetch.

The register renaming stage includes a
global dependency check within a group of N
instructions to be renamed in parallel. The
complexity of this dependency checking is
quadratic with the number of instructions. It
also requires a single cycle read and update
of a register map table. In a single cycle with
two operands and one result instructions, 2N
entries must be read and N entries must be
overwritten.

The complexity of the wake-up and issue
logic also increases more than linearly with
the issue width. Each entry in the wake-
up logic must monitor the producer for each
source operand. The number of comparators
in each entry in the wake-up logic increases
linearly with the issue width. As the total
number of the inflight instructions must also
be increased, the total number of compara-
tors in the wake-up logic raises near quadrat-
ically. If any instruction can be launched on
any functional unit able to execute it (for in-
stance, any ALU operation can be executed
on any integer ALU), the complexity of the
selection logic raises also quasi-quadratically
with the issue width. As an alternative, dis-
tributed selection logic can be implemented
at the expense of some freedom (and perfor-
mance). For instance, the functional unit ex-
ecuting the instruction can be preselected at
dispatch time.

The complexity of operand fetch comes
from two factors: the register file and the

I. Fetch |. Dec]R. Ren & Exec. / l. Ret.
1. Disp. Mem. Acc.

Figure 4: The stages of the simulated

pipeline.

bypass network. The complexity of the reg-
ister file in term of silicon area increases more
than quadratically with the issue width. The
silicon area required by a single register cell
increases with the square of the number of
register file ports. At the same time more
physical registers are needed when the issue
width is increased. The access time of the
register file also increases dramatically. The
number of bypass points required in the by-
pass network increases linearly, but the num-
ber of entries at each bypass point increases
more than linearly and the length of result
buses also increases.

2.2 Sharing resources in CASH

The control of dependencies inside a wide-
issue SMT superscalar processor results in
very high hardware complexity on several
functional stages in the pipeline. However
some hardware resources needed by every
processor could be shared on a multiple ex-
ecution core processor. For CASH processors,
we envisioned sharing long latency units, in-
struction caches, data caches and the branch
predictor.

2.2.1 Sparsely used long latency units

Some functional units are sparsely used in
most applications and feature a long latency,
for instance integer multipliers and dividers.
These execution units also require a sub-
stantial silicon area compared with a simple
ALU. Traditional uniprocessors must feature

INRIA

CASH

a copy of these functional units. Up to the
mid 90’s, the performance of these functional
units were often sacrificed to tradeoff smaller
silicon area against latency with not so often
used instructions.

With CASH, several execution cores share
long-latency execution units, since the con-
tention for their use induces a low over-
head. Control around these units will slightly
lengthen their latency. However an extra cy-
cle on a 20-cycle latency div is much less a
concern than on a 1-cycle latency add.

As an alternative, one may consider to in-
vest the total silicon area of the N slow di-
viders in a CMP in a single more efficient di-
vider in CASH. One may also consider sharing
a single pair of floating point units between
two execution cores in CASH, or implementing
a single multimedia unit.

2.2.2 Instruction cache and branch
predictor sharing

Replicating the instruction cache and branch
prediction structures for every processor in
a multiple execution core is a waste of re-
sources.

Instruction cache To feed a N-issue exe-
cution core, the instruction fetch engine must
deliver an average throughput equal or higher
than N instructions per cycle. The average
size of the instruction block that could be
fetched in parallel if the front-end is able to
bypass not-taken branches is relatively high
(8 to 12 instructions on many integer appli-
cations, more on floating point applications).

Therefore, four 2-way issue execution cores
(or two 4-way) could share a single instruc-
tion cache. At each cycle, a single process
is granted the access to the instruction cache
and a large block of contiguous instructions is

RR n°® 4660

read. Processors are granted access to the in-
struction cache in a round robin mode. Other
more aggressive allocation policies can be de-
signed as for SMTs [21].

Even with a capacity four times as large, a
shared instruction cache hardware complex-
ity would be in the same range as the hard-
ware complexity of four instruction caches for
four 2-way processors.

Branch prediction structures Accu-
rately predicting the address of the next in-
struction block is a challenging problem when
the prediction must be performed in a single
cycle.

For instance, both Alpha EV6 [[] and Al-
pha EV8 [I7] use (not so accurate) single-
cycle line predictors backed with a 2-cycle
complex instruction address generators that
feature target recomputation, complex con-
ditional branch computation, return address
stack (and jump predictor for EV8). When-
ever line prediction and address generation
disagree, instruction fetch resumes with the
address generated by the complex address
generator. Due to this hierarchical struc-
ture, overfetching is implemented on the Al-
pha EV8 (i.e. two 8-instructions blocks are
fetched on a single cycle.)

