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Abstract: A (d,1)-total labelling of a graph G is an assignment of integers to V(G)U E(G)
such that: (i) any two adjacent vertices of G receive distinct integers, (ii) any two adjacent
edges of G receive distinct integers, and (iii) a vertex and its incident edge receive integers
that differ by at least d in absolute value. The span of a (d, 1)-total labelling is the maximum
difference between two labels. The minimum span of a (d, 1)-total labelling of G is denoted
by M(@).

We show A\l < 2A +d — 1 and conjecture Al < A +2d — 1, where A is the maximum
degree of a vertex in a graph. We prove this conjecture for complete graphs. More precisely,
we determine the exact value of \g(K,) except for even n in the interval [d+ 5, 6d? — 10d + 4]
for which we show that A(K,,) € {n+2d — 3,n + 2d — 2}.

We then give some evidences for the conjecture to be true. We prove it when A < 3. We
also show that as n = |G| — oo, AT < A + O(logn/loglogn) and the proportion of graphs
on vertices 1,2,...,n with AT > A 4+ 2d — 1 is very small. Finally, we show that any vertex
colouring may be extended to a fractional (d, 1)-total labelling with span at most A + 3d.
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Coloration (d,1)-totale de graphes

Résumé : Une coloration (d,1)-totale d’un graphe G est une application de V(G) U E(G)
dans ’ensemble des entiers telle que : (i) deux sommets adjacents ont des images différentes,
(ii) deux arétes adjacentes ont des images différentes, et (iii) les images d’un sommet et
d’une aréte adjacente différe d’au moins d en valeur absolue. L’écart d’une coloration (d, 1)-
totale est la différence maximale entre deux images par celle-ci. L’écart minimum pour une
coloration (d, 1)-totale est noté A1 (G).

Nous montrons A\X < 2A + d — 1 et nous conjecturons AT < A +2d — 1, avec A le degré
maximal d’un sommet du graphe. Nous prouvons cette conjecture pour les graphes complets.
Plus précisément, nous déterminons la valeur exacte de \g(K,,) excepté pour les n pairs dans
lintervalles [d+5, 6d? —10d+4] pour lesquels nous montrons A2 (K,,) € {n+2d—3,n+2d—2}.

Nous donnons ensuite des résultats qui laissent penser que cette conjecture est vraie.
Tout d’abord nous prouvons celle-ci lorsque A < 3. Nous montrons également que A1 <
A+ 0O(logn/loglogn) lorsque n = |G| — oo et que la proportion de graphes sur les sommets
1,2,...,n pour lesquels A2 > A + 2d — 1 est trés petite. Enfin, nous montrons que toute
coloration des sommets peut étre étendue en une coloration (d, 1)-totale fractionnaire d’écart
au plus A + 3d.

Mots-clés : coloration totale
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1 Introduction

In the channel assignment problem, the following situation occurs : we need to assign radio
frequency bands to transmitters (each station gets one channel which corresponds to an
integer). In order to avoid interference, if two stations are too close, then the separation of
the channels assigned to them has to be at least two. Moreover, if two stations are close
(but not too close), then they must receive different channels. Motivated by this problem,
Griggs and Yeh [3] introduced L(2, 1)-labellings. Its natural generalisation L(d, 1)-labellings
of a graph G is an integer assignment L to the vertex set V(G) such that:

|L(uw) — L(v)| > d if dg(u,v) =1 and |L(u) — L(v)| > 1 if dg(u,v) = 2.

There are several articles studying this labelling. In [1] it was studied for chordal graphs.
In particular, Whittlesey, Georges and Mauro [7] studied L(2,1)-labellings of first subdivision
of a graph G. The first subdivision of a graph G is the graph s;(G) obtained from G by
inserting one vertex along each edge of G. A L(d,1)-labelling of s1(G) corresponds to an
assignment of integers to V(G) U E(G) such that:

(i) any two adjacent vertices of G receive distinct integers,

(ii) any two adjacent edges of G receive distinct integers, and

(iii) a vertex and an edge incident receive integers that differ by at least d in absolute
value.

We call such an assignment (d,1)-total labelling of G. It is a total colouring strenghtened
with an extra condition insisting on a minimal separation of d between incident vertices and
edges.

The span of an L(d,1)-labelling is the maximum difference between two labels. Analo-
gously, the span of a (d,1)-total labelling is the maximum difference between two labels. The
(d,1)-total number of a graph G, denoted by AI(G), is the minimum span of a (d, 1)-total
labelling of G. Note that a (1, 1)-total labelling is a total colouring and that A} = x*' —1
where x7 is the total chromatic number.

The aim of this paper is to study (d,1)-total labellings of graphs and in particular,
bounds for the (d,1)-total number A1 as a function of the maximal degree A of the graph.

In the first section, we give some general upper bounds and show that )\g <2A+d-1.
However this upper bound is not tight for graphs with large maximal degree. We conjecture
that AT < A +2d—1 and so A} <min{A +2d—1,2A +d —1}. For d = 1, this conjecture
is the Total Colouring Conjecture I < A + 2. Molloy and Reed [6] proved that there is
a constant ¢ such that the total chromatic number is at most A + ¢. They proved that
¢ < 10% [6]. According to Bruce Reed, a similar proof would give an analogous theorem for
(d, 1)-total labelling but with a larger constant c,.

We prove that this conjecture holds for complete graphs. In section 3, we give more
precise results by determining the exact value of the (d, 1)-total number of almost all com-
plete graphs : If n is odd then A\;(K,) = min{n + 2d — 3,2n + d — 3}; if n is even then
Ma(K,) = min{n+2d—3,2n+d—3}if n <d+5, \J(K,) =n+2d—2if n > 6d%> —10d+4
and \I(K,,) € {n + 2d — 3,n + 2d — 2} otherwise.

In Section 4 some evidences are provided to support the Conjecture 2.1. We examine g
the cases when A is small. We first give the (d, 1)-total number of graphs with maximum
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4 Havet € Yu

degree 2. We then prove the conjecture for graphs with maximum degree at most 3. We
also show that the upper bound 8 of Conjecture 2.1 when d = A = 3 is not tight: A\ < 7 if
A < 3. At last we establish that if A < 4 then M\ (G) < 8.

In the last section, we give some more evidences for Conjecture 2.1 to be true. We
consider the technique of extending a vertex-colouring into a (d,1)-total labelling. We
first extend the results of [5] on total colouring to (d,1)-total labellings. We show that
asn = |G| — oo, AT < A + O(logn/loglogn) and the proportion of graphs on vertices
1,2,...,n with (d,1)-total number bigger than A + 2d — 1 is very small. Finally, we show
that any vertex colouring may be extended to a fractional (d, 1)-total labelling with span at
most A + 3d.

