N
N

N

Aspects Can Be Efficient:

HAL

open science

Experience with Replication

and Protection

Fabienne Boyer, Sara Bouchenak, Noel de Palma, Daniel Hagimont

» To cite this version:

Fabienne Boyer, Sara Bouchenak, Noel de Palma, Daniel Hagimont. Aspects Can Be Efficient: Expe-
rience with Replication and Protection. [Research Report] RR-4651, INRIA. 2002. inria-00071934

HAL 1d: inria-00071934
https://inria.hal.science/inria-00071934
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071934
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4651--FR+ENG

ISSN 0249-6399

%I 1NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Aspects Can Be Efficient:
Experience with Replication and Protection

Fabienne Boyer, Sara Bouchenak, Noel De Palma and Daniel Hagimon

N° 4651
Novembre 2002

THEME 1

apport
de recherche

% I N RIA

RHONE-ALPES

Aspects Can Be Efficient:
Experience with Replication and Protection

Fabienne Boyer, Sara Bouchenak, Noel De Palma and Daniel Hagimont

Théme 1 — Réseaux et systémes
Projet Sardes

Rapport de recherche n° 4651 — Novembre 2002 — 31 pages

Abstract: Separation of concerns, which aims at separating different aspects involved in
complex applications, is a general trend in software programming. It allows a given aspect
to be programmed in a more or less isolated manner from the functional code of an applica-
tion. This trend has been studied by the AOP (Aspect Oriented Programming) community,
through the provision of language supports for programming and composing aspects. It
has also been experi-mented in the context of component-based middleware, which usually
address system-related aspects (e.g., transactions, security, persistence, etc). In both do-
mains, most implementations of separation of concerns involve indirection objects and extra
method calls that incur a non-negligible performance over-head. While performance was
initially not the main motivation of “separation of concern environments’, we believe that
it is possible to efficiently integrate as-pects in such environments. In this paper, we report
on an experiment which aims at optimizing aspects through code injection techniques. We
consider two aspects, replication and access control, and present a preliminary performance
evaluation which confirms that the overhead can be significantly reduced.

Key-words: components, AOP, optimization, code injection

Unité de recherche INRIA Rhdne-Alpes

655, avenue de I'Europe, 38330 Montbonnot-St-Martin (Eean
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Les Aspects Peuvent Etre Efficaces :
Expérimentations avec la Duplication et la Protection

Résumé : La séparation d’aspects permet au programmeur d’implanter les aspects d’une
application de fagon plus ou moins indépendante du code métier de ’application. La sépa-
ration d’aspects a été étudiée par la communauté AOP (Aspect Oriented Programmin), &
travers un support langage de programmation et de composition d’aspects. La séparation
d’aspects a également été étudiée dans le contexte des intergiciels & composants, qui traitent
plus particuliérement la mise en oeuvre d’aspects systéme (ex. transactions, sécurité, persis-
tance, etc.). Dans les deux cas, la plupart des mises en ceuvres proposées pour la séparation
d’aspects repose sur des objets d’indirection et des appels de méthodes supplémentaires.
Ceci implique un surcolt non négligeable sur les performances des applications. Méme si
les performances n’étaient pas la motivation principale des “environnements de séparation
d’aspects”, nous pensons qu’il est possible d’intégrer des aspects de fagon efficace dans de
tels environnements. Nous utilisons pour cela des techniques d’injection de code. Dans ce
rapport, nous décrivons nos expérimentations concernant ’optimisation de deux aspects :
la duplication et la protection. Nous présentons également les résultats préliminaires de
notre évaluation de performances, résultats qui confirment que de telles techniques peuvent
considérablement réduire le surcott sur les performances.

Mots-clés : composants, programmation par aspects, optimisation, injection de code

Aspects Can Be Efficient 3

1 Introduction

1.1 Objectives

Complex applications generally include many aspects. A general trend in software develop-
ment is to separate, as long as possible, these different aspects from applica-tions’ code in
order to improve the quality of software which is easier to maintain [9].

The principle of aspect separation has been studied in several contexts by different re-
search communities:

e Aspect-oriented programming (AOP). AOP aims at allowing different aspects of com-
plex software to be programmed separately and then woven into a single appli-cation
program. AOP led to language and runtime supports for programming and composing
aspects, such as the AspectJ [9] environment, where the declaration of an aspect may
include join point declarations, i.e., the place/moment the aspect takes place, and
advice declarations, i.e., the aspect-related code.

e Component-based programming (CBP). CBP aims at improving code evolution and
reuse by enabling configuration of complex component-based architectures and as-
sociation of non-functional properties, namely aspects, with applications’ business
components. CBP led to the development of middleware environments such as CCM
[14] and EJB [19], where aspects are described separately from applications’ busi-
ness code, and associated at runtime with applications through configurable ob-jects
(containers) that link aspects to business code components.

Researchers in AOP have focused on providing language support for aspect pro-gramming
and weaving while in the context of CBP, researchers have mainly focused on the integration
of system-related aspects (e.g., transactions, security, persistence, etc.). However, in both
contexts, most of the implementations rely on intermediary objects for the integration of
aspects into the base code of applications. Intermediary objects, that from now on we will
call indirection objects, are responsible for a sig-nificant overhead at runtime. Our objective
is to investigate techniques for efficient integration of aspects in the base code of applications.
A long term objective is to provide a generic facility which would include language support
for describing as-pects, and enabling automatic optimized integration of aspects.

A first step in this direction has been to study the feasibility of optimizations for two
aspects: object replication and protection. In previous experiments, we have shown that
both replication and protection can be managed as orthogonal aspects relying on indirection
objects [7][6]. In this paper, we report on our experience in optimizing these two aspects.
Optimization aims at removing indirection objects usu-ally used in implementations, thus
improving performance at runtime . We show that, although this task may be complex for
some aspects, optimization remains possible.

RR n°® 4651

4 Boyer & Bouchenak € De Palma 6 Hagimont

10 SIO

injection injection

Figure 1: Non-functional code injection

1.2 Approach

In AOP and CBP environments, several successive indirection objects may be in-volved in
the implementation of aspects, forming a chain (more or less long) between an invoking
object and an invoked object . To place ourselves in a general and simpli-fied framework, we
consider the case where two indirection objects are involved: the first one, associated with
the invoking object, is called the Client Indirection Object (CIO) and the second, associated
with the invoked object, is called the Server Indirec-tion Object (SIO) . In some cases, only
the CIO or the SIO may be present. But in the two aspects that we further consider, these
two indirection objects are necessary to integrate the aspects.