In conjunction with the shared instruction
cache proposed above, the next instruction
address generator in CASH is also shared the
same way. If N execution cores are imple-
mented then the address for the next block
does not need to be valid before N cycles.

The shared instruction address generator
hardware cost will be in the same range as
replicating N address generators (about the
same number of adders, but a wider mul-
tiplexor). The total budget for the branch
prediction tables may be invested in a single
but larger one. Moreover the hardware de-

Dolbeau € Seznec

voted to line prediction can be avoided while
the need for overfetching associated with the
poor line predictor accuracy disappears.

A previous study [5] has shown that
for global prediction schemes, a benefit on
branch prediction accuracy can be obtained
from sharing tables, but imposes a return
stack for each thread.

2.2.3 Sharing the data cache

In CASH, the data cache is shared between
several processes. This leads either to the
use of a multiported cache or to the use of a
bank-interleaved cache.

The use of a multiported cache in a CASH
processor avoids arbitration during accesses
to the cache. But implementing a real multi-
ported cache where each processor could grab
an access to the same cache block during each
cycle leads to a very expensive design. The
silicon area devoted to a memory cell grows
quadratically with the number of concurrent
access ports. Moreover, the access time to
a multiported memory array is longer than
the access time to an equivalent size single
ported one. Therefore, on a multiple exe-
cution core, replacing the distributed data
caches by a single multiported cache is not
cost-effective for access time as well as for
total silicon area.

For CASH processors, we propose to use a
bank-interleaved structure. The cache can be
implemented using single-ported banks. Ar-
bitration is performed on the access to the
banks and lenghtens the access time. The
access time will be further increased by a cen-
tralized access, i.e. the latency of the cache
will be increased by a cycle or more. On the
other hand, the total silicon budget devoted
to the L1 data caches in a CMP can be invested
in a single larger L1 data cache.

2.2.4 Benefits and drawbacks of shar-
ing memorization structures

There are a few similarities between sharing
the data cache and sharing the instruction
front end.

Some extra hardware logic is induced by
sharing instead of replicating the structures:
arbitration + interleaving for the data cache,
wider instruction fetch path + wider mul-
tiplexors + extra instruction buffers before
decode for the instruction front end. Thus,
sharing induces some extra cache access time
and therefore slightly deepens the pipeline.

Some benefits from this sharing appear
quite the same way for both structures.
First, one can also invest in a single shared
structure the total hardware budget that
should have been spent on replicating sev-
eral copies of the structure. The data cache,
the instruction cache, the branch predictor
can be implemented with larger capacities in
comparison with distributed structures. For
each structure, the total capacity is shared.

A second benefit of sharing is the simpli-
fication of L2 cache access. For instance,
with a 4-way CMP, the L2 cache must arbi-
trate between requests from the four instruc-
tion caches and the four data caches (plus the
system bus and the memory bus). Coherency
must also be maintained between the L1 data
caches. Therefore the total access time to the
L2 cache is longer on CMP than on CASH.

Benefits of cache sharing are given below.

1. When a multiprogrammed workload is
encountered, the capacity is dynamically
shared among the different processes. In
Section B, we will see that this situation
is most often beneficial for performance.

2. When the workload is a single process,
this situation is clearly beneficial since

INRIA

CASH

the process can exploit the whole re-
source.

3. When a parallel workload is encoun-
tered, sharing is also beneficial. Instruc-
tions are shared, i.e. less total capac-
ity would be needed, and prefetched by
a thread for another one. The branch
prediction structures are warmed by the
other parallel threads when global his-
tory schemes are used. The data cache
benefits from sharing and prefetching for
read-only data as the instruction cache
does. Moreover, on a CMP processor, the
data caches of the different processors
have to be maintained coherent. On
CASH, there is no such need for maintain-
ing data coherency. Thus bandwidth on
the L1-L2 cache bus is saved.

4. With a shared memory multiprocessor
and therefore with a CMP, the migration
of a process from a processor P; to pro-
cessor P; would result in a significant
performance loss due to a new cold start
with cache memory and branch predic-
tion structures. On a CASH processor,
this situation is not an issue. As the pro-
cessors share the caches, migration of a
process incured by the OS does not lead
to cold start penalties on the memory
hierarchy.

Memory consistency On a CMP, snoop-
ing memory accesses is also used to main-
tain consistency on the speculative loads and
stores internal to each processor cores. On
CASH we enforce read after read dependen-
cies on the same memory location inside each
processor. That is, whenever two speculative
loads on word X occur out of order inside
a processor, the second load is squashed and
re-issued. This allows to ensure that any (ex-

RR n° 4660

ternal) write on X seen by the first load will
be seen by the second load. This is consistent
with the Alpha Shared Memory Model (see
chapter 5 section 6 in [19]).