2 Some bounds

Looking to the labels of a vertex of maximal degree and its incident edges, it is easy to see
that AT > A + d — 1. This lower bound may be increased sometimes :

Proposition 2.1 (i) If G is A-regular then \Y > A +d.
(i) If d > A, then AT > A +d

Proof. Suppose that that G admits a (d, 1)-labelling in [0, A + d — 1]. Then every vertex
must be labelled 0 or A +d — 1. Let v be a vertex of G. Without loss of generality, we may
suppose that v is labelled 0. Then its incident edges are labelled with {d,d+1,...,A+d—1}.
(i) Let vw be the edge that is labelled A +d — 1. Then v cannot be labelled A +d — 1
nor 0. This is contradiction.
(ii)Let vw be the edge that is labelled d. The vertex w must have a label that is bigger
than 2d — 1, thus bigger than A + d — 1. This is contradiction. |

Proposition 2.2
A <x+x +d-2

M <2A4+d-1

Proof. Let ¢ be a vertex colouring of G with the x integers of [0, x — 1] and ¢’ be an edge
colouring of G with the x' integers of [x —1+d, x + x’' + d — 2]. Then the union of ¢ and ¢’
is obviously a (d, 1)-labelling of G. Thus A\ < x +x'+d — 2.

If G is neither a complete graph nor an odd cycle then y < A + 1 by Brook’s theorem
and x’ < A + 1 by Vizing’s theorem. Hence, A\ < 2A +d — 1.

Suppose now that G is the complete graph K,, on n verticess. x =n = A+ 1. If n is
even then x' = A. So AJ(K,,) <2A+d—1. If nis odd, then x' = A+ 1. Let ¢’ be an edge
colouring of G with n colours. And let M;, 1 < i < n, be the matchings corresponding to the
colour classes. Each vertex is in every M; but one and each M; contains all the vertices but
one v;. For 1 < i < n, label the vertex v; with n — ¢ and the edges of M; with n+d — 3 + .

INRIA



(d,1)-total labelling of graphs 5

Since vy is not incident to any edge of My, then we have a (d,1)-total labelling of K,, in
[0,2n+d — 3] = [0,2A + d — 1].

At last suppose that G is an odd cycle. Label the vertices with 0, 1 and 2 such that
exactly one vertex v is assigned 2. And label the edges with 3, 4 and 5 such that exactly
one edge e, not incident to v, is assigned 3. |

Corollary 2.1 If G is bipartite then A +d —1 < AT <A +d.
In particular, if d > A or G is reqular then AL = A +d.

Proof. If G is bipartite then x = 2 and x’ = A by Konig’s Theorem. Then Propositions 2.2
and 2.1 give the result. |

If d < A, there are bipartite graphs for which A7 = A 4+ d — 1 and graphs for which
A" = A + d and Havet and Thomassé [4] proved that it is NP-complete to decide the exact
value for a bipartite graph G.

If d > A, then the upper bound 2A +d—1 of Proposition 2.2 is attained for the complete
graphs :

Proposition 2.3 Ifd >n+ 1 then A1 (K,) =2n+d — 3.

Proof. By Proposition 2.2, \I(K,,) < 2n +d — 3.

Suppose for a contradiction, that K,, admits a (d, 1)-total labelling in [0,2n+d —4]. The
vertices must be labelled with labels in [0,7 —2]U [n+d —2,2n +d —4]. Indeed, for a vertex
labelled in [n — 1,n +d — 1], at most 2n +d —3 —n —d + 1 = n — 2 labels are available for
its incident edges and this is a contradiction.

Let ¢ (resp. j) be the largest integer in [0, — 2] such that a vertex is labelled ¢ (resp.
2n 4+ d — 4 — j). Since n different labels are used for the vertices, i + j + 2 > n. Let us now
consider the label [ of the edge joining the vertices labelled 7 and 2n +d — 4 — j. We have
d+1i<1<2n—4—j. Hence d < n — 2 which is a contradiction. |

However, if d < n, the upper bound 2A + d — 1 of Proposition 2.2 is far from being tight
for graph with large maximal degree.

Proposition 2.4 Let G be a graph on n vertices, then A} (G) <n +2d — 2.

Proof. Assign to each vertex v a different integer [(v) of [0,n — 1] and assign to an edge
uv the integer I(u) + I(v) + d mod n + 2d — 1. We show that [ is a (d,1)-total labelling of
G. Two adjacent edges have different labels since two distinct vertices have different labels.
And clearly, |l(uv) — I(u) mod n + 2d — 1| > d. Thus [ is a (d,1)-total labelling. ]

For graphs with maximal degree A = n — 1, Proposition 2.4 yields A\] < A + 2d — 1.
Such an upper bounds seems to be the accurate one. Hence, we conjecture the following :
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6 Havet 6 Yu

Conjecture 2.1
M <A4+2d-1

50 M <min{A +2d—1,2A +d -1}

3 (d,1)-total labellings of complete graphs
Proposition 3.1 Ifn >d, then AL (K,) > n+ 2d — 3.

Proof. Suppose that there is a (d,1)-total labelling with labels in [0,n 4+ 2d — 4]. Let
I be alabel in [d — 1,n +d — 3]. A vertex cannot be labelled [ since there are at most
[[0,n+2d — 4]\ [l —d+ 1,1+ d — 1]| = n — 2 labels allowed for its n — 1 incident edges.
Hence only the 2d — 2 vertices of [0,d — 2] U [n + d — 2,n + 2d — 4] may be labelled. (In
particular, n < 2d — 2.) Since n > d, a vertex must get a label in [0,d — 2] and another one
alabel in [n +d —2,n + 2d — 4]. Let j; be the largest integer in [0, d — 2] labelling a vertex
x and n + 2d — 4 — j3 be the smallest integer in [n + d — 2, n + 2d — 4] labelling a vertex y.
The edge zy must be labelled in [j; + d,n +d —4 — j3]. Thusn+d—4—j3 > j1 +d, so
n > j1 + j2 + 4. But the labels of all vertices are in [0,7;]U [n + 2d — 4 — jo,n + 2d — 4].
Hence n < j; + j2 + 2 which is a contradiction. [ ]

Remark 3.1 If n < d—1 then by Theorem 2.2, A} (K,,) < 2A+d—1 = 2n+d—3 < n+2d—4.