In Figure 1, CIO and SIO capture interactions between objects and allow the asso-
ciation of aspect-related code with the invoking and invoked objects. This may consist in
controlling binding to a replicated object as with the replication aspect (see sec-tion 2) or
implementing access control checks as in the protection scheme (see section 3). The general
idea here is to inject the aspect-related code within the code of the application, and thus
eliminate indirections, which reduce performance overhead. Code injection can be performed
at compile time or dynamically at load time.

Code injection techniques that we experimented apply at the level of Java bytecode. In
the rest of the paper, and for clarity purpose, we will illustrate our experiments through
Java source code.

1.3 Roadmap

The rest of the paper is organized as follows. Sections 2 and 3 respectively describe our ex-
periments with the replication and protection aspects. Each section includes a description of
the aspect, its implementation using indirection objects and the pro-posed integration based
on code injection. Section 4 discusses code injection tech-niques used in both experiments
and shows that a common injection scheme appears. Section 5 presents our preliminary
performance evaluation, and section 6 discusses the related work. We finally conclude in
section 7.

INRIA

Aspects Can Be Efficient 5

mterfare Oh)_ itfl |
woid foo{Ch) itf2 cbjl; read
kg _itf3 b write
i

Figure 2: Description of access modes

2 Replication aspect

Replication of shared distributed objects has many objectives, such as performance improve-
ment by transforming remote calls into local calls [8], or service availability in order to face
disconnections [11] and tolerate faults [13].

Javanaise is a Java-based system that provides distributed shared object applica-tions
with replication [8] . The Javanaise system transparently manages, on the one hand,
the replication of distributed shared objects, and on the other hand, the consis-tency of
replicated objects. Therefore, an application programmer manipulates its objects as in a
centralized /non-replicated /non-shared scheme.

In Javanaise, when an object on a client node requests for the first time another ob-
ject located on a server node, and if the requested object is “replicable”, the requested
object is transparently brought on the requesting node and cached until invalidated by
the consistency protocol. Later, if the local replica is accessed by the requesting object
subsequently to an invalidation (because of modification of another replica of the same
object), an updated replica is brought on the requesting node. Thus, managing object
replication requires mechanisms for:

e object binding when faulting on objects at first access or access after invalidation

e object synchronization for invalidating objects (after modification of another rep-lica)
and updating objects to ensure consistency.

Binding and synchronization mechanisms are built in the Javanaise system relying on
a replication server [7]; and the implemented synchronization mechanism is based on the
multiple-readers/single-writer entry consistency protocol [2]. Thus, the applica-tion pro-
grammer specifies the access mode associated with its application’s objects, i.e., read/write
modes of the application’s methods. This is done through a Java-based extended IDL (In-
terface Description Language), as illustrated by Figure 2, where method foo is accessed in
read mode and method bar is accessed in write mode.

RR n°® 4651

6 Boyer & Bouchenak € De Palma 6 Hagimont

class Object] implerents Obj itfl { clags Ohject2 itplemments Ohj_itf2 |
Chj_Itf2 o2, oid mi) {
wioid fool) { N Code of m

o2rf); }
-

¥

public static void main String[] args) {
Ohject] ol = ngw Ohject1(); ; .
o1 fool); interface Chyj_itf2 {

b woid m(}; read

}
t

Figure 3: Example: Objectl references Object2

2.1 Indirection-based implementation of replication

A first implementation of the replication aspect in the Javanaise system follows an indirection
object scheme [7]. Here, transparent replication, and more precisely trans-parent object
binding and synchronization, are implemented using a pair of indirection objects (CIO-SIO,
c.f., section 1.2) that represents inter-object references [7]. When a caller object references
a callee object, CIO and SIO are dynamically generated and transparently inserted between
the caller and the callee objects. This transparency is ensured by the fact that the caller
object views CIO as being the callee object (CIO implements the same interface as the callee).
Figure 3, and more precisely Objectl and Object2 classes, illustrate a sample program where
an object ol calls a method foo which itself calls a method m on an object 02. In a centralized,
non-shared, non-replicated object environment, the caller object o1 would directly reference
the callee object 02. But when implementing transparent replication using the indirection
object-based scheme, and in the case object 02 is replicable, object ol references CIO which
itself references SIO that references object 02.

Let us consider the access mode as presented by the interface description in Figure 3. In
this case, the associated CIO and SIO are built as illustrated by Figure 4. Here, CIO and
SIO are respectively intended to implement object binding (between ol and 02) and object
synchronization (between 02 replicas):

e CIO: object binding. CIO manages binding to a callee object that may be brought
dynamically from remote nodes. Dynamic binding is implemented as follows. First,
CIO contains a unique identifier associated with object 02 (id_02 in 02 CIO’s code,
see Figure 4), and a reference to the associated SIO (reference 02 in 02 CIO’s code,
see Figure 4). If the reference to SIO is null, it means that it is the first time that
object ol accesses object 02. In this case, a copy of object 02 is fetched, either locally
if the object is already cached or remotely from the Javanaise server using 02’s unique
identifier.

INRIA

Aspects Can Be Efficient 7

void m{){
If (02 = null)
o2=serverfetch{o? id)
o2.m{);

binding

H

Ohject ol

£ [voidmo{
-% lock_read
.E o2.m();
uniock recd
g re Object o2
E |}

Figure 4: Implementation of replication with indirection objects

e SIO: object synchronization. SIO manages synchronization, i.e., invalidation and up-
date, of the 02 replicated shared object. This is implemented as follows. First, SIO
contains the unique identifier associated with object 02 (id_02 in 02_SIO’s code, see
Figure 4), and a reference to the replicated object (reference 02 in 02_SIO’s code, see
Figure 4). With the entry consistency protocol, and according to the access modes
specified in the replicated object’s interface, the methods of this replicated object
are bracketed with lock_read/lock _write and unlock_read/unlock _write calls. The
lock read/lock write procedures ensure that a consistent copy of object 02 and a lock
are present on the local node. If a consistent copy and lock are found locally (cached),
then the lock is taken and the method in-vocation is invoked on 02. If not, it means
that the local copy was invalidated. In this case, a consistent copy and a lock are
fetched from the Javanaise server using 02’s unique identifier. The full explanation of
this protocol can be found in [7].