2.3 CASH design spectrum

The total execution bandwidth of the CASH
processor presented above is in practice lim-
ited by its instruction fetch bandwidth. We
have assumed that a single block of contigu-
ous instructions is fetched per cycle. For
many applications, the average size of such
blocks is not higher than 8 to 12.

However, they are possibilities for shar-
ing resources even if total issue bandwidth
is higher. For instance, a larger total issue
bandwidth could be obtained from a single
instruction cache through 1) use of an inter-
leaved bank structures and either fetching for
two distinct processors on a single cycle or
fetching two (possibly) non-contiguous fetch
blocks (as on Alpha EV8 [I7]) or 2) use of
trace caches [I5].

Different ways of resource sharing can also
be considered. For instance, with a four ex-
ecution cores chip, a pair of adjacent chips
could share the instruction front-end and
long-latency functional units.

However the purpose of this paper is to
illustrate the existence and viability of in-
termediate design points between CMPs and
SMTs. Exploring the whole design spectrum is
out of the scope of this paper. Therefore, we
will limit our study to CASH processor with
total execution bandwidth of eight instruc-
tions per cycle, that is either four 2-way ex-
ecution cores or two 4-way execution cores.

10

Dolbeau € Seznec

3 Simulations framework
and methodology

3.1 Simulated “processor” con-
figurations

We simulated two basic configurations for
both CASH and CMP, a two 4-way execution
core processors (CASH-2, CMP-2) and a four
2-way execution core processors (CASH-4,
CMP-4).

CASH and CMP differ by:

e The first-level instruction and data
caches and the buses to the second-level
cache;

e The non-pipelined integer unit (used for
complex instructions such as “divide”);

e The non-pipelined floating-point unit
(again used for complex instructions
such as “divide” and “square root extrac-
tion”);

e The branch predictor.

The considered memory hierarchy is de-
scribed in Table I The branch predic-
tor is an hybrid skewed predictor 2Bc-gskew
I8, 7). The branch predictor uses four 64
Kbits shared tables and a 27 bits global his-
tory per thread in CASH, whereas each of the
four predictors in the CMP used four 16 Kbits
tables and a 21 bits global history.

The other parameters are common to CASH
and CMP. CASH-2 and CMP-2 can issue and
retire 4 instructions per cycle in each core.
Each core features two simples ALUS, one
complex ALU (for the various MUL instruc-
tions), two simples FPUs, one branch dispatch
unit, a pair of memory access units (can to-
gether emit one load and one load or store
per cycle), one complex ALU (for the various

integer DIV instructions) and one complex
FPU (for the FDIV and FSQRT instructions).
Those last two are shared by all the cores in
the CASH processor.

The four cores configurations could issue
and retire 2 instructions per cycle in each
core, with the same mix of available execu-
tion units in each core than above. FEach
core can support up to 32 inflight instruc-
tions. The register banks (2 per thread,
one for floating-point register, one for inte-
ger register) have enough renaming registers
to rename all in-flight instructions. To avoid
simulating the spill-and-fill system code as-
sociated with the SPARC windowed registers
[22], an “infinite” number of windows was as-
sumed.

The instruction fetch engine differs be-
tween CASH and the reference CMP. The con-
ventional CMP is able to fetch 4 (for the 4 cores
configuration) or 8 (for the 2 cores config-
uration) instructions per cycle, every cycle,
for each processor. CASH can fetch up to 16
consecutive instructions, but only once every
four cycles for a single processor. The CMP
fetch engine is slightly more efficient, as it
suffers less from short basic bloc terminated
by a taken branch. Note that the instruction
fetch engine assumed for CMP is very opti-
mistic. Accurate branch prediction in a sin-
gle cycle is not implemented on processors
like EV6 for instance. Dispatching of the
instructions is done out-of-order from a 32-
instruction queue.

The simulated pipeline is illustrated on
Figure Bl In this figure, the grey areas are
again those shared by the processor cores:
only a single core can do an Instruction Fetch
in a given cycle. The Memory Access is
also shared, starting with the level 1 data
cache (address computation is still private to
a core). All other pipeline stages (Instruction

INRIA

CASH

11

Component Latency size associativity
Level one data cache 3 (CASH) 128KB (CASH-4) 4 (LRU)
64KB (CASH-2) 8-way banked
2 (CMP) | 32 KB per core (CMP)
Level one instruction cache 1 64 KB (CASH-4) 2 (LRU)
32 KB (CASH-2)
16 KB per core (CMP)
Level two cache 15 (CASH) 2 MB 4 (LRU)
17 (CMP)
Main memory 150 infinite infinite

Table 1: Latencies and sizes from the components of the memory hierarchy

Decode, Register Renaming & Instruction
Dispatch, Execution, Instruction Retire) are
private. The minimum misprediction penalty
(fetch to fetch) of a mispredicted branch is 16
cycles, to account for full pipeline flush and
recovery of wrong-path instructions (the sim-
ulator fetches but does not simulate wrong-
path instructions). Note that on a mispredic-
tion, a CASH core waits for its next instruction
fetch slot, resulting in up to 3 extra penalty
cycles.