Proposition 2.4 and Proposition 3.1 show that n + 2d — 3 < AT(K,,) < n + 2d — 2 when
d < n. In the rest of the section, we establish the exact value of A} (K,,) between n +2d — 3
and n + 2d — 2 for most of the complete graphs.

3.1 0Odd complete graphs
Theorem 3.1 If n is odd then \}(K,) < n +2d - 3.

Proof. We will present a labelling using the integers in the interval [—(n — 3)/2 — d, (n —
3)/2 + d] as the labels.

Consider K,, where V(K,) = [-(n —3)/2 —d,—d]U {0} U [d, (n — 3)/2 — d], which are
also the labels of the vertices. Let F' = {(i, —1),% € [d,(n — 3)/2 + d]}. We use 0 to label all
edges of F.

Before we assign labels to the remaining edges, we partition K,, — F' into two isomorphic
subgraphs G; and G,. Furthermore, G; = A; |J By, where A; is a complete graph on
(n+1)/2 vertices with the vertex set [—(n — 3)/2—d, —d] U {0} and B; is a bipartite graph
with bipartitions [d, (n — 3)/2+ d] and [—(n — 3)/2 —d, —d] and the edge set {(i,j) :i+j €
(L, (n = 3)/2]}.

INRIA



(d,1)-total labelling of graphs 7

Clearly, G, can be considered as the union of As and By and they are isomorphic to A;
and Bj, respectively. We will label the edges of K,, — F' in a symmetric manner in the sense
that if an edge e in G receives the label ¢, then the corresponding edge in G5 receives the
label —q.

Notice that the edges of B; are also incident with the vertices in G5. Therefore, the
labels used for the edges of B; will not be used in G5. It is clear that only the vertex 0
is in both G; and G2 and our labelling strategy for G is to assign not only distinct labels
to it, but also make sure that if p is a label incident with 0, then —p will not. Then with
symmetric manner of the labelling, we will extend the labelling to G2 and obtain a valid
one K,,.

In G1, we label the edges of B; first. Notice that the edges of B; can be partitioned into
(n — 3)/2 matchings, M;,1 < i < (n —3)/2, where M; = {(p,q) :p+q= (n—1)/2 —}.
Hence, |M;| = i.

We assign the labels to the edges of By as follows: the edge (7, ) is labelled i + j. As we
know that |i|, |j| > d, this assignment does not violate the labelling restriction.

For assigning the labels to the edges of A;, we consider two cases.

Casel: n = 3 (mod 4): Let n = 4k+3. Consider K2, where V(Kagt2) = {0, —d, —(d+
1),...,—(d + 2k)}. The edges of Ka42 are labelled as follows :

o If n < 2d+ 3 (or 2k < d), then we take any 1-factorization of Kapyo and assign the
labels d,d + 1,...,2k + d to the 2k + 1 1-factors (one label for each 1-factor). The
labelling is valid because the labels used for M;’s are 1,2, ..., 2k.

e Otherwise, take a 1-factorization { F1, Fs, ..., Fog41} of Kopyo as described in Lemma 3.1.
We use the labels d,d + 1, ..., d + 2k for the 2k + 1 1-factors (one label each) as follows.
The edges of F; are labelled 2k —¢ 4+ 1 for 1 <14 < 2k — d + 1. For the rest we divide
into two subcases.

case 1.1 : d is even. For 0 <i < (d — 2)/2, Fa_o; is labelled 2k + d — 2i. Assign
the rest labels to the unlabelled 1-factors. Clearly, this labelling is not a valid one as
it is in conflict with the labels of M; (the matchings in B;) and may not be extended
in a symmetric manner to G2. The vertex —(d + 2k) + j is incident to edges labelled
1,2,...,7 in By. Therefore the edges labelled 1,2,...,j incident to it in A; must be
relabelled.

(a) For 1 < i <2k—d+1,in F;, the edges with both endvertices in {O}U(U;té_l{—j})
are relabelled —(2d — i + 1).

Moreover, to be sure that at most one of the two integers p and —p are used for the
edges of A; incident to 0, some other edges must be relabelled:

RR n° 4650



8 Havet 6 Yu

(b)) If k+1>d, for 0 <i<(d—2)/2,in Fyj_o,, reassign the label —(2d — 2 — 2i) to
the edge (0, —(2k +d —7)).

(b2) If k+1<d, for 0 <i<k—d/2,in Fy_o,, reassign the label —(2k — 2i) to the
edge (0, —(2k + d —7)).

We can check that all the edges incident 0 have different labels and if p is one of the

labels, then —p is not. Indeed before the relabelling, the labels for the edges incident
0ared,d+1,...,d + 2k. After the relabelling,

—if k+1 > d, then they are —(2k + d),—(2k + d — 2),...,—2d (those relabelled
with (a)), —(2d—2), —(2d —4), ..., —d (those relabelled with (b1)), and d+1,d+
3,..,2k+3,...,2k + d — 1 (the non-relabelled ones);

— if k+1 < d, the labels are: —(2k+d), —(2k+d—2),..., —2d (those relabelled with
(a)), =2k, —2k+2, ..., —d (those relabelled with (b2)), 2k +2,2k+4,...,2d — 2,
and d+1,d+3,...,2k + d — 1 (the non-relabelled ones).

Therefore, the labelling we have for Gy is valid. Then we assign labels to G5 in a
symmetric manner as described before and we will have a valid labelling we want.

case 1.2 : d is odd. For 0 <i < (d — 3)/2, Fy_o; is labelled 2k + d — 1 — 2i. Assign the
rest labels to the unlabelled 1-factors. We will again adjust the labels for some of the edges
as follows. _

(a) For 1 < i <2k—d+1,in F;, the edges with both endvertices in {0} U (U;li;_l{—j})
are reassigned the label —(2d —i + 1).

(b1)Ifk+1>d, for 0 <i < (d—3)/2,in Fay_g;, reassign the label —(2d — 2 — 2¢) to
the edge (0,—(2k + d —7)).

b2) fk+1<d,for 0<i<k—(d+1)/2, in Fa_2;, reassign the label —(2k — 27) to
the edge (0, —(2k + d — 1)).

We can verify as before that this labelling is indeed valid.

Case 2: n =1 (mod 4): Let n = 4k+1. Consider K41, where V(Ko y1) = {0, —d, —(d+
1),...,—(2k + d — 1)}. We label the edges of Kog11 as follows.

e If n <2d—1 (or 2k < d — 1), then we take any near 1-factorization of Kog41 and
assign the labels d — 1,d, ..., 2k + d — 1 to the 2k + 1 near 1-factors (one label for each
near 1-factor and make sure that the near 1-factor with 0 as the isolated vertex will
receive the label d — 1. Then we are done as this labelling will not be in conflict with
the labels assigned to the edges in M,’s or the vertices.

o Otherwise, take a near 1-factorization {NFy, NFy, ..., N Fyj 41} of Kaj41 as in Lemma 3.2.
First, we use the integers of [d — 1,2k + d — 1] to label them : for 2 <i <2k —d+ 2,
The edges of NF; are labelled 2k — ¢ + 1. For the rest, we divide it into two subcases.