2.2 Injection-based implementation of replication

In the previous section, we showed how the replication aspect is built using indirec-tion
objects. Thanks to this scheme, replication is implemented transparently. But it presents
two main drawbacks:

e The multiplication of indirection objects (CIO and SIO) used to implement interac-
tions between objects; this incurs additional memory consumption.

RR n°® 4651

8 Boyer & Bouchenak € De Palma 6 Hagimont

void m{){

If (02 = null)
o2=server.fetch(o2_id)

o2.m();

injection

binding

£ |void mof
g Iock_read
E o2.m); A B
code injection
g unlack_recd I Ohject 02
g }

Figure 5: Implementation of replication with code injection

e The multiplication of method calls. Indeed, the call of method m from object ol on
object 02 is transformed into three method calls: first ol calls method m on 02 _CIO,
then 02 CIO calls method m on 02 SIO, and finally 02 SIO calls the ef-fective
method m on object 02. This results in lower performance.

In this section, we propose an optimized scheme in which indirection objects and addi-
tional method calls are removed while transparently keeping the replication as-pect. Our
approach leads to a second implementation of the Javanaise system where we use code injec-
tion techniques. This is illustrated by Figure 5, where the code re-lated to object binding,
i.e., CIO’s code, is injected into the caller object’s code, and the code related to object syn-
chronization, i.e., SIO’s code, is injected into the callee object’s code. In the following, we
discuss how code injection takes respectively place in the caller object and the callee object.

2.2.1 Injection of binding code into caller

The code of the caller object is transformed by our code injection scheme as follows:

e For each replicable object that is referenced in the caller object’s code, as a field or
as a method’s local variable, the declaration of a new variable is added and a code
associated with this new variable is injected. The new variable represents the unique
identifier associated with the replicable object. And the code associated with this
new variable is injected each time the reference to the replicable object is assigned:
the injected code manages the assignment of the new variable. With this scheme,

INRIA

Aspects Can Be Efficient 9

Original code After code injection
class Object] implernents Ohj_itfl { class Ohject] irapleraents Ohbj_itfl {
Ohj_Itf2 o2, transient Chj_[tf2 o2;
intid o2; /i id of ohject 02
woid fool) {
woid foof) |
o2.mi);
||||| > /f dynamic hinding to 02
i if (02 == null)
02 = server.fetchiid o2);
ol.ra};

Figure 6: Injection of binding code into caller code

the caller object does not point to CIO but rather has a straight reference to the
callee/replicable object.

e The management of dynamic binding between the caller object and the callee ob-ject is
implemented as follows. Before each method call on the replicable object by the caller
object, a code that checks binding is injected into the caller’s code. The injected code
checks if the reference to the replicable object is null; if it is, the Javanaise server is
contacted for a binding request using the injected variable that represents the unique
identifier of the replicable/callee object.

e When a reference to a replicable object is transmitted by the caller to the callee
object, as a method parameter for example, the identifier associated with the replic-
able object is also transmitted. This is performed by adding a new parameter to the
method signature.

Figure 6 illustrates the transformation applied by our code injection scheme on the
program of the caller object ol that was previously introduced in Figure 3. Here, a new
variable id 02 is added and the code that checks binding to 02 is injected before the call of
method m on object 02.

2.2.2 Injection of synchronization code into callee

The transformation applied by our code injection scheme to the code of the replic-able/callee
object is straightforward. First, a new field which represents the unique identifier of the

RR n°® 4651

10

Boyer & Bouchenak & De Palma & Hagimont

COriginal code

A fter code rjection

class Ohjectd iraplernents Obg_1tf2 |

void raf) {
N Code of m

class Chiject2 impleraents Obj_itf2 {

intid o2; i/ id of ohject o2
short lock;

void raf) {
> M code injecied from [ock_reqd

I Code of m

M code injecied from unlock read

Figure 7: Injection of synchronization code into callee code

replicable object is added. The code of the lock read/lock write/unlock synchronization
procedures is injected into the associ-ated methods, with respect to the access modes of
these methods. A lock field is also added; it is managed by the synchronization procedures
and tells them whether a lock is cached on the local node. If the required lock is not cached,
the lock and the most recent copy of the replicable object are fetched from the Javanaise
server using the object identifier. If the lock is already cached, no communication with the

server is required and the executed code is a simple (synchronized) check of the lock.

Figure 7 illustrates the transformation applied by our code injection scheme on the
program of the callee object 02 that was previously introduced in Figure 3. Here, two new
variables id 02 and lock are added and the lock read and unlock read proce-dures are

injected in method m.

INRIA

Aspects Can Be Efficient 11

3 Protection aspect

The second aspect that we experimented is protection. The purpose of protection is to con-
trol interactions between mutually suspicious objects. The protection mechanisms control,
for each object in the system, the objects it can access and the operations it can invoke on
them. In a previous work, we have proposed a protection model where protection is built
as an orthogonal aspect that is transparent to applications. This model is called hidden
software capabilities [6] and is detailed in the following.

3.1 Hidden software capabilities

In order to illustrate the protection aspect, let us consider the example of a printing service
that allows a client to print out a file; this service provides:

e a print operation, for printing a text, and
e an init operation, for resetting the underlying printer.

In a protection-free application, any user is allowed to access all the operations pro-vided
by the printing service. Symmetrically, and for the particular case of the print operation,
there is nothing to prevent the printing service modifying the printed text.

Now, let’s consider a protection policy has to be added to the application with the
following properties:

e On the one hand, to differentiate between two groups of users: administrators and
general clients. Unlike administrators who are granted full access to the service, a
protection policy allows the printing service to restrict the access for general clients to
printing texts while resetting the printer is denied.

e And on the other hand, to take into account mutual suspicion between the printing
service and clients. Here, when a client requests the print operation of the printing
service, he allows the service to read the text to be printed but not to modify it.