3.2 Simulation environment

Simulation results reported in this pa-
per were obtained using a custom, cycle-
accurate, trace-driven simulator. Executions
traces were extracted using the CALVIN2
toolset[8], based on the SALTO[14] system,
and then fed to the simulator. CALVIN2 is an
instrumentation system running on SparcV9
hardware that includes an embedded func-
tional simulator of the SparcV9 instruction
set. The embedded simulator allows for fast-
forwarding through uninteresting sections of
code, such as the initialization phase of a pro-
gram. This feature allows to simulate only
the useful computational part of the code,

RR n°® 4660

and thus helps obtaining more significant re-
sults.

The simulated execution cores were highly
detailed. Three simplifications were made ;
first, perfect memory disambiguation ; sec-
ond, perfect translation lookaside buffer and
third, a perfect return adresses stack. On
our benchmark set, these three components
rarely miss when reasonably sized. All other
features were accurately modeled, including
contention on the various buses to the differ-
ent levels of the memory hierarchy.

Prior to execution, caches and predictors
were warmed by running 20 millions in-
structions of each benchmark (interleaved by
chunks of 25 thousands instructions) after
skipping the initialization phase of the appli-
cation. Sets of benchmarks were run together
until the completion of at least 10 millions in-
structions in each benchmark of the set.

The exception was the simulation of the
effect of contexts switches: each thread was
then run to 50 millions instructions, to be
able to have reasonably long time-slice.

3.3 Benchmark set

Our benchmark set is a subset of the SPEC
CPU2000 benchmark suite (10 from the “in-

12

Dolbeau € Seznec

teger” subset, and 10 from the “floating-
point” subset). All benchmarks were com-
piled using the Sun C and Fortran compilers,
targeted at the v8plus subarchitecture, with
-x03 and -fast optimizations for C and For-
tran respectively.

With a 4 execution cores configuration, 10
integer 4-thread workloads and 10 floating
point 4-thread workloads were considered.
Each benchmark appears in 4 workloads. A
set of chosen mixed FP/int workloads was
also run.

With a 2 execution cores configuration,
10 integer 2-thread workloads and 5 floating
point 2-thread workloads were considered.

In addition to running fully multipro-
grammed workloads, we also ran every
benchmark alone on the four considered con-
figurations. This allows to compare single-
thread behavior of CMP and CASH.

3.4 Performance
methodology

comparison

Fair performance comparison of hardware ex-
ploiting thread-level parallelism is a difficult
issue (see for instance [I6]), using average
IPC may lead to biased results towards high
IPC applications.

In order to get a valid comparison of per-
formances, we chose to compare the execu-
tion times process per process and for exactly
the same slice of the application (i.e, 10 mil-
lions instructions of the thread). That is, for
a given thread, statistics were extracted after
the first 10 millions instructions have been
executed: the complete group of benchmarks
continue to be simulated until the last thread
has reached its statistic collection point.

This method allows to compare the behav-
ior of each individual thread on CASH and CMP
for a given mix of benchmarks.

4 Simulation results

4.1 Multiprogrammed work-

loads

Ten fully integer workloads were simulated
on the 4-core chips and each benchmark was
run 4 times in different environments. No
group was performing entirely worse running
on CASH than on CMP: at least one of the
benchmark in the group performed better
(i.e. completed the first 10 millions instruc-
tions in a shorter execution time) on CASH
than on CMP. Precisely, two groups exhib-
ited degradations on three benchmarks, five
groups on only one benchmark, and the re-
maining three groups showed improvements
on all benchmarks.

No single benchmark performed worse on
all the four workloads. Three of them
(164.gzip, 256.bzip2, 197.parser) performed
better on a single run, and by only a tiny
margin. One benchmark (181.mcf) did twice
better and twice worse. But the remaining
six benchmarks always performed better, and
sometimes by a wide margin: between 19%
and 24.5% for 176.gcc, between 16.9% and
30% for 186.crafty and between 33% and 42%
for 255.vortex, an instruction cache-hungry
benchmark. On Figure B, we illustrate the
average execution time for the 4 runs for all
integer benchmarks. In average, the execu-
tion time is improved by 9% when using CASH
instead of CMP.