INRIA



(d,1)-total labelling of graphs 9

The strategy of labelling is the same as case 1 and here we will give the labelling and
omit the verification.

case 2.1 : d is even. The edges of NF; are labelled 2k+d—2 and for 0 < i < (d—4)/2,
assign the label 2k + d — 4 — 2i to the edges of NF5;_o;. Then assign the rest labels
to the remaining near 1-factors (one label each).

We now adjust the labels for a few edges in order to achieve a valid labelling.

(a) For 3 <i <2k —d+2, in NF;, the label of the edges which have both endvertices
in the set {0} U (U?;L;*{—j} is changed to —(2d + i — 3). Recall that the original
labels for all these edges were: 2k — 2,2k — 3, ...,d — 1.

(b1) If k > d, for 0 < i < (d —4)/2, in NFy;_o;, reassign the label of —(2d — 2 — 2i)
to the edge (0, —(2k +d — 1 —1)).

(b2) If k < d, for 0 < i < k—d/2—1,in NFy,_o;, reassign the label —(2k — 2 — 2i)
to the edge (0, —(2k +d — 1 —1)).

case 2.2 : d is odd. In this case, the edges of N F; are labelled 2k + d — 1, and for
0 <i<(d-3)/2, the edges of N Fyj_o; are labelled 2k + d — 3 — 2i.

(a) For 3 <i <2k —d+2, in NF;, the label of the edges which have both endvertices
in the set {0} U (USE2*{—j} is changed to —(2d + i — 3).

(b1) If k > d, for 0 < i < (d — 3)/2, in NF5_o,, reassign the label —(2d — 2 — 24) to
the edge (0,—(2k +d — 1 —1)).

(b2) If k < d, then for 0 < i < k—(d+1)/2,in N F5j,_9;, reassign the label —(2k—2—21)
to the edge ((0,—(2k +d — 1 —1)).

Lemma 8.1 There exists a 1-factorization {Fi, Fa, ..., Fary1} of Koo with a vertex set
{0} U [—d — 2k, —d] such that it satisfies the following properties:

(o) If i is even, F; has i/2 edges covering the vertices {—d,—d —1,...,—d —i + 1}, if
i < 2k,

(b) Ifiis odd, F; has (i+1)/2 edges covering the vertices {0, —d, ..., —d—i+1}, if i < 2k+1.

Proof. We give an explicit construction of such a 1-factorization. Let f; = {(0,—d —
i),(-d—1—4,-d—2k—1),(—d—2—i,—d—2k+1—14),...,(—d—k—i,—d—k—1—1)} for
0 <4 < 2k. This is a standard cyclic 1-factorization of Koy yo. Now we define F; as follows.

Let F5, 1 = f;1 and Fy; = fry4, for 1 < ¢ < k and Forq1 = fr- We can check that both
conditions are satisfied. |

Lemma 3.2 There exists a near 1-factorization {NF;,NFy,... ,NFs1} of Kopt1 with a
vertex set {0} U [—d — 2k + 1, —d] such that it satisfies the following properties:

RR n° 4650



10 Hovet & Yu

(a) If i > 4 is even, NF; has i/2 — 1 edges covering the verter set {—d,—d—1,...,—d —
i/2 — 1} and the vertex —i/2 — d is not covered by NF;. NF, has —d as the isolated
vertez.

(b) If i is odd, NF; has (i —1)/2 edges covering the vertex set {0,—d,...,—d —(i—1)/2}

and the verter —(i + 1)/2 — d is not covered by NF;.

Proof. This near 1-factorization can be obtained by deleting the vertex —d from the 1-
factorization in Lemma 1 and then relabel the vertex —d —i by —d —¢+ 1, for 1 < d < 2k.
|

Corollary 3.1 If n is odd then As(K,) = min{n + 2d — 3,2n + d — 3}.

3.2 Even complete graphs
Theorem 3.2 If n is even and n > 6d> — 10d + 4, then AT (K,) =n + 2d — 2.

Proof. By Proposition 2.4, \}(K,) < n+2d — 2.

Let G be a graph on n vertices. Suppose that G admits a (d,1)-total labelling with
labels in [0,n + 2d — 3]. Then each label ! induces a matching M; over the edges of G.
Moreover, this label is not adjacent to the vertices with labels in [ —d + 1,1+ d — 1]. Let
b(1) be the number of labels in I; = [ —d + 1,1 + d — 1] that are assigned to no vertex.

Then M, contains at most ["_2d+1+b(l)J = "’22‘1 + {@1 edges and G contains at most

(n+2d —2)252 + Zn+2d 8 [b(z—l)-‘ edges. Each non assigned label is contained in 2d — 1
intervals I;. And for 1 < ¢ < d — 1 the labels —i and n + 2d — 3 4+ ¢ are contained in
d — i intervals I;. Hence Z”“ o)< (2d-2)(2d— 1) + 23} i = 5d2 — 7d + 2. Since
EZ'OM 3 [1;(2_1)" E”+2d 2 b(l), if n > 6d% —10d +4, then G has less than n(n—1)/2 edges.
Thus G is not complete. |

If d = 1, then 6d> — 10d + 4 = 0. Hence as a corollary, we have the result of Bezhad,
Chartand and Cooper [2] on total colouring :

Corollary 3.2 x7(K,) = \T(K,.) + 1 equals n if n is odd, and n + 1 if n is even.

Proposition 3.2 Let n be an even integer greater than 4. If d > n — 3, then \J(K,) <
n+ 2d — 3.

Proof. Let us first prove that \I_;(K,,) < 3n — 9. Label the vertices with {0,1,2n — 7} U
[2n—5,3n—9]. Since n > 4 then 2n —7 > 1, thus the vertices receive different labels. Label
the edges of the complete subgraph induced by the vertices labelled in {2n—7}U[2n—5, 3n—9]
with [0,n —4]. It is possible since x'(K,—2) =n —3. For j € [2n — 5,3n — 9], label the edge
(1,7) with y —n + 3 and the edge (0, j) with j —n + 2. Complete the labelling by assigning
3n—10to (0,2n—7), 3n—9 to (1,2n — 7), and 3n — 8 to (0,1). One can check that this is
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(d,1)-total labelling of graphs 11

a valid (n — 3,1)-total labelling of K,,. To obtain a (n — 3 + 4, 1)-total labelling start from
the above labelling and change the label [ by [ 44 if it is in [n — 5,2n — 6] and [ + 23 if it is
in [2n —5,3n — 9. |

Proposition 3.3 i) M (K,) =6
i) M, (K4) <74 2. In particular, ] (K4) =7 and A} (K4) = 9.

i) By Proposition 2.4, there is a (2,1)-total labelling | of K, with span 6.