In other words, two views of the “interactions” between the client and the printing service
exist, depending on the “viewer” and the restrictions it puts for the protection purpose:

e The client views the “interactions” as follows: he can access the operations pro-vided
by the printing service but he restricts access to the printed text to read-only mode,
i.e., the printing service is only capable to read the printed text.

e The printing service views the “interactions” as a restriction to print operations, i.e.,
the client is only capable to request printing operations.

In our hidden software capability model, where protection is implemented as an or-
thogonal aspect of applications, capabilities and views are defined as follow.

RR n°® 4651

12 Boyer & Bouchenak € De Palma 6 Hagimont

3.1.1 Capabilities

A capability associated with an object provides access rights on that object. For pro-tection
purpose, in order to be allowed to access an object, an application must own a capability to
that object with the required access rights.

Initially, when an object is created, the capability associated with this object is re-turned
to the creating application; it usually contains all the rights on the object. The capability
can then be used to access the object.

The capability can also be copied and passed to another application (through method
invocation), providing it with access rights on that object. And when a capa-bility is copied
restricting the rights associated with the copy, the rights of the receiv-ing application on the
object are limited. In the printing example previously presented, the client has the capability
to access his text in read-write mode but he restricts the access rights of the printing service
to read-only mode (for general clients).

3.1.2 Views

In order to describe capability management, we rely on the definition of views. A view of
an object describes the following:

e The set of authorized operations/methods.

e For every object /reference parameter (or result) of an authorized method, the capa-
bility associated with this parameter. The capability to be passed with the parameter
is described with a view.

e If no capability is associated with an object parameter (or result) of an authorized
method, it means that no access restriction applies on that parameter.

Two interacting objects define their own protection policies with two views and both are
taken into account at runtime.

3.1.3 Extended IDL

Let us consider again the printing service as illustrated by Figure 8, where a Client object
submits a Text object, for printing purpose, to a Printer object, with the protec-tion policy
described before.

A capability on the Printer object is given to clients providing them with the right to
print texts. When the Client calls the print method on the Printer object, with a Text
object as an input parameter, the Client passes to the Printer object a read-only capa-bility
(Text capa) on the Text object (see step 1 in Figure 8). This capability allows the Printer
object to read the content of the text (see step 2 in Figure 8).

In order to describe the applied protection rules, i.e., capabilities and views, sepa-rately
from the functional code of applications, we use a Java-based extended IDL (Interface De-
scription Language). This IDL is illustrated by Figure 9 which shows the views related to

INRIA

Aspects Can Be Efficient 13

Client Tesxt_capa Printer

interface Printer_itf {
Printer object void init (),

vord print {Text_ atf text);
}

- -02 interface Text itf {
String read(),
Text_capa void write (String),

Figure 8: Protection in printing service

Client Wiew Printer View
wiaw Prinfer_client view Fiew Prinfer_sesver view
implernents Printer itf { irmplements Printer_itf {
w1 1rat();
woid print{Text_itftext pass woid mot inat();
Text_reader view), woid print(Text_itf'text);
'
1

view Texf reader view
implernents Text itf |
Strng read();
wo1d mot write{String s,
1

Figure 9: The Printer example views

the printer example. Each view “implements” the Java interface that corresponds to the
type of the object it protects. A not before a method declaration means that the method is
not permitted. When an object reference is passed as pa-rameter in a view, the programmer
can specify the view to be passed with the refer-ence using the key-word pass. If no view is
specified, it means that no restriction is applied to this reference.

Printer _client view represents the protection policy from the client point of view: it
specifies that a capability with Text reader view must be associated with the text pa-
rameter when the print method is invoked. And Text reader view only authorizes read
operations on texts. Similarly, Printer server view represents the protection policy from
the printer point of view. It prevents clients from calling the init method on printers. Notice
here that the client has no reason to forbid itself from using the init method, it is a decision
taken by the printer; this is why no restriction regarding init is made on Printer client view.

RR n°® 4651

14 Boyer & Bouchenak € De Palma 6 Hagimont

3.2 Indirection-based implementation of protection

For the implementation of the protection model presented above, we relied on the fact that
Java object references are almost capabilities (Java is strongly typed). Indeed, since Java
is a safe language, it does not allow object references to be forged. This implies that if an
object O1 creates an object O2, object O2 will not be accessible from other objects of the
Java runtime, as long as O1 does not explicitly export a reference to object O2 towards other
objects. References to 02 can be exported (as a parameter) when an object invokes O1 or
when O1 invokes another object. Thus, a Java object reference can be seen as a capability.
However, they are all-or-nothing capabilities since it is not possible to restrict the set of
methods that can be invoked using this reference. We relied on indirection objects in order
to implement our capa-bilities.

Our implementation relies on CIO and SIO indirection objects as described in sec-tion
1.2. CIO and SIO respectively correspond to the caller protection view and to the callee
protection view for a particular interaction, (i.e., a method invocation). They are thus
inserted between the caller and the callee. For each view defined by an applica-tion, the
class of the indirection object is generated (by a pre-processor). These indi-rection objects
are dynamically inserted between the referenced object and the object which contains the
reference, each time a reference is transmitted.

When a reference to an object is passed as an input parameter of a method call, the
reference of the indirection object is passed instead of the reference to the object it-self.
This indirection object implements all the methods declared in the interface of the view. It
defines an instance variable that points to the actual object and which is used to forward the
authorized method calls. If a forbidden method is invoked on an in-stance of an indirection
object, then the method raises an exception.

The reference to the indirection object, which is passed instead of the reference pa-
rameter, is inserted by the CIO of the interaction. In Figure 10.a, the invocation of 02
performed by Appl passes a reference to ol as parameter. CI01(02), which corre-sponds to
the protection policy of Appl for invocations of 02, inserts SIO1(o1) instead of the parameter
ol. Therefore, indirection objects that are associated with reference parameters are installed
by indirection objects that are used upon method invocations.