Floating-point workloads exhibit more
mitigated behaviors. All of the workloads
except one presented mixed results. Three
workloads had only one improved bench-
mark, five exhibited two improved bench-
marks, two had three improved benchmarks,
and the last one performed better on all
benchmarks in the group. No group did
worse on all benchmarks. Broken by bench-

INRIA

CASH 13

5, 0E+07%

4, 5E+07

4, OE+07

3, 5E+07

3, 0E+07

OCMmP
2, 5E+07

Cycl e

—l W CASH
2, 0OE+07

1, 5E+074

1, OE+04

5, 0E+06

0, OE+00

Benchnak

Figure 5: Average execution time of integer benchmarks in groups on the 4 cores configura-
tions

RR n°® 4660

14

Dolbeau € Seznec

mark, the results are also more mitigated.
Four benchmarks (168.wupwise, 171.swim,
191.fma3d and 200.sixtrack) performed con-
sistently better on CASH and four perform-
ing consistently worse (172.mgrid, 173.applu,
183.equake and 187.facerec). 178.galgel per-
formed better only once, but with variation
always below 1%. Finally 301.apsi improved
by about 7% on three runs with one run
slowed by about 1%. The average execu-
tion time of all floating-point benchmarks im-
proved by only 1.8% going from the regular
CMP to CASH.

We also ran selected mixed workloads,
with two integer and two floating-point
benchmarks. Results were in line with the
others, with none of the tested benchmarks
performing noticeably worse than usual, and
one (191.fma3d) performing better in a
mixed workload. This result is due to the
larger L1 data cache in CASH.

Looking into specific components of the
processor, we notice an almost negligible ef-
fect of the shared execution units due to the
low frequency of such instructions. Sharing
the branch predictor has a relatively small
impact with prediction accuracies very simi-
lar on both CMP and CASH.

The memory hierarchy on the other hand
has a huge impact on performance. As ex-
pected, the benchmark with the best results
on CASH are those with the most pathological
behaviors: 255.vortex benefits from a large
intruction cache, 176.gcc has a similar be-
havior on a more modest scale. When run
together, 255.vortex and 176.gcc both exhibit
their most modest gain on CASH.

2-core chips 2-core simulations exhibit
similar behavior as 4-core simulation, but in
a smaller range. A modest average 1.6%
gain was encountered for integer workloads

on CASH and an unsignificant average loss
of 0.16% was encountered for floating-point
workloads.

4.2 Single process workload

Every benchmark was run alone on all the
simulated configurations. On the 4-core
chips, the four times larger caches on CASH-4
lead to performance improvement on every
single benchmark. These results are illus-
trated for integer bencharks on Figure

On the 2-core chips, performance for 2 of
the 20 benchmarks (both floating-point) is
lower on CASH-2 than on CMP-2, but by no
more than 0.6%. All others benchmarks were
faster on CASH, albeit for some by a tiny mar-
gin.

4.3 Context switching workload

We also studied the respective behaviors of
CASH and CMP when the workload includes
context switches. Our first such workload
was the usual 4-thread workload, but we
added context switches in a round robin fash-
ion: at regular interval, all threads would
move to the previous core (see right side of
figure [d)

We also simulated an “excessive” workload,
i.e. a workload with more running processes
than the number of available CPU cores.
A time-slice was defined, and each process
would run on one core for that time-slice
before being suspended. Another process is
then made to run on this core. The round-
robin effect of running 5 processes on 4 cores
is shown in figure [left side: each process
will return on a different core as the one it
previously ran on, with a switch occuring in-
side the processor once each (time-slice in cy-
cles / number of cores) cycles. For instance,
thread 3 starts on core 4, leave room for

INRIA

CASH

15

3, 5E+07

3, OE+07

2, 5E+07

2, OE+07

Cycle

1, 5E+07

1, OE+07—

5, OE+06—]

0, OE+O!

164. gzi p 175. vpr 176. gc 181. ncf

186.craft 197. par ser 255. vont e

Benchnaek

254.gn 256. bz2p

Figure 6: Execution time of integer benchmarks alone on the 4-way chips

thread 4, and return on core 3 after thread 2
is suspended.

Simulations results were consistant with
what one might expect: CASH is more re-
silient, performance-wise to such contexts
switches than a CMP. If the number of con-
texts switches is small in comparison of the
number of instructions simulated, then the
threads are slightly slowed on both CASH and
CMP. There is a distinct advantage for CASH in
the first case (four threads round-robin) but
this advantage is not distinguishable from the
usual sharing effect in the second case (five
threads on four cores). The long interval dur-
ing which the fifth thread is sleeping results
in the disparition of its data and instructions
from the caches.

When the number of context switches is
raised, the advantage of CASH is also raised
(see figure B): a thread running on a CMP al-
ways starts in a “cold” environment with re-

RR n°® 4660

gards to memorization and prediction struc-
tures, whereas on CASH the environment is
still warm (first case) or is not completely
cooled (second case). In particular, the
shared branch predictor in CASH suffers much
less from very frequent contexts switches
than the 4 branch predictors in our CMP
model.