Suppose that there exists an (2,1)-total labelling ! of K, in [0,5]. For any vertex v, let
A(v) be the set of labels of its three incident edges. Now since each vertex must receive a
different label, there are two vertices u and v such that {(u) + 1 = I(v). Clearly, |A(u) N
A(v)| > 2 since I(u) and I(u + 1) are not contained in both A(u) and A(v). Hence two edges
share the same label I. Necessarily, there is no vertex labelled /, ! — 1 and [ + 1. Since only
two labels are not assigned to vertices, either [ = 0 and the four vertices are labelled 2, 3, 4
and 5 or symmetrically [ = 5 and the four vertices are labelled 0, 1, 2 and 3. This implies
that only five edges may be labelled which is a contradiction. Indeed in the first case, the
label 0 may be assigned to two edges, the labels 1, 2 and 5 to one edge and 3 and 4 to none.

ii) A (3 +i)-total labelling in [0, 7 4 2i] is given by the following adjacency matrix :

0 449 6420 T+ 2
0 T4+2i 347 4414
449 | T4+ 2 1 0
64+2i | 3+1 1 2
T+2i | 4414 0 2

By Proposition 3.1, A\I'(K4) > 7 and A\ (K4) > 9. So A\l (K4) =7 and M\ (K4)=9. ®
Proposition 3.4 Let n be an even integer greater than 5. Then A\1_,(K,) = 3n — 11.

Proof. By Proposition 3.1, Al ,(K,) > 3n — 11.

Let us now show an (n — 4, 1)-total labelling of K, in [0,3n — 11]. Label the vertices
with {0,1,2n — 9} U [2n — 7,3n — 11]. Label the edges of the complete subgraph induced by
the vertices labelled in {2n — 9} U [2n — 7,3n — 11] with [0,n — 4] in such a way that the
edge e = (2n —7,2n —9) is labelled n — 4. Tts is possible since x'(K,_2) = n — 3. The label
of e is not valid. Change it to 3n — 11. For j € [2n — 7,3n — 11], label the edge (1, j) with
j—n+4 and the edge (0, 5) with j —n + 3. Complete the labelling by assigning 3n — 13 to
(0,2n—9), 3n — 12 to (1,2n — 9), and 3n — 11 to (0,1). N

Proposition 3.5 Let n be an even integer greater than 7. Then A\ . (K,) = 3n —13.

Proof. By Proposition 3.1, Al (K,) > 3n — 13.

Let us now show an (n — 5,1)-total labelling of K,, in [0,3n — 13]. Label the vertices
with {0,1,2n — 11} U [2n — 9,3n — 13]. Label the edges of the complete subgraph induced
by the vertices labelled in {2n — 11} U [2n — 9,3n — 11] with [0,n — 4] in such a way that
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12 Havet 6 Yu

the edges e1 = (2n — 11,2n — 9) and ex = (2n — 11,2n — 8) are labelled n — 4 and n — 5.
The labels of e; and ey are not valid. Change them to 3n — 14 and 3n — 13 respectively. For
J € [2n — 7,3n — 13], label the edge (1,7) with j —n + 5 and the edge (0, j) with j —n + 4.
Complete the labelling by assigning n—3 to (1,2n—8), n—5 to (0,2n—8), n—4 to (1,2n—9),
3n—13 to (0,2n—9), 3n — 15 to (1,2n —11), 3n — 16 to (0,2n — 11), and 3n — 14 to (0, 1).
By construction, the labels of incident edge and vertex are at distance at least n — 5. And
adjacent edges have different labels if 3n — 15 > 2n — 8 that is n > 7. [ |

Proposition 3.6 Let n be an even integer greater than 7. Then AL o(K,) = 3n — 15.

Proof. By Proposition 3.1, \T_¢(K,) > 3n — 15.

We give an (n — 6, 1)-total labelling of K, in [0,3n — 15] as follows. Label the vertices
with {0,1,2,3,2n—11}U[2n—9,3n —15]. Label the edges of the complete subgraph induced
by the vertices labelled in {2n—11}U[2n—9, 3n—15] with [0,n—6]. For j € [2n—9,3n—15],
label the edge (3, j) with j —n+6, the edge (2, j) with j —n+ 5 the edge (1, j) with j —n+4
and the edge (0,j) with j —n + 3. Change the label of (0,2n — 9) into 3n — 15 and label
(0,2n — 11) with n — 6. Complete the labelling by the following labelling of the complete
induced by {0,1,2,3,2n — 11}.

0 1 2 3 2n —11

0 3n—18 3n—17 3n-—-16 n—=6

1 3n — 18 3n—15 2n—12 3n—17

2 3n—17 3n-—-15 2n—11 3n—16

3 3n—-16 2n—12 2n-—11 3n—15
2n — 11 n—=6 3n—17 3n—16 3n-—-15

|
Problem 1 What is A} (K,,) when d+ 6 <n < 6d%> — 10d + 4 and n even? n + 2d — 3 or
n+2d—27

4 (d,1)-total labelling of graph with small maximum de-
gree

4.1 A =2
Theorem 4.1 Let G be a connected graph with mazimal degree 2.
(i) A3 (G) = 4.
(ii) Let d > 3. If G is an odd cycle then \I(G) = d + 3 otherwise \I(G) = d + 2.

Proof. (i) By Proposition 2.1 M (G) > 4. If G is bipartite, then by Corollary 2.1, AI'(G) <
4. Suppose now that G is not bipartite, then it is an odd cycle (ag,a1,a2,...,a2p,a0). Then
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(d,1)-total labelling of graphs 13

a (2,1)-total labelling lof G is the following : For i = 1 to p, l(a2i—1a2:;) = 4 and I(az2;) = 0;
fori=1to p— 1, l(G/QH_l) =1 and l(agiagﬂ_l) = 3; and l(ao) = 4, l(al) =2= l(agpao) =2
and Il(apay) = 0.