Conversely, when a reference is received by an application, a reference to an indi-rection
object is passed instead of the received parameter; Figure 10.b, SIO2(02), which corresponds
to the protection policy of App2 for invocations of 02, inserts CIO2(o1) instead of the received
parameter. Therefore, two indirection objects, S101(01) and CIO2(01), are inserted between
the caller and the callee for the parame-ter ol passed from Appl to App2. These two objects
behave as follows:

e SIO1(0l1): it verifies that only authorized methods can be invoked by App2 and it
inserts indirection objects on the account of Appl for the parameters of invocations
on O1 performed by App2.

e CIO2(01): it inserts indirection objects on the account of App2 for the parameters of
invocations on ol performed by App2.

INRIA

Aspects Can Be Efficient 15

Figure 11: Indirection objects for the printer example

In the case of the printer application, when a Client object invokes a Printer object, it
passes a reference to a Text object as a parameter of the print method. Thus, the involved
indirection objects are Printer server view, Printer client view and Text reader view,
as illustrated in the figure below:

Finally, correspondence between the definition of views made by the protection pro-
grammer and the indirection objects is rather direct. The Java classes related to the im-
plementation of the protection aspect in the printer example, and corresponding to the
IDL description presented in Figure 9, are given by Figure 12. Printer client view and
Printer _server_ view classes respectively implement the client and server views used to pro-
tect the interaction between a client and a printer service. When invoking the print method,
Printer client view installs an indirection object (Text reader view) to protect the text
object. The reference to the text object trans-mitted as a parameter of the print method is
indeed a reference to the indirection ob-ject Text reader view.

RR n°® 4651

16

Boyer & Bouchenak & De Palma & Hagimont

10 for the clisnt

10 for the Prinder

puiblic class Prnder dient view
irmplernerits Prirter i {
M refererice of the commporerd
Privder_itf cormp;

public PrivtenPrivter_itfp) {
Cotnp = Py

i

prublic wodd it {
Corup ity

H

prublic wodd priver Text 3 tet) {
Tect reader view cis = new

Tect_reader_view flext);

comp prini(ois);

H

+

public clacs Tesk reader view
frviplereris Text #f §
ff peferetice to the cortponent
Text_if comp;

pullic Text reader wrdear
(Text_#c){

CORHD = €]

H

prublic Sring Teadr) {
Tebm comkp Tead(y

H

prubilic wodd write String) {
Exceptiom !!!

H

+

clace Proinder s enrer view
implements Printer it {
M reference to the comporert.
Privter_itf cornp;

public Privter server wisar
(Prirter_itf) {
COMHD = ¢
B

prablic woid it §
Exoepticn M
+

priblic vroid priver Tezt i text) §
COFH Dbt),
+
¥

Figure 12: Code of the indirection objects of the print server

INRIA

Aspects Can Be Efficient 17

Figure 13: A simple example

3.3 Injection-based implementation of protection

In this section, we show how to use code injection technique to implement our capa-bility-
based access control as an orthogonal aspect without using indirection objects.

3.3.1 Avoiding indirection objects

We illustrate our approach by using a simple example depicted Figure 13, then we described
the injection mechanisms and detail the injection in the case of the printer application
presented in section 3.1.

In the example Figure 13, the object S provides a service to objects C1 and C2. Since
S trusts C1 more that C2, it provides the service through two different views: the view v1
provides the access rights to C1 and the view v2 provides more restricted access rights to
C2. C1 and C2 do not trust S. Consequently, they also provide a view to protect themselves
(respectively v3 and v4).

When we implement the protection mechanism using indirection objects, any bind-ing
between two objects provides two indirection objects corresponding to both points of view.
We have thus an indirection object for each view:

e The code of the indirection object placed on the server side (vl or v2) contains the
protection policy corresponding to the view it implements.

e The code of the indirection object placed on clients side (v3, v4) contains the protection
policy enforced from the client point of view.

When we implement the protection mechanism using the injection technique, we only
have C1, C2 and S to implement each view:

e The code enforcing the protection policy for each server view has to be in-jected
in S (ie. S contains the protection policy for each view it provides). Therefore,

RR n°® 4651

18 Boyer & Bouchenak € De Palma € Hagimont

an identifier should be associated with each view, for instance the view id. These
identifiers are used by S to implements the protection policy corresponding to each
view (corresponding to each binding).

e The code enforcing the protection policy for the view of C1 (resp. C2) has to be
injected in C1 (resp. C2).

Therefore the protection code injection proceeds as follows:

e Any reference to a protected object (a capability) should be extended with the iden-
tifiers of the client view and the server view associated with the capability. As a
consequence, for each reference variable (field or local variable) pointing to a pro-
tected object, we have to inject the declaration of two new variables which represent
the two views associated with the capability: the view speci-fied by the object owner
(the callee) and the view specified by the owner of the capability (the caller). These
two variables are view identifiers (integers). They are assigned when the reference
variable is assigned (we inject the code that does it).

e To check that a method invocation is allowed on a protected object, the server view is
transmitted at invocation. The code which checks whether this invoca-tion is autho-
rized is injected at the beginning of the invoked method.

e When a reference to a protected object is passed as parameter, we inject in the caller
method and in the called method the code which calculates the identifier corresponding
to the client view and the server view related to the capability passed as parameter.
The object which provides the reference calculates its server view (the view identifier
is thus passed as parameter with the reference) and the object which receives the
reference calculates its client view. These views calculations depends on the definitions
of the views (client and server) associated with the capability used for the current
method invocation. As a consequence, when a reference to a protected object is passed
as a method pa-rameter, we inject the code which will initialize the client and server
view vari-ables on the parameter receiver side.

This is further clarified on the printer example.

3.3.2 The Printer example

In the case of the printer example, when a client receives a reference to the printer (from
a name server), it also receives the client and server views corresponding to the capability
(the view identifiers). The print method invocation to the printer takes two additional
parameters:

e The server view of the reference to the printer. This view (printer server view),
passed as parameter, allows checking access rights on the printer side.

INRIA

Aspects Can Be Efficient 19

e The server view corresponding to the text parameter. This view (text server view)
specifies the access rights that are granted to the printer on the text object. The
server view to pass with the text is defined from the client view associated with the
printer capability. This client view is identified by printer client view in the code
below (Figure 14).

On the server side (Figure 15), the printer checks that the access rights, associated with
the view received as parameter (printer server view), grant access to the method (for init
and print).

In the print method, the injected code initializes the view variables associated with the
text received parameter. The client view for the text is defined in the server view for the
printer (depending on printer server view). The server view for the text is received as
parameter (text server view).