Even though this effect is not very notice-
able for large time-slice, it is nonetheless in-
teresting: It was shown in [10] that the major
performance cost of a context switch is due
to the cache structures and not the context
saving. CASH diminishes this cache-trashing
effect, and therefore would allow operating
system designer to use shorter time-slice for
a finer granularity of process execution.

300. twol f

acMP
WCASH

16

Dolbeau € Seznec

Time Corel Core2 Core3 Core4
5 .
= o]
° ©
S o
—_ e
o < = A o — (oY
kS B 3 B
(O] (] (] (]
- - F . S
S < per-process = = £
pej . .
© time slice
(]
-
ey
d—
N A
©
g V round
o % robln 4 N
S interval = =
© © ©
Y g o
= ° = =
pe}
I
< &z
3 =
g \
< cor_1text
switch
interval

\

Corel Core2 Core3 Core4 Time

thread O

Figure 7: Thread rotation on 4 cores processors. Left is the 5-thread case, right is the

4-thread case.

4.4 Parallel workload

Finally, we also simulated a subset of the
SPLASH-2 [23] benchmarks suite, parallelized
using POSIX threads. Traces were extracted
from a 4-thread execution, after all threads
were started (i.e. inside the function used in
the PARMACS CREATE macro).

All simulated benchmarks exhibited some
level of inter-threads sharing and prefetch-
ing. The positive effect of this sharing be-
came more visible as the working set to cache
size ratio became higher, i.e., by enlarging

the working set or diminishing the cache size.
CASH is the best performer whenever this ra-
tio is high, thanks to a higher hit ratio on the
memory hierarchy.

When most of the working set (data and
instructions) fit in the cache(s), CASH and CMP
are close performers, the benchmark execu-
tion time becoming dominated by internal
execution. For instance, on our traces, the
radix kernel from SPLASH-2 was dominated
by the floating-point instructions (more than
62% of the instructions, with a large num-
ber of double-precision multiplications). If

INRIA

CASH

17

7, 00%

6, 00%

5, 00%

4, 00%

\

3, 00%

= CASH
—CWP

~\

2, 00%

1,00% \\\
0, 00% ‘

1, E+05 1, E+06

Switch interval (cycles)

1, E+07

Figure 8: Average performance loss, with a 10 millions cycles interval as reference.

the cache are big enough, the CMP naturally
takes the edge thanks to a lower L1 latency.
An exception to this is the behavior of the
barnes application, were internal execution
is dominated by long-latency floating-point
instructions (see below subsection EH).

4.5 About sharing the L1 data
cache

Sharing the L1 data cache in CASH is not au-
tomatically positive with multiprocess work-
loads, since sharing induces an extra latency
cycle with loads and may also generate some
bank conflicts.

Assuming four execution cores, we ran sim-
ulations, both integer and floating-point, on
a processor similar to CASH, but with the pri-
vate, faster access L1 data cache and the
longer latency L2 cache similar to CMP. The
performance of this version was marginally

RR n°® 4660

(in average 1%) better than the performance
of CASH. In particular, in most of the cases
where CASH-4 was slower than CMP on an
individual benchmark, performance close to
CMP-4 was obtained.

On the other hand, for single threaded
workload, an almost consistant performance
advantage was obtained using a shared data
cache, with only a handful of benchmarks
performing better on the private caches
model.

The marginal performance improvement
on multiprogrammed performance is low,
compared with the benefit of larger caches for
incomplete workload, and the benefit of shar-
ing data and instructions in a multithreaded
workload.

18

Dolbeau € Seznec

4.6 About sharing sparsely used
functional units

As explained above (see ZZZTI), sparsely used
functional units such as dividers can usually
be shared between cores without sacrifying
performances. Being “sparsely” used, there is
usually very little contention on these units.
When a single thread make intensive use of
for instance the FDIV instruction, it does not
suffer from contention if the other processes
in the workload do not use the floating-point
divider.

However, the situation may be different
for a multithreaded workload. When all
threads exhibit the same behavior (as is usual
for parallelized code), contention may occur.
For instance, the barnes application in the
SPLASH-2 benchmarks sets exhibits such a
behavior. Performance on the CASH processor
suffers, as the 4 threads are effectively serial-
ized over the floating-point divider functional
unit.

Therefore, it can be cost-effective on CASH
to implement a single, bigger, faster unit.
This results in slightly better performance
for single-threaded code than can use only
one divider, and avoids excessive penalty
on multithreaded code. In our experiment,
halving the latency of the floating-point di-
vider was enough to make CASH more than
a match for CMP on the barnes benchmark,
even though CASH was nearly 20% slower with
the usual full-latency unit on this specific
multithreaded benchmark.