(ii) If G is not an odd cycle it is bipartite then by Corollary 2.1 and Proposition 2.1,
M(G) = d + 2. Suppose now that G is an odd cycle (ag,a1,as, ... ,as,,a0). By Proposi-
tion 2.2, A\J(G) < d+3. Suppose now that G admits a (d, 1)-total labelling in [0,d+2]. Then
vertices must be labelled with 0, 1, d + 1 or d + 2. Since an odd cycle is not 3-colourable,
there must be an edge whose endvertices are labelled with one label in {0,1} and one in
{d+1,d + 2}. Now since d + 2 < 2d this edge may not be labelled. Contradiction. |

4.2 A =3
Theorem 4.2 If A(G) < 3 then \I(G) < 6.

Proof. If G = K4, then we have the result by Proposition 3.3. So we may suppose that G
is not complete. Then by Brook’s theorem, x(G) = 3 and G is tripartite. Let (X,Y, Z) be
a tripartition of V(G) such that for each z € X, N(z) NY # 0 and N(z) N Z # 0, and for
eachyeY, N(y)nZ # 0.

We will now construct a (2,1)-total labelling of G in three steps :

1) First assign the label 0, 1, 2 respectively to the vertices of X, Y and Z.

2) Consider H' the graph induced by the edges joining vertices of Z to vertices of X UY'.
It is bipartite and A(H') < 3. Thus, by Konig’s theorem, we may label its edges with
the three labels 4, 5 and 6.

3) Now consider H the graph induced by the edges joining a vertex of X to a vertex of
Y. By definition of the tripartition, H is bipartite and A(H) < 2. Hence, it is the
union of even cycle and paths.

a) Let us first label the (even) cycles. Let C = (a1,a2,b1,b2,...,ap,bp,a1) be a
cycle of H. For 1 <17 < p, assign the label 3 to each edge a;b; and label the edge
bia;+1 with the label in {4, 5,6} which is not used by the two edges joining b; to
a vertex of Z and a4 to a vertex of Z.

b) In the same way as in a), label each odd paths (a1, as2,b1,b2,...,ap,bp).

¢) Let us now label the even paths one after another.

Let P = (a1,a2,b1,b2,...,0p,bp,ap11) be a yet unlabelled even path. For 1 <
1 < p, assign the label 3 to each edge a;b; and for 1 < ¢ < p — 1, assign to the
edge b;a; 1 with the label in {4, 5,6} which is not used by the two edges joining
b; to a vertex of Z and a;41 to a vertex of Z. The only edge that remains to
be labelled is e = bpapy1. Therefore, we may need to relabel the vertices b, and
ap+1 and the formerly labelled edge b,2y where 2y € Z. Let z; and 22 be the two
neighbours of a,41 in Z.
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14 Havet 6 Yu

(i) If there is a label | € {4, 5,6} which is not used to label eg = b,20, €1 = apt121
Or €3 = ap4122, then assign [ to byapt1-

(ii) If for some ¢ € {0, 1,2}, one of the edges incident to z; is labelled 0 then one
can relabel e; with a new label in {4, 5,6} and assign the old one to e.

(iii) If for all 4 € {0, 1, 2}, no edge incident to z; is labelled 0, then do the following
: If ep is labelled 4, then relabel eq with 0, b, with 5 and a,+1 with 3 and label e
with 1. If not without loss of generality, e; is labelled 4. Then relabel eg and e;
with 0, b, with 5 and ap+1 with 3 and label e with 1.

]
Theorem 4.2 is tight since A (K,) = 6 by Proposition 3.3. However, we think that it is
the only graph with A =3 and M} =6 :

Conjecture 4.1 If A(G) <3 and G # K4 then M (G) < 5.

Theorem 4.2 and Proposition 2.2 imply that Conjecture 2.1 holds when A = 3. In
particular, we get that A (G) < 8. This upper bound is not best possible :

Theorem 4.3 If A(G) < 3 then \I'(G) < 7.

Proof. If G = K4, then we have the result by Proposition 3.3. So we may suppose that G
is not complete. Then by Brook’s theorem, x(G) = 3 and G is tripartite. Let (X,Y, Z) be
a tripartition of V(@) such that for each z € X, N(z) NY # § and N(z) N Z # @, and for
eachyeY, Niy)nZ # 0.

Let H be the bipartite graph induced by X UY and H’ the graph induced by the edges
joining vertices of Z to vertices of X UY. The graph H has maximum degree at most 2,
$0 its components are paths and (even) cycles. The graph H' is bipartite and A(H') < 3.
Thus, by Konig’s theorem, it is 3-edge colourable. Let C be the set of edge colourings of H'
with colours 5, 6 and 7.

The ends of the path P = (a1, aq,...,a,) are the edges (a1,az2] and [an—1,a,). The
different brackets are used to distinguish the endvertices.

Let ¢ € C and let (z,y] be an end of an even path of H. Let ey be the edge of H’
incident to y and e; and ey the edges of H' incident to x. We say that (z,y] is ¢-good if
{c(ep),c(e1),c(e2)} # {5,6,7} or c(eg) = 5. An end that is not ¢-good is said to be c-bad. A
component of H is c-bad if it is an even path (with length at least 2) with two c-bad ends.

Let us now consider the edge colouring ¢y € C that minimizes the number of bad com-
ponents in H. Let us prove that ¢o has no bad paths. Suppose for contradiction that there
is a bad path Fy. Let (xo,yo] be one of its end and a the colour labelling the edge of H'
incident to yo. Since (zg,yo] is bad a # 5 and an edge incident to z¢ is labelled 5. Let Qo
be the longest path of H' starting at x with alternating colours 5 and a. Let ¢; be the edge
colouring obtained from ¢y by interchanging the colours a and 5 along Q. Let zy be the
endvertex of Qo distinct from x(. Since ¢y also minimizes the number of bad components in
H, then edge colouring ¢y also minimizes the number of bad components in H. Moreover, P
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(d,1)-total labelling of graphs 15

is ¢1-good thus P, the component of zy in H, must be ¢;-bad and have been ¢p-good. This
implies that P; is an even path and that zo belongs to an end of (z1, 1] of P;. Furthermore
if 29 = y1, then ¢o(z0) # a otherwise ¢1(20) = 5 and P; is ¢;-good. In particular, 2o # yo-
And because (zg, yo] is c1-good, Py # Py. Set t; = {x1,y1} \ {20}. Since (z1,¥1] is ¢1-bad,
t1 is adjacent to an edge e; labelled with a or 5. Let @1 be the longest path of H' starting
at t; with alternating colours 5 and a. Let z; be the endvertex of )1 distinct from z1, P
the component of z; in H and ¢ the edge colouring obtained from ¢; by interchanging the
colours a and 5 along @;. As before, ¢ minimizes the number of bad components and P,
is ca-bad. And z; # yo. Thus P, # Py and because z; is not in {z1,y1}, P» # P;. And
so on by induction, for any 7 > 0 one constructs i distinct components of H. This is a
contradiction since G is finite.