RR n°® 4651

Boyer € Bouchenak & De Palma & Hagimont

public class ClientPrinter |
public static woid maind String args(]) {

I Extended reference to the prinier
Printer itf printer ref,

short printer client view;

short printer sexver view;

II Extended reference to the xi component
Text text;

short text_chent view;

short texi_server view;

I Fetch the reference from the namme server

If Create a text component
text = newr Text();

i printer_server view: passed for checking
If the capability on the server side

if text gerver view: the view passed with

if the text, depends on the (local)

IT definition of printer _chient view

switch (printer client view) {

text server wiewr = new reader);
t
printer ref prirt(printer server view, text,

text server view),
}

}

Figure 14: Code of the client after protection code injection

INRIA

Aspects Can Be Efficient

21

class Printer irapletnents Printer itf |

public woid print (short priner_server view, Text itf text,
short tex server view) |
il Extended reference for the iexi component
short text_client view:;
short texi_server view;

if Check the capahility ... hased on
il the: (local) definition of printer_server view

if (printer server view != ...) {
Exception !!!
H
il Initialize the views corresponding to the text component
text_server view = tex server view;
swiich (printer server view) {

text client view = ...
!
text readithis text_server wview],
retumn,

H

RR n°® 4651

Figure 15: Code of the print server after protection code injection

22 Boyer & Bouchenak € De Palma € Hagimont

4 Discussion

In this section, we provide a synthesis which summarizes our study of the feasibility of using
code injection techniques to improve the performance of the aspects. Having considered the
aspects of replication and protection, we outline the functions required to implement these
aspects by using code injection techniques.

In the case of the replication aspect, the main requirements that have been identi-fied
are:

e Extend the reference of an object with a variable which uniquely identify the object
in a distributed way. Any assignment of an object reference implies the assignment of
the corresponding identifier. Any object reference passed as pa-rameter of a method
implies also the transmission of the identifier.

e Inject, in the caller before each method call on a replicable object, a processing that
checks the binding between the caller and the replicated object.

o Inject, at the beginning of each method of a replicable object, a processing that locks
the replicated object in the required mode (read/write) and enforce the consistency
protocol.

e Add data in an object (object identifier, local lock).

e Add methods in a replicable object to allow an external entity (the replication server)
to invalidate the local replica.

In a symmetric way, we identify below the requirement for the capability-based protec-
tion:

e Extend an object reference with the view identifiers corresponding to the capa-bility.
As in the previous case, any reference assignment or parameter passing implies also
the transmission of the identifiers associated with the reference.

e Inject, in the caller before each method call on a protected object, a processing for the
calculation of the views associated with the object references passed as parameters.

e Inject, at the beginning of each method of a protected object, a processing for the
calculation of the views associated with the object references received as parameters.
This injected code should also check the access rights on the method.

e Extends the signature of a method to add new parameters (for example to transmit
the server view from the called object to the callee object).

These requirements exhibit a set of common patterns used to optimize applications built
with non functional aspects. These patterns can be supplied to the programmers of aspects
to customize the aspects implementation at a finer level. They define ab-stract extensions,

INRIA

Aspects Can Be Efficient 23

which apply to the basic elements of an object model (objects, bind-ing, etc.). These patterns
are described below:

Reference extension

An extended reference augments an object reference with several data which can be of
any type. Any assignment, transmission or comparison involving an extended refer-ence
may be redefined, involving all the elements which belong to the extended refer-ence. This
is a way to extend the notion of reference provided by the Java Virtual Machine without
changing its implementation.

Object extension

An extended object is an object in which data and\or methods have been added with
regard to its initial definition.

Method extension

An extended method is a method in which the code and/or the signature were changed
with regard to its initial definition:

e Signature: adding one or several parameters to the method.

e Code: adding some control in the caller and the called method. It can be used for
example to add a processing before or after the execution of a method on the callee
side, as well as to add a processing before and after a method invoca-tion on the caller
side.

To summarize, while object and method extensions have been largely studied and exper-
imented in AOP and CBP environments, the question of extended references is still open.

We notice that it is not sufficient to directly inject the code of the indirection ob-jects
(CIO and SIO) in the corresponding objects (client and server). In particular, the op-
timizations we implement cannot be achieved with classic compilation tools such as the
Just-In-Time compilers. JIT uses techniques that expand the called code in the calling
code (In-lining). We consider in a first example our replicated shared object service. The
calling object references directly the local copy of the called object, in-stead of referencing
the CIO. For each of these references, it contains the unique iden-tifier of the called object
and it makes the binding test. During the assignment of an object reference, it is necessary
to assign the unique identifier associated with the reference. It is the same processing for
parameters. This cannot be achieved with a simple in-lining technique. It is necessary to
transform the code of objects in a finer way. Let us consider now the management of pro-
tected objects. The injection of CIO and of SIO is much more complicated than in the case
of replication, because an indi-rection object (client or server) correspond to a view. It is
necessary to inject code corresponding to all the potential views in the caller and the callee,
and to manage view identifiers which distinguish the views associated with a capability.
This work can not be made with a JIT compiler.

RR n°® 4651

24 Boyer & Bouchenak € De Palma € Hagimont

Figure 16: Basic scheme for performance evaluation

5 Evaluation

This section first gives the current implementation status of our prototypes of injec-tion-
based integration of aspects, and then describes the performance evaluation we conducted
on these prototypes.

5.1 Implementation status

Our prototypes have been developed using BCEL (Byte Code Engineering Li-brary) [1]
on top of JDK 1.3. The BCEL is a Java-based library that is intended to give program-
mers a convenient facility to analyze and manipulate Java bytecode. For example, the
org.apache.bcel.generic.MethodGen class provided by BCEL is used to build/instrument
applications’ methods, and the addLocalVariable method of this class adds a new local vari-
able (or a new parameter) to the method. Similarly, the addField method provided by the
org.apache.bcel.generic.ClassGen class adds a new field to a class. BCEL provides many
low-level tools for the instrumentation of Java bytecode.

Nevertheless, it is important to notice that for using BCEL, it is necessary to know the
basics of the Java virtual machine, such as the class file format, runtime data areas, runtime
sub-systems, etc. This is described in the JVM specification [12].