We also made experiments with CASH using
shared floating-point units, even for more fre-
quent instructions. Instead of connecting two
units to each of the four cores, we only used
four units, each connected to two adjacent
cores. Each core had access to two units, but
no two cores were connected to the same two
units. The unit responsible for the floating-

point division and square root instructions
shared by all cores, with the usual high laten-
cies. We then ran our floating-point bench-
marks sets on this configuration.

As one might expect, on all floating-point
workloads, all benchmarks performed worse
running on this configuration while mixed
workload exhibited a similar behavior as reg-
ular CASH. The benchmark with the higher
proportion of floating-point instructions in
the trace (173.applu, 172.mgrid, 171.swim)
naturally suffered the most, especially when
put together on adjacent cores. Other bench-
marks were slowed by a smaller amount.

5 Conclusion and future
work

The combined impacts of the advance in sil-
icon technology and the diminishing return
from implementing wider issue superscalar
processor has made hardware thread par-
allelism a reality in commodity processors.
Both CMPs and SMT processors are now offered
by manufacturors.

In this paper, we have shown that there
exists an intermediate design point between
CMP and SMT, the CASH parallel processor
(for CMP And SMT Hybrid). Instead of
an all-or-nothing sharing policy, CASH imple-
ments separate execution cores (as on CMPs)
but shares the memory structures (caches,
predictors) and rarely used functional units
(as on SMTs). Whenever sharing allows to
use larger memory structures (for caches
and branch predictors), or to save material
(rarely used functional units, but also line
predictor), CASH implements it, even if it in-
duces longer pipeline access and some arbi-
tration. Whenever sharing induces super-
linear complexity increase, CASH implements

INRIA

CASH

19

separate hardware: for instance register files,
wake up and selection logic, and the bypass
network.

The simulation results presented in this
paper illustrate that CASH competes favor-
ably with a CMP solution on most workloads.
In future studies, we will explore a wider de-
sign space. We also want to study (mostly)
software solutions to enhance single process
workload performance. For instance, shar-
ing the caches among the core allows an
helper thread (running on a different core) to
prefetch instructions and data for the main
thread.

References

[1] Luiz André Barroso, Kourosh Ghara-
chorloo, Robert McNamara, Andreas
Nowatzyk, Shaz Qadeer, Barton Sano,
Scott Smith, Robert Stets, and Ben
Verghese. Piranha: a scalable architec-
ture based on single-chip multiprocess-
ing. In Proceedings of the 27t Annual
International Symposium on Computer
Architecture: June 12-14, 2000, Van-
couwver, British Columbia, New York,
NY, USA, 2000. ACM Press.

[2] Keith Diefendorff. Compaq chooses
SMT for alpha. Microprocessor Report,
13(16), December 1999.

[3] Keith Diefendorff. Powerd focuses on
memory bandwidth: IBM confronts TA-
64, says ISA not important. Micropro-
cessor Report, 13(13), October 1999.

[4] Lance Hammond, Basem A. Nayfeh,
and Kunle Olukotun. A single-chip
multiprocessor. Computer, 30(9):79-85,
September 1997.

RR n°® 4660

[5] Sébastien Hily and André Seznec.
Branch prediction and simultaneous
multithreading. In Proceedings of the
1996 Conference on Parallel Archi-
tectures and Compilation Techniques
(PACT ’96), pages 169-173, Boston,
Massachusetts, October 20-23, 1996.
IEEE Computer Society Press.

[6] Glenn Hinton, Dave Sager, Mike Up-
ton, Darrel Boggs, Doug Carmean, Alan
Kyker, and Patrice Roussel. The mi-
croarchitecture of the pentium 4 proces-
sor. Intel Technology Journal, Q1 2001.

[7] Richard E. Kessler. The Alpha 21264
microprocessor: Qut-of-order execution
at 600 MHz. In IEEE, editor, Hot chips
10: conference record: August 16-18,
1998, Memorial Auditorium, Stanford
University, Palo Alto, California, 1109
Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1998. IEEE Computer
Society Press.

[8] Thierry Lafage and André Seznec. Com-
bining light static code annotation and
instruction-set emulation for flexible
and efficient on-the-fly simulation. Tech-
nical Report PI-1285, IRISA, University
of Rennes 1, 35042 Rennes, France, De-
cember 1999.

[9] Jack L. Lo, Joel S. Emer, Henry M.
Levy, Rebecca L. Stamm, and Dean M.
Tullsen. Converting thread-level par-
allelism to instruction-level parallelism
via simultaneous multithreading. ACM
Transactions on Computer Systems,
15(3):322-354, August 1997.