Hence ¢y has no bad components.

We will now construct (2,1)-total labelling of G from ¢y. First assign the label 0, 1, 2
respectively to the vertices of X, Y and Z. And label the edges of H' according to ¢o. Let
us now label the components of H. Let C be such a component.

a) If C is a cycle (a1,a2,b1,ba,...,ap,bp,a1). For 1 < i < p, assign the label 4 to each
edge a;b; and label the edge b;a; 1 with the label in {5,6, 7} which is not used by the
two edges joining b; to a vertex of Z and a;41 to a vertex of Z.

b) Proceed analogously if C is an odd path (a1, a2,b1,b2,...,ap,bp).
¢) Suppose now that C is the even path (a1, a2, b1,b2,...,ap,bp, apt1). By symmetry, we
may suppose that [by, ap4+1) is good.

For 1 <4 < p, assign the label 4 to each edge a;b; and for 1 < i < p — 1, assign to the
edge b;a;+1 with the label in {5,6, 7} which is not used by the two edges joining b; to
a vertex of Z and a;4+1 to a vertex of Z.

Let zp be the neighbour of b, in Z and z; and # be the two neighbours of ap4+1 in
Z. If there is a label I € {4, 5,6} which is not used to label ey = bp2p, €1 = apt121 Or
€y = Gpy14%2, then assign [ to bpapyi.

Otherwise since [by, ap41) is good, eq is labelled 5 and e; and ey are labelled with 6
and 7. Then relabel zy with 3, b, with 7, a,4+1 with 0 and e with 0 and label by,ap41
with 3.

By construction, this is a (3, 1)-total labelling of G. [ |

4.3 A=14
Theorem 4.4 If A(G) < 4 then M (G) < 8.

Proof. If G is K5 then we have the result by Theorem 3.1. So, by Brook’s theorem, we
may suppose that G is 4-colorable and therefore 4-partite. Let (A, B, C, D) be a 4-partition
of G such that G(A, B) and G(C, D) are bipartite with max degree at most two. We will
now construct a (2,1)-total labelling of G with the labels in [0, 8].
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16 Hovet & Yu

I) G(AU B,C U D) has degree at most 4. So by Konig’s theorem, we may label its edges
with the four labels 5, 6, 7 and 8.

IT) Label every isolated vertex in G(A, B) with 0 and the isolated vertices in G(C, D) with
2.

ITI) Let us now label the edges and the vertices of the graph H induced by the non isolated
vertices of G(C, D). Note that H is the union of even cycles and paths.

Let zy be an edge of G(C, D) with z and y of degree two in G(C, D). If y is labelled 3,
a usual extension to xy is defined as follows :

- If one label | € {5,6,7,8} does not label any edge incident to z and y then label zy
with [ and z with 2.

Otherwise, the edges adjacent to xy have distinct labels.

- If no edge incident to x is labelled 5 then assign 4 to x and 1 to zy.

- If an edge of incident to x is labelled 5, then relabel it with 4 and assign 2 to x and 5
to xy.

A) First label the cycles. Let (u1,v1,...,up, vp, u1) be a cycle. For 1 <4 < p assign the
label 3 to each v; and 0 to each edge v,u;+1. And apply the usual extension to each
U;V;.

B) Label now the odd paths. Let (v, u1,v1,...,vp—1,up) be an odd path. In the same

way as for cycles, we assign labels to its vertices and edges.

C) Consider now the even paths Pi,Ps,...,P,. For 1 < j < m, let Q; be the path

obtained from P; by deleting its final edge (that is if P; = (v, u1,v1,...,Vp_1, Up, Vp)
then Q; = (vo,u1,v1,...,Vp_1,Up).
We first assign labels to all the @); with the following method. For 1 <7 < p—1 assign
the label 0 to each edge v;u;41. If no edge adjacent to v, is labelled 5 then assign 3
to each u; 1 < i < p otherwise assign 3 to every v;, 1 < i < p+ 1. Apply the usual
extension to each w;v;, 1 <t <p—1.

Let us now label the final edge (i.e. upvp) of every @; and its non-labelled vertex.
1) If no edge incident to v, is labelled 5 then label v, with 4 and assign 1 to u,v,.
Otherwise the vertex v, is labelled 3 and the label of u, is unlabelled.

2) If one label [ € {5,6,7,8} is not used for any edge incident to u, and v, then
label u, with 2 and label u,v, with I.

3) If no edge incident to u, is labelled 5 then label u, with 4 and assign 1 to u,v,.

4) If the edges incident to u, are labelled 5 and 6, then label u, with 8 and assign
1 to upvp.
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5) Suppose that the two already labelled edges incident to u,, u,a and u,b are
labelled 5 and [; respectively, and that the edges adjacent to v, are labelled 5, 6
and lg with {ll, lz} = {7, 8}

Let [ be the label of [4, 8] which is not used for any edge incident to b.

If [ # 5, then relabel u,b with [, assign 2 to u, and Iy to upv,. If [ = 5, then b
is an isolated vertex in G(A, B). Hence b is labelled 0. Relabel u,b with 2 and
assign l; to up and 1 to u,vp.

IV) Let us now label the edges and the vertices of the graph H' induced by the non isolated
vertices of G(A, B). Note that H' is the union of even cycles and paths. By the previous
construction of the labelling of G(C, D) every edge from a vertex of H' to a vertex of C UD
has a label in [4, 8]. Moreover no vertex of C'U D has been labelled 0 or 1.

Let (u1,v1,...,up,vp,u1) be a cycle. For 1 < i < p, assign the label 1 to v;, the label 0
to u;, and 3 to v;u;+1. We now need to label the edges u;v;. Since u; and v; are joined to
at most two vertices each in C'U D then there is label | € [4, 8] that is assigned to no edge
incident to u; or v;. Then assign | to uv;.

In the same way, we may label an odd path (vo, u1,v1,...,Vp—1,Up).