We built two bytecode transformers for orthogonally injecting replication and pro-tection
aspects into applications’ code using BCEL. Each “injector” accounts for 5000 lines of Java
source code. The implemented API is a straight implementation of the injection scheme
described in sections 2.2 and 3.3.

5.2 Performance

In this section, we provide the results of performance evaluation in the case of a ba-sic
scheme illustrated in Figure 16.

INRIA

Aspects Can Be Efficient 25

In this scheme, object 0l invokes a method m() on object 02. We consider the case where
method m() does not take any parameter and the case where it takes a reference to another
object 03 as parameter. The code of method m() is empty. These measure-ments have been
done under three conditions:

e with the replication service implemented with indirection objects or with code injec-
tion,

e with the protection scheme implemented with indirection objects or with code in-
jection,

e on Java without integration of any aspect. We give the cost of a straight method
invocation in order to situate the cost of orthogonal aspect implemented with code
injection, compared to the same application code without any orthogonal aspect.

Table 1 presents the resulting performance figures using a 1Gh Pentium processor with
256 Mo of RAM. These results are given for 100000000 iterations over the method call.

These performance figures show a general speedup when using injection code technique.
In the following we detail each case.

5.2.1 Protection

In the case of a single method call with no parameter, the speedup is 48%. This speedup is
explained because we avoid two indirection calls.

In the case of a method call with a reference parameter, the speedup is 75%. In the
version based on indirection objects, when we transmit a protected object reference (to 03)
as parameter, 02 _client view has to instantiate o3 _server view to protect o3 .

In the code injection version, we do not have to instantiate any indirection object since
the protection code is embedded in the caller and callee objects (however we have to pass
new parameters to implement the capability transfer).

5.2.2 Replication

In the case of a single method call with no parameter, the speedup is near 45%. Like for
the capability experimentation, this speedup is explained because we avoid two indirection
calls.

In the case of a method call with a reference parameter, the speedup is about the same
(47%). This is explained by the fact that in the indirection objects version, pass-ing a
reference parameter implies passing a reference to a CIO object which can be shared by
both referencing objects. Therefore, no CIO creation is required for passing a reference
parameter.

The implementation of the replication service has a higher cost than the implemen-tation
of the protection service, because the replication service requires costly syn-chronization
operations.

RR n°® 4651

26 Boyer & Bouchenak € De Palma € Hagimont

These preliminary performance figures are encouraging and they show the per-formance
benefits that we can expect from using code injection techniques for the management of
orthogonal aspects. This evaluation is ongoing. In future evaluations, we plan to take into
account additional parameters like the impact of our optimization techniques on code size
and memory consumption.

INRIA

Aspects Can Be Efficient 27

6 Related work

The overall objective of our work is to investigate techniques used to integrate aspects
in the business code of applications. Such techniques have been studied in the context
of component-based programming (CBP) and aspect-oriented programming (AOP). In the
context of CBP, researchers have experimented with the integration of non-functional prop-
erties such as security, transactions or persistence in component-based middleware such as
EBJ [19] or CCM [14]. The integration generally relies on indi-rection objects which allow
capturing the interactions between components, and there-fore to reify invocations. In the
context of AOP, the focus has rather been on the defi-nition of language support for pro-
gramming aspects (e.g., AspectJ [9]). The integra-tion often relies on extra method calls (on
aspect objects) which are injected in the code of the applications before, after or at entry
of business method calls. This is also a means to reify invocations. Consequently, in both
cases, the reification of business method calls incurs additional method calls which can im-
pact performance. The in-curred overhead can be significantly reduced using an aggressive
code injection pol-icy, as described in this paper.

From a more technical point of view, many different projects have experimented with Java
bytecode transformation tools in order to inject additional code in applica-tions’ functional
code. Were notably considered applications resource control [3], distribution [21], and thread
migration [20][17]. We believe bytecode engineering tools such as Javassist [5] or BCEL [1]
open many perspectives and will play an im-portant role in future middleware systems which
aim at allowing runtime adaptation of system services.

From the performance point of view, binary transformation is a technique which al-lows
many optimizations. It was previously applied to manage software components sandboxing
with the Software Fault Isolation technique [22] which injects binary code that verifies that a
component does not address the memory region allocated to an-other component. Software
fault isolation allows component confinement without having to manage components in
separate address spaces, which would be costly due to address space boundaries crossings.
The approach presented in this paper shares many ideas with the software fault isolation
proposal, especially the motivations and technical approach.

Another point that should be considered is the domain of reflexive environments, which
instrument and reify applications’ behavior during execution [18]. Such envi-ronments may
be used for managing aspects [10]. However, these environments usu-ally use additional
objects at runtime (meta-objects), leading to the same problem as the one we addressed in
this paper.

Finally, there are several problems which are addressed in the AOP community, that
we have not yet addressed but which should be considered in the near future. One of
these issues is aspect weaving [15]. Aspect weaving is a very difficult issue which is yet
very open. The next step for our optimizations is to provide a specific language which
would allow the description of the optimized integration of one aspect. Such a language
support should allow an aspect expert to describe the optimized integration of combined
aspects. We plan to investigate in this area. Another issue is dynamic aspect integration
[4][16]. Managing aspects in indirection objects provides a means to dynamically add/remove

RR n°® 4651

28 Boyer & Bouchenak € De Palma € Hagimont

aspects. Injecting aspects in the business code of the ap-plication makes it more difficult to
dynamically modify aspects, since it may modify the structure of the application objects.
Such flexibility could be provided by imple-menting primitives which capture (serialize) the
state of the application’s objects and rebuild (de-serialize) a new version of these objects
with the new integrated aspects. This is also a perspective to our work.

INRIA

Aspects Can Be Efficient 29

7 Conclusion and perspectives

Separation of aspects is promoted by several domains, such as component-based envi-
ronments and AOP languages and runtime supports. Resulting software is easier to build,
reuse and adapt. The main motivation of these environments is to provide pro-grammers
with the flexibility of integrating orthogonal aspects into their applications. But usually,
this flexibility is obtained to the detriment of performance, by incurring a non-negligible
overhead on applications. This is mainly due to the implementation of aspects through
indirection objects.