[10] Jeffrey C. Mogul and Anita Borg. The
effect of context switches on cache per-
formance. In Proceedings of the Sizth

20

Dolbeau € Seznec

[11]

[12]

[13]

[14]

[15]

International Conference on Architec-
tural Support for Programming Lan-
guages and Operating Systems, pages
75-85, Santa Clara, California, 1991.

Kunle Olukotun, Basem A. Nayfeh,
Lance Hammond, Ken Wilson, and
Kun-Yung Chang. The case for a single-
chip multiprocessor. In Architectural
Support for Programming Languages
and Operating Systems (ASPLOS-VII),
pages 2-11, 1996.

Subbarao Palacharla, Norman P.
Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In 941th
Annual International Symposium on
Computer Architecture, pages 206-218,
1997.

John Petrovick. POWERA4 chip integra-
tion. In IEEE, editor, Hot Chips 12:
Stanford University, Stanford, Califor-
nia, August 18-15, 2000, 1109 Spring
Street, Suite 300, Silver Spring, MD
20910, USA, 2000. IEEE Computer So-
ciety Press.

Erven Rohou, Francois Bodin, and
André Seznec. SALTO: System for
assembly-language transformation and
optimization. In Proceedings of the Sizth
Workshop Compilers for Parallel Com-
puters, December 1996.

Eric Rotenberg, Steve Bennett, and
James E. Smith. Trace cache: A low
latency approach to high bandwidth in-
struction fetching. In Proceedings of
the 29t Annual International Sympo-
sium on Microarchitecture, pages 24—
34, Paris, France, December 2-4, 1996.
IEEE Computer Society TC-MICRO
and ACM SIGMICRO.

[16]

[17]

[18]

[19]

[20]

[21]

Yiannakis Sazeides and Toni Juan. How
to compare the performance of two smt
microarchitectures. In 2001 IEEE In-
ternational Symposium on Performance
Analysis of Systems and Software, 2001.

André Seznec, Stephen Felix, Venkata
Krishnan, and Yanos Sazeidés. Design
tradeoffs for the ev8 branch predictor.
In Proceedings of the 29" Annual Inter-
national Symposium on Computer Ar-
chitecture: May 25-29, 2002, Anchor-
age, Alaska, New York, NY, USA, 2002.
ACM Press.

André Seznec and Pierre Michaud. De-
aliased hybrid branch predictors. Tech-
nical Report RR-3618, Inria, Institut
National de Recherche en Informatique
et en Automatique, 1999.

Richard L. Sites.
Reference Manual.
Prentice-Hall, 1992.

Alpha Architecture
Digital Press and

D. M. Tullsen, S. J. Eggers, and H. M.
Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In
Proceedings of the 2274 Annual Inter-
national Symposium on Computer Ar-
chitecture, pages 392—-403. ACM Press,
June 22-24 1995.

Dean M. Tullsen, Susan J. Eggers,
Joel S. Emer, Henry M. Levy, Jack L.
Lo, and Rebecca L. Stamm. Exploit-
ing choice : Instruction fetch and issue
on an implementable simultaneous Mul-
tiThreading processor. In Proceedings
of the 23" Annual International Sym-
posium on Computer Architecure, pages
191-202, New York, May 22-24 1996.
ACM Press.

INRIA

CASH

21

[22]

[23]

David L. Weaver and Tom Germond, ed-
itors. The SPARC Architecture Manual,
version 9. PTR Prenttice Hall, 1994.

Steven Cameron Woo, Moriyoshi Ohara,
Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 pro-
grams: Characterization and method-
ological considerations. In Proc. of
the 220 Annual International Sympo-
sium on Computer Architecture, pages
24-36, Santa Margherita, Italy, June
1995. Published as Proc. of the 22nd
Annual International Symposium on
Computer Architecture (22nd ISCA’95),
ACM SIGARCH Computer Architec-
ture News, volume 23, number 6.

RR n°® 4660

/<

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Revisiting resource sharing for parallel processors
	2.1 Complexity of wide issue superscalar core
	2.2 Sharing resources in CASH
	2.2.1 Sparsely used long latency units
	2.2.2 Instruction cache and branch predictor sharing
	2.2.3 Sharing the data cache
	2.2.4 Benefits and drawbacks of sharing memorization structures

	2.3 CASH design spectrum

	3 Simulations framework and methodology
	3.1 Simulated ``processor'' configurations
	3.2 Simulation environment
	3.3 Benchmark set
	3.4 Performance comparison methodology

	4 Simulation results
	4.1 Multiprogrammed workloads
	4.2 Single process workload
	4.3 Context switching workload
	4.4 Parallel workload
	4.5 About sharing the L1 data cache
	4.6 About sharing sparsely used functional units

	5 Conclusion and future work
	References