Let us consider an even path (vg,u1,v1,...,Vp—1,Up,Vp). Let us label the edges and
vertices of (vg,u1,v1,-..,Vp—1,Up) as in an odd path. And assign 1 to v,. If there is a label
[ € [4, 8] that is assigned to no edge incident to u, or v,, then assign ! to u,v,. Otherwise,
there is a unique edge e adjacent to u,v, that is labelled 4. By the labelling of G(C, D) this
edge is incident to a vertex w labelled 2 and adjacent to an edge labelled 0. And there is a
label I of [5, 8] which is not assigned to an edge adjacent to w. Then relabel e with [ and
label u,v, with 4.

|

5 Extending a vertex colouring into a (d, 1)-total labelling

One approach to prove the Conjecture 2.1 is to obtain a small function a(d) such that a
A+ a(d) (d,1)-total labelling of a graph can be constructed by extending a vertex colouring
with a suitable edge colouring.

Conjecture 5.1 Let d > 1. There is an integer a(d), such that for any vertex colouring c,
of a non-complete graph G with colours in [0, A — 1], there is an edge colouring c. of G with
colours in [0, A + a(d)] such that ¢, U c. is a (d,1)-total labelling of G.

Remark 5.1 The List Colouring Conjecture implies that Conjecture 5.1 is true for a(d) =
4d — 2.

Conjecture 5.2 (List Colouring Conjecture) The chromatic index is equal to the list
chromatic index, that is x’ = xj.

RR n° 4650



18 Hovet & Yu

Since every graph is (A + 1)-edge colourable (Vizing’s Theorem), this conjecture implies
that it also is (A + 1)-edge choosable.

Let ¢, be a vertex colouring of a non-complete graph with colours in [0,A — 1]. For
any edge e = (z,y), there is a set L(e) C [0,A + 4d — 2] of A + 1 colours such that
L(e) N ([ep(z) —d+ 1,cp(x) + d — 1] U [ey(y) — d + 1,¢4(y) + d — 1] = @. Then since G is
A + 1-choosable, there exists a desired edge colouring.

5.1 Some probabilistic results

In [5], McDiarmid and Reed proved that a graph G with n vertices X7 (G) < x/(G) +
k + 1 where k is an integer such that k! > n. Analogously, one can prove the following
generalisation to (d, 1)-labelling.

Theorem 5.1 If G is a graph with n vertices and k is an integer with ﬁ > n then
M(G) < X(G)+k+3d-3.

Proof. We may assume that G is not complete. Let ¢ = x'(G). By Brook’s Theorem, G
has a vertex colouring ¢ using the g colours of [0,¢q — 1]. Let M = {M1, Ma, ..., M,} be the
collection of matchings in an edge colouring of G using ¢ colours.

Given a bijection 7 from M to [0, ¢—1], let the “rejection graph” G be the subgraph of G
containing those edges xy such that 7(zy) € [¢(x)—d+1, c(x)+d—1]U[e(y)—d+1, c(y)+d—1].
Then clearly,

M(G)<q+ X (Gr)+d—2< g+ A(Gr) +d— 1.

We shall prove that for some bijection 7, we have A(Gr) < k + 2, by considering a
random bijection with all ¢! equally likely.

Consider a vertex v € G, with set N of at least k + 2d — 1 neighbours in G. Let A be
the collection of sets N’ C N with cardinality k. Also, for each set N' € N, let A(N') be
the event that for each vertex w € N’ the matching M containing the edge vw is mapped
to a colour in [¢(w) —d + 1, ¢(w) + d — 1]. Clearly, we have:

2d — 1)* —k)!
Pray) < <A @By gy
Hi:O (q - Z) ¢
Let dr(v) denote the degree of v in G. If dr(v) > k+ 2d — 1 then the event A(N') must
occur for at least one N’ € A", And |N| = (V1) so

Pr{d,(v) > k+2d—1} < (”Z') w@d _ 1),

Since |[N| < A and g > A then

Pr{d.(v) > k+2d-1} < (i) w%_ 1k — (2%;'1)’6'
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Now we obtain
(2d — 1)k

k!

because ﬁ > n. Hence, for some bijection 7, A(G;) < k + 2d — 2 as required. [ |

Pr{A(G,) > k+2d—1}<n <1

Corollary 5.1 Asn — oo, A1 (@) < x'(G) + O(logn/loglogn).

Following the proof of the Theorem 2.1 of [5], one can prove the following result asserting
that as n — oo the proportion of graphs on vertices 1,2,...,n with total (d,1)-labelling
number A > A + 2d — 1 is very small:

Theorem 5.2 Let p and c be constant with0 < p <1 and0<c< min{%, £}. Then

P{AY(Grp) > A+2d—1} = o(n~"/?).

5.2 Extending with a fractionnal edge colouring

One can relax the constraints and try to extend the vertex colouring with a fractionnal edge
colouring.
Let M be the set of matchings of G. Given a vertex colouring ¢ with couloursin [1, A—1].

We want to minimize the fractionnal extend span A +d —2 + Z waA+d—1(M) under

MeM
the following constraints :

o for 0<i<A+d-2, > wi(M)<L
MeM
Each already used colours has a weight at most one on each edge.

e for e € E(G), Z Z w;(M)>1,
eEM i€P(e)
where P(e) =[0,A+d—1]\ ([e(z) —d+1,c(x) +d - 1)U [e(y) —d+ 1,c(y) +d — 1]).
Each edge must be covered by a weight of one by allowed matching (i.e. with colours
at least two apart from the colours of its vertices).

Theorem 5.3 Let G be a (non-complete) graph. For any wvertex colouring ¢ of G with
colours in [0, A — 1], the fractionnal extend span is at most A + 3d.

Proof. Let My, My, ..., Ma be the matching of a A+1 edge colouring of G. For 0 < j < A,
set w;(M;) = x5 for 0 <i < A+d— 2 and and set way4—1(M;) = oL

A+l Al
Let us prove that the two constraints are fullfilled:
For 0 <i<A+d—2, we have :
1
Z w;(M) = Zwi(Mj) =(A+ I)A—+1 =1
MeM J
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Let e be an edge, it is contained in one matching M .

3d 1 3d A—-3d+1
Z Z wi(M) = Z wi(Mje):A—_H+A—+1(|P(€)|—1)Z Arl  AFT >1
eeM iEP(e) iEP(e)

Then the fractionnal extend span is at most :

3d
A+ZMA+1(M):A+ZA—+1:A+3d
MeM J

6 Conclusion

In this paper, we have given a number of evidences for Conjecture 2.1 to be true. Note
that this conjecture implies that AJ(G) < (1 +a)A+ (2 —a)d —1 for any 0 < a < 1.
Proposition 2.2 aserts this for a = 1 and it is exactly Conjecture 2.1 if @ = 0. It would be
interesting to prove some intermediate results by showing this inequality for some a < 1.
For example, if A = 4, it holds for a = 1/2 according to Theorem 4.4.
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