In this paper, we followed a complementary approach: we investigated the issue of com-
bining the flexibility of separation of aspects with efficiency. In the proposed approach,
rather than implementing aspects using indirection objects or meta-objects, code injection
techniques are used in order to efficiently integrate orthogonal aspects into applications’
code. Therefore, performance overhead is reduced while maintain-ing flexibility.

We implemented two Java-based prototypes that illustrate orthogonal integration of as-
pects into Java applications. The prototypes are more precisely implemented upon a Java
bytecode engineering tool for transparent injection of aspects at the level of ap-plications’
bytecode. We have experimented with two aspects, namely object replica-tion and protec-
tion. For each of these aspects, we prototyped and compared an indi-rection-based imple-
mentation and an injection-based implementation. Our preliminary performance evaluation
showed that the proposed injection-based scheme allows a speedup of 1.8 to 4. The results
of our experiments show that it is possible to build efficient, complex and realistic aspects.

Our work to date has focused on evaluating and comparing indirection-based scheme and
injection-based scheme for orthogonal integration of replication and pro-tection aspects. We
plan to continue the exploration of other aspects, to conduct both complementary perfor-
mance evaluations that take into account parameters like mem-ory consumption, and to
assess the benefits of using injection-based aspect integration in real software applications.
Looking forward, our goal is to investigate a generic facility including language support for
describing aspects, and enabling automatic optimized integration of aspects.

RR n°® 4651

30 Boyer & Bouchenak € De Palma 6 Hagimont

References

[1] BCEL, 2002. http://bcel.sourceforge.net/

[2] B. Bershad, M. Zekauskas, W. Sawdon, The Midway Distributed Shared Memory Sys-
tem, 38th IEEE Computer Society International Conference (COMPCON’93), February
1993.

[3] W. Binder, J. Hulaas, A. Villazon, R. Vidal. Portable Resource Control in Java: The
J-SEAL2 Approach, ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’2001), October 2001.

[4] K. Bollert. On Weaving Aspects. Aspect-Oriented Programming Workshop at the Euro-
pean Conference for Object-Oriented Programming (ECOOP’99), Lisbon, Portugal,
June 1999.

[5] S. Chiba. Javassist - A Reflection-based Programming Wizard for Java, ACM OOP-
SLA’98 Workshop on Reflective Programming in C+-+ and Java, October 1998.

[6] D. Hagimont, J. Mossiére, X. Rousset de Pina, F. Saunier. Hidden Software Capabilities,
Sixteenth International Conference on Distributed Computing Systems (ICDCS), May
1996.

[7] D. Hagimont, D. Louvegnies. Javanaise: Distributed Shared Objects for Internet Coop-
erative Applications, IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’98), September 1998.

[8] D. Hagimont, F. Boyer. A Configurable RMI Mechanism for Sharing Distributed Java
Objects, IEEE Internet Computing, Volume 5, number 1, January 2001.

[9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J.
Irwin. Aspect-Oriented Programming. European Conference for Object-Oriented Pro-
gramming (ECOOP ’97), Jyviskyla, Finland, June 1997.

[10] M. O. Killijian, J. C. Ruiz, J. C. Fabre. Portable Serialization of CORBA Objects: a Re-
flective Approach. 17th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’2002), Seattle, WA, USA, November 2002.

[11] K. K. S. Lee, Y. H. Chin. A New Replication Strategy for Unforeseeable Disconnection
under Agent-Based Mobile Computing System. International Conference on Parallel
and Distributed Systems (ICPADS’98), Tainan, Taiwan, December 1998.

[12] T. Lindholm, F. Yellin. The Java Virtual Machine Specification, (Second Edition).
Addi-son Wesley, February 1999. http://java.sun.com/docs/books/vmspec/

[13] B. E. Modzelewski, David Cyganski, M. V. Underwood. Interactive-Group Object-
Replication Fault Tolerance for CORBA. 3rd USENIX Conference on Object-Oriented
Technologies (COOTS), Portland, Oregon, USA, June 1997.

INRIA

Aspects Can Be Efficient 31

[14] Object Management Group, CORBA Components: Joint Revised Submission, OMG
TC Document orbos/99-08, August 1999.

[15] R. Pawlak, L. Duchien, G. Florin. An automatic aspect weaver with a reflective pro-
gramming language. 2nd International Conference on Meta-Level Architectures and
Re-flection (Reflection’99), Saint-Malo, France, June 1999.

[16] A. Popovici, T. Gross, G. Alonso. Dynamic weaving for aspect-oriented programming.
1st Aspect Oriented Software Development (AOSD’02), Enshede, The Netherlands,
April 2002.

[17] T. Sakamoto, T. Sekiguchi, A. Yonezawa, Bytecode Transformation for Portable Thread
Migration in Java, International Symposium on Mobile Agents (MA’2000), September
2000.

[18] B. Smith Reflection and Semantics in a Procedural Language. Technical Rapport, Labo-
ratory for Computer Science, Massachussets Institute of Technology, 1982.

[19] Sun Microsystems, Enterprise Java Beans Specifications, Version 2.0, 2001.

[20] E. Truyen, B, Robben, B, Vanhaute, T, Coninx, W, Joosen, P, Verbaeten. Portable
Sup-port for Transparent Thread Migration in Java. 4th International Symposium on
Mobile Agents (MA’2000), Zurich, Switzerland, September 2000.

[21] M. Tatsubori, T. Sasaki, S. Chiba, K. Itano. A Bytecode Translator for Distributed Exe-
cution of “Legacy” Java Software. European Conference on Object-Oriented Program-
ming (ECOOP’2001), Budapest, Hungary, June 2001.

[22] R. Wahbe, S. Lucco, T. Anderson, S. Graham, Efficient Software-Based Fault Isolation,
14th ACM Symposium on Operating System Principles (SOSP’93), pp. 203-216, Decem-
ber 1993.

RR n°® 4651

/<

Unité de recherche INRIA Rhéne-Alpes
655, avenue de I'Europe - 38330 Montbonnot-St-Martin (Eegn

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancgiis - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-)adedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitar8ehaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de VoluceaucgRencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des bles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Les@ag Cedex (France)
http://www.inria.fr

ISSN 0249-6399